搜档网
当前位置:搜档网 › 函数的单调性与最大(小)值题型及解析

函数的单调性与最大(小)值题型及解析

函数的单调性与最大(小)值题型及解析
函数的单调性与最大(小)值题型及解析

函数的单调性与最大(小)值题型及解析

1.函数y=x2+4x﹣1的递增区间是什么?

分析:根据二次函数的开口方向和对称轴可判断出在对称轴右侧单调递增

解:∵函数y=x2+4x﹣1的图象开口向上,对称轴为x=﹣2,∴y=x2+4x﹣1在(﹣∞,﹣2)上单调递减,在(﹣2,+∞)上单调递增.故答案为(﹣2,+∞).

2.函数y=x2﹣6x+5在区间(0,5)上是()A递增函数B递减函数C先递减后递增D先递增后递减

分析:本题考察函数单调性的判断与证明,根据二次函数的图象与性质直接进行求解即可

解:∵y=x2﹣6x+5?y=(x﹣3)2﹣4,∴对称轴为x=3,根据函数y=x2﹣6x+5可知a=1>0,抛物线开口朝上,∴函数图象在(﹣∞,3]上单调递减,在(3,+∞)上单调递增,∴在函数在(0,5)上先递减后递增,故选C 3.如图,已知函数y=f(x),y=g(x)的图象(包括端点),根据图象说出函数的单调区间,以及在每一个区间上,函数是增函数还是减函数.

分析:本题考察函数单调性的性质,根据函数单调性和

图象之间的关系进行求解即可

解:(1)由图象知函数在[﹣2,﹣1],[0,1]上为减函数,

则[-1,0],[1,2]上为增函数,即函数的单调递增区间为

[-1,0],[1,2],函数单调递减区间为[-2,-1],[0,1]

(2)由图象知函数在[-3,-1.5],[1.5,3]上为减函数,则

[﹣1.5,1.5]上为增函数,即函数的单调递增区间为[-3,-1.5],

[1.5,3],函数单调递减区间为[﹣1.5,1.5]

4.已知函数f(x)=x2﹣2ax+1在(-∞,1〕上是减函数,求实数a的取值范围

分析:如图,先求出对称轴方程,利用开口向上的二次函数在对称轴右边递增,

左边递减,比较区间端点和对称轴的大小即可

解:因为开口向上的二次函数在对称轴右边递增,左边递减;而其对称轴

为x=a,又在(-∞,1〕上是减函数,故须a≥1

5.已知函数f(x)=x2+4(1﹣a)x+1在[1,+∞)上是增函数,求a的取值范围

分析:通过二次函数的解析式观察开口方向,再求出其对称轴,根据单调性建立不等关系,求出a的范围即可解:函数f(x)=x2+4(1﹣a)x+1是开口向上的二次函数,其对称轴为x=2(a﹣1),根据二次函数的性质可知在对称轴右侧为单调增函数,所以2(a﹣1)≤1,解得a≤1.5

6.若函数y=x2+2(a﹣1)x+2在区间(﹣∞,6)上递减,求a的取值范围

分析:由f(x)在区间(﹣∞,6]上递减知:(﹣∞,6]为f(x)减区间的子集,由此得不等式,解出即可.解:f(x)的单调减区间为:(﹣∞,1﹣a],又f(x)在区间(﹣∞,6]上递减,所以(﹣∞,6]?(﹣∞,1﹣a],则1﹣a≥6,解得a≤﹣5,所以a的取值范围是(﹣∞,﹣5]

7.如图,分析函数y=|x+1|的单调性,并指出单调区间

分析:去掉绝对值,根据基本初等函数的图象与性质,即可得出函数y的单调性

与单调区间.

解:∵函数y=|x+1|=;∴当x>﹣1时,y=x+1,是单调增

函数,单调增区间是(0,+∞);当x<﹣1时,y=﹣x﹣1,是单调减函数,单调减区间是(﹣∞,0)

8.求函数f(x)=x4﹣2x2+5在区间[﹣2,2]上的最大值与最小值

分析:本题考察二次函数在闭区间上的最值,可令t=x2,得0≤t≤4,根据二次函数g(t)=f(x)=x4﹣2x2+5=(t﹣1)2+4 的对称轴为t=1,再利用二次函数的性质求得函数g(t)在区间[0,4]上的最值.

解:令t=x2,由﹣2≤x≤2,可得0≤t≤4,由于二次函数g(t)=f(x)=x4﹣2x2+5=t2﹣2t+5=(t﹣1)2+4 的对称轴为t=1,则函数g(t)在区间[0,4]上的最大值是g(4)=13,最小值为 g(1)=4,故答案为 13,4.

9.证明函数在[﹣2,+∞)上是增函数

分析:本题考查的是函数单调性的判断与证明,在解答时要根据函数单调性的定义,先在所给的区间上任设两个数并规定大小,然后通过作差法即可分析获得两数对应函数值之间的大小关系,结合定义即可获得问题的解答 证明:任取x 1,x 2∈[﹣2,+∞),且x 1<x 2,则f (x 1)-f (x 2)=21+x -22+x

=22)

22)(22(212121+++++++-+x x x x x x =22212

1+++-x x x x ,因为x 1-x 2<0,21+x +22+x >0,

得f (x 1)<f (x 2)所以函数

在[﹣2,+∞)上是增函数. 10.函数f (x )=,①用定义证明函数的单调性并写出单调区间;②求f (x )在[3,5]上最大值和最小值

分析:①分离常数得到f (x )=

,根据反比例函数的单调性便可看出f (x )的单调递增区间为(﹣∞,﹣1),(﹣1,+∞),根据单调性的定义证明:设任意的x 1,x 2≠﹣1,且x 1<x 2,然后作差,通分,说明x 1,x 2∈(﹣∞,﹣1),或x 1,x 2∈(﹣1,+∞)上时都有f (x 1)<f (x 2),这样即可得出f (x )的单调区间; ②根据f (x )的单调性便知f (x )在[3,5]上单调递增,从而可以求出f (x )的值域,从而可以得出f (x )在

[3,5]上的最大、最小值.

