7.8.9.10.11.12.13.14..project文件:1.2.3.4.execlInterface5.6.7.8.9.10.org.eclipse.jdt.core.javabuilder11.12.13.14.15.16.org.eclipse.jdt.core.javanature17.18..mymetadata文件:HID报告描述符终极解析USBHID" />
搜档网
当前位置:搜档网 › Eclipse和MyEclipse工程描述符详解

Eclipse和MyEclipse工程描述符详解

Eclipse和MyEclipse工程描述符详解
Eclipse和MyEclipse工程描述符详解

.classpath文件:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

.project文件:

1.

2.

3.

4.execlInterface

5.

6.

7.

8.

9.

10.org.eclipse.jdt.core.javabuilder

11.

12.

13.

14.

15.

16.org.eclipse.jdt.core.javanature

17.

18.

.mymetadata文件:

HID 报告描述符终极解析

USB HID Report终极解析 HID的报告描述符巨难懂,关键是数据格式与每一位代表的意思。经过三天的研究,终于将HID Report的每一个数据位的含义弄清楚了,现将数据解析如下,最后附上了一个HID 通信的Report例子。以一个键盘的HID Report为例: 键盘的HID报告描述符: code char KeyBoardReportDescriptor[63] = { 0x05, 0x01, // USAGE_PAGE (Generic Desktop) 0x09, 0x06, // USAGE (Keyboard) 0xa1, 0x01, // COLLECTION (Application) 0x05, 0x07, // USAGE_PAGE (Keyboard) 0x19, 0xe0, // USAGE_MINIMUM (Keyboard LeftControl) 0x29, 0xe7, // USAGE_MAXIMUM (Keyboard Right GUI) 0x15, 0x00, // LOGICAL_MINIMUM (0) 0x25, 0x01, // LOGICAL_MAXIMUM (1) 0x75, 0x01, // REPORT_SIZE (1) 0x95, 0x08, // REPORT_COUNT (8) 0x81, 0x02, // INPUT (Data,V ar,Abs) 0x95, 0x01, // REPORT_COUNT (1) 0x75, 0x08, // REPORT_SIZE (8) 0x81, 0x03, // INPUT (Cnst,V ar,Abs) 0x95, 0x05, // REPORT_COUNT (5) 0x75, 0x01, // REPORT_SIZE (1) 0x05, 0x08, // USAGE_PAGE (LEDs) 0x19, 0x01, // USAGE_MINIMUM (Num Lock) 0x29, 0x05, // USAGE_MAXIMUM (Kana) 0x91, 0x02, // OUTPUT (Data,V ar,Abs) 0x95, 0x01, // REPORT_COUNT (1) 0x75, 0x03, // REPORT_SIZE (3) 0x91, 0x03, // OUTPUT (Cnst,V ar,Abs) 0x95, 0x06, // REPORT_COUNT (6) 0x75, 0x08, // REPORT_SIZE (8) 0x15, 0x00, // LOGICAL_MINIMUM (0) 0x25, 0xFF, // LOGICAL_MAXIMUM (255) 0x05, 0x07, // USAGE_PAGE (Keyboard) 0x19, 0x00, // USAGE_MINIMUM (Reserved (no event indicated)) 0x29, 0x65, // USAGE_MAXIMUM (Keyboard Application) 0x81, 0x00, // INPUT (Data,Ary,Abs)

MDL(内存描述符表) 详解

MDL(内存描述符表)详解 分类:初学驱动2013-01-25 18:07 308人阅读评论(0) 收藏举报mdl 以下的虚拟内存可以理解成逻辑内存,因为我觉得只有这样才能讲通下面所有的东西。以下的“未分页”指没有为页进行编码。 以下为MDL结构体(我很郁闷,我在MSDN上没有找到这个结构体) typedef struct _MDL { struct _MDL *Next; //下一个MDL CSHORT Size; //大小 CSHORT MdlFlags; //标志,保护属性等 struct _EPROCESS *Process;// PVOID MappedSystemVa; PVOID StartVa; ULONG ByteCount; ULONG ByteOffset; } MDL, *PMDL; 如何使用MDL: 一个连续的虚拟内存地址范围可能是由多个分布(spread over)在不相邻的物理页所组成的。系统使用MDL(内存描述符表)结构体来表明虚拟内存缓冲区的物理页面布局。我们应该避免直接访问MDL。我们可以使用MS-Windows提供的宏,他们提供了对这个结构体基本的访问。 ·MmGetMdlVirtualAddress 获取缓冲区的虚拟内存地址 ·MmGetMdlByteCount 获取缓冲区的大小(字节数) ·MmGetMdlByteOffset 获取缓冲区开端的物理页的大小(字节数)·MmGetMdlPfnArray 获取记录物理页码的一个数组指针。 我们可以用IoAllocateMdl函数来分配一个MDL。如果要取消分配,可是使用IoFreeMdl 函数。或者,可以使用MmInitializeMdl来把一个之前定义的缓冲区定制成一个MDL。但是以上两种方式都不能初始化物理页码数组。 对于在未分页池中分配的缓冲区,可以用MmBuidlMdlForNonpagedPool函数来初始化页码数组。对于可分页的内存,虚拟内存和物理内存之间的联系是暂时的,所以MDL的页码数组只在特定的环境和时间段有效,因为很可能其他的程序对它们进行重新分配,为了使其

