搜档网
当前位置:搜档网 › 课题一NTC热敏电阻的温度测量和控制系统

课题一NTC热敏电阻的温度测量和控制系统

课题一NTC热敏电阻的温度测量和控制系统
课题一NTC热敏电阻的温度测量和控制系统

2011年暑期电子设计大赛课题一

基于NTC热敏电阻的温度测量与控制系统的设计

基于NTC热敏电阻的温度测量与控制系统设计

学生姓名:杜恒、向奇林、刘路平指导老师:

内容摘要:

本文叙述了用单片机作为控制器,用NTC热敏电阻制作的温度传感器实现温度变化到电压变化后通过仪用放大器放大后通过AD转换再将数据送给单片机处理后用LED显示出来实现温度测量,并可利用单片机控制蜂鸣器发声和八个发光二极管亮灭来实现报警,同时还可以通过单片机控制水泥电阻给热敏电阻加热来实现温度控制的温度测量和控制系统的设计。该系统使用单片机开发板作为控制系统,而将温度传感器和加热器制作在单独一块板子上,工作时将两块板子连接起来使用。由于单片机开发板上已经有了按键、LED数码管、蜂鸣器以及AD 等,因此可以完全满足控制系统的需求。单片机可以用USB供电,而另外一块板子可以用实验室的直流电源作为供电系。

本文最后附带了该系统的c51程序,可以方便其他人员阅读以及在此基础上进行修改,使系统功能更加完善。实验表明该系统能够实验温度的测量、温度报警、温度查询、温度的控制等功能,完全满足该课题的基本要求和扩展要求。

关键词:单片机、NTC温度传感器、水泥电阻加热器

绪论 (4)

方案设计 (4)

理论分析 (4)

系统总体方案的设计及其原理概述原理图 (5)

系统各个模块的方案论证与设计 (6)

系统温度采集电路的设计 (6)

信号调理电路的原理与设计 (7)

温度控制电路的设计 (9)

脉宽调制的基本原理简介 (9)

温度控制电路的原理与电路的设计 (9)

报警电路的设计 (10)

报警电路的原理与电路的设计 (10)

控制电路的原理与设计 (11)

AD0804的采样原理及与单片机的连接方法 (11)

LED显示电路的原理及与单片机的连接方法 (11)

简易键盘的扫描原理及与单片机的连接方法 (12)

系统软件的设计 (12)

测试数据的性化处理 (12)

系统流程图 (13)

系统性能测试与分析测试 (16)

测试仪器与设备 (16)

测试方案与结果 (16)

结论 (17)

致谢 (17)

参考文献 (17)

附录 (18)

绪论

随着时代的进步,温度计在日常生产生活和工农业领域发挥越来越重要的作用,简单的温度计能够满足人们日常生产生活需要,但在一些工农业生产领域不仅要求能准确测量温度并且要求能够进行温度报警和温度的控制,因此在简单的温度计往往不能满足人们的要求。利用单片机作为控制系统的NTC温敏电阻温度测量和控制系统更能符合工农业生产领域的需求。该系统不能能进行温度的测量并且将温度通过LED数码管显示出来使读取更加方便,该系统还能设定温度上下限实现声光报警,并且该系统还能对温度进行控制,因此在使用和功能上都比传统的温度计优越。该系统可以用在需要对温度要求比较精密的环境中,可以利用该系统的精确温度测量、报警和温度控制功能来保证生产过程的顺利进行。

方案设计

理论分析

根据任务要求,要求制作一个基于NTC热敏电阻的温度测量和控制系统。测量范围为0-100摄氏度。测量精度为+—1摄氏度,能够记录24小时内每隔三十分钟温度值,并能够用数码管回调固定时刻的温度值,能够显示24小时内的温度平均值、最大值、最小值、和最大温差,具有报警功能当温度超过设定阈值时能够报警(要求有1摄氏度的回差)。在扩展部分要求制作一个温度控制元件,能够用LED显示设定温度值和实际测量值,设定温度范围为:40——60摄氏度。并要求采用适当的方法,当设定温度或者环境温度突变时,减小系统的调节时间和超调量,温度控制的静态误差<=0.2摄氏度。

