搜档网
当前位置:搜档网 › 生活中的圆周运动导学案

生活中的圆周运动导学案

生活中的圆周运动导学案
生活中的圆周运动导学案

生活中的圆周运动

【学习目标】

1.会在具体问题中分析向心力的来源,会处理火车转弯、汽车过桥等力学问题.

2.掌握应用牛顿运动定律解决匀速圆周运动问题的一般方法,

3.知道向心力和向心加速度的公式也适用于变速圆周运动

4.通过实际演练,使学生在巩固知识的同时,领略到将理论应用于实际解决问题而带来的成功乐趣.培养学生探究知识的欲望和学习兴趣,提高在生活中的应用物理的意识。

【教材解读】

1.举出几个在日常生活中遇到的物体做圆周运动的实例,并说明这些实例中的向心力来源。

自行车(或摩托车)、汽车转弯。地面对自行车(或摩托车)、汽车有指向内侧的静摩擦力,这个静摩擦力提供自行车转弯时所需的向心力;

2.火车转弯时所需的向心力的来源怎样?

3.定量分析火车转弯的最佳情况.

①受力分析:

②动力学方程

③讨论当火车实际速度为v时,可有三种可能,

当v=v0时,

当v>v0时,

当v<v0时,

4.汽车过拱桥桥顶的向心力如何产

生?方向如何?

5.定量分析汽车过拱桥桥顶情况.详细见课本P57,如图【案例剖析】

例1. 如图6-8-3所示,一质量为

m的小球做半径为R的圆锥摆运

动,已知细线和竖直方向的夹角为

θ,则小球做匀速圆周运动所需的向

心力多大?小球做匀速圆周运动的

速度是多大?

例2.汽车以恒定的速率v通过

半径为r的凹型桥面,如图6-8-4 所

示,求汽车在最低点时对桥面的压

力是多大?

例3.小球在半径为R的光滑半球内

做水平面内的匀速圆周运动,试分

析图中的θ(小球与半球球心连线跟竖直方向的夹角)与线速度v、周期T的关系。(小球的半径远小于R)

【知识链接】过山车中的物理知识

过山车是一种项富有刺激性的娱乐工具。那种风驰电掣、有惊无险的快感令不少人着迷。人们在设计过山车时巧妙地运用了物理力学上圆周运动知识。如果能亲身体验一下由能量守恒、加速度和力交织在一起产生的圆周运动效果,那感觉真是妙不可言。过山车的小列车起初是靠一个机械装置的推力推上轨道最高点的,然后列车开始没直线轨道向下加速运动,进入与直线轨道相切圆形轨道时过山车突然沿轨道向上转弯,这时,乘客就会有一种被挤压到轨道上的感觉,事实上,在圆形轨道上由于重力和铁轨对过山车弹力提供了向心力。使过山车继续做圆周运动而不掉下来,当过山车达到圆形轨道的最高点时能够体验到冒险的快感。

【课堂练习】

1.汽车在水平面上转弯时,所需的向心力由下列那些力提供的:()

A. 发动机的牵引力

B.重力和支持力的合力

C. 地面施加的侧向静摩擦力

D. 地面的支持力

2.列车轨道在转弯处外轨高于内轨,其高度差由转弯半径与火车速度确定。若在某转弯处规定行驶速度为v,则下列说法中正确的是:()

①当以速度v通过此弯路时,火车重力与轨道面支持力的合力提供向心力

②当以速度v通过此弯路时,火车重力、轨道面支持力和外轨对轮缘侧弹向力的合力提供向心力

③当速度大于v时,轮缘侧向挤压外轨

④当速度小于v时,轮缘侧向挤压外轨

A. ①③

B. ①④

C. ②③

D. ②④

3.在高速公路的拐弯处,路面要造得外高内低,即当车向右拐弯时,司机左侧的路面比右侧要高一些,路面与水平面的夹角为θ,设拐弯路段为半径为R的圆弧,要使车速为V时车轮与路面之间的横向(即垂直于前进方向)摩擦力等于零,θ应等于………… ()

A. B.

C.

D.

4.如图6-8-6所示,汽车以速度V通过一半圆形拱桥的顶点时,关于汽车受力的说法正确的是()

A. 汽车受重力、支持力、向心力

B. 汽车受重力、支持力、牵引力、摩

擦力、向心力

C. 重力提供汽车的向心力

D. 汽车的重力和支持力的合力提供向心力

5.两个质量分别是m1和m2

的光滑小球套在光滑水平杆上,用

长为L的细线连接,水平杆随框架

以角速度ω做匀速转动,两球在杆

上相对静止,如图图6-8-10所示,

求两球离转动中心的距离R1和R2

及细线的拉力。

6.如图6-8-11所示,是双人花样滑冰运动中男运动员拉着女运动员做圆锥摆运动的精彩场面.若女运动员做圆锥摆运动时和竖直方向的夹角为θ,女运动员的质量为m,转动过程中女运动员的重心做

匀速圆周运动的半径为r,求这

时男运动员对女运动员的拉力

大小及两人转动的角速度

课堂作业:

1.一质量为m的物体,沿半径

为R的向下凹的圆形轨行,如图6-8-7

所示,经过最低点的速度为v,物体

与轨道之间的动摩檫因数为μ,则它

在最低点时受到的摩檫力为:()

A.μmg B.μmv2/R

C.μm(g+v2/R) D.μm(g-v2/R)

2.一重球用细绳悬挂在匀速前

进中的车厢天花板上,如图6-8-8当

车厢突然制动时,则:()

A.绳的拉力突然变大

B.绳的拉力突然变小

C.绳的拉力没有变化

D.无法判断拉力有何变化

3.质量为m的木块从半径为R

的半球形的碗口下滑到碗的最低点

的过程中,如果由于摩擦力的使用使

得木块的速率不变,如图6-8-9所

示,那么()

A.因为速率不变,所以木块的加速度为零

B.木块下滑过程中所受的合外力越来越大

C.木块下滑过程中所受的摩擦大小不变

D.木块下滑过程中的加速度大小不变,方向始终指向球心

4.飞机驾驶员最多可承受9倍的重力加速度带来的影响,当飞机在竖直平面上沿圆弧轨道俯冲时速度为v,则圆弧的最小半径为……()

A.

B.

C.

D.

5.质量为M的人抓住长L的轻绳,绳的另一端系着质量为

m的小球,现让小球在竖直平面内做圆周运动,当球通过最

高点时速率为v,则此时人对地面的压力是多大?

知识与技能

1.能定性分析火车转弯外轨比内轨高的原因

2.能定量分析汽车过拱形桥最高点与凹形桥最低点的压力

问题

3.知道航天器中的失重的本质

4知道离心运动及产生的条件,了解离心运动的应用和防止

过程与方法

1.通过对匀速圆周运动的实例分析,渗透理论联

系实际的观点,提高学生分析和解决问题的能力.

2.通过匀速圆周运动的规律也可以在变速圆周运

动中使用,渗透特殊性和一般性之间的辩证关系,提高

学生的分析能力.

3.通过对离心现象的实例分析,提高学生综合应

用知识解决问题的能力.

重点

1.理解向心力是一种效果力.

2.在具体问题中能找到是谁提供向心力的,并结合牛顿运

动定律求解有关问题.

难点

1.具体问题中向心力的来源.

2.关于对临界问题的讨论和分析.

3.对变速圆周运动的理解和处理.

任务一预习导学

(认真阅读教材p23-p25,独立完成下列问题)

一、车辆转弯问题的研究

1、火车转弯:

(1)内外轨高度相同时,转弯

所需的向心力由

_____________力提供。

(2)外轨高度高于内轨,火车

按设计速度行驶时,火车转弯所需的向心力由___________

提供。

如图示知h , L,转弯半径R,车轮对内外轨都无压力,质量

为m的火车运行的

速率应该多大?

思考与交流1、如果

超速行驶会怎么样?

如果减速行驶呢?

2、各种车辆在公路上行驶,向心力怎样提供?

二、拱形桥 问题情境:质量为m 的汽车在拱形桥上以速度t /行驶,若桥面的圆弧半径为只,试画出受力分析图,分析汽车通过桥的最高点时对桥的压力.

(请学生独立画出汽车的受力图,推导出汽车对桥面的压力.) 引导:请同学们进一步考虑当汽车对桥的压力刚好减为零时,汽车的速度有多大.当汽车的速度大于这个速度时,会发生什么现象?

合作交流:下面再一起共同分析汽车通过凹形桥最低点时,汽车对桥的压力比汽车的重力大些还是小些? 三、航天器中的失重现象

从刚才研究的一道例题可以看出,当汽车通过拱形桥凸形桥面顶点时,如果车速达到一定大小,则可使汽车对桥面的压力为零.如果我们把地球想象为特大的“拱形桥”,则情形如何呢?会不会出现这样的情况;速度达到一定程度时,地面对车的支持力是零?这时驾驶员与座椅之间的压力是多少?驾驶员躯体各部分之间的压力是多少?他这时可能有什么感觉?