USB HID设备报告描述符详解

USB HID设备报告描述符详解 概述: 报告在这里意思是数据传输(data transfer),而报告描述符是对这些传输的数据作用途(usage)上的说明。 USB通讯协议的规范是以1ms产生一个USB帧(frame),USB设备可以每一个帧中发送和接收一个交换(transaction)。交换是由几个封包(packet)组成,而传输是由一个或几个交换来完成传送一口中有效的数据。在这里,传输和报告的意思相类似。传输方式有四种,初始学一般只要了解控制型传输(control transfer)和中断型传输(interrupt transfer)即可。控制型传输是当需要时才执行传输要求,是最一般的传输方式,组态、命令和状态的通讯都可以使用控制型传输;控制型传输主要用于消息型数据(message-type data)。中断型传输目的在做重复的数据更新(recurring data)传输,精确一点而言,即是在每个有限有周期内(bounded period)作至少一次的小量数据发送或接收;所以适用于流动型数据(stream-type data),注意这里所谓的周期时间就是在端点描述符中的轮询间隔时间。报告有三种:input,output,和Feature.后面将作进一步介绍。中断型输入管线(interrupt in pipe)仅可以传送input报告;中断型输出管线(interrupt out pipe)仅可以传送output报告;但是控制型管线(control pipe)可以传送input,out put和feature报告。端点描述符有声明所使用的端点为何种管线。 数据本身没有任何意义,要赋于用途才能明确其为控制什么(control);例如设备上的按钮指示灯和X与Y轴的位移等都通称控制,数据则为按钮和指示灯的开关状态或X与Y轴的位移量。为了这个目的应运而生报告描述符,其将数据的操控与它的用途作一对一的对应,所以解读报告后就可以知道每个数据作何种操作。所以“传输的数据”和“操作”只是一事件的两种描述方式。用途是以一个32位卷标(称作usage tag)来表示,高16位称作usage page(用途类页),低16位称为usage DI(用途识别名): Usage = (usage page:usage ID) 举例说明:二个字节分别为x和y轴的位移数据,因此第一个字节的usage =(generic desktop:X),而第二个字节的usage = (generic desktop:Y),其中gen

USB的描述符详解总结

USB的描述符与命令请求详解 一、描述符 1.什么是描述符 所谓描述符,就是用于描述设备特性的具有特定格式排列的一种数据组织结构。 2.描述符的作用 描述符的作用在于设备向主机汇报自己的信息、特征,主机根据这些信息从而加载相应的驱动程序。 3.描述符的分类 描述符分为三大类:标准描述符、设备类描述符、厂商描述符。 除字符串描述符可选外,任何设备都必须包含剩下的几种标准描述符。 在USB1.0中规定了5种标准的描述符: 设备描述符 配置描述符 接口描述符 端点描述符 字符串描述符 规定的设备类描述符有:集线器类描述符、人机接口类描述符。 下表是三种描述符的类型值: 4.使用的几种类 设备类DeviceClass 下表是设备类值的含义。

接口类InterfaceClass 下表是接口类值的含义。 类的交叉与独享 在描述符中,只有设备描述符和接口描述符中会有类别之分,即只有设备和接口会分 类使用,不过有些类别的使用只需经过设备或接口的区分就可彻底清楚明白,这说明在设备类别和接口类别的定义上会有共同的类别名称。而有些类别则是设备或接口独享的,下表是与使用设备相关的类别划分交叉或共享情况:

(此表也适用于标准命令Get_Descriptor中wValue域高字节的取值含义) 【说明:】在设备或接口分类上均可彻底分清使用的(Usage = Both),即在任一处描述符中定义即可的分清楚使用的类(Usage = Both)的基本类有: 02h ------------- 通信及CDC控制类; DCh ------------ 诊断设备类; EFh ------------- 混杂设备类; FFh ------------- 厂商定义的设备类。 5.标准描述符 设备描述符