分析任务要求,该系统要用NTC温敏电阻作为测温元件,NTC热敏电阻是一种负温度特性的热敏电阻,其阻值随温度的变化曲线如下所示:

图表 1

由图可知,NTC的阻值随温度的上升而下降,其阻值和温度呈非线性特性,因此必须采用一定的方法对曲线进行线性化处理。其测量原理是利用通过测量其阻值,通过其温度特性曲线便可求的环境温度。但因为温度不便于测量且不便于其他电路处理。通常是将电阻的变化转化为电压的变化通过测量电压变化测得温度的变化。

由于采集到的电压信号是模拟信号,不能被数字系统处理,因此必须通过AD转换器,将模拟信号转换成数字信号。一般AD转换器的基准电压要求为2.5v,而采集到的电压信号很微弱,必需经过放大后才能送给AD转换器,因此在系统中还必须有信号放大的信号调理电路。

该系统要求具有报警和控温功能,因此必须有报警装置和控温元件,报警装置可以蜂鸣器和发光二极管来实现。而控温可以制作一个加热器作为控温元件,系统要求能采用适当的方法来实现改变系统的超调量和调节时间,因此可以采用脉冲宽度调制来实现。报警装置和控温装置可以通过三极管来驱动。

该系统应该有一个控制器,用以控制温度的显示报警和温度控制等功能。该控制器可以采用单片机,FPGA,或者DSP来实现。

系统总体方案的设计及其原理概述原理图

根据以上分析可知,该系统应该包括用NTC热敏电阻制作的温度传感器,对传感器信号放大的信号调理电路,加热器,显示电路,报警电路,按键和控制器组成。由于单片机作为控制器价格便宜,控制性能好,电路方便,已能完全满足该系统的要求,因此综合考虑用单片机作为该系统的控制器。

该系统通过NTC热敏电阻制作的传感器采集温度,将采集到的值送给单片

机处理后通过LED显示出来,并可将处理后的值与设定的温度值进行比较看是否超过设定范围来实现报警。在控制温度模式下,可以通过单片机控制加热器来加热,实现温度控制。系统原理图如下:

系统各个模块的方案论证与设计

系统温度采集电路的设计

温度采集电路主要由用NTC热敏电阻制作的温度传感器来实现,而NTC测温原理主要是基于基于将NTC阻值随温度变化转换为电压变化来实现。将NTC 热敏电阻值变换转换为电压的变化有以下几种方案。

方案一:采用恒流源给热敏电阻供电,由于通过电阻的电流恒定,因此只要测出器两端的电压就可以测出其阻值。该方案电路设计简单,测量也方便实现,但对恒流源要求较高,且抗干扰能力较差。

方案二:采用差动电桥进行测量。

图表2

VCC经过稳压二极管后电压稳定值为2.5V

由电桥平衡条件可知,当R2/R3=R4/R5时电桥平衡,此时V1和V2点的压差为零。由于R2=R3,因此在温度为零时,可以调节R5时R5=R4,使电桥平衡,其输出为零。当温度上升时,R4阻值减小,当温度变化一百摄氏度时,热敏电阻的变化范围大概为1K.

因此可以粗略的估算电桥输出电压的变化值为2.5*(4.7/24.7-3.7/23.7)=0.0854V.

该电路设计复杂,因为采用差动电桥,所以电路抗干扰能力增强,能有效抑制电源波动对电路的影响。

对比上面两种方案,第二种方案虽然电路复杂但能有效抑制干扰信号,因此采用第二种方案。

信号调理电路的原理与设计

由于从电桥出来的信号很微弱,因此需要通过运算放大器放大后才能经过AD转换。

方案一:采用单运放组成的运算放大器进行微弱信号的放大。其原理图如下:

图表 3

为了使运放对称,因此要求R10=R7,R11=R12.放大倍数A=R12/R10.