(学生独立分析以上提出的问题,并在练习本上画出受力分析图,尝试解答.)

引导:假设宇宙飞船质量为M ,它在地球表面附近绕地球傲匀逮圆周运动,

其轨道半径近似等于地球半径R ,航天员质量为m ,宇宙飞船和航天员受到的地球引力近似等于他们在地面上的重力.试求座舱对宇航员的支持力.此时飞船的速度多大?通过求解.你可以得出什么结论? 四、离心运动

引导:做圆周运动的物体一旦失去向心力的作用,它会怎样运动呢?如果物体受的合力不足以提供向心力,它会怎样运动呢?发表你的见解并说明原因. 合作交流:请同学们结合生活实际,举出物体做离心运动的例子.在这些例子中,离心运动是有益的还是有害的?你能说出这些例子中离心运动是怎样发生的吗?

任务二 例题分析

例:一辆质量m=2.0t 的小轿车,驶过半径R=90m 的一段圆弧形桥面,重力加速度g=10m /s 2.求: (1)若桥面为凹形,汽车以20m /s 的速度通过桥面最低点时,对桥面压力是多大?

(2)若桥面为凸形,汽车以l0m /s 的速度通过桥面最高点时,对桥面压力是多大?

(3)汽车以多大速度通过凸形桥面顶点时,对桥面刚好没有压力

任务三 达标提升

1.火车在转弯行驶时,需要靠铁轨的支持力提供向心力。

下列关于火车转弯的说法中正确的是 ( ) A .在转弯处使外轨略高于内轨 B .在转弯处使内轨略高于外轨

C .在转弯处使内轨、外轨在同一水平高度

D .在转弯处火车受到的支持力竖直向上 2.汽车以—定速率通过拱桥时,下列说法中正确的是 ( ) A .在最高点汽车对桥的压力大于汽车的重力 B .在最高点汽车对桥的压力等于汽车的重力 C .在最高点汽车对桥的压力小于汽车的重力

D .汽车以恒定的速率过桥时,汽车所受的合力为零

3. 关于铁道转弯处内外铁轨间有高度差,下列说法中正确的是( )

A. 可以使火车顺利转弯,减少车轮与铁轨间的摩擦

B. 火车转弯时,火车的速度越小,车轮对内侧的铁轨测侧向压力越小

C. 火车转弯时,火车的速度越大,车轮对外侧的铁轨测侧向压力越大

D. 外铁轨略高于内铁轨,使得火车转弯时,由重力和支持力的合力提供了部分向心力 4. 如图1所示,在高速公路的拐弯处,路面筑得外高内低,即当车向左拐弯时,司机右侧的路面比左侧的要高一些,路面与水平面间的夹角为θ。设拐弯路段是半径为R 的圆弧,要使车速为v 时车轮

与路面之间的横向(即垂直于前进方向)

摩擦力等于0,θ应等于( )

A Rg v 2arcsin

B Rg v 2arctan C. Rg v 22arcsin 21 D. Rg

v 2

cot arc

5.在下列情况中,汽车对凸形桥顶部的压力最小的是( )

A .以较小的速度驶过半径较大的桥;

B .以较小的速度驶过半径较小的桥;

C .以较大的速度驶过半径较大的桥:

D .以较大的速度驶过半径较小的桥.

6.一辆汽车匀速通过一座圆形拱桥后,接着又匀速通过圆弧形凹地.设圆弧半径相等,汽车通过桥顶A 时,对桥面的压力N A 为车重的一半,汽车在弧形地最低点B 时,对地面的压力为N B ,则N A :N B 为 .

7.如图所示,长度为L=1.0m 的绳,系一小球在竖直面内做圆周运动,小球的质量为M=5kg ,小球半径不计,小球在通过最低点的速度大小为v =20m/s,试求: (1)小球在最低点所受绳的拉力 (2)小球在最低的向心加速度

重点难点

重点:理解做匀速圆周运动的物体受

到的向心力是由某几个力的合力提供的,而不是一种特殊的力;找出向心力的来源,理解并掌握在匀速圆周运动中合外力提供向心力, 能用向心力公式解决有关圆周运动的实际问题。

难点:火车在倾斜弯道上转弯的圆周运动模型的建立;临界问题中临界条件的确定。

1

教学过程

【新课引入】在上课之前先问一下我们班有没有溜旱冰的同学?(有),那么请问你在溜旱冰转弯是有什么感觉?你想安全或快速转弯,你将怎样滑?(引导学生)要弄清楚这些问题。这就是本节课我们要研究的问题。

【新课教学】: (一)、实例1:转弯时的向心力分析

课件模拟在平直轨道上匀速行驶的火车,提出问题: (1)、火车受几个力作用? (2)、这几个力的关系如何? (学生观察,画受力分析示意图)

师生互动:火车受重力、支持力、牵引力及摩檫力,其合力为零。

过渡:那火车转弯时情况会有何不同呢? 课件模拟平弯轨道火车转弯情形,提出问题: (1)、转弯与直进有何不同? (2)、当火车转弯时,它在水平方向做圆周运动。是什么力提供火车做圆周运动所需的向心力呢?

师生互动:分析内外轨等高时向心力的来源(运用模型说明)

(1)此时火车车轮受三个力:重力、支持力、外轨对轮缘的弹力。

(2)外轨对轮缘的弹力提供向心力。

(3)由于该弹力是由轮缘和外轨的挤压产生的,且由于火车质量很大,故轮缘和外轨间的相互作用力很大,易损害铁轨。

师设疑:那么应该如何解决这个问题?

学生活动:发挥自己的想象能力,结合知识点设计方案。

提示 :(1)、设计方案目的是为了减少弹力

(2)、播放视频——火车转弯

学生提出方案:火车外轨比内轨高,使铁轨对火车的支持力不再是竖直向上。此时,支持力与重力不再平衡,他们的合力指向“圆心”,提供向心力,从而减轻轮缘和铁轨之间的挤压。

学生讨论:什么情况下可以完全使轮缘和铁轨之间的挤压消失呢?

学生归纳:转弯处要选择内外轨适当的高度差,使转弯时所需的向心力完全由重力G 和支持力F N 来提供,这样外轨就不受轮缘的挤压了。 师生互动:老师边画图边讲解做定量分析并归纳总结(过程略) (三)、实例2:汽车过拱桥 (可通过学生看书,讨论,总结) 问题:质量为m 的汽车在拱桥上以速度v 前进,桥面的圆弧半径为 r ,求汽车通过桥的最高点时对桥面的压力。

解析:选汽车为研究对象,对汽车

进行受力分析:汽车在竖直方向受到重力G 和桥对车的支持力F 1作用,这两个力的合力提供向心力、且向心力方向向下。 建立关系式:

r

v m

F G F 21=-=向

r

V m

G F 21-=

又因支持力与汽车对桥的压力是一对作用力与反作用

力,所以r V m G F 2

-=压

(1) 当v =

rg 时,F = 0

(2) 当0 ≤ v < rg 时 , 0 < F ≤ mg

(3) 当 v >

rg 时, 汽车将脱离桥面,发生危险。

小结:上述过程中汽车虽然不是做匀速圆周运动,但我们仍然使用了匀速圆周运动的公式。原因是向心力和向心加速度的关系是一种瞬时对应关系,即使是变速圆周运动,在某一瞬时,牛顿第二定律同样成立,因此,向心力公式照样适用。 (四)、竖直平面内的圆周运动 过渡:教师演示“水流星”提出问题 提问:最高点水的受力情况?向心力是什么?

提问:最低点水的受力情况?向心力是什么?

提问:速度最小是多少时才能保证水不流出?

学生讨论:最高点、最低点整体的受力情况。

师生互动:在竖直平面内圆周运动能经过最高点的临界条件: 1、用绳系水桶沿圆周运动,桶内的水恰能经过最高点时,满足弹力F =0,重力提供向心mg=m r

v 2

得临界速度v 0=gr

当水桶速度v ≥v 0时才能经过最高点

2、如果是用杆固定小球使球绕杆另一端做圆周运动经最高点时,由于所受重力可以由杆给它的向上的支持力平衡,由mg -F=m r

v 2

=0得临界速度v 0=0

当小球速度v ≥0时,就可经过最高点。

3、小球在圆轨道外侧经最高点时,mg -F =m r

v 2 当F =0时

得临界速度 v 0=gr

当小球速度 v ≤v 0 时才能沿圆轨道外侧经过最高点。

【学习目标】

1、知道如果一个力或几个力的合力的效果是使物体产生向心加速,它就是圆周运动的物体所受的向心力。会在具体问题中分析向心力的来源。

2、理解匀速圆周运动的规律。

3、知道向心力和向心加速度的公式也适用于变速圆周运动,会求变速圆周运动中物体在特殊点的向心力和向心加速度。

【知识要点】

1)水平面的圆周运动 ①汽车转弯

汽车在水平的圆弧路面上的做匀速圆周运动时(如图6-1甲所示),是什么力作为向心力的呢?如果不考虑汽车翻转的情况,我们可以把汽车视为质点.汽车在竖直方向受到的重力和支持力大小相等、方向相反,是一对平衡力;如果不考虑汽车行驶时受到的阻力,则汽车所受的地面对它的摩擦力就是向心力,如图6-1乙所示.如果考虑汽车行驶时受到的阻力F f ,则静摩擦力沿圆周切线方向的分F t (通常叫做牵引力)与阻力F f 平衡,而静摩擦力指向圆心的分力F n 就是向心力,如下图丙所示,这时静摩擦力指向圆心的分力F n 也就是汽车所受的合力.