解:①f (x )=

112++x x =11)1(2+-+x x =2-1

1+x ;该函数的定义域为{x|x ≠﹣1},设x 1,x 2∈{x|x ≠﹣1},且x 1<x 2,则:f (x 1)- f (x 2)=112+x -111+x =)1)(1(2121++-x x x x ;∵x 1<x 2;∴x 1﹣x 2<0;∴x 1,x 2∈(﹣∞,﹣1)时,x 1+1<0,x 2+1<0;x 1,x 2∈(﹣1,+∞)时,x 1+1>0,x 2+1>0;∴(x 1+1)(x 2+1)>0;∴f (x 1)<f (x 2); ∴f (x )在(﹣∞,﹣1),(﹣1,+∞)上单调递增,即f (x )的单调增区间为(﹣∞,﹣1),(﹣1,+∞); ②由上面知f (x )在[3,5]上单调递增;∴f (3)≤f (x )≤f (5);∴7/4≤f (x )≤11/6;∴f (x )在[3,5]上的最大值为11/6,最小值为7/4

11.已知f (x )+2f (

x

1)=3x .(1)求f (x )的解析式及定义域;(2)指出f (x )的单调区间并加以证明 解:(1)由 f(x)+2f(x 1)=3x ①,用x 1代替x ,得 f(x 1)+2f(x)=x 3 ②;②×2-①,得 3f(x)=x

6-3x ,所以 f(x)=x 2-x (x ≠0)(2)由(1),f(x)=x

2-x (x ≠0)其递减区间为(-∞,0)和(0,+∞),无增区间.事实上,任取x 1,x 2∈(-∞,0)且x 1<x 2,则f(x 1)-f(x 2)=12x -x 1-22x +x 2=2121)(2x x x x --(x 1-x 2)=(x 2-x 1)? 21212x x x x +,∵x 1<x 2<0∴x 2-x 1>0,x 1x 2>0,2+x 1x 2>0,所以 (x 2-x 1)?

21212x x x x +>0,即f (x 1)>f (x 2)故f (x )在(-∞,0)上递减.同理可证其在(0,+∞)上也递减

12.证明:f (x )=x+2

1-x 在(3,+∞)上是增函数,在(2,3]上是减函数 分析:利用函数单调性的定义证明.

证明:设任意的x 1,x 2∈(3,+∞),且x 1<x 2,则f (x 1)﹣f (x 2)=(x 1+

211-x )-(x 2+212-x )=(x 1﹣x 2)?)

2)(2(1)2)(2(2121-----x x x x ,∵x 1,x 2∈(3,+∞),且x 1<x 2,∴x 1﹣x 2<0,x 1﹣2>1,x 2﹣2>1,(x 1﹣2)(x 2﹣2)>1,∴(x 1﹣x 2)?

)

2)(2(1)2)(2(2121-----x x x x <0,∴f (x 1)﹣f (x 2)<0,即f (x 1)<f (x 2), ∴f (x )=x+21-x 在(3,+∞)上是增函数.同理可证,f (x )=x+21-x 在(2,3]上是减函数

函数的定义域与值域单调性与奇偶性三角函数典型例题

函数的定义域与值域、单调性与奇偶性 一、知识归纳: 1. 求函数的解析式 (1)求函数解析式的常用方法: ①换元法( 注意新元的取值范围) ②待定系数法(已知函数类型如:一次、二次函数、反比例函数等) ③整体代换(配凑法) ④构造方程组(如自变量互为倒数、已知f (x )为奇函数且g (x )为偶函数等) (2)求函数的解析式应指明函数的定义域,函数的定义域是使式子有意义的自变量的取值范围,同时也要注意变量的实际意义。 (3)理解轨迹思想在求对称曲线中的应用。 2. 求函数的定义域 求用解析式y =f (x )表示的函数的定义域时,常有以下几种情况: ①若f (x )是整式,则函数的定义域是实数集R ; ②若f (x )是分式,则函数的定义域是使分母不等于0的实数集; ③若f (x )是二次根式,则函数的定义域是使根号内的式子大于或等于0的实数集合; ④若f (x )是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都有意义的实数集合; ⑤若f (x )是由实际问题抽象出来的函数,则函数的定义域应符合实际问题. 3. 求函数值域(最值)的一般方法: (1)利用基本初等函数的值域; (2)配方法(二次函数或可转化为二次函数的函数); (3)不等式法(利用基本不等式,尤其注意形如)0(>+=k x k x y 型的函数) (4)函数的单调性:特别关注)0(>+ =k x k x y 的图象及性质 (5)部分分式法、判别式法(分式函数) (6)换元法(无理函数) (7)导数法(高次函数) (8)反函数法 (9)数形结合法 4. 求函数的单调性 (1)定义法: (2)导数法: (3)利用复合函数的单调性: (4)关于函数单调性还有以下一些常见结论: ①两个增(减)函数的和为_____;一个增(减)函数与一个减(增)函数的差是______; ②奇函数在对称的两个区间上有_____的单调性;偶函数在对称的两个区间上有_____的单调性; ③互为反函数的两个函数在各自定义域上有______的单调性; (5)求函数单调区间的常用方法:定义法、图象法、复合函数法、导数法等 (6)应用:比较大小,证明不等式,解不等式。 5. 函数的奇偶性 奇偶性:定义:注意区间是否关于原点对称,比较f (x ) 与f (-x )的关系。f (x ) -