该电路简单,放大倍数可以通过调节R12来调节,但该调节会使运放不对称,因此需要同时调节R12和R11来实现。

方案二:采用仪用放大器来实现放大,仪用放大器的原理图如下。

信号调理电路 1

仪用放大器的放大倍数可以由以下公式计算得知:

A=-R11/R7(1+2*R8/R6)

由于R6可调,因此可以利用调节放大倍数。由于信号采集电路采集到的最大电压差为0.0854V.而AD的基准电压为2.5V,所以要求信号调理电路的最大输出为2.5V。而信号采集电路的最大输出为0.0845v,所以要求信号调理电路的放大倍数约为30倍。该电路由于可以调节R6来调节放大倍数,由于调节R6不会影响电路的对称性因此调节起来方便。

对比上述两种电路,第一种结构简单但调节起来不方便,而第二种调节起

来方便,且易于小信号的采集,因此选用第二种方案。

温度控制电路的设计

脉宽调制的基本原理简介

在脉宽调制有两种方案,第一种是固定低电平时间,而另外一种是固定周期。先对固定周期的脉宽调制原理做如下简介。

在固定周期的脉宽调制中,设一个周期的时间为一秒,将一个周期平分成一百份。每一份为10个毫秒,在一个周期内的份数由一个变量P控制,而每一份的时间用一个定时器来控制,当每次中断来时P加1,当P到一百十把P赋值成0,开始下一个周期。而在温度控制程序中,另外设定一个变量M,每次M也加一,M到一百十也赋值为零,并且每次M和P进行比较,当M

温度控制电路的原理与电路的设计

该系统要求具有温度控制功能,因此可以制作一个控温元件来给热敏电阻加热来实现温度控制。

方案一:以LTC1923PWM双极性电流控制器和大功率MOSFET构成的半导体热制冷器(TEC)驱动模块。该方案制作的热制冷器可制冷也可制热,但价格相对较高。

方案二:该系统通过水泥电阻来给热敏电阻加热来实现温度控制,水泥电阻需要通过一个功率三极管来驱动,为了使受热均匀,系统通过两个水泥电阻来给热敏加热。其驱动电路图如下:

功率三极管的基极和单片机的某个I/O口连接,当该I/O口为1时功率三极管导通,水泥电阻开始加热,当I/O为零时,三极管截止,水泥电阻停止加热。

因此在程序中可以通过给I/O口送1和零来控制水泥电阻加热和停止加热,从而实现温度控制。该方案简单,元件价格便宜。

对比上面两种方案,鉴于第二种方案简单,元件价格低廉因此采用第二种方案。

报警电路的设计

报警电路的原理与电路的设计

该系统的报警电路通过三极管驱动蜂鸣器发声和单片机P1口驱动八个发光二极管发光来实现报警。

三极管驱动蜂鸣器和P1口驱动发光二极管电路如

下:

报警电路 1

蜂鸣器采用NPN三极管驱动,三极管的基极和单片机的P2^3相连。当P2^3为1时三极管截止蜂鸣器不发声,而当P2^3为0时,三极管导通,蜂鸣器发声。八个发光二极管通过P1口驱动,当P1口全为0时,二极管发光。因此可以通过使P2^3为1和让P1为零来让蜂鸣器响和发光二极管发光来实现报警。

控制电路的原理与设计

AD0804的采样原理及与单片机的连接方法

AD采样电路1

AD的片选功能和单片机的P2^4相连,当P2^4为低电平时AD选通。AD的读信号RD和写信号WR和单片机的P3^6和P3^7相连。由于AD采用的是直通方式,当P3^7为0时启动AD,开始转换数据。当P3^6为1时便可以读取AD转换的数据。

LED显示电路的原理及与单片机的连接方法

单片机通过一个锁存器来控制八个LED的位选,通过另外一个来控制八个LED的段选从而实现八位LED的动态扫描。其与单片机的连接方法如下。

LED显示电路1

两个锁存器的片选分别于单片机的P2^6和P2^7相连。与P2^7相连的锁存器通过P0口给八位LED送位选码

简易键盘的扫描原理及与单片机的连接方法

该系统采用与单片机连接的简易键盘来实现来实现系统的按键功能。简易键盘与单片机的连接方法如下:

简易键盘电路 1

四个简易按键分别于单片机的P3^4,P3^5,P3^6,P3^7相连。当键没有按下时,与之相连的I/O口为1,而当有按键按下时,与之相连的I/O口为0,当检测到某个I/O口为低电平时,表明该按键按下。