②火车转弯

火车转弯时,是什么力作为向心力呢?如果转弯处内外轨一样高,外侧车轮的轮缘挤压外轨,使外轨发生弹性形变,外轨对轮缘的弹力F 就是使火车转弯的向心力(如下左图所示).设转弯半径为r ,火车质量为m ,转弯时速率为v ,

则,F=m r

v 2

.由于火车质量很大,

靠这种办法得到向心力,轮缘与外轨间的相互作用力要很大,铁轨容易受到损坏.

实际在修筑铁路时,要根据转弯处的半径r 和规定的行驶速度v 0,适当选择内外轨的高度差,使转弯时所需的向心力完全由重力G 和支持力F N 的合力来提供,如上右图所示.必须注意,虽然内外轨有一定的高度差,但火车仍在水平面内做圆周运动,因此向心力是沿水平方向的,而不是沿“斜面”向上.F=Gtg α=mgtg α,故mgtg α=m

r

v 20

, 通常倾角α不太大,可近似取tg α=h/d ,则hr=d g

v 20. 2)竖直平面内的圆周运动 ①汽车过凸桥

我们先来分析汽车过拱桥最高点时对桥的压力.设汽车的质量为m ,过最高点时的速度为v ,桥面半径为r.汽车在拱桥最高点时的受力情况如上图所示,重力G 和桥对它的支持力F 1的合力就是汽车做圆周运动的向心力,方向竖

直向下(指向圆心)所以G-F 1=m r

v

2

,则F 1=G-m r

v 2

.

汽车对桥的压力与桥对汽车的支持力是一对作用力和反作用

力,故压力F 1′=F 1=G-m r

v 2

.

②水流星

水流星中的水在整个运动过程中均由重力和压力提供向心力,如下图所示,要使水在最高点不离开杯底,则N ≥0

由 N +mg=m R

v 2

.则 V ≥gR

【典型例题】

例1 长度不同的两根细绳,悬于同一点,另一端各系一个质量相同的小球,使它们在同一水平面内作圆锥摆运动,如下图所示,则( )

A.它们的周期相同

B.较长的绳所系小球的周期较大

C.两球的向心力与半径成正比

D.两绳张力与绳长成正比 分析 设小球作圆锥摆运动时,摆长为L ,摆角为θ,小球受到拉力为T 0与重力mg 的作用,由于加速度a 水平向右,拉力T 0与重力mg 的合力ma 的示意图如下图所示,由图可知mgtg θ=ma 。因

a=ω2

R=22

T

4πLsin θT=2π

g L /cos θ,Lcos θ为旋转平面到悬点的高度,容易看出

两球周期相同。T 0sin θ=m 224T πLsin θ,T 0=224T π L ,2

2

4T π一定,T 0∝L ,F 向=22

4T

π r ,F 向∝r 故正确选项为A 、C 、D

例2 质量为m 的汽车,以速度V 通过半径R 的凸形桥最高点时对桥的压力为 ,当速度V ′= 时对桥的压力为零,以速度V 通过半径为R 凹型最低点时对桥的压力为 .

分析 汽车以速率V 作匀速圆周运动通过最高点时,牵引力与摩擦力相平衡,汽车在竖直方向的受力情况如下图所示.

汽车在凸桥的最高点时,加速度方向向下,大小为a=v 2

/R,由F=ma

mg-N 1=mv 2

/R

所以,汽车对桥的压力

N 1′=N 1=mg-mv 2

/R

当N 1′=N 1=0时,v ′=Rg .

汽车在凹桥的最低点时,竖直方向的受力如下图所示,

此时汽车的加速度方向向上,同理可得,N 2′=N 2=mg +mv 2

/R.

小结

由分析可以看出,圆周运动中的动力学问题只

是牛顿第二定律的应用中的一个特例,与直线运动中动力

学的解题思路,分析方法完全相同,需要注意的是其加速

度a=v2/R或a=ω2R方向指向圆心.

例3 在水平转台上放一个质量为M的木块,静摩擦因

数为μ,转台以角速度ω匀速转动时,细绳一端系住木块M,

另一端通过转台中心的小孔悬一质量为m的木块,如右图

所示,求m与转台能保持相对静止时,M到转台中心的最大

距离R1和最小距离R2.

分析 M在水平面内转

动时,平台对M的支持力与

Mg相平衡,拉力与平台对M

的摩擦力的合力提供向心力.

设M到转台中心的距离为R,M以角速度ω转动所需向心力

为Mω2R,若Mω2R=T=mg,此时平台对M的摩擦力为零.

若R1>R,Mω2R1>mg,平台对M的摩擦力方向向左,

由牛顿第二定律

f+mg=Mω2R1,当f为最大值μMg时,R1最大.所以,M

到转台的最大距离为

R1=(μMg+mg)/Mω2.

若R2<R,Mω2R2<mg,平台对M的摩擦力水平向右,由F=ma.

mg-f=Mω2R2

f=μMg时,R2最小,最小值为R2=(mg-μMg)/Mω2.

小结本例实际上属于一个简单的连接体,直线运动

中关于连接体的分析方法,在圆周运动中同样适用.

例4 长L=0.5m,质量可忽略的杆,其下端固定于O

点,上端连接一个零件A,A的质量为m=2kg,它绕O点做

圆周运动,如下图所示,在A通过最高点时,求下列两种

情况下杆受的力:

(1)A的速率为1m/s,(2)A的速率为4m/s.

分析杆对A的作用力为竖直方向,设为T,重力mg

与T的合力提供向心力,由F=ma,a=v2/R,得mg+T=mv2/R

T=m(v2/R-g)

(1)当v=1m/s时,T=2(12/0.5-10)N=-16N

(2)当v=4m/s时,T=2(42/0.5-10)N=44N

(1)问中T为负值,表明T与mg的方向相反,杆对A

的作用力为支持力.

讨论(1)由上式,当v=Rg时,T=0,当v>Rg时,

T为正值,对A的作用力为拉力,当

v<Rg时,T为负值,对A的作用

力为支持力.

(2)如果把杆换成细绳,由于T

≥0,则有v≥Rg.

例5 如下图甲所示,质量为m的物体,沿半径为R

的圆形轨道自A点

滑下,A点的法线为

水平方向,B点的法

线为竖直方向,物体

与轨道间的动摩擦因数为μ,物体滑至B点时的速度为v,

求此时物体所受的摩擦力.

解析:物体由A滑到B的过程中,受到重力、轨道对

其弹力及轨道对其摩擦力的作用,物体一般做变速圆周运

动.已知物体滑到B点时的速度大小

为v,它在B点时的受力情况如图6-12乙所示.其

中轨道的弹力F N、重力G的合力提供物体做圆周运

动的向心力,方向一定指向圆心.故

F N-G=m

R

v2 F N=mg+m

R

v2,

则滑动摩擦力为F1=μF N=μ(mg+m

R

v2).

【达标训练】

1.若火力按规定速率转弯时,内、外轨对车轮皆无侧

压力,则火车以较小速率转弯时( )

A.仅内轨对车轮有侧压力

B.仅外轨对车轮有侧压力

C.内、外轨对车轮都有侧压

D.内、外轨对车轮均无侧压力

2.把盛水的水桶拴在长为l的绳子一端,使这水桶在

竖直平面做圆周运动,要使水在水桶转到最高点时不从桶

里流出来,这时水桶的线速度至少应该是( )

A. gl

2 B. 2/

gl C. gl D.2 gl E.0

4.如下图所示:在以角速度ω旋转的光滑的细杆上穿有质

量分别为m和M的两球,两球用轻细线连接.若M>m,则( )

A.当两球离轴距离相等时,两球都不动

B.当两球离轴的距离之比等于质量之

比时,两球都不动

C.若转速为ω时两球不动,那么转速为

2ω时两球也不会动

D.若两球滑动,一定向同一方向,不会相向滑动

5.如下图所示,一小球套在光滑轻杆上,绕着竖直轴OO′

匀速转动,下列关于小球的说法中正确的是( )

A.小球受到重力、弹力和摩擦力

B.小球受到重力、弹力

C.小球受到一个水平指向圆心的向心力

D.小球受到重力、弹力的合力是恒力

6.m为在水平传送带上被传送的物体,A

为终端皮带轮.如下图所示,A轮半径为r,则m可被平抛

出去时,A轮的角速度至少

为 .