函数的单调性知识点总结与题型归纳

函数的单调性 知识梳理 1. 单调性概念 一般地,设函数()f x 的定义域为I : (1)如果对于定义域I 内的某个区间D 上的任意两个自变量的值12,x x ,当12x x <时,都有12()()f x f x <,那么就说函数()f x 在区间D 上是增函数; (2)如果对于定义域I 内的某个区间D 上的任意两个自变量的值12,x x ,当12x x <时,都有12()()f x f x >,那么就说函数()f x 在区间D 上是减函数. 2. 单调性的判定方法 (1)图像法:从左往右,图像上升即为增函数,从左往右,图像下降即为减函数。 (2)定义法步骤; ①取值:设12,x x 是给定区间内的两个任意值,且12x x < (或12x x >); ②作差:作差12()()f x f x -,并将此差式变形(注意变形到能判断整个差式符号为止); ③定号:判断12()()f x f x -的正负(要注意说理的充分性),必要时要讨论; ④下结论:根据定义得出其单调性. (3)复合函数的单调性: 当内外层函数的单调性相同时则复合函数为增函数;当内外层函数的单调性相反时则复合函数为减函数。也就是说:同增异减(类似于“负负得正”) 3. 单调区间的定义 如果函数()y f x =,在区间D 上是增函数或减函数,那么就说函数在这个区间上具有单调性,区间D 叫做()y f x =的单调区间. 例题精讲 【例1】下图为某地区24小时内的气温变化图. (1)从左向右看,图形是如何变化的? (2)在哪些区间上升哪些区间下降? 解:(1)从左向右看,图形先下降,后上升,再下降; (2)在区间[0,4]和[14,24]下降,在区间[4,14]下降。 【例2】画出下列函数的图象,观察其变化规律: (1)f (x )=x ; ①从左至右图象上升还是下降 ②在区间(-∞,+∞)上,随着x 的增大,f (x )的值随着怎么变化?

函数的单调性·典型例题精析

2.3.1 函数的单调性·例题解析【例1】求下列函数的增区间与减区间 (1)y=|x2+2x-3| (2)y (3)y = = x x x x x 2 2 2 11 23 - -- --+ || 解(1)令f(x)=x2+2x-3=(x+1)2-4. 先作出f(x)的图像,保留其在x轴及x轴上方部分,把它在x轴下方的图像翻到x轴就得到y=|x2+2x-3|的图像,如图2.3-1所示. 由图像易得: 递增区间是[-3,-1],[1,+∞) 递减区间是(-∞,-3],[-1,1] (2)分析:先去掉绝对值号,把函数式化简后再考虑求单调区间. 解当x-1≥0且x-1≠1时,得x≥1且x≠2,则函数y=-x. 当x-1<0且x-1≠-1时,得x<1且x≠0时,则函数y=x-2. ∴增区间是(-∞,0)和(0,1) 减区间是[1,2)和(2,+∞) (3)解:由-x2-2x+3≥0,得-3≤x≤1. 令u==g(x)=-x2-2x+3=-(x+1)2+4.在x∈[-3,-1] 上是在x∈[-1,1] 上是. 而=在≥上是增函数. y u0 u ∴函数y的增区间是[-3,-1],减区间是[-1,1]. 【例2】函数f(x)=ax2-(3a-1)x+a2在[-1,+∞]上是增函数,求实数a的取值范

围. 解 当a =0时,f(x)=x 在区间[1,+∞)上是增函数. 当≠时,对称轴= , 若>时,由>≤,得<≤. a 0x a 0a 0 3a 10a 131212a a a --??? ?? 若a <0时,无解. ∴a 的取值范围是0≤a ≤1. 【例3】已知二次函数y =f(x)(x ∈R )的图像是一条开口向下且对称轴为x =3的抛物线,试比较大小: (1)f(6)与f(4) (2)f(2)f(15)与 解 (1)∵y =f(x)的图像开口向下,且对称轴是x =3,∴x ≥3时,f(x)为减函数,又6>4>3,∴f(6)<f(4) (2)x 3f(2)f(4)34f(x)x 3∵对称轴=,∴=,而< <,函数在≥15 时为减函数. ∴>,即>.f(15)f(4)f(15)f(2) 【例4】判断函数= ≠在区间-,上的单调性.f(x)(a 0)(11)ax x 2 1 - 解 任取两个值x 1、x 2∈(-1,1),且x 1<x 2. ∵-= ∵-<<<,+>,->,-<,-<.∴ >f(x )f(x )1x x 1x x 10x x 0x 10x 100 12121221a x x x x x x x x x x x x ()()()() ()()()() 122112 22 12 12 122112 22 111111+---+--- 当a >0时,f(x)在(-1,1)上是减函数. 当a <0时,f(x)在(-1,1)上是增函数. 【例5】利用函数单调性定义证明函数f(x)=-x 3+1在(-∞,+∞)上是减函数. 证 取任意两个值x 1,x 2∈(-∞,+∞)且x 1<x 2. ∵-=-++这里有三种证法:当<时,++=+->当≥时,++>f(x )f(x )(x x )(x x x x )()x x 0x x x x (x x )x x 0x x 0x x x x 0 2112221212 1212 1222 122 121212 1222证法一