系统软件的设计

测试数据的线性化处理

由于温敏电阻的阻值随温度变化为非线性,因此应对数据进行线性化处理。

方案一:用硬件来实现非线性的校正。简单的非线性就是以奇制奇的方法,将两只非线性的传感器接成差动的方式,他们的非线性误差以大小相等,极性相反的方向变化,这样就可以获得较理性的输出特性曲线。

方案二:用软件来实现非线性校正。软件非线性校正可以采用一次软件插值法来实现,插值法原理如下。

图表4

在这次试验中可以先通过试验得到AD转换的值和对应的温度然后以AD值为横坐标,温度值为纵坐标。将每个AD值和对应的温度制成表格,当采集到AD值时便可以通过查表将对应的温度查询出来从而实现了线性化处理。

系统流程图

主程序AD转换程序

温度报警程序 1

滤波程序

显示程序

系统性能测试与分析测试

测试仪器与设备

测试器件:水银温度计

直流稳压电源

万用表

测试方案与结果

测试环境与结果:

将系统分别在20摄氏度的冷水中,室温下,50—60设施度得温水中,和80摄氏度的热水中进行测试,测试结果如下。

结论

本文主要论述了基于NTC热敏电阻的温度测量和控制系统的设计。对整个系统的核心做了介绍。对系统的各个模块做了比较深入的研究,主要包括以下几个方面。

1.对系统进行了方案的论证,进行了方案的讨论,并最终确定了系统=方案。

2. 查找了系统上相关的芯片资料并仔细的阅读,并查阅了大量的相关文献资料。理解各个芯片的工作原理,完成各个模块电路的设计,完成开题报告。

3.对系统的原理进行了讨论,对硬件部分各个模块进行充分的说明。

4.用protel完成了系统各个模块的原理图设计和PCB制作。

5.完成电路板的焊接,并排查焊接错误,检查系统电路。

6. 通过软件多核心板的各个模块进行了测试。

7. 对整个设计的过程,拟出简要的大纲,并完成详细的论文报告。修改论文,完成最终定稿。

致谢

本论文是在实验室老师的指导下完成的,实验室在参加比赛过程中给了我们极大的帮助和支持,并在我们共同努力下取得了一定的成绩。至此,我们要非常感谢老师对我的帮助。

本次课题的完成也离不开实验室老师的指导,在这些过程中老师给了我们极大的帮助,他们的认真负责的态度和孜孜不倦的精神使我受益匪浅,从老师身上学习到了很多专业知识,这对我们以后的工作有很大的帮助,在此,向实验室老师表示深深的敬意,感谢他对我们的指导和帮助。

参考文献

【1】黄贤武,郑筱霞.传感器原理与应用.电子科技大学出版社,1995年五月。

【2】谭浩强.C语言程序设计.清华大学出版社,2005年七月。

【3】白驹荇,雷晓平.电子科技大学出版社,2005年九月。

附录

系统PCB电路图

图表5

实验程序

#include

#define uint unsigned int

#define uchar unsigned char

/**********************变量定义*************************************/

sbit heat=P2^2;//水泥电阻驱动使能

sbit beep=P2^3;//蜂鸣器使能

sbit dioLE=P2^5;//八位LED锁存器开关使能

sbit dula=P2^6;//LED段选

sbit wela=P2^7;//LED位选

sbit adcs=P2^4;//AD片选

sbit add=P3^5;//加键

sbit sub=P3^4;//减键

sbit adrd=P3^7;//AD读

sbit adwr=P3^6;//AD写

uchar code LED_Segment[]={ //0-9和摄氏度单位的段码

0x3f,0x06,0x5b,0x4f,0x66,

0x6d,0x7d,0x07,0x7f,0x6f,0x58};

uchar code LED_Segment1[]={//0-9含小数点的段码

0xbf,0x86,0xdb,0xcf,0xe6,

0xed,0xfd,0x87,0xff,0xef};

uchar code temdata[75]={

11,17,34,41,52,61,69,79,90,100,111,117,126,132,138,145,149,154, 160,

165,169,173,178,182,186,188,193,196,199,203,205,207,208,209,213 ,

214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229 ,230,231,232,233,234,235,236,237,238,239,

240,241,242,243,244,245,246,247,248,249,250,251,252,253};//AD转换值

float code temtest[75]={5.5,6.0,7.3,8.1,9.0,10.0,11.0,12.0,14.1,15.0,16.0,17.0,1 8.0,19.0,20.0,21.0,22.0,23.0,24.0,25.0,