USB HID报告描述符详解

USB 之人性化接口装置的报告描述元(1) 作者: 林锡宽 e-mail: sklin@https://www.sodocs.net/doc/e217171451.html,.tw (原文刊于e 科技杂志vol. 30,2003 年6 月号) 关于USB 的标准描述元已经在 e 科技杂志的第24 和25 期中作了完整的介绍。有些读者来函希望能早日刊出报告描述元的介绍。人性化接口装置HID 的类别 特定描述元有三种,其中HID 描述元因为需要连接在接口描述元(标准描述元 之一)之后,所以也已经在前文介绍了。其他二个HID 类别特定描述元为报告 描述元和实体描述元。实体描述元几乎很少使用到,所以不拟介绍,虽然它不会 很复杂。本文仅专注介绍报告描述元。相对来说,报告描述元最复杂,也不容易 理解,可是却最重要,因为HID 装置与主机间的经常性数据传输都由报告描述 元来规范。因为报告描述元的复杂和难理解,使得此文的编撰花了不少时间,因 此无法在上次刊完USB 标准描述元后,接着刊出。 由于内容篇幅颇长,所以仅能分为三篇陆续刊出。本期的第一篇中仅介绍到区域 性项目,下期的第二篇再继续介绍全局性项目和主项目。这三类项目构成一个报 告描述元。最后仍需要以一个实际的范例来解说使用方法,所以第三篇文章将提 供一个实际的范例:整合鼠标的键盘装置。此外,也会将该范例的韧体程序代码提 供给有兴趣的读者。这个韧体程序代码不只是该范例的报告描述元,也含括了它的 标准描述元。 概述 报告(report)在这里意指数据传输(data transfer),而报告描述元则是对这些传输的 数据作用途(usage)的说明。 USB 通讯协议的规范是以1 毫秒产生一个USB 讯框(frame),USB 装置可以在每 一个讯框中传送和接收一个交易(transaction)。交易是由数个封包(packet)组成, 而传输是由一或数个交易来完成传递一串有意义的数据。在这里,传输和报告的 意义大同小异。传输方式有四种,初学者只要了解控制型传输(control transfer) 和中断型传输(interrupt transfer)即可。控制型传输是当需要时才执行传输要求, 是最一般的传输,组态、命令和状态的通讯都可以使用,主要用于讯息型数据(message-type data)。中断型传输目的在做重复的数据更新(recurring data)传输, 精确一点而言,即是在每个有限的周期内(bounded period)作至少一次的小量数据 传送或接收﹔所以适用于流动型数据(stream-type data),注意这里所谓的周期时

USB_HID设备报告描述符详解

概述 报告在这里意思是数据传输(data transfer),而报告描述符是对这些传输的数据作用途(usage)上的说明。USB通讯协议的规范是以1ms产生一个USB 帧(frame),USB设备可以每一个帧中发送和接收一个交换(transaction)。交换是由几个封包(packet)组成,而传输是由一个或几个交换来完成传送一口中有效的数据。在这里,传输和报告的意思相类似。传输方式有四种,初始学一般只要了解控制型传输(control transfer)和中断型传输(interrupt transfer)即可。控制型传输是当需要时才执行传输要求,是最一般的传输方式,组态、命令和状态的通讯都可以使用控制型传输;控制型传输主要用于消息型数据(message-type data)。中断型传输目的在做重复的数据更新(recurring data)传输,精确一点而言,即是在每个有限有周期内(bounded period)作至少一次的小量数据发送或接收;所以适用于流动型数据(stream-type data),注意这里所谓的周期时间就是在端点描述符中的轮询间隔时间。报告有三种: input,output,和Feature.后面将作进一步介绍。中断型输入管线(interrupt in pipe)仅可以传送input报告;中断型输出管线(interrupt out pipe)仅可以传送output报告;但是控制型管线(control pipe)可以传送input,output和feature报告。端点描述符有声明所使用的端点为何种管线。 数据本身没有任何意义,要赋于用途才能明确其为控制什么(control);例如设备上的按钮指示灯和X与Y轴的位移等都通称控制,数据则为按钮和指示灯的开关状态或X与Y轴的位移量。为了这个目的应运而生报告描述符,其将数据的操控与它的用途作一对一的对应,所以解读报告后就可以知道每个数据作何种操作。所以“传输的数据”和“操作”只是一事件的两种描述方式。用途是以一个32位卷标(称作usage tag)来表示,高16位称作usage page(用途类页),低16位称为usage DI(用途识别名): Usage=(usage page:usage ID) 主项目全域项目区域项目 标签代码标签代码标签代码Input0X8?Usage Page0x0?Usage0x0? 0x1? Output0x9?Logical Minimum0x1?Usage Minimum 0x2? Feature0xb?Logical Maximum0x2?Usage Maximum Physical Minimum0x3?Designator0x3?

模式识别特征提取

特征提取 SIFT算法提取步骤 SIFT算法提取特征点的主要步骤: (1)检测尺度空间极值点 检测尺度空间极值的U的是确定特征点位置和所在尺度组。即先使用高斯过滤器对原始图像进行若干次连续滤波建立第一个尺度组,再把图形减小到原来的一半,进行同样的高斯滤波形成第二个尺度组。之后,重复操作直到图像小于某一个给定阀值为止。接下来对每个尺度组中的高斯图像进行差分,形成高斯差分尺度组(DoG尺度图像)。

在上面建立的DoG 尺度空间金字塔中,为了检测到DoG 空间的最大值和最小值, DoG 尺度空间中中间层(最底层和最顶层除外)的每个像素点需要跟同一层的相 邻8个像素点以及它上一层和下一层的9个相邻像素点总共26个相邻像素点进 行比较,以确保在尺度空间和二维图像空间都检测到局部极值,如图3-2所示 图3-2 DoG 空间局部极值检测 在图3-2中,标记为义号的像素若比相邻26个像素的DoG 值都大或都小,则该 点将作为一个局部极值点。被检测工件的高斯滤波图像如图3-3所示。 Gaussian Scale Ifirst g“ve) Difference of Gaussian (DOG) Scale Inwt