函数的单调性和奇偶性知识归纳和典型题型

单调性与最大(小)值 要点一、函数的单调性 1.增函数、减函数的概念 一般地,设函数f(x)的定义域为A ,区间D A ?: 如果对于D 内的任意两个自变量的值x 1、x 2,当x 1f(x 2),那么就说f(x)在区间D 上是减函数. 要点诠释: (1)属于定义域A 内某个区间上; (2)任意两个自变量12,x x 且12x x <; (3)都有1212()()(()())f x f x f x f x <>或; 2.单调性与单调区间 (1)单调区间的定义 如果函数f(x)在区间D 上是增函数或减函数,那么就说函数f(x)在区间D 上具有单调性,D 称为函数f(x)的单调区间. 函数的单调性是函数在某个区间上的性质. 要点诠释: ①单调区间与定义域的关系----单调区间可以是整个定义域,也可以是定义域的真子集; ②单调性是通过函数值变化与自变量的变化方向是否一致来描述函数性质的; ③不能随意合并两个单调区间; ④有的函数不具有单调性. (2)已知解析式,如何判断一个函数在所给区间上的单调性? 基本方法:观察图形或依据定义. 3.函数的最大(小)值 一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足: (1)对于任意的x I ∈,都有()f x M ≤(或()f x M ≥); (2) 存在0x I ∈,使得0()f x M =,那么,我们称M 是函数的最大值(或最小值). 要点诠释: ①最值首先是一个函数值,即存在一个自变量0x ,使0()f x 等于最值; ②对于定义域内的任意元素x ,都有0()()f x f x ≤(或0()()f x f x ≥),“任意”两字不可省; ③使函数()f x 取得最值的自变量的值有时可能不止一个; ④函数()f x 在其定义域(某个区间)内的最大值的几何意义是图象上最高点的纵坐标;最小值的几何意义是图象上最低点的纵坐标.

《函数的单调性和奇偶性》经典例题

经典例题透析 类型一、函数的单调性的证明 1.证明函数上的单调性. 证明:在(0,+∞)上任取x1、x2(x1≠x2),令△x=x2-x1>0 则 ∵x1>0,x2>0,∴∴上式<0,∴△y=f(x2)-f(x1)<0 ∴上递减. 总结升华: [1]证明函数单调性要求使用定义; [2]如何比较两个量的大小?(作差) [3]如何判断一个式子的符号?(对差适当变形) 举一反三: 【变式1】用定义证明函数上是减函数. 思路点拨:本题考查对单调性定义的理解,在现阶段,定义是证明单调性的唯一途径. 证明:设x1,x2是区间上的任意实数,且x10 ∴x1f(x2) 上是减函数. 总结升华:可以用同样的方法证明此函数在上是增函数;在今后的学习中经常会碰到这个函数,在此可以尝试利用函数的单调性大致给出函数的图象.

类型二、求函数的单调区间 2. 判断下列函数的单调区间; (1)y=x2-3|x|+2;(2) 解:(1)由图象对称性,画出草图 ∴f(x)在上递减,在上递减,在上递增. (2) ∴图象为 ∴f(x)在上递增. 举一反三: 【变式1】求下列函数的单调区间: (1)y=|x+1|;(2)(3). 解:(1)画出函数图象, ∴函数的减区间为,函数的增区间为(-1,+∞); (2)定义域为,其中u=2x-1为增函数,

在(-∞,0)与(0,+∞)为减函数,则上为减函数; (3)定义域为(-∞,0)∪(0,+∞),单调增区间为:(-∞,0),单调减区间为(0,+∞). 总结升华: [1]数形结合利用图象判断函数单调区间; [2]关于二次函数单调区间问题,单调性变化的点与对称轴相关. [3]复合函数的单调性分析:先求函数的定义域;再将复合函数分解为内、外层函数;利用已知函数的单调性解决.关注:内外层函数同向变化→复合函数为增函数;内外层函数反向变化→复合函数为减函数. 类型三、单调性的应用(比较函数值的大小,求函数值域,求函数的最大值或最小值) 3. 已知函数f(x)在(0,+∞)上是减函数,比较f(a2-a+1)与的大小. 解:又f(x)在(0,+∞)上是减函数,则. 4. 求下列函数值域: (1);1)x∈[5,10];2)x∈(-3,-2)∪(-2,1); (2)y=x2-2x+3;1)x∈[-1,1];2)x∈[-2,2]. 思路点拨:(1)可应用函数的单调性;(2)数形结合. 解:(1)2个单位,再上移2个单位得到,如图 1)f(x)在[5,10]上单增,;

1.3.1函数的单调性例题

1.3.1函数的单调性 题型一、利用函数的图象确定函数的单调区间 例1.作出下列函数的图象,并写出函数的单调区间 (1)12-=x y ; (2)322++-=x x y ; (3)2 )2(1-++=x x y ; (4)969622++++-=x x x x y 相应作业1:课本P32第3题. 题型二、用定义法证明函数的单调性 用定义法证明函数的单调性步骤:取值 作差变形 定号 下结论 ?取值,即_____________________________; ?作差变形,作差____________,变形手段有__________、_____、_____、_______等; ?定号,即____________________________________________________________; ④下结论,即______________________________________________________。 例2.用定义法证明下列函数的单调性 (1)证明:1)(3 +-=x x f 在()+∞∞-,上是减函数.