26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,36.3,36. 9,37.5,39.1,39.4,39.8,40.1,40.6,41.0,41.4,41.7,42.5,42.8,

43.0,43.2,44.8,44.9,45.0,45.3,46.1,46.8,47.3,47.8,48.9,49.5,50. 3,51.0,51.7,52.3,52.9,53.5,54.1,54.8,55.6,56.0,58.3,59.0,59.8,

60.6,62.4,63.8,65.1,66.3,67.6

};//测试点温度值

/*float code slop[20]={

2.5,2.5,2.5,2.5,2.5,2.5,2.5,2.5,2.5,2.5,

2.5,2.5,2.5,2.5,2.5,2.5,2.5,2.5,2.5,2.5};*/ //斜率

uint idata record[48];

uint TH=30*10,TL=20*10;//温度上下限报警设定初值

uchar LPFdata;

uint temperature,max,min,average,dif;

uchar flag;

/**********************函数声明*************************************/

uchar AD();//AD转换子程序

void Delay(uchar z);//延时子程序

void Display(uint a);//数码管驱动显示子程序

void LPF();//数据滤波

void Data_temperature();//AD采样数据转换为温度值

void Alarm();//温度报警

void Set_hitemperature();//设定最高报警温度

void Set_lotemperature();//设定最低报警温度

void Set_function(uchar a);//按键功能判定

void Disp_record();//显示记录温度值

void Set_tempreature();//温度控制设定

void Driveled(uchar wei,uchar duan);

/**********************主函数*************************************/

void main()

{

// uchar flag=0;

TMOD=0X11;

TH0=0X4C;

TL0=0;

TH1=0XDC;

TL1=0;

EA=1;

ET0=1;

ET1=1;

TR0=1;

while(1)

{

//P1=0XFF;

//dioLE=0;

LPF();//将采集到的数据进行滤波

Data_temperature();//将滤波后的数据转换成温度值

Set_function(flag);//按键功能判定

//Data_temperature();//将滤波后的数据转换成温度值

Alarm();//调用报警程序当温度超过设定上下限时变报警

if(adwr==0)//按功能键切换工作状态

{

Delay(5);

if(adwr==0)

{

flag++;

if(flag>5)

{

flag=0;

}

while(adwr==0);

}

}

if(adrd==0)//OK键

{

Delay(5);

if(adrd==0)

{

flag=0;

while(adrd==0);

}

}

if(flag==5)//当进入温度控制模式时启动定时器,PWM控制加热TR1=1;

用热敏电阻测量温度

PB05210298 张晶晶 实验报告三 实验题目:用热敏电阻测量温度 实验原理: 1. 半导体热敏电阻的电阻——温度特性 某些金属氧化物半导体(如:Fe 3O 4、MgCr 2O 4等)的电阻与温度关系满足式(1): T B T e R R ∞= (1) 式中R T 是温度T 时的热敏电阻阻值,R ∞是T 趋于无穷时热敏电阻的阻值,B 是热敏电阻的材料常数,T 为热力学温度。 金属的电阻与温度的关系满足(2): )](1[1212t t a R R t t -+= (2) 式中a 是与金属材料温度特性有关的系数,R t1、R t2分别对应于温度t 1、t 2时的电阻值。 根据定义,电阻的温度系数可由式(3)来决定: dt dR R a t t 1= (3) R t 是在温度为t 时的电阻值,由图3.5.2-1(a )可知,在R-t 曲线某一特定点作切线,便可求出该温度时的半导体电阻温度系数a 。 2. 惠斯通电桥的工作原理 半导体热敏电阻和金属电阻的阻值范围,一般在1~106 Ω,需要较精确测量时常用电桥法,惠斯通电桥是应用很广泛的一种仪器。 惠斯通电桥的原理,如图3.5.2-2(a )所示。四个电阻R 0、R 1、R 2、R x 组成一个四边形,即电桥的四个臂,其中R x 就是待测电阻。在四边形的一对对角A 和C 之间连接电源E ,而在另一对对角B 和D 之间接入检流计G 。当B 和D 两点电位相等时,G 中无电流通过,电桥便达到了平衡。平衡时必有02 1 R R R R x = ,