图3-3原始图像和部分髙斯滤波图像 (2)精确定位极值点 由于DoG值对噪声和边缘较敏感,因此,在上面DoG尺度空间中检测到局部极值点还要经过进一步的检验才能精确定位为特征点。一般通过二阶Taylor展开式讣算极值点的偏移量,获得亚像素定位精度,同时通过阈值设置剔除差异小的点。最终保留下来的点称为特征点,特征点的检测是在尺度空间中进行的,特征点保持为尺度不变量。各层图像特征点如图3-4所示。

socket原理详解

socket原理详解 1、什么是socket 我们知道进程通信的方法有管道、命名管道、信号、消息队列、共享内存、信号量,这些方法都要求通信的两个进程位于同一个主机。但是如果通信双方不在同一个主机又该如何进行通信呢?在计算机网络中我们就学过了tcp/ip协议族,其实使用tcp/ip协议族就能达到我们想要的效果,如下图(图片来源于《tcp/ip协议详解卷一》第一章1.3) 、 图一各协议所处层次 当然,这样做固然是可以的,但是,当我们使用不同的协议进行通信时就得使用不同的接口,还得处理不同协议的各种细节,这就增加了开发的难度,软件也不易于扩展。于是UNIX BSD就发明了socket这种东西,socket屏蔽了各个协议的通信细节,使得程序员无需关注协议本身,直接使用socket提供的接口来进行互联的不同主机间的进程的通信。这就好比操作系统给我们提供了使用底层硬件功能的系统调用,通过系统调用我们可以方便的使用磁盘(文件操作),使用内存,而无需自己去进行磁盘读写,内存管理。socket其实也是一样的东西,就是提供了tcp/ip

协议的抽象,对外提供了一套接口,同过这个接口就可以统一、方便的使用tcp/ip协议的功能了。百说不如一图,看下面这个图就能明白了。 图二 socket所处层次 那么,在BSD UNIX又是如何实现这层抽象的呢?我们知道unix中万物皆文件,没错,bsd在实现上把socket设计成一种文件,然后通过虚拟文件系统的操作接口就可以访问socket,而访问socket时会调用相应的驱动程序,从而也就是使用底层协议进行通信。(vsf也就是unix提供给我们的面向对象编程,如果底层设备是磁盘,就对磁盘读写,如果底层设备是socket就使用底层协议在网中进行通信,而对外的接口都是一致的)。下面再看一下socket的结构是怎样的(图片来源于《tcp/ip协议详解卷二》章节一,1.8描述符),注意:这里的socket是一个实例化之后的socket,也就是说是一个具体的通信过程中的socket,不是指抽象的socket结构,下文还会进行解释。

报告描述符

1.2 报告描述符 要解释报告描述符,首先得清楚什么是“报告”。“报告”是主机和HID设备之间进行数据交换的最小单位。也就是说,在主机完成对设备的识别之后,在具体应用上的数据交换就得以“报告”的方式进行。“报告”的类型有三种:输入报告、输出报告和特征报告。输入报告就是设备发给主机的报告,而输出报告就是主机发给设备的报告,特征报告是主机发给设备的报告,特征报告常在自定义HID设备中被用作主机向设备发送自定义数据。 报告描述符,顾名思义就是描述“报告”格式的,这个格式使主机和设备能遵循着同一个规则来解释一个报告中所含有的数据。与HID描述符不同,主机会发出单独的请求来读取报告描述符。关于报告描述符的组成,HID设备类定义文档中明确指出,一个报告描述符必须包含但不仅限于以下数据项: 输入(输出或特征) 用法(也可用“用法最小值与最大值”来定义一连串用法) 用法页 逻辑最小值 逻辑最大值 报告大小 报告计数 报告描述符看起来比较复杂,无论是HID设备类定义文档,还是其他参考书籍,都会花较大的篇幅来阐述它。要把它完全理解是需要一点时间的,而且就算是理解了也不一定能写出“像样”的报告描述符来。学习总有一个过程,入门才是最重要的,只要入了门,后面的事情就会慢慢变得简单,无需在一开始的时候就面面俱到。所以这里只对上面提到的必需的数据项进行解释及举例说明。 输入项(输出或特征)指明了报告的类型,其中隐含了报告的传输方向以及报告数据所具有的数学特性。 用法和用法页一起指明了数据项的用法,每个数据项都必须指明用法,否则主机端不能成功解析报告描述符。用法页是全局的,修饰列于其后的所有数据项,直到出现新的用法页为止;用法则是局部数据项,局部数据项只修饰列于其后的第一个主数据项内的数据项,一旦出现新的主数据项,那么用法必须重新指定。这其中隐含的意思是,每个主数据项前面都必须有修饰它的用法与用法页组合。(“用法”表示的是一个单独的用法,而“用法最小值”和“用法最大值”可以替代“用法”,代表某个范围的用法。) 逻辑最小值和逻辑最大值指明了报告所使用的数据值的范围,这个数据值是以逻辑单位为基础的,与报告大小有着对应关系。 报告大小指明数据项的位数。报告计数指明有多少个这样的数据项。 例如,定义以下数据项: 逻辑最小值(0) 逻辑最大值(0x7f)