▲定义法证明单调性的等价形式: 设[]b a x x ,21∈、,21x x ≠,那么 [])(0) ()(0)()()(2 1212121x f x x x f x f x f x f x x ?>--? >--在[]b a ,上是增函数; [])(0) ()(0)()()(2 1212121x f x x x f x f x f x f x x ?<--? <--在[]b a ,上是减函数. (2)证明:x x x f -+=1)(2在其定义域内是减函数; (3)证明:21 )(x x f = 在()0,∞-上是增函数; 法一: 作差 法二:作商

函数的单调性 知识点与题型归纳

1.理解函数的单调性、最大值、最小值及其几何意义. 2.会运用基本初等函数的图象分析函数的性质. ★备考知考情 1.函数的单调性是函数的一个重要性质,是高考的热点,常见问题有:求单调区间,判断函数的单调性,求参数的取值,利用函数单调性比较数的大小,以及解不等式等.客观题主要考查函数的单调性,最值的确定与简单应用. 2.题型多以选择题、填空题的形式出现,若与导数交汇命题,则以解答题的形式出现. 一、知识梳理《名师一号》P15 注意: 研究函数单调性必须先求函数的定义域, 函数的单调区间是定义域的子集 单调区间不能并! 知识点一函数的单调性 1.单调函数的定义 1

2 2.单调性、单调区间的定义 若函数f (x )在区间D 上是增函数或减函数,则称函数f (x )在这一区间上具有(严格的)单调性,区间D 叫做f (x )的单调区间. 注意: 1、《名师一号》P16 问题探究 问题1 关于函数单调性的定义应注意哪些问题? (1)定义中x 1,x 2具有任意性,不能是规定的特定值. (2)函数的单调区间必须是定义域的子集; (3)定义的两种变式: 设任意x 1,x 2∈[a ,b ]且x 1-f x f x x x ? f (x )在[a ,b ]上是增函数;

3 1212 ()() 0-<-f x f x x x ? f (x )在[a ,b ]上是减函数. ②(x 1-x 2)[f (x 1)-f (x 2)]>0?f (x )在[a ,b ]上是增函数; (x 1-x 2)[f (x 1)-f (x 2)]<0?f (x )在[a ,b ]上是减函数. 2、《名师一号》P16 问题探究 问题2 单调区间的表示注意哪些问题? 单调区间只能用区间表示,不能用集合或不等式表示; 如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结. 知识点二 单调性的证明方法:定义法及导数法 《名师一号》P16 高频考点 例1 规律方法 (1) 定义法: 利用定义证明函数单调性的一般步骤是: ①任取x 1、x 2∈D ,且x 10,则f (x )在区间D 内为增函数;如果f ′(x )<0,则f (x )在区间D 内为减函数. 注意:(补充) (1)若使得f ′(x )=0的x 的值只有有限个,

(完整版)函数单调性奇偶性经典例题

函数的性质的运用 1.若函数y f x x R =∈()()是奇函数,则下列坐标表示的点一定在函数 y f x =()图象上的是( ) A.(())a f a ,- B.(())--a f a , C.(())---a f a , D.(())a f a ,- 2. 已知函数)(1 22 2)(R x a a x f x x ∈+-+?= 是奇函数,则a 的值为( ) A .1- B .2- C .1 D .2 3.已知f (x )是偶函数,g (x )是奇函数,若1 1)()(-= +x x g x f ,则f (x ) 的解析式为_______. 4.已知函数f (x )为偶函数,且其图象与x 轴有四个交点,则方程f (x )=0的所有 实根之和为________. 5.定义在R 上的单调函数f (x )满足f (3)=log 23且对任意x ,y ∈R 都有f (x+y )=f (x )+f (y ). (1)求证f (x )为奇函数; (2)若f (k ·3x )+f (3x -9x -2)<0对任意x ∈R 恒成立, 求实数k 的取值范围. 6.已知定义在区间(0,+∞)上的函数f(x)满足f()2 1 x x =f(x 1)-f(x 2),且当x >1时,f(x)<0. (1)求f(1)的值; (2)判断f(x )的单调性; (3)若f(3)=-1,解不等式f(|x|)<-2.

7.函数f(x)对任意的a 、b ∈R,都有f(a+b)=f(a)+f(b)-1,并且当x >0时,f(x)>1. (1)求证:f(x)是R 上的增函数; (2)若f(4)=5,解不等式f(3m 2 -m-2)<3. 8.设f (x )的定义域为(0,+∞),且在(0,+∞)是递增的,)()()(y f x f y x f -= (1)求证:f (1)=0,f (xy )=f (x )+f (y ); (2)设f (2)=1,解不等式2)3 1 ( )(≤--x f x f 。 9.设函数()f x 对x R ∈都满足(3)(3)f x f x +=-,且方程()0f x =恰有6个不同 的实数根,则这6个实根的和为( ) A . 0 B .9 C .12 D .18 10.关于x 的方程 22(28)160x m x m --+-=的两个实根 1x 、2x 满足 123 2 x x <<, 则实数m 的取值范围 11.已知函数()()y f x x R =∈满足(3)(1)f x f x +=+,且x ∈[-1,1]时,()||f x x =, 则()y f x =与5log y x =的图象交点的个数是( ) A .3 B .4 C .5 D .6 12.已知函数()f x 满足:4x ≥,则()f x =1()2 x ;当4x <时()f x =(1)f x +,则 2(2log 3)f += A 124 B 112 C 18 D 38 13.已知函数f (x )在(-1,1)上有定义,f ( 2 1 )=-1,当且仅当0