R 1/R 2和R 0都已知,R x 即可求出。R 1/R 2称电桥的比例臂,由一个旋钮调节,它采用十进制固定值,共分0.001、0.01、0.1、1、10、100、1000 七挡。R 0为标准可变电阻,由有四个旋钮的电阻箱组成,最小改变量为1Ω,保证结构有四位有效数字。 02 1 R R R R x 是在电桥平衡的条件下推导出来的。电桥是否平衡是由检流计有无偏转来判断的,而检流计的灵敏度总是有限的。如实验中所用的张丝式检流计,其指针偏转一格所对应的电流约为10-6A ,当通过它的电流比10-7A 还小时,指针的偏转小于0.1格,就很难觉察出来。假设电桥在R 1/R 2=1时调到平衡,则有

基于NTC热敏电阻的温度测量与控制系统设计(论文)

题目名称:基于NTC热敏电阻的温度测量与控 制系统设计 摘要:本系统由TL431精密基准电压,NTC热敏电阻(MF-55)的温度采集,A/D和D/A转换,单片机STC89C51为核心的最小控制系统,LCD1602的显示电路等构成。温度值的线性转换通过软件的插值方法实现。该系统能够测量范围为0~100℃,测量精度±1℃,并且能够记录24小时内每间隔30分钟温度值,并能够回调选定时刻的温度值,能计算并实时显示24小时内的平均温度、温度最大值、最小值、最大温差,且有越限报警功能。由于采用两个水泥电阻作为控温元件,更有效的增加了温度控制功能。 关键词: NTC TL431 温度线性转换 Abstract: The system is composed of TL431 as precise voltage,the temperature acauisition circuit with NTC thermistors (MF-55), the transform circuit of A/D and D/A, the core of the minimum control system with STC89C51, 1the display circuit usingLCD1602, etc. Get the temperature of the linear transformation by the software method. The range of the measure system is 0 ~ 100 ℃, measurement accuracy + 1 ℃.It can record 24 hours of each interval temperature by per 30 minutes selected of temperature.The time can be calculated and real-time display within 24 hours of the average temperature, maximum temperature and minimum temperature, maximum value, and each temperature sensor has more all the way limit alarm function. Due to the two cement resistance as temperature control components, the more effective increase the temperature control function. Keyword: NTC TL431 temperature linear conversion

NTC热敏电阻原理及应用.

NTC热敏电阻原理及应用 NTC热敏电阻是指具有负温度系数的热敏电阻。是使用单一高纯度材料、具有接近理论密度结构的高性能陶瓷。因此,在实现小型化的同时,还具有电阻值、温度特性波动小、对各种温度变化响应快的特点,可进行高灵敏度、高精度的检测。本公司提供各种形状、特性的小型、高可靠性产品,可满足广大客户的应用需求。 NTC负温度系数热敏电阻工作原理 NTC是Negative Temperature Coefficient 的缩写,意思是负的温度系数,泛指负温度系数很大的半导体材料或元器件,所谓NTC热敏电阻器就是负温度系数热敏电阻器。它是以锰、钴、镍和铜等金属氧化物为主要材料,采用陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。NTC热敏电阻器在室温下的变化范围在10O~1000000欧姆,温度系数-2%~-6.5%。NTC热敏电阻器可广泛应用于温度测量、温度补偿、抑制浪涌电流等场合。 NTC负温度系数热敏电阻专业术语 零功率电阻值 RT(Ω) RT指在规定温度 T 时,采用引起电阻值变化相对于总的测量误差来说可以忽略不计的测量功率测得的电阻值。 电阻值和温度变化的关系式为: RT = RN expB(1/T – 1/TN) RT :在温度 T ( K )时的 NTC 热敏电阻阻值。 RN :在额定温度 TN ( K )时的 NTC 热敏电阻阻值。 T :规定温度( K )。 B : NT C 热敏电阻的材料常数,又叫热敏指数。 exp :以自然数 e 为底的指数( e = 2.71828 …)。 该关系式是经验公式,只在额定温度 TN 或额定电阻阻值 RN 的有限范围内才具有一定的精确度,因为材料常数 B 本身也是温度 T 的函数。 额定零功率电阻值 R25 (Ω) 根据国标规定,额定零功率电阻值是 NTC 热敏电阻在基准温度25 ℃ 时测得的电阻值 R25,这个电阻值就是 NTC 热敏电阻的标称电阻值。通常所说 NTC 热敏电阻多少阻值,亦指该值。 材料常数(热敏指数) B 值( K )