SIFT算法C语言逐步实现详解

SIFT算法C语言逐步实现详解(上) 引言: 在我写的关于sift算法的前倆篇文章里头,已经对sift算法有了初步的介绍:九、图像特征提取与匹配之SIFT算法,而后在:九(续)、sift算法的编译与实现里,我也简单记录下了如何利用opencv,gsl等库编译运行sift程序。 但据一朋友表示,是否能用c语言实现sift算法,同时,尽量不用到opencv,gsl等第三方库之类的东西。而且,Rob Hess维护的sift 库,也不好懂,有的人根本搞不懂是怎么一回事。 那么本文,就教你如何利用c语言一步一步实现sift算法,同时,你也就能真正明白sift算法到底是怎么一回事了。 ok,先看一下,本程序最终运行的效果图,sift 算法分为五个步骤(下文详述),对应以下第二--第六幅图:

sift算法的步骤 要实现一个算法,首先要完全理解这个算法的原理或思想。咱们先来简单了解下,什么叫sift算法: sift,尺度不变特征转换,是一种电脑视觉的算法用来侦测与描述影像中的局部性特征,它在空间尺度中寻找极值点,并提取出其位置、尺度、旋转不变量,此算法由David Lowe 在1999年所发表,2004年完善总结。 所谓,Sift算法就是用不同尺度(标准差)的高斯函数对图像进行平滑,然后比较平滑后图像的差别, 差别大的像素就是特征明显的点。 以下是sift算法的五个步骤: 一、建立图像尺度空间(或高斯金字塔),并检测极值点 首先建立尺度空间,要使得图像具有尺度空间不变形,就要建立尺度空间,sift算法采用了高斯函数来建立尺度空间,高斯函数公式为:

上述公式G(x,y,e),即为尺度可变高斯函数。 而,一个图像的尺度空间L(x,y,e) ,定义为原始图像I(x,y)与上述的一个可变尺度的2维高斯函数G(x,y,e) 卷积运算。 即,原始影像I(x,y)在不同的尺度e下,与高斯函数G(x,y,e)进行卷积,得到L(x,y,e),如下: 以上的(x,y)是空间坐标,e,是尺度坐标,或尺度空间因子,e的大小决定平滑程度,大尺度对应图像的概貌特征,小尺度对应图像的细节特征。大的e值对应粗糙尺度(低分辨率),反之,对应精细尺度(高分辨率)。 尺度,受e这个参数控制的表示。而不同的L(x,y,e)就构成了尺度空间,具体计算的时候,即使连续的高斯函数,都被离散为(一般为奇数大小)(2*k+1) *(2*k+1)矩阵,来和数字图像进行卷积运算。 随着e的变化,建立起不同的尺度空间,或称之为建立起图像的高斯金字塔。 但,像上述L(x,y,e) = G(x,y,e)*I(x,y)的操作,在进行高斯卷积时,整个图像就要遍历所有的像素进行卷积(边界点除外),于此,就造成了时间和空间上的很大浪费。 为了更有效的在尺度空间检测到稳定的关键点,也为了缩小时间和空间复杂度,对上述的操作作了一个改建:即,提出了高斯差分尺度空间(DOG scale-space)。利用不同尺度的高斯差分与原始图像I(x,y)相乘,卷积生成。 DOG算子计算简单,是尺度归一化的LOG算子的近似。 ok,耐心点,咱们再来总结一下上述内容: 1、高斯卷积 在组建一组尺度空间后,再组建下一组尺度空间,对上一组尺度空间的最后一幅图像进行二分之一采样,得到下一组尺度空间的第一幅图像,然后进行像建立第一组尺度空间那样的操作,得到第二组尺度空间,公式定义为 L(x,y,e) = G(x,y,e)*I(x,y)

程序流程图编写规范详解

程序流程图编写规范 一、符号用法 (2) 1.1数据 (2) 1.2处理 (2) 1.3特定处理 (2) 1.4准备 (2) 1.5判断 (3) 1.6循环界限 (3) 1.7连接符 (3) 1.8端点符 (3) 1.9注解符 (3) 1.10流线 (4) 1.11虚线 (4) 1.12省略符 (4) 1.13并行方式 (4) 二、使用约定 (6) 2.1图的布局 (6) 2.2符号的形状 (6) 2.3符号内的说明文字 (6) 2.4符号标识符 (6) 2.5符号描述符 (6) 2.6详细表示 (7) 2.7流线 (7) 2.8多出口判断的两种表示方法 (8) 三、示例 (9)

一、符号用法 程序流程图用于描述程序内部各种问题的解决方法、思路或算法。 图1-1 标准程序流程图符号 1.1数据 平行四边形表示数据,其中可注明数据名、来源、用途或其它的文字说明。此符号并不限定数据的媒体。 1.2处理 矩形表示各种处理功能。例如,执行一个或一组特定的操作,从而使信息的值,信息形式或所在位置发生变化,或是确定对某一流向的选择。矩形内可注明处理名或其简工功能。 1.3特定处理 带有双纵边线的矩形表示已命名的特定处理。该处理为在另外地方已得到详细说明的一个操作或一组操作,便如子例行程序,模块。矩形内可注明特定处理名或其简要功能。 1.4准备 六边形符号表示准备。它表示修改一条指令或一组指令以影响随后的活动。例如,设置开关,修改变址寄存器,初始化例行程序。