参考答案 1.A 2.C 3.ABC

4.CD

5.B

6.

r

g

物理生活中的圆周运动练习题含答案

物理生活中的圆周运动练习题含答案 一、高中物理精讲专题测试生活中的圆周运动 1.如图,在竖直平面内,一半径为R 的光滑圆弧轨道ABC 和水平轨道PA 在A 点相切.BC 为圆弧轨道的直径.O 为圆心,OA 和OB 之间的夹角为α,sinα= 3 5 ,一质量为m 的小球沿水平轨道向右运动,经A 点沿圆弧轨道通过C 点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用,已知小球在C 点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零.重力加速度大小为g .求: (1)水平恒力的大小和小球到达C 点时速度的大小; (2)小球到达A 点时动量的大小; (3)小球从C 点落至水平轨道所用的时间. 【答案】(15gR (223m gR (3355R g 【解析】 试题分析 本题考查小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动及其相关的知识点,意在考查考生灵活运用相关知识解决问题的的能力. 解析(1)设水平恒力的大小为F 0,小球到达C 点时所受合力的大小为F .由力的合成法则有 tan F mg α=① 2220()F mg F =+② 设小球到达C 点时的速度大小为v ,由牛顿第二定律得 2 v F m R =③ 由①②③式和题给数据得 03 4 F mg =④ 5gR v = (2)设小球到达A 点的速度大小为1v ,作CD PA ⊥,交PA 于D 点,由几何关系得 sin DA R α=⑥

(1cos CD R α=+)⑦ 由动能定理有 220111 22 mg CD F DA mv mv -?-?=-⑧ 由④⑤⑥⑦⑧式和题给数据得,小球在A 点的动量大小为 1232 m gR p mv == ⑨ (3)小球离开C 点后在竖直方向上做初速度不为零的匀加速运动,加速度大小为g .设小球在竖直方向的初速度为v ⊥,从C 点落至水平轨道上所用时间为t .由运动学公式有 2 12 v t gt CD ⊥+ =⑩ sin v v α⊥= 由⑤⑦⑩ 式和题给数据得 355R t g = 点睛 小球在竖直面内的圆周运动是常见经典模型,此题将小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动有机结合,经典创新. 2.有一水平放置的圆盘,上面放一劲度系数为k 的弹簧,如图所示,弹簧的一端固定于轴O 上,另一端系一质量为m 的物体A ,物体与盘面间的动摩擦因数为μ,开始时弹簧未发生形变,长度为l .设最大静摩擦力大小等于滑动摩擦力.求: (1)盘的转速ω0多大时,物体A 开始滑动? (2)当转速缓慢增大到2ω0时,A 仍随圆盘做匀速圆周运动,弹簧的伸长量△x 是多少? 【答案】(1) g l μ(2) 34mgl kl mg μμ- 【解析】 【分析】 (1)物体A 随圆盘转动的过程中,若圆盘转速较小,由静摩擦力提供向心力;当圆盘转速较大时,弹力与摩擦力的合力提供向心力.物体A 刚开始滑动时,弹簧的弹力为零,静摩擦力达到最大值,由静摩擦力提供向心力,根据牛顿第二定律求解角速度ω0. (2)当角速度达到2ω0时,由弹力与摩擦力的合力提供向心力,由牛顿第二定律和胡克定律求解弹簧的伸长量△x . 【详解】 若圆盘转速较小,则静摩擦力提供向心力,当圆盘转速较大时,弹力与静摩擦力的合力提供向心力.

(物理)生活中的圆周运动练习题含答案

(物理)生活中的圆周运动练习题含答案 一、高中物理精讲专题测试生活中的圆周运动 1.如图所示,水平转盘可绕竖直中心轴转动,盘上放着A 、B 两个物块,转盘中心O 处固定一力传感器,它们之间用细线连接.已知1kg A B m m ==两组线长均为 0.25m L =.细线能承受的最大拉力均为8m F N =.A 与转盘间的动摩擦因数为 10.5μ=,B 与转盘间的动摩擦因数为20.1μ=,且可认为最大静摩擦力等于滑动摩擦 力,两物块和力传感器均视为质点,转盘静止时细线刚好伸直,传感器的读数为零.当转 盘以不同的角速度勾速转动时,传感器上就会显示相应的读数F ,g 取2 10m/s .求: (1)当AB 间细线的拉力为零时,物块B 能随转盘做匀速转动的最大角速度; (2)随着转盘角速度增加,OA 间细线刚好产生张力时转盘的角速度; (3)试通过计算写出传感器读数F 随转盘角速度ω变化的函数关系式,并在图乙的坐标系中作出2F ω-图象. 【答案】(1)12/rad s ω= (2)222/rad s ω= (3)22 52/m rad s ω= 【解析】 对于B ,由B 与转盘表面间最大静摩擦力提供向心力,由向心力公式有: 2212B B m g m L μω=

代入数据计算得出:12/rad s ω= (2)随着转盘角速度增加,OA 间细线中刚好产生张力时,设AB 间细线产生的张力为 T ,有: 212A A m g T m L μω-= 2222B B T m g m L μω+= 代入数据计算得出:222/rad s ω= (3)①当2228/rad s ω≤时,0F = ②当2228/rad s ω≥,且AB 细线未拉断时,有: 21A A F m g T m L μω+-= 222B B T m g m L μω+= 8T N ≤ 所以:2 364 F ω= -;222228/18/rad s rad s ω≤≤ ③当218ω>时,细线AB 断了,此时A 受到的静摩擦力提供A 所需的向心力,则有: 21A A m g m w L μ≥ 所以:2222218/20/rad s rad s ω<≤时,0F = 当22220/rad s ω>时,有2 1A A F m g m L μω+= 8F N ≤ 所以:2 154 F ω= -;2222220/52/rad s rad s ω<≤ 若8m F F N ==时,角速度为:222 52/m rad s ω= 做出2F ω-的图象如图所示; 点睛:此题是水平转盘的圆周运动问题,解决本题的关键正确地确定研究对象,搞清向心力的来源,结合临界条件,通过牛顿第二定律进行求解.

《生活中的圆周运动》教学设计方案

《生活中的圆周运动》教学设计方案 山西省大同市铁一中武丽芳 教材分析: 《生活中的圆周运动》这节课是人教版普通高中课程标准实验教科书《物理》必修2第五章《曲线运动》中的第七节,也是该章最后一节。 本节是圆周运动的应用课,内容丰富。教材中的每个例子的选择各有特点,具有代表性:火车的转弯用来分析水平面上的匀速圆周运动;拱形桥和凹形桥用来分析竖直面上的非匀速圆周运动;航天器中的失重现象研究圆周运动中的失重问题;离心运动则研究向心力不足时物体的运动趋势。教材对向心力的分析比较仔细,目的在于通过具体实例的分析,使学生加深对向心力的理解,正确认识向心力的来源,纠正错误的认识。教材对几个圆周运动实例的分析,体现着用牛顿第二定律分析向心力及圆周运动的力学问题的基本思路和方法,即先分析物体所受的力,找出向心力,然后根据牛顿第二定律列方程、解方程。这时牛顿第二定律反映的是向心力和向心加速度的关系。 教材安排: 本节内容安排2课时,这是第1课时的教学设计。主要讲解水平面的匀速圆周运动和竖直面的非匀速圆周运动。并在原有教材的基础上进行了适当扩展。学情分析: 在学习本节内容之前,学生已经学习了描述圆周运动的运动学物理量(如线速度、角速度、向心加速度等)和向心力等知识,已经掌握了学习本节课必备的物理基础知识。圆周运动虽然是日常生活中的常见现象,但学生对此并没有深刻的了解,对圆周运动的认识感性的认识多,理性的认识少,不知道如何准确地、全面地分析这一运动现象。大多数学生对向心力的理解还不够透彻、准确,常常误认为向心力是一种特殊的力,是做圆周运动的物体另外受到的一个力。学生虽然已经能够熟练地应用牛顿第二定律分析直线运动问题,但应用牛顿第二定律分析圆周运动还是第一次,比较陌生,不习惯,不适应。另外,高一阶段的学生,其思维习惯中形象思维占的比例还比较大,逻辑思维的能力有待进一步的开发和提高,对于物理学科特定的研究方法和分析方法有了一定的了解,但还不是非常的熟练,有待进一步地提高。 教学设计思路: 在教学中采用由实际生活中的例子引入教学问题,以提高学生的学习兴趣。学习完本节内容后,再拓展到生活中,了解桥梁的建筑,让学生期待用自己的知识为社会做贡献。 教学目标: (一)知识与技能目标: 1.会在具体问题中分析向心力的来源. 2.能理解运用匀速圆周运动的规律分析和处理生产和生活中的具体实例.3.知道向心力和向心加速度的公式也适用于变速圆周运动,会求变速圆周运动中物体在特殊点的向心力和向心加速度. (二)过程与方法目标: 1.通过对匀速圆周运动的实例分析,渗透理论联系实际的观点,提高学生分析和解决问题的能力.