函数的单调性和奇偶性典型例题

函数的单调性和奇偶性 例1(1)画出函数y=-x2+2|x|+3的图像,并指出函数的单调区间. 解:函数图像如下图所示,当x≥0时,y=-x2+2x+3=-(x-1)2+4;当x<0时,y=-x2-2x+3=-(x+1)2+4.在(-∞,-1]和[0,1]上,函数是增函数:在[-1,0]和[1,+∞)上,函数是减函数. 评析函数单调性是对某个区间而言的,对于单独一个点没有增减变化,所以对于区间端点只要函数有意义,都可以带上. (2)已知函数f(x)=x2+2(a-1)x+2在区间(-∞,4]上是减函数,求实数a的取值范围. 分析要充分运用函数的单调性是以对称轴为界线这一特征. 解:f(x)=x2+2(a-1)x+2=[x+(a-1)]2-(a-1)2+2,此二次函数的对称轴是x =1-a.因为在区间(-∞,1-a]上f(x)是单调递减的,若使f(x)在(-∞,4]上单调递减,对称轴x=1-a必须在x=4的右侧或与其重合,即1-a≥4,a≤-3. 评析这是涉及逆向思维的问题,即已知函数的单调性,求字母参数范围,要注意利用数形结合. 例2判断下列函数的奇偶性: (1)f(x)=- (2)f(x)=(x-1). 解:(1)f(x)的定义域为R.因为 f(-x)=|-x+1|-|-x-1| =|x-1|-|x+1|=-f(x). 所以f(x)为奇函数.

(2)f(x)的定义域为{x|-1≤x<1},不关于原点对称.所以f(x)既不是奇函数,也不是偶函数. 评析用定义判断函数的奇偶性的步骤与方法如下: (1)求函数的定义域,并考查定义域是否关于原点对称. (2)计算f(-x),并与f(x)比较,判断f(-x)=f(x)或f(-x)=-f(x)之一是否成立.f(-x)与-f(x)的关系并不明确时,可考查f(-x)±f(x)=0是否成立,从而判断函数的奇偶性. 例3已知函数f(x)=. (1)判断f(x)的奇偶性. (2)确定f(x)在(-∞,0)上是增函数还是减函数?在区间(0,+∞)上呢?证明你的结论. 解:因为f(x)的定义域为R,又 f(-x)===f(x), 所以f(x)为偶函数. (2)f(x)在(-∞,0)上是增函数,由于f(x)为偶函数,所以f(x)在(0,+∞)上为减函数. 其证明:取x1<x2<0, f(x1)-f(x2)=- ==. 因为x1<x2<0,所以 x2-x1>0,x1+x2<0, x21+1>0,x22+1>0, 得f(x1)-f(x2)<0,即f(x1)<f(x2). 所以f(x)在(-∞,0)上为增函数. 评析奇函数在(a,b)上的单调性与在(-b,-a)上的单调性相同,偶函数在(a,b)与(-b,-a)的单调性相反. 例4已知y=f(x)是奇函数,它在(0,+∞)上是增函数,且f(x)<0,试问F(x)=在(-∞,0)上是增函数还是减函数?证明你的结论.

(完整word版)高考导数题型归纳

高考压轴题:导数题型及解题方法 (自己总结供参考) 一.切线问题 题型1 求曲线)(x f y =在0x x =处的切线方程。 方法:)(0x f '为在0x x =处的切线的斜率。 题型2 过点),(b a 的直线与曲线)(x f y =的相切问题。 方法:设曲线)(x f y =的切点))(,(00x f x ,由b x f x f a x -='-)()()(000求出0x ,进而解决相关问题。 注意:曲线在某点处的切线若有则只有一,曲线过某点的切线往往不止一条。 例 已知函数f (x )=x 3﹣3x . (1)求曲线y=f (x )在点x=2处的切线方程;(答案:0169=--y x ) (2)若过点A )2)(,1(-≠m m A 可作曲线)(x f y =的三条切线,求实数m 的取值范围、 (提示:设曲线)(x f y =上的切点()(,00x f x );建立)(,00x f x 的等式关系。将问题转化为关于m x ,0的方程有三个不同实数根问题。(答案:m 的范围是()2,3--) 练习 1. 已知曲线x x y 33 -= (1)求过点(1,-3)与曲线x x y 33-=相切的直线方程。答案:(03=+y x 或027415=--y x ) (2)证明:过点(-2,5)与曲线x x y 33-=相切的直线有三条。 2.若直线0122=--+e y x e 与曲线x ae y -=1相切,求a 的值. (答案:1) 题型3 求两个曲线)(x f y =、)(x g y =的公切线。 方法:设曲线)(x f y =、)(x g y =的切点分别为()(,11x f x )。()(,22x f x );

(完整word版)函数的单调性典型例题.docx

函数的单调性及典型习题 一、函数的单调性 1、定义: (1)设函数y f (x) 的定义域为A,区间 M A ,如果取区间 M 中的任意两个值x1, x2 ,当改变量x 2 x1 时,都有f ( x 2) f ( x1 ) 0,那么就称函数y f ( x) 在区间M上是增函数,如图(1)当改变量x2x10 时,都有 f ( x2 ) f (x1) 0,那么就称函数y f (x) 在区间M上是减函数,如图(2) 注意:函数单调性定义中的x1,x2有三个特征,一是任意性,二是有大小,三是同属于一个单调区间.2、巩固概念: 1、定义的另一种表示方法 如果对于定义域I内某个区间 D 上的任意两个自变量x1,x2,若f ( x 1 ) f (x2 )0 即 x1x2 y ,则函数 y=f(x)是增函数,若f ( x1 ) f ( x2 ) 0 即y0 ,则函数y=f(x)为减函数。 x1x2 x x 判断题: ①已知 f (x)1 1) f(2) ,所以函数 f ( x) 是增函数. 因为 f ( x ②若函数 f ( x) 满足 f (2) f (3)则函数 f ( x) 在区间2,3 上为增函数. ③若函数 f ( x) 在区间 (1,2] 和 (2,3) 上均为增函数,则函数 f ( x) 在区间 (1,3) 上为增函数. ④ 因为函数 1 在区间,0),(0,) 上都是减函数,所以 f ( x) 1 f ( x)在 x x ( ,0)(0, ) 上是减函数. 通过判断题,强调几点: ①单调性是对定义域内某个区间而言的,离开了定义域和相应区间就谈不上单调性.