1.5判断 菱形表示判断或开关。菱形内可注明判断的条件。它只有一个入口,但可以有若干个可供选择的出口,在对符号内定义各条件求值后,有一个且仅有一个出口被激活,求值结果可在表示出口路径的流线附近写出。 1.6循环界限 循环界限为去上角矩形表示年界限和去下角矩形的下界限成,分别表示循环的开始和循环的结束。一对符号内应注明同一循环标识符。可根据检验终止循环条件在循环的开始还是在循环的末尾,将其条件分别在上界限符内注明(如:当A>B)或在下界限符内注明(如:直到C

STM官方USB例程JoyStick详解

STM官方USB例程JoyStick详解

————————————————————————————————作者:————————————————————————————————日期:

转载:https://www.sodocs.net/doc/e217171451.html,/thread-51423-1-1.html 作者:追风 一、USB的“JoyStickMouse”例程结构分析 1、例程的结构 (1)底层结构 包括5个文件:usb_core.c(USB总线数据处理的核心文件),usb_init.c,usb_int.c(用于端点数据输入输入中断处理),usb_mem.c(用于缓冲区操作),usb_regs.c(用于寄存器操作)。它们都包含了头文件“usb_lib.h”。在这个头文件中,又有以下定义: #include "usb_type.h" #include "usb_regs.h" #include "usb_def.h" #include "usb_core.h" #include "usb_init.h" #include "usb_mem.h" #include "usb_int.h" usb_lib.h中又包含了七个头文件,其中usb_type.h中主要是用typedef为stm32支持的数据类型取一些新的名称。usb_def.h中主要是定义一些相关的数据类型。 还有一个未包含在usb_lib.h中的头文件,usb_conf.h用于USB设备的配置。 (2)上层结构 上层结构总共5个文件:hw_config.c(用于USB硬件配置)、usb_pwr.c(用于USB连接、断开操作)、usb_istr.c(直接处理USB中断)、usb_prop.c(用于上层协议处理,比如HID协议,大容量存储设备协议)、usb_desc.c(具体设备的相关描述符定义和处理)。

Linux中USB描述符详解-wxc-2018-03-31

USB描述符的作用 USB 设备第一次连接到主机时, 要接收主机枚举( Enumera tion) 和配置(Configuration) , 目的是让主机知道设备功能、是哪一类的USB 设备、占用多少资源、使用了哪些传输方式以及传输的数据量等等。只有主机完全确认了这些信息后, 设备才能真正开始工作。这些信息是通过存储在设备中的USB 描述符来体现的。因此, 这种USB 描述符也可以看作是USB 设备的身份证明。 描述符(Descriptor )是一个完整的数据结构, 存储在USB 设备中, 用于描述一个USB 设备的所有属性。USB主机通过一系列命令要求设备发送这些信息。 USB描述符的种类 描述符分为三大类:标准描述符、设备类描述符、厂商描述符。 三种描述符的类型值bDescriptorType: 设备的类别bDeviceClass

接口类别bInterfaceClass Linux中各种描述符的定义 在include/linux/usb/Ch9.h中定义 USB设备描述符: struct usb_device_descripto r { __u8 bLength; //此描述符的字节数 __u8 bDescriptorType; //描述符的类型(此处应为0x01,即设备描述符) __le16 bcdUSB; // USB版本号(BCD 码)

__u8 bDeviceClass; //设备的类别---可查看上表格 __u8 bDeviceSubClass; //设备子类码:这些码值的具体含义根据bDeviceClass 域来看。 __u8 bDeviceProtocol; /*协议码 这些码的值视bDeviceClass 和bDeviceSubClass 的值而定。如果设备支持设备类相关的 协议,此码标志了设备类的值。如果此域的值为零,则此设备不支持设备类相关的协议,然 而,可能它的接口支持设备类相关的协议。如果此域的值为FFH,此设备使用厂商定义的议。*/ __u8 bMaxPacketSize0; //端点0的最大包大小(仅8,16,32,64为合法值) __le16 idVendor; //厂商标志(由USB-IF组织赋值) __le16 idProduct; //产品标志(由厂商赋值) __le16 bcdDevice; //设备版本号(BCD 码) __u8 iManufacturer; //描述厂商信息的字符串描述符的索引值。 __u8 iProduct; //描述产品信息的字串描述符的索引值。 __u8 iSerialNumber; //描述设备序列号信息的字串描述符的索引值。 __u8 bNumConfigurations; //可能的配置描述符数目 } USB配置描述符 配置描述符中包含了配置描述符本身的长度、所有配置信息的总长度、供电方式及远 程唤醒、供电量。 如果主机发出标准命令Get_Descriptor要求获得设备的某个配置描述符时,该配置应用的所有信息都将发给主机,它包括:该标准配置符本身、该配置所包含的所有接口、端点描述符及设备类描述符和厂商描述符。 struct usb_config_descriptor { __u8 bLength; //此描述符的字节数 __u8 bDescriptorType; //配置描述表类型(此处为0x02) __le16 wTotalLength; //此配置信息的总长(包括配置,接口,端点和设备类及厂商定义的描述符),即:将要返回的配置信息总长度。 __u8 bNumInterfaces; //此配置所支持的接口个数 __u8 bConfigurationValue;//在SetConfiguration()请求中用作参数来选定此配置。 __u8 iConfiguration;//描述此配置的字串描述符的索引 __u8 bmAttributes; /* 配置特性:

USB描述符完全解析

USB设备描述符完全解析 //======================================================= ===================== // 文件名: USBDESC.C // 用途: USB描述符 // 作者: shenfei5 // 时间: 2007.2.3 // 版本: V1.10 //======================================================= ===================== #include #include "usb.h" // USB模块 #include "hid.h" // HID设备 #include "usbcfg.h" // 配置USB #include "usbdesc.h" // USB描述符 // // HID报文描述符 // const U8 HID_ReportDescriptor[] = { HID_UsagePageVendor(0x00), // 报告页版本: 0X06 0X00 0XFF HID_Usage(0x01), // 用途页: 0X05 0X01 // 如果是MOUSE,KEY,在这里应该有用法索引 HID_Collection(HID_Application), // 用法集合开始: 0XA1 0X01 HID_UsagePage(HID_USAGE_PAGE_BUTTON), // BUTTON用法页 HID_UsageMin(1), // 用法最小值 HID_UsageMax(3), // 用法最小值 HID_LogicalMin(0), // 逻辑最小值 HID_LogicalMax(1), // 逻辑最大值 HID_ReportCount(3), // 报告计数(3) HID_ReportSize(1), // 报告页大小(1) HID_Input(HID_Data | HID_Variable | HID_Absolute), // 输入(2) HID_ReportCount(1), // 报告计数值 HID_ReportSize(5), // 报告大小 HID_Input(HID_Constant), // 输入1 HID_UsagePage(HID_USAGE_PAGE_LED), // LED用法页 HID_Usage(HID_USAGE_LED_GENERIC_INDICATOR), // 用法页 HID_LogicalMin(0), // 用法最小值

USB协议详解

USB HID介绍 HID是一种USB通信协议,无需安装驱动就能进行交互,在学习HID之前,先来复习一下USB 协议的相关内容。 USB设备描述符-概述 当插入USB设备后,主机会向设备请求各种描述符来识别设备。那什么是设备描述符呢? Descriptor即描述符,是一个完整的数据结构,可以通过C语言等编程实现,并存储在USB 设备中,用于描述一个USB设备的所有属性,USB主机是通过一系列命令来要求设备发送这些信息的。 描述符的作用就是通过命令操作来给主机传递信息,从而让主机知道设备具有什么功能、属于哪一类设备、要占用多少带宽、使用哪类传输方式及数据量的大小,只有主机确定了这些信息之后,设备才能真正开始工作。 USB有那些标准描述符? USB有5种标准描述符:设备描述符、配置描述符、字符描述符、接口描述符、端点描述符。 描述符之间有一定的关系,一个设备只有一个设备描述符,而一个设备描述符可以包含多个配置描述符,而一个配置描述符可以包含多个接口描述符,一个接口使用了几个端点,就有几个端点描述符。由此我们可以看出,USB的描述符之间的关系是一层一层的,最上一层是设备描述符,下面是配置描述符,再下面是接口描述符,再下面是端点描述符。在获取描述符时,先获取设备描述符,然后再获取配置描述符,根据配置描述符中的配置集合长度,一次将配置描述符、接口描述符、端点描述符一起一次读回。其中可能还会有获取设备序列号,厂商字符串,产品字符串等。 设备描述符 struct _DEVICE_DEscriptOR_STRUCT { BYTE bLength; //设备描述符的字节数大小 BYTE bDescriptorType; //描述符类型编号,为0x01 WORD bcdUSB; //USB版本号 BYTE bDeviceClass; //USB分配的设备类代码,0x01~0xfe为标准设备类,0xff为厂商自定义类型,0x00不是在设备描述符中定义的,如HID BYTE bDeviceSubClass; //usb分配的子类代码,同上,值由USB规定和分配的,HID 设备此值为0 BYTE bDeviceProtocl; //USB分配的设备协议代码,同上HID设备此值为0 BYTE bMaxPacketSize0; //端点0的最大包的大小 WORD idVendor; //厂商编号 WORD idProduct; //产品编号 WORD bcdDevice; //设备出厂编号 BYTE iManufacturer; //描述厂商字符串的索引

USBHID设备报告描述符详解

USBHID设备报告描述符详解 概述: 报告在这里意思是数据传输(data transfer),而报告描述符是对这些传输的数据作用途(usage)上的说明。 USB通讯协议的规范是以1ms产生一个USB帧(frame),USB设备可以每一个帧中发送和接收一个交换(transaction)。交换是由几个封包(packet)组成,而传输是由一个或几个交换来完成传送一口中有效的数据。在这里,传输和报告的意思相类似。传输方式有四种,初始学一般只要了解控制型传输(control transfer)和中断型传输(interrupt transfer)即可。控制型传输是当需要时才执行传输要求,是最一般的传输方式,组态、命令和状态的通讯都可以使用控制型传输;控制型传输主要用于消息型数据(message-type data)。中断型传输目的在做重复的数据更新(recurring data)传输,精确一点而言,即是在每个有限有周期内(bounded period)作至少一次的小量数据发送或接收;所以适用于流动型数据(stream-type data),注意这里所谓的周期时间就是在端点描述符中的轮询间隔时间。报告有三种:input,output, 和Feature.后面将作进一步介绍。中断型输入管线(interrupt in pipe)仅可以传送input报告;中断型输出管线(interrupt out pipe)仅可以传送output报告;但是控制型管线(control pipe)