生活中的圆周运动专项练习

生活中的圆周运动专项练习 主备人:审核人:高一物理备课组 2020年2月19日班级:高一()班姓名:座位号:组号 【学习目标】 1.知道向心力是圆周运动的物体半径方向的合力,不管是匀速圆周运动还是变速圆周运动。 2.通过日常生活中的常见例子,学会分析具体问题中的向心力来源。 3.能理解运用匀速圆周运动规律分析和处理生活中的具体实例。 【学习重点】能在实际情景中找出向心力是由哪些力提供,并利用公式进行求解 【学习难点】具体问题中向心力的来源,对变速圆周运动的处理与分析 【学习流程】 如图所示,在匀速转动的圆筒内壁上,有一物体随圆筒一起转动而未滑动.当圆筒的角速度增大以后,物体仍然随圆筒一起匀速转动而未滑动,则下列说法正确的是 A.物体所受弹力增大,摩擦力也增大 B.物体所受弹力增大,摩擦力减小 C.物体所受弹力和摩擦力都减小了 D.物体所受弹力增大,摩擦力不变 问题1.物体与筒壁间动摩擦因素为μ,要使物体不掉下来,圆筒转动的角速 度至少多大? 练习1:(多选)如图所示,质量相等的A、B两物体紧贴在匀速转动的圆筒的竖直内壁上,随圆筒一起做匀速圆周运动,则下列关系中正确的有 A.线速度v A>v B B.运动周期T A>T B C.它们受到的摩擦力f A>f B D.筒壁对它们的弹力N A>N B 例2:如图所示的圆锥摆中,质量为m的摆球在水平面作匀速圆周运动,线长L,细线与竖直方向夹角为θ,求:(1)线对球的拉力大小; (2)小球转动的线速度V和角速度ω; 练习2:图为游乐场的悬空旋转椅,我们把这种情况抽象为图乙的模型:一质量m =40kg 的球通过长L=12.5m的轻绳悬于竖直面内的直角杆上,水平杆长L′=7.5m。整个装置绕竖直杆转动,绳子与竖直方向成 角。当θ=37°时,(g = 9.8m/s2,sin37°= 0.6,cos37°= 0.8)求:⑴绳子的拉力大小;⑵该装置转动的角速度。 θ

生活中的圆周运动练习题

(第1题) 生活中的圆周运动 1.一辆卡车在丘陵地匀速行驶,地形如图所示,由于轮胎太旧,途中爆胎,爆胎可能性最大的地段应是( ) A .a 处 B .b 处 C .c 处 D .d 处 2.一汽车通过拱形桥顶点时速度为10 m/s ,车对桥顶的压力为车重的 43,如果要使汽车在桥顶对桥面没有压力,车速至少为( ) A .15 m/s B .20 m/s C .25 m/s D .30 m/s 3.在水平铁路转弯处,往往使外轨略高于内轨,这是为了( ) A .减轻火车轮子挤压外轨 B .减轻火车轮子挤压内轨 C .使火车车身倾斜,利用重力和支持力的合力提供转弯所需向心力 D .限制火车向外脱轨 4.铁路转弯处的圆弧半径为R ,内侧和外侧的高度差为h ,L 为两轨间的距离,且L >h ,如果列车转弯速率大于L Rgh /,则( ) A .外侧铁轨与轮缘间产生挤压 B .铁轨与轮缘间无挤压 C .内侧铁轨与轮缘间产生挤压 D .内外铁轨与轮缘间均有挤压 5.汽车在水平地面上转弯时,地面的摩擦力达到最大,当汽车速率增为原来的2倍时,则汽车拐弯的半径必须( ) A .减为原来的1/2倍 B .减为原来的1/4倍 C .增为原来的2倍 D .增为原来的4倍 6.杂技演员在表演水流星节目时,盛水的杯子在竖直平面内做圆周运动,当杯子到最高点时,里面水也不流出来,这是因为 ( ) A .水处于失重状态,不受重力的作用了 B .水受平衡力作用,合力为0 C .水受的合力提供向心力,使水做圆周运动 D .杯子特殊,杯底对水有吸力 7.下列说法中,正确的是 ( ) A .物体做离心运动时,将离圆心越来越远 B .物体做离心运动时,其运动轨迹一定是直线 C .做离心运动的物体,一定不受到外力的作用 D .做匀速圆周运动的物体,因受合力大小改变而不做圆周运动时,将做离心运动 8.乘坐游乐园的翻滚过山车时,质量为m 的人随车在竖直平面内旋转,下列说法正确的是( ) A .车在最高点时人处于倒坐状态,全靠保险带拉住,没有保险带,人就会掉下来

人教版高中物理必修二生活中的圆周运动教案

5.7生活中的圆周运动 一、知识与技能 1.知道如果一个力或几个力的合力的效果是使物体产生向心加速度,它就是圆周运动的物体所受的向心力.会在具体问题中分析向心力的来源. 2.能理解运用匀速圆周运动的规律分析和处理生产和生活中的具体实例. 3.知道向心力和向心加速度的公式也适用于变速圆周运动,会求变速圆周运动中物体在特殊点的向心力和向心加速度. 二、过程与方法 1.通过对匀速圆周运动的实例分析,渗透理论联系实际的观点,提高学生分析和解决问题的能力. 2.通过匀速圆周运动的规律也可以在变速圆周运动中使用,渗透特殊性和一般性之间的辩证关系,提高学生的分析能力. 3.通过对离心现象的实例分析,提高学生综合应用知识解决问题的能力.三、情感、态度与价值观 1.通过对几个实例的分析,使学生明确具体问题必须具体分析,理解物理与生活的联系,学会用合理、科学的方法处理问题.. 2.通过离心运动的应用和防止的实例分析.使学生明白事物都是一分为二的,要学会用一分为二的观点来看待问题. 3.养成良好的思维表述习惯和科学的价值观. 四、教学重点 1.理解向心力是一种效果力. 2.在具体问题中能找到是谁提供向心力的,并结合牛顿运动定律求解有关问题. 五、教学难点 1.具体问题中向心力的来源. 2.关于对临界问题的讨论和分析. 3.对变速圆周运动的理解和处理.

例1、火车转弯问题 1.分析火车在平直轨道上匀速运动时受什么力? 2.如果火车在水平面内转弯时情况又有何不同呢?。 3.火车转弯做的是一段圆周运动,需要有力来提供火车做圆周运动的向心力,而平直路前行不需要.那么火车转弯时是如何获得向心力的? 4.高速行驶的火车的轮缘与铁轨挤压的后果会怎样? 如何解决这一实际问题?结合学过的知识加以讨论,提出可行的解决方案,并画出受力图,加以定性说明. 5.运用刚才的分析进一步讨论:火车转弯时的速 度多大时才不至于对内外轨道产生相互挤压? 选择合适的弯道倾斜角度,使向心力仅由支持力 F N 和重力 G 的合力F 合提供: F 向= mv 02/r = F 合 = mgtan θ v 0= grtg 讨论:(1)当v= v 0 ,F 向=F 合 内外轨道对火车两侧车轮轮缘都无弹力。 (2)当v > v 0 ,F 向>F 合 外轨道对外侧车轮轮缘有弹力。 (3)当v < v 0 ,F 向

(物理)高考必刷题物理生活中的圆周运动题

(物理)高考必刷题物理生活中的圆周运动题 一、高中物理精讲专题测试生活中的圆周运动 1.如图所示,竖直圆形轨道固定在木板B 上,木板B 固定在水平地面上,一个质量为3m 小球A 静止在木板B 上圆形轨道的左侧.一质量为m 的子弹以速度v 0水平射入小球并停留在其中,小球向右运动进入圆形轨道后,会在圆形轨道内侧做圆周运动.圆形轨道半径为R ,木板B 和圆形轨道总质量为12m ,重力加速度为g ,不计小球与圆形轨道和木板间的摩擦阻力.求: (1)子弹射入小球的过程中产生的内能; (2)当小球运动到圆形轨道的最低点时,木板对水平面的压力; (3)为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,求子弹速度的范围. 【答案】(1)2038mv (2) 2 164mv mg R + (3)042v gR ≤或04582gR v gR ≤≤【解析】 本题考察完全非弹性碰撞、机械能与曲线运动相结合的问题. (1)子弹射入小球的过程,由动量守恒定律得:01(3)mv m m v =+ 由能量守恒定律得:220111 422 Q mv mv =-? 代入数值解得:2038 Q mv = (2)当小球运动到圆形轨道的最低点时,以小球为研究对象,由牛顿第二定律和向心力公式 得2 11(3)(3)m m v F m m g R +-+= 以木板为对象受力分析得2112F mg F =+ 根据牛顿第三定律得木板对水平的压力大小为F 2 木板对水平面的压力的大小20 2164mv F mg R =+ (3)小球不脱离圆形轨有两种可能性: ①若小球滑行的高度不超过圆形轨道半径R 由机械能守恒定律得: ()()211 332 m m v m m gR +≤+