②对于某个具体函数的单调区间,可以是整个定义域 ( 如一次函数 ) ,可以是定义域内某个 区间 ( 如二次函数 ) ,也可以根本不单调 ( 如常函数 ) . ③单调性是对定义域的某个区间上的整体性质,不能用特殊值说明问题。 ④函数在定义域内的两个区间A,B 上都是增(或减)函数,一般不能认为函数在 A B 上 是增(或减)函数. 熟记以下结论,可迅速判断函数的单调性. 1.函数 y =- f ( x )与函数 y = f ( x )的单调性相反. 1 2.当 f ( x )恒为正或恒为负时,函数 y = f ( x) 与 y = f ( x )的单调性相反. 3.在公共区间内,增函数+增函数=增函数,增函数-减函数=增函数等 3.判断函数单调性的方法 ( 1)定义法. ( 2)直接法.运用已知的结论,直接得到函数的单调性,如一次函数,二次函数的单 调性均可直接说出. ( 3)图象法. 例 1、证明函数 f ( x) 1 )是减函数. 在( 0, + x 练习 1:证明函数 f ( x) x 在 0, 上是增函数. 1 1 x 例 2、设函数 f (x )= x 2 + lg 1 x ,试判断 f ( x )的单调性,并给出证明. 例 3、求下列函数的增区间与减区间 (1)y = |x 2 + 2x - 3| x 2 2x (2)y = 1| 1 |x (3)y = x 2 2x 3

高二数学选修2-2导数12种题型归纳(中等难度)

导数题型分类解析(中等难度) 一、变化率与导数 函数)(0x f y =在x 0到x 0+x ?之间的平均变化率,即)('0x f =0 lim →?x x y ??=0 lim →?x x x f x x f Δ)()Δ(00-+,表 示函数)(0x f y =在x 0点的斜率。注意增量的意义。 例1:若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000 ()() lim h f x h f x h h →+-- 的值为( ) A .'0()f x B .'02()f x C .' 02()f x - D .0 例2:若' 0()3f x =-,则000 ()(3) lim h f x h f x h h →+--=( ) A.3- B .6- C .9- D .12- 例3:求0lim →h h x f h x f ) ()(020-+ 二、“隐函数”的求值 将)('0x f 当作一个常数对)(0x f 进行求导,代入0x 进行求值。 例1:已知()()232 f x x x f '+=,则()='2f 例2:已知函数()x x f x f sin cos 4+?? ? ??'=π,则??? ??4πf 的值为 . 例3:已知函数)(x f 在R 上满足88)2(2)(2 -+--=x x x f x f ,则曲线)(x f y =在点))1(,1(f 处的切线方程为( ) A. 12-=x y B. x y = C. 23-=x y D. 32+-=x y 三、导数的物理应用 如果物体运动的规律是s=s (t ),那么该物体在时刻t 的瞬间速度v=s ′(t )。 如果物体运动的速度随时间的变化的规律是v=v (t ),则该物体在时刻t 的加速度a=v′(t )。 例1:一个物体的运动方程为2 1t t s +-=其中s 的单位是米,t 的单位是秒,求物体在3秒末的瞬时速度。 例2:汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )

必修一函数的单调性专题讲解(经典)

(2)第一章函数的基本性质之单调性 一、基本知识 1 .定义:对于函数y f (x),对于定义域内的自变量的任意两个值x「X2,当捲x2时,都有f(x i) f (X2)(或f (x i) f(X2)),那么就说函数y f (x)在这个区间上是增(或减)函数。 重点2 .证明方法和步骤: (1) 取值: 设X i,X2是给定区间上任意两个值,且X i X2 ; (2) 作差: f(xj f(X2); (3) 变形: (如因式分解、配方等); (4) 宀口 定 号: 即f (x i) f(x2) 0或f (x i) f(x2) 0 ; (5) 根据定义下结论。 3?常见函数的单调性 ⑴ 心) 也+乩k o|时,回在R上是增函数;k

5.函数的单调性的应用: 判断函数y f(x)的单调性;比较大小;解不等式;求最值(值域) 例题分析 T 2 例1 :证明函数f(x)=区_1在(0, + 上是减函数。 例2 :证明F@) = / + 3|在定义域上是增函数。 例3 :证明函数f(x)=x 3的单调性。 例4 :讨论函数y =一; 1 — x2在[—1,1]上的单调性. 3 例5 :讨论函数f(x) =W 的单调性.

奇偶性与单调性与典型例题

奇偶性与单调性及典型例题 函数的单调性、奇偶性是高考的重点内容之一,考查内容灵活多样.本节主要帮助考生深刻理解奇偶性、单调性的定义,掌握判定方法,正确认识单调函数与奇偶函数的图象. 难点磁场 (★★★★)设a>0,f(x)=是R上的偶函数,(1)求a的值;(2)证明: f(x)在(0,+∞)上是增函数. 案例探究 [例1]已知函数f(x)在(-1,1)上有定义,f()=-1,当且仅当00,1-x1x2>0,∴>0, 又(x2-x1)-(1-x2x1)=(x2-1)(x1+1)<0 ∴x2-x1<1-x2x1, ∴0<<1,由题意知f()<0, 即f(x2)3a2-2a+1.解之,得0