可以传送input,output和feature报告。端点描述符有声明所使用的端点为何种管线。 数据本身没有任何意义,要赋于用途才能明确其为控制什么(control);例如设备上的按钮指示灯和X与Y轴的位移等都通称控制,数据则为按钮和指示灯的开关状态或X与Y 轴的位移量。为了这个目的应运而生报告描述符,其将数据的操控与它的用途作一对一的对应,所以解读报告后就可以知道每个数据作何种操作。所以“传输的数据”和“操作”只是一事件的两种描述方式。用途是以一个32位卷标(称作usage tag)来表示,高16位称作usage page(用途类页),低16位称为usage ID(用途识别名): Usage = (usage page:usage ID) 举例说明:二个字节分别为x和y轴的位移数据,因此第一个字节的usage=(generic desktop:X),而第二个字节的usage = (generic desktop:Y),其中generic desktop为用途的大类别(称作用途类页)之一,x和y轴的操作用途属于此用途类页。文件universal serial Bus HID Usage Table完整列出所有的usage pages(用途类页)和usage ID(用途识别名),使用者必须遵照文件的规范来声明操作的用途。该文件的附录A有十多个报告描述符的范例,值得研究下。 表1、报告描述符的标签 主项目

Visio流程图符号含义以及标准规则

如文档对你有用,请下载支持! 标准程序流程图的符号及使用约定 一、引言 程序流程图(Progran flowchart)作为一种算法表达工具,早已为工国计算机工作者和广大计算机用户十分熟悉和普通使用.然而它的一个明显缺点在于缺乏统一的规范化符号表示和严格的使用规则.最近,国家标准局批准的国家标准(GB1525-89)<<信息处理--数据流程图,程序流程图,系统流程图,程序网络图和系统资源图的文件编制符号及约定>>为我们推荐了一套标准化符号和使用约定,根据这一标准画出的程序流程图我们称为标准流程图. 1.程序流程图表示了程序的操作顺序.它应包括: (1)指明实际处理操作的处理符号,包括根据逻辑条件确定要执行的路径的符号. (2)指明控制流的流线符号. (3)便于读写程序流程图的特殊符号. 表示连接符,用以表明转向流程图的它处,或从流程图它处转入 。

(1)关于流程图符号的使用约定,简要地说明以下几点: 1.图的布局:流程图中所用的符号应该均心地分布,连线保持合理的长度,并尽量少使用长线. 2.符号的形状:流程图中多数符号内的空白供标注说明性文字.使用各种符号应注意符号的外形和各符号大小的统一,避免使符号变形或各符号大小比例不一. 3.符号内的说明文字:应使符号内的说明文字尽可能简明.通常按从左向右和从上向下方式书写,并与流向无关.如果说明文字较多,符号内写不完,可使用注解符.若注解符干扰或影响到图形的流程,应将正文写在另外一页上,并注明引用符号. 4.符号标识符:为符号规定标识符是为了便于其它文件引用该符号.便如,程序清单中引用到流程图中的特定符号.符号标识符一般写在符号的左上角,参看图6(a). 图6 符号标识符和符号描述符 5.符号描述符:为便于进一步理解符号的功能,可标注符号描述符.通常描述符写在符号的右上角,如图6(b)所示. 6.详细表示:在处理符号或数据符号中画一横线,表明该符号在同一文件集中的其它地言有更为详细的表示.横线在符号内靠近项端,详细表示的标识符写在符号内横线之上,见图7(a).端点符用作详细表示的开始符号和结束符号,在此符号中应给出加横线符号中的标识符,见图7(b). 图7 加横线符号及其详细表示 7.流线 (1)标准流向与箭头的使用:流线的标准流向是从左到右和从上到下.沿标准流向的流线可不用箭头指示流向,但沿非标准流向的流线应用箭头指示充向. (2)流线的交叉:应当尽量避免流线的交叉.即使出现流线的交叉,交叉的流线之间也没有任何逻辑关系,并不对流向产生任何影响,如图8(a)所示. (3)流线的汇集:两条或多条进入线可以汇集成一条输出线,此时各连接点应要互错工以提高清晰度,并用箭头表示流向,如图8(b)所示. 图8 汉线的交叉与流线的汇集 (4)符号流线进出:一般情况下,流线应从符号的左边或项端进入,并从右边或底端离开.其进出点均应对准符号的中心. (5)连接符:为避免出现流线交叉和使用长线,或某个流程图能在另一页上延续,可用连接符将流线截断.截断始端的连接符称为出口连接符,载断末端的连接符称为入口连接符.两连接符中用同一标识符.

相关主题