物理生活中的圆周运动练习题含答案及解析

物理生活中的圆周运动练习题含答案及解析 一、高中物理精讲专题测试生活中的圆周运动 1.有一水平放置的圆盘,上面放一劲度系数为k的弹簧,如图所示,弹簧的一端固定于轴O上,另一端系一质量为m的物体A,物体与盘面间的动摩擦因数为μ,开始时弹簧未发生形变,长度为l.设最大静摩擦力大小等于滑动摩擦力.求: (1)盘的转速ω0多大时,物体A开始滑动? (2)当转速缓慢增大到2ω0时,A仍随圆盘做匀速圆周运动,弹簧的伸长量△x是多少? 【答案】(1) g l μ (2) 3 4 mgl kl mg μ μ - 【解析】 【分析】 (1)物体A随圆盘转动的过程中,若圆盘转速较小,由静摩擦力提供向心力;当圆盘转速较大时,弹力与摩擦力的合力提供向心力.物体A刚开始滑动时,弹簧的弹力为零,静摩擦力达到最大值,由静摩擦力提供向心力,根据牛顿第二定律求解角速度ω0. (2)当角速度达到2ω0时,由弹力与摩擦力的合力提供向心力,由牛顿第二定律和胡克定律求解弹簧的伸长量△x. 【详解】 若圆盘转速较小,则静摩擦力提供向心力,当圆盘转速较大时,弹力与静摩擦力的合力提供向心力. (1)当圆盘转速为n0时,A即将开始滑动,此时它所受的最大静摩擦力提供向心力,则有: μmg=mlω02, 解得:ω0= g l μ 即当ω0= g l μ A开始滑动. (2)当圆盘转速达到2ω0时,物体受到的最大静摩擦力已不足以提供向心力,需要弹簧的弹力来补充,即:μmg+k△x=mrω12, r=l+△x 解得: 3 4 mgl x kl mg μ μ - V= 【点睛】 当物体相对于接触物体刚要滑动时,静摩擦力达到最大,这是经常用到的临界条件.本题关键是分析物体的受力情况.

生活中的圆周运动 优质课 教学设计

课堂教学设计表 课程名称物理设计者单位(学校)授课班级高一17班章节名称 5.7生活中的圆周运动学时 1 学习目标 课程标准: 能用牛顿第二定律分析圆周运动的向心力;了解生产生活中的离心现象及其产生的原因。 本节(课)教学目标: 知识与技能: 1.巩固向心力和向心加速度的知识; 2.会在具体问题中分析向心力的来源; 3.会用牛顿第二定律解决生活中较简单的圆周运动问题。 过程和方法: 1.通过对匀速圆周运动的实例分析,渗透理论联系实际的观点,提高分析和解决问题的能力; 2.掌握分析圆周运动的方法。 情感态度和价值观: 1.通过向心力在具体问题中的应用,培养学生将物理知识应用于生活和生 产实践的意识; 2.通过一些事例,使学生初步建立严谨的科学态度和学习物理的责任感和 自豪感; 3.体会圆周运动的奥妙,培养学生学习物理知识的求知欲。 学生特征 学生已经学习了匀速圆周运动、向心力、向心加速度的概念,对圆周运动有了比较清晰的认识,但学生对于向心力由谁来提供,还比较模糊,这样就不能进行知识迁移和解决实际问题。所以教学中通过多个实例分析说明向心力的来源是由性质力来提供的,让学生被动的接受知识变成主动的探索新知识,积极参与教学过程的每个环节,引导学生手脑并用,分析与综合相结合,以提高学生的探索研究和创新能力。

学习目标描述知识点 编号 学习 目标 具体描述语句 5.7-1 5.7-2 5.7-3 5.7-4 5.7-5 知识和能力 过程和方法 情感态度和 价值观 1.巩固向心力和向心加速度的知识; 2.会在具体问题中分析向心力的来源; 3.能定性分析火车外轨比内轨高的原因,能定量计算火车转弯的 设计速度; 4.能定量分析汽车过拱桥最高点和凹形桥最低点的压力问题。 1.经历拐弯和过桥的实例分析,提高分析、解决问题能力,发展 交流与合作能力; 2.通过对几个圆周运动的实例分析,掌握用牛顿第二定律分析向 心力的方法。 1.通过深挖掘现实生活中易忽视的细节,发展学习兴趣; 2.假设自己是工程师,亲身体验利用物理知识解决现实问题所带 来的愉悦感; 3.发展将物理知识应用于生活和生产实践的意识,以及勇于探索 与日常生活有关的物理学问题的精神。 项目内容解决措施 教学重点用牛顿第二定律列方程 利用“教师引导+学生分析+课堂展示”让学生掌握方法。 教学难点在具体问题中分析向心力来 源。 分析汽车、火车转弯过程和汽车过桥问题, 总结出分析圆周运动的方法。

高考物理试卷分类汇编物理生活中的圆周运动(及答案)含解析

高考物理试卷分类汇编物理生活中的圆周运动(及答案)含解析 一、高中物理精讲专题测试生活中的圆周运动 1.如图,光滑轨道abcd 固定在竖直平面内,ab 水平,bcd 为半圆,在b 处与ab 相切.在直轨道ab 上放着质量分别为m A =2kg 、m B =1kg 的物块A 、B (均可视为质点),用轻质细绳将A 、B 连接在一起,且A 、B 间夹着一根被压缩的轻质弹簧(未被拴接),其弹性势能E p =12J .轨道左侧的光滑水平地面上停着一质量M =2kg 、长L =0.5m 的小车,小车上表面与ab 等高.现将细绳剪断,之后A 向左滑上小车,B 向右滑动且恰好能冲到圆弧轨道的最高点d 处.已知A 与小车之间的动摩擦因数μ满足0.1≤μ≤0.3,g 取10m /s 2,求 (1)A 、B 离开弹簧瞬间的速率v A 、v B ; (2)圆弧轨道的半径R ; (3)A 在小车上滑动过程中产生的热量Q (计算结果可含有μ). 【答案】(1)4m/s (2)0.32m(3) 当满足0.1≤μ<0.2时,Q 1=10μ ;当满足0.2≤μ≤0.3 时, 22111 ()22A A m v m M v -+ 【解析】 【分析】 (1)弹簧恢复到自然长度时,根据动量守恒定律和能量守恒定律求解两物体的速度; (2)根据能量守恒定律和牛顿第二定律结合求解圆弧轨道的半径R ; (3)根据动量守恒定律和能量关系求解恰好能共速的临界摩擦力因数的值,然后讨论求解热量Q. 【详解】 (1)设弹簧恢复到自然长度时A 、B 的速度分别为v A 、v B , 由动量守恒定律: 0=A A B B m v m v - 由能量关系:22 11=22 P A A B B E m v m v - 解得v A =2m/s ;v B =4m/s (2)设B 经过d 点时速度为v d ,在d 点:2d B B v m g m R = 由机械能守恒定律:22d 11=222 B B B B m v m v m g R +? 解得R=0.32m (3)设μ=μ1时A 恰好能滑到小车左端,其共同速度为v,由动量守恒定律: =()A A A m v m M v +由能量关系:()2 211122 A A A A m gL m v m M v μ= -+ 解得μ1=0.2

完整版圆周运动教学设计

《圆周运动》教学设计 六盘水市第二实验中学卢毅 一、教材分析 本节课的教学内容为新人教版第五章第四节《圆周运动》,它是在学生学习了曲线运 动的规律和曲线运动的处理方法以及平抛运动后接触到的又一类曲线运动实例。本节作为该章的重要内容之一,主要向学生介绍了描述圆周运动快慢的几个物理量,匀速圆周运动的特点,在此基础上讨论这几个物理量之间的变化关系,为后续学习圆周运动打下良好的基础。 二、学情分析 通过前面的学习,学生已对曲线运动的条件、运动的合成和分解、曲线运动的处理方法、平抛运动的规律有了一定的了解和认识。在此基础上了,教师通过生活中的实例和实物,利用多媒体,引导学生分析讨论,使学生对圆周运动从感性认识到理性认识,得出相关概念和规律。在生活中学生已经接触到很多圆周运动实例,对其并不陌生,但学生对如何描述圆周运动快慢却是第一次接触,因此学生在对概念的表述不够准确,对问题的猜想不够合理,对规律的认识存在疑惑等。教师在教学中要善于利用教学资源,启发引导学生大胆猜想、合理推导、细心总结、敢于表达,这就能对圆周运动的认识有深度和广度。 三、设计思想 本节课结合我校学生的实际学习情况,对教材进行挖掘和思考,始终把学生放在学习主体的地位,让学生在思考、讨论交流中对描述圆周运动快慢形成初步的系统认识,让学生的思考和教师的引导形成共鸣。 本节课结合了曲线运动的规律及解决方法,利用生活中曲线运动实例(如钟表、转动的飞轮等)使学生建立起圆周运动的概念,在此基础上认识描述圆周运动快慢的相关物理量。总体设计思路如下:

提出问题:除了用线速度、角速度描述圆周运动快慢,能否用其它物理量描述圆周运动的快慢?学生 思考、讨论交流,教师引导分析,利用物体做圆周运动转过一圈所需要时间多少来描述圆周运动的快 慢,即周期。 一 四、教学目标 (一)、知识与技能 1、知道什么是圆周运动、匀速圆周运动。理解线速度、角速度、周期的概念,会用线速度角速度公式进行计算。 2、理解线速度、角速度、周期之间的关系,即v *r r。 3、理解匀速圆周运动是变速运动。 4、能利用圆周运动的线速度、角速度、周期的概念分析解决生活生产中的实际问题。 (二)、过程与方法 1、知道并理解运用比值定义法得出线速度概念,运用极限思想理解线速度的矢量性和瞬时性。 2、体会在利用线速度描述圆周运动快慢后,为什么还要学习角速度。能利用类比定义线速度概念的方法得出角速度概念。 (三)、情感、态度与价值观 1、通过极限思想的运用,体会物理与其他学科之间的联系,建立普遍联系的世界观。 2、体会物理知识来源于生活服务于生活的价值观,激发学生的学习兴趣。 3、通过教师与学生、学生与学生之间轻松融洽的讨论和交流,让学生感受快乐学习。 五、教学重点、教学难点 (一)、教学重点1、理解线速度、角速度、周期的概念2、掌握线速度、角速度、周期之间的关系(二)、教学难点1、理解线速度、角速度、周期的物理意义及引入这些概念的必要性。2、理解线速

人教版物理必修二:5-7《生活中的圆周运动》课后练习(含答案)(最新整理)

O A G 课后巩固提高 限时:45 分钟总分:100 分 一、选择题(1~3 为单选,4~6 为多选。每小题 8 分,共 48 分。) 1. 如图所示,在盛满水的试管中装有一个小蜡块,小蜡块所受浮力略大于重力,当用手握住A 端让试管在竖直平面内左右快速摆动时,关于蜡块的运动,以下说法正确的是( ) A.与试管保持相对静止 B.向 B 端运动,可以到达 B 端 C.向A 端运动,可以到达A 端 D.无法确定 2.图中杂技演员在表演水流星节目时,盛水的杯子在竖直平面内做圆周运动,当杯子经过最高点时,里面的水也不会流出来,这是因为( ) A.水处于失重状态,不受重力的作用 B.水受的合力为零 C.水受的合力提供向心力,使水做圆周运动 D.杯子特殊,杯底对水有吸引力 3.

gR 如图所示,汽车车厢顶部悬挂一个轻质弹簧,弹簧下端拴一个质量为m 的小球.当汽车以某一速率在水平地面上匀速行驶时,弹簧长度为 L1,当汽车以大小相同的速度匀速通过一个桥面为圆弧形的凸形桥的最高点时,弹簧长度为 L2,下列选项中正确的是( ) A.L1=L2B.L1>L2 C.L1

生活中的圆周运动习题

生活中的圆周运动 【学习目标】 1、能够根据圆周运动的规律,熟练地运用动力学的基本方法解决圆周运动问题。 2、学会分析圆周运动的临界状态的方法,理解临界状态并利用临界状态解决圆周运动问题。 3、理解外力所能提供的向心力和做圆周运动所需要的向心力之间的关系,以此为根据理解向心运动和离心运动。 【要点梳理】 要点一、静摩擦力提供向心力的圆周运动的临界状态 要点诠释: 1、水平面上的匀速圆周运动,静摩擦力的大小和方向 物体在做匀速圆周运动的过程中,物体的线速度大小不变,它受到的切线方向的力必定为零,提供向心力的静摩擦力一定沿着半径指向圆心。这个静摩擦力的大小 2f ma mr ω==向,它正比于物体的质量、半径和角速度的平方。 当物体的转速大到一定的程度时,静摩擦力达到最大值,若再增大角速度,静摩擦力不足以提供物体做圆周运动所需要的向心力,物体在滑动摩擦力的作用下做离心运动。 临界状态:物体恰好要相对滑动,静摩擦力达到最大值的状态。此时物体的角速度r g μω= (μ 为最大静摩擦因数),可见临界角速度与物体质量无关,与它到转轴的距离有关。 2、水平面上的变速圆周运动中的静摩擦力的大小和方向 无论是加速圆周运动还是减速圆周运动,静摩擦力都不再沿着半径指向圆心,静摩擦力一定存在着一个切向分量改变速度的大小。如图是在水平圆盘上的物体减速和加速转动时静摩擦力的方向:(为了便于观察,将图像画成俯视图) 要点二、竖直面上的圆周运动的临界状态 要点诠释:

1.汽车过拱形桥 在竖直面内的圆周运动中可以分为:匀速圆周运动和变速圆周运动。对于变速圆周运动,需要特别注意几种具体情况下的临界状态。 例如:汽车通过半圆的拱形桥,讨论桥面受到压力的变化情况 (1)车在最高点的位置Ⅰ时对桥面的压力 对车由牛顿第二定律得: R v m F mg N 2 =- 为了驾驶安全,桥面对车的支持力必须大于零,即0N F > 所以车的速度应满足关系gR v < 临界状态:汽车在最高点处桥面对汽车的支持力为零,此时汽车的速度gR v = 。 如果gR v = ,在不计空气阻力的情况下,汽车只受到重力的作用,速度沿着水平方向,满 足平抛运动的条件,所以从此位置开始,汽车将离开桥面做平抛运动,不会再落到桥面上。 (2)汽车沿着拱形桥面向下运动时车对于桥面的压力 当汽车在跨越最高点后的某一位置Ⅱ时 由牛顿第二定律得2 N v mg sin F m R θ'?-= 解得汽车对于桥面压力的大小2 N v F mg sin m R θ'=?- 可见在汽车速度大小不变的情况下,随着角θ的不断减小,汽车对桥面的压力不断减小。 临界状态:当2 arc v sin Rg θ=时,汽车对桥面的压力减小到零。从此汽车离开桥面做斜下抛运动。 所以要使得汽车沿着斜面运动,其速度必须满足:0N F '>,即车的速度v gR 'sin <θ。 2.细线约束的小球在竖直面上的变速圆周运动 例如,用长为R 的细绳拴着质量是m 的物体,在竖直平面内做圆周运动。

【物理】物理生活中的圆周运动试题类型及其解题技巧及解析

【物理】物理生活中的圆周运动试题类型及其解题技巧及解析 一、高中物理精讲专题测试生活中的圆周运动 1.已知某半径与地球相等的星球的第一宇宙速度是地球的 1 2 倍.地球表面的重力加速度为g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求: (1)星球表面的重力加速度? (2)细线刚被拉断时,小球抛出的速度多大? (3)细线所能承受的最大拉力? 【答案】(1)01=4g g 星 (2)0 024 g s v H L = -201[1]42()s T mg H L L =+ - 【解析】 【分析】 【详解】 (1)由万有引力等于向心力可知2 2Mm v G m R R = 2Mm G mg R = 可得2 v g R = 则014 g g 星= (2)由平抛运动的规律:21 2 H L g t -= 星 0s v t = 解得0 024g s v H L = - (3)由牛顿定律,在最低点时:2 v T mg m L -星=

解得:2 01142()s T mg H L L ??=+??-?? 【点睛】 本题考查了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g 0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的来源是解决本题的关键. 2.如图所示,竖直圆形轨道固定在木板B 上,木板B 固定在水平地面上,一个质量为3m 小球A 静止在木板B 上圆形轨道的左侧.一质量为m 的子弹以速度v 0水平射入小球并停留在其中,小球向右运动进入圆形轨道后,会在圆形轨道内侧做圆周运动.圆形轨道半径为R ,木板B 和圆形轨道总质量为12m ,重力加速度为g ,不计小球与圆形轨道和木板间的摩擦阻力.求: (1)子弹射入小球的过程中产生的内能; (2)当小球运动到圆形轨道的最低点时,木板对水平面的压力; (3)为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,求子弹速度的范围. 【答案】(1)2038mv (2) 2 164mv mg R + (3)042v gR ≤或04582gR v gR ≤≤【解析】 本题考察完全非弹性碰撞、机械能与曲线运动相结合的问题. (1)子弹射入小球的过程,由动量守恒定律得:01(3)mv m m v =+ 由能量守恒定律得:220111 422 Q mv mv =-? 代入数值解得:2038 Q mv = (2)当小球运动到圆形轨道的最低点时,以小球为研究对象,由牛顿第二定律和向心力公式 得2 11(3)(3)m m v F m m g R +-+= 以木板为对象受力分析得2112F mg F =+ 根据牛顿第三定律得木板对水平的压力大小为F 2 木板对水平面的压力的大小20 2164mv F mg R =+