函数的单调性题型归纳

函数的单调性 一、教学目标:理解函数单调性的定义,会用函数单调性解决一些问题. 二、教学重点:函数单调性的判断和函数单调性的应用. 三、教学过程: (一)主要知识: 1、函数单调性的定义; 2、判断函数单调性(求单调区间)的方法: (1)从定义入手(2)从导数入手(3)从图象入手(4)从熟悉的函数入手 (5)从复合函数的单调性规律入手注:先求函数的定义域 3、函数单调性的证明:定义法;导数法。 4、一般规律 (1)若f(x),g(x)均为增函数,则f(x)+g(x)仍为增函数; (2)若f(x)为增函数,则-f(x)为减函数; (3)互为反函数的两个函数有相同的单调性; (4)设()[]x g f y =是定义在M 上的函数,若f(x)与g(x)的单调性相反,则()[]x g f y =在M 上是 减函数;若f(x)与g(x)的单调性相同,则()[]x g f y =在M 上是增函数。 (二)主要方法: 1.讨论函数单调性必须在其定义域内进行,因此要研究函数单调性必须先求函数的定义域,函数的单调区间是定义域的子集; 2.判断函数的单调性的方法有:(1)用定义;(2)用已知函数的单调性;(3)利用函数的导数. 3.注意函数的单调性的应用;4.注意分类讨论与数形结合的应用. (三)例题分析: 例1.(1)求函数2 0.7log (32)y x x =-+的单调区间; (2)已知2()82,f x x x =+-若2()(2)g x f x =-试确定()g x 的单调区间和单调性. 解:(1)单调增区间为:(2,),+∞单调减区间为(,1)-∞, (2)2 2 2 ()82(2)(2)g x x x =+---4228x x =-++,3 ()44g x x x '=-+, 令 ()0g x '>,得1x <-或01x <<,令 ()0g x '<,1x >或10x -<< ∴单调增区间为(,1),(0,1)-∞-;单调减区间为(1,),(1,0)+∞-. 例2.设0a >,()x x e a f x a e = + 是R 上的偶函数. (1)求a 的值;(2)证明()f x 在(0,)+∞上为增函数. 例3.若()f x 为奇函数,且在(,0)-∞上是减函数,又(2)0f -=,则()0x f x ?<的解集为 (,2)(2,) -∞-+∞ . 例4.已知函数()f x 的定义域是0x ≠的一切实数,对定义域内的任意12,x x 都有 1 21 2()()()f x x f x f x ?=+,且当 1x >时()0,(2)1f x f >=, (1)求证:()f x 是偶函数;(2)()f x 在(0,)+∞上是增函数;(3)解不等式2 (21)2f x -<. 解:(1)令121x x ==,得(1)2(1)f f =,∴(1)0f =,令121x x ==-,得∴(1)0f -=, ∴()(1)(1)()()f x f x f f x f x -=-?=-+=,∴()f x 是偶函数. (2)设210x x >>,则221111 ()()()()x f x f x f x f x x -=? -22111 1 ()( )()( )x x f x f f x f x x =+-=

(word完整版)高中函数典型例题.doc

§ 1.2.1 函数的概念 ¤知识要点: 1. 设 A 、B 是非空的数集,如果按某个确定的对应关系 f ,使对于集合 A 中的任意一个数 x ,在集合 B 中都有唯一确定的数 y 和它对应,那么就称 f :A →B 为从集合 A 到集合 B 的一个函数,记作 y = f (x) , x A .其中, x 叫自变量, x 的取值范 围 A 叫作定义域,与 x 的值对应的 y 值叫函数值,函数值的集合 { f ( x) | x A} 叫值域 . 2. 设 a 、b 是两个实数,且 a

必修一函数的单调性题型归纳

函数的单调性与最值 一、知识点归纳 1、函数单调性的性质: (1)增函数:如果对于属于定义域内某个区间上的任意两个自变量的值,当时, 都有,. (2)减函数:如果对于属于定义域内某个区间的任意两个自变量的值,当时, 都有, . (3)函数的单调性还有以下性质. 1、函数与函数的单调性相反. 2、当恒为正或恒为负时,函数与的单调性相反. 3、在公共区间内,增函数+增函数=增函数,增函数-减函数=增函数等. 4、如果,函数与函数具有相同的单调性.(如果,单调性相反.) 若,则函数与具有相反的单调性. 若,函数与函数具有相同的单调性. (若,单调性相反.) 函数在上具有单调性,则在上具有相反的单调性. 2、复合函数的单调性。 定义:如果函数,则称为的复合函数。 复合函数的单调性的判断:同增异减。 I 12,x x 12x x <()()12f x f x <()()1212 0f x f x x x ->-I 12,x x 12x x <()()12f x f x >()()12120f x f x x x -<-()f x ()f x -()f x () 1f x ()f x 0k >()kf x ()f x 0k <()0f x ≠() 1f x ()f x ()0f x >()f x ()f x ()0f x <()f x R ()f x -R ()(),,,u g x x A u A y f u =∈∈=()y f g x =????x

二、例题精讲 题型一、单调性讨论或证明 定义法证明单调性的等价形式:设,那么 在上是增函数; 在上是减函数. 例1、(不含参)证明:21)(x x f = 在()0,∞-上是增函数. 变式1、判断在上的单调性. 例2、(含参)求函数在区间内的单调性. 例3、(抽象函数)设()y f x =的单增区间是(2,6),求函数(2)y f x =-的单调区间. 题型二、比较函数值的大小 例4、已知函数)(x f y =在[)+∞,0上是减函数,试比较)4 3 (f 与)1(2+-a a f 的大小. []1212,,,x x a b x x ∈≠()()()()()()12121212 00f x f x x x f x f x f x x x --->?>?????-[],a b ()()()()()()12121212 00f x f x x x f x f x f x x x ----()1,1-

相关主题