(完整word)高中物理圆周运动优秀教案及教学设计

高中物理圆周运动优秀教案及教学设计 导语:教科书在列举了生活中了一些圆周运动情景后,通过观察自行车大齿轮、小齿轮、后轮的关联转动,提出了描述圆周运动的物体运动快慢的问题。你知道生活中还有哪些圆周运动呢?以下是品才整理的,欢迎阅读参考! 一、教材分析 《匀速圆周运动》为高中物理必修2第五章第5节.它是学生在充分掌握了曲线运动的规律和曲线运动问题的处理方法后,接触到的又一个美丽的曲线运动,本节内容作为该章节的重要部分,主要要向学生介绍描述圆周运动的几个基本概念,为后继的学习打下一个良好的基础。 人教版教材有一个的特点就是以实验事实为基础,让学生得出感性认识,再通过理论分析总结出规律,从而形成理性认识。 教科书在列举了生活中了一些圆周运动情景后,通过观察自行车大齿轮、小齿轮、后轮的关联转动,提出了描述圆周运动的物体运动快慢的问题。 二、教学目标 1.知识与技能 ①知道什么是圆周运动、什么是匀速圆周运动。理解线

速度的概念;理解角速度和周期的概念,会用它们的公式进行计算。 ②理解线速度、角速度、周期之间的关系:v=rω=2πr/T。 ③理解匀速圆周运动是变速运动。 ④能够用匀速圆周运动的有关公式分析和解决具体情景中的问题。 2.过程与方法 ①运用极限思维理解线速度的瞬时性和矢量性.掌握运用圆周运动的特点去分析有关问题。 ②体会有了线速度后,为什么还要引入角速度.运用数学知识推导角速度的单位。 3.情感、态度与价值观 ①通过极限思想和数学知识的应用,体会学科知识间的联系,建立普遍联系的观点。 ②体会应用知识的乐趣,感受物理就在身边,激发学生学习的兴趣。 ③进行爱的教育。在与学生的交流中,表达关爱和赏识,如微笑着对学生说“非常好!”“你们真棒!”“分析得对!”让学生得到肯定和鼓励,心情愉快地学习。 三、教学重点、难点 1.重点

生活中的圆周运动练习题(好)

3.把盛水的水桶拴在长为L 的绳子一端,使水桶在竖直平面做圆周运动,要使水在水桶转到最高点时不从水桶里流出来,这时水桶的线速度至少应该是( ) B C D 6.如图,一质量为m 的球,用长为L 的细线悬挂于O 点,在O 点正下方L/2处钉有一根长钉,把悬线沿水平方向拉直后无初速度释放,当悬线碰到钉子 瞬间,以下说法不正确的是 ( ) A .小球的线速度突然增大 B .小球的向心加速度突然增大 C .小球的角速度突然增大 D .悬线拉力突然增大 1.杂技演员在表演水流星节目时,盛水的杯子在竖直平面内做圆周运动,当杯子到最高点时,里面水也不流出来,这是因为 ( ) A .水处于失重状态,不受重力的作用了 B .水受平衡力作用,合力为0 C .水受的合力提供向心力,使水做圆周运动 D .杯子特殊,杯底对水有吸力 2.乘坐游乐园的翻滚过山车时,质量为m 的人随车在竖直平面内旋转,下列说法正确的是( ) A .车在最高点时人处于倒坐状态,全靠保险带拉住,没有保险带,人就会掉下来 B .人在最高点时对座仍可能产生压力,但压力一定小于mg C .人在最低点时对座位的压力等于mg D .人在最低点时对座位的压力大于mg 4.质量为m 的小球,用一条绳子系在竖直平面内做圆周运动,小球到达最高点时的速度为v ,到达最低点时的速变为24v gR ,则两位置处绳子所受的张力之差是( ) A .6mg B.5mg C .4mg D .2mg 5.如图所示,用长为l 的细绳拴着质量为m 的小球在竖直平面内做圆周运动,下列说法中正确的是( ) A .小球在圆周最高点时所受的向心力一定为重力 B .小球在最高点时绳子的拉力不可能为零 C D .小球过最低点时绳子的拉力一定大于小球重力

高一物理 第四章 A 匀速圆周运动教案 沪科版

第四章 A 匀速圆周运动 一、教学任务分析 匀速圆周运动是继直线运动后学习的第一个曲线运动,是对如何描述和研究比直线运动复杂的运动的拓展,是力与运动关系知识的进一步延伸,也是以后学习其他更复杂曲线运动(平抛运动、单摆的简谐振动等)的基础。 学习匀速圆周运动需要以匀速直线运动、牛顿运动定律等知识为基础。 从观察生活与实验中的现象入手,使学生知道物体做曲线运动的条件,归纳认识到匀速圆周运动是最基本、最简单的圆周运动,体会建立理想模型的科学研究方法。 通过设置情境,使学生感受圆周运动快慢不同的情况,认识到需要引入描述圆周运动快慢的物理量,再通过与匀速直线运动的类比和多媒体动画的辅助,学习线速度与角速度的概念。 通过小组讨论、实验探究、相互交流等方式,创设平台,让学生根据本节课所学的知识,对几个实际问题进行讨论分析,调动学生学习的情感,学会合作与交流,养成严谨务实的科学品质。 通过生活实例,认识圆周运动在生活中是普遍存在的,学习和研究圆周运动是非常必要和十分重要的,激发学习热情和兴趣 二、教学目标 1、知识与技能 (1)知道物体做曲线运动的条件。 (2)知道圆周运动;理解匀速圆周运动。 (3)理解线速度和角速度。 (4)会在实际问题中计算线速度和角速度的大小并判断线速度的方向。 2、过程与方法 (1)通过对匀速圆周运动概念的形成过程,认识建立理想模型的物理方法。 (2)通过学习匀速圆周运动的定义和线速度、角速度的定义,认识类比方法的运用。 3、态度、情感与价值观 (1)从生活实例认识圆周运动的普遍性和研究圆周运动的必要性,激发学习兴趣和求知欲。 (2)通过共同探讨、相互交流的学习过程,懂得合作、交流对于学习的重要作用,在活动中乐于与人合作,尊重同学的见解,善于与人交流。 三、教学重点难点 重点: (1)匀速圆周运动概念。 (2)用线速度、角速度描述圆周运动的快慢。

高考物理生活中的圆周运动技巧小结及练习题含解析

高考物理生活中的圆周运动技巧小结及练习题含解析 一、高中物理精讲专题测试生活中的圆周运动 1.如图,在竖直平面内,一半径为R 的光滑圆弧轨道ABC 和水平轨道PA 在A 点相切.BC 为圆弧轨道的直径.O 为圆心,OA 和OB 之间的夹角为α,sinα= 3 5 ,一质量为m 的小球沿水平轨道向右运动,经A 点沿圆弧轨道通过C 点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用,已知小球在C 点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零.重力加速度大小为g .求: (1)水平恒力的大小和小球到达C 点时速度的大小; (2)小球到达A 点时动量的大小; (3)小球从C 点落至水平轨道所用的时间. 【答案】(15gR (223m gR (3355R g 【解析】 试题分析 本题考查小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动及其相关的知识点,意在考查考生灵活运用相关知识解决问题的的能力. 解析(1)设水平恒力的大小为F 0,小球到达C 点时所受合力的大小为F .由力的合成法则有 tan F mg α=① 2220()F mg F =+② 设小球到达C 点时的速度大小为v ,由牛顿第二定律得 2 v F m R =③ 由①②③式和题给数据得 03 4 F mg =④ 5gR v = (2)设小球到达A 点的速度大小为1v ,作CD PA ⊥,交PA 于D 点,由几何关系得 sin DA R α=⑥

(1cos CD R α=+)⑦ 由动能定理有 220111 22 mg CD F DA mv mv -?-?=-⑧ 由④⑤⑥⑦⑧式和题给数据得,小球在A 点的动量大小为 1232 m gR p mv == ⑨ (3)小球离开C 点后在竖直方向上做初速度不为零的匀加速运动,加速度大小为g .设小球在竖直方向的初速度为v ⊥,从C 点落至水平轨道上所用时间为t .由运动学公式有 2 12 v t gt CD ⊥+ =⑩ sin v v α⊥= 由⑤⑦⑩ 式和题给数据得 355R t g = 点睛 小球在竖直面内的圆周运动是常见经典模型,此题将小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动有机结合,经典创新. 2.已知某半径与地球相等的星球的第一宇宙速度是地球的 1 2 倍.地球表面的重力加速度为g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求: (1)星球表面的重力加速度? (2)细线刚被拉断时,小球抛出的速度多大? (3)细线所能承受的最大拉力? 【答案】(1)01=4g g 星 (2)0 024 g s v H L = -201[1]42()s T mg H L L =+ - 【解析】 【分析】 【详解】

相关主题