热敏电阻测温电路设计

电子设计大赛论文 (B组) 热敏电阻测温电路设计 第三十组 K3队 组队成员:顾代辉黄龑罗程 2010年5月23日

摘要:科技发展,很多工业化的生产都需要温度测量,这使得温度测量仪器变成一个 很重要的东西。下面我们将题目所给的温度测量电路进行分析和改动设计。题目所给图是一个在工业场合的温度测量系统,采用RTD 电阻温度检测器。通过分析可知,ref R 两端分到的电压即为ref V ,Vo3输出的电压即为NTC 两段分到的电压。而要求我们设计的电路所用的是NTC 负温度系数热敏电阻器。题目要求我们将电流产生电路的电流控制在0.1m A 。这里我们简 单的将 ref R 改成25k 。对于滤波电路,我们设计各个参数使得其截至频率在100Hz 左右,就 能滤掉1000HZ 的干扰信号;对于基准源,我们都用基本的连接方法,输出电压为2.5V ;对于稳压管,输出电压为恒定的5V ;对于串口连接,我们用到MAX232芯片其中一个接口,与单片机的RXD/TXD 连接传输数据。 关键词:温度传感器 AVR 串口显示 I .电路分析 (1) 电流产生电路分析: 首先对于运放A1,由虚短和虚断,可知 111211 120 V V I I === 有: 1121221 O V V V R R --= 可解得:1121122=O V V V = 即第一个运放功能为将信号放大两倍。 对于运放A2,同理,有 212221 220 V V I I === 有:221O V V =可见,运放A2是一个电压跟随器。

又:24211234( )2 REF O REF O O V V R V V V V R R -?+=+=+ 11122O REF O V V V V ==+ 故: REF R 两端分到的电压为 122R O REF REF O O REF V V V V V V V =-=+-= 由此可见: REF R 两端分压恒为基准电压 REF V ,只要基准电压和 REF R 的值不变,则 通过 REF R 的电流REF REF V I R = 2.5 12.5mA k ==为恒定值,该电路的作用为产生恒定电流。 由于3233p n V V V ==,故Rline 和R6相当于并联, 66'1001R R I I Rline ==,故100'101 I I I =≈ 故可认为恒定电流I 都通过热敏电阻RTD 。 运放A3以及NTD 分析: 由叠加法分析,当31V 接地时,033131317100'6100R k V V V V R k =- =-=- 当32V 接地时,03323276100100''26100R R k k V V V R k ++= == 故0303033231'''2V V V V V =+=- …………………… ① 而32()'RTD V Rline R I =+? …………………… ② 31(2)'RTD V Rline R I =+? …………………… ③

NTC热敏电阻温度传感器

APPLICATIONS Temperature test in all kinds of air-condition,refrigerator,water boiler,microwave oven. PART NUMBERING FEATURES High precision and high stability Quick temperature response Resistant to heat shock Moisture resistant Excellent quality and high stability Guang Dong Fenghua Advanced Technology (Holding)Co.,LTD.code NTC NTC temperature sensors code 25 Rated zero-power resistance R unit: The first two are significant figure of resistance and the third one expresses number of following zeros 25 FH -CWF XXX X XXXX X X /XXXX X % Tolerance of R % 25 B B value Code B %Tolerance of B value % B B value Temperature Code Length of the sensor unit:mm Termination shape code NTC NTC THERMISTOR TEMPERATURE SENSORS

基于热敏电阻的数字温度计设计

目录 1 课程设计的目的 (1) 2 课程设计的任务和要求 (1) 3 设计方案与论证 (1) 4 电路设计 (2) 4.1 温度测量电路 (3) 4.2 单片机最小系统 (6) 4.3 LED数码显示电路 (8) 5 系统软件设计 (9) 6 系统调试 (9) 7 总结 (11) 参考文献 (13) 附录1:总体电路原理图 (14) 附录2:元器件清单 (15) 附录3:实物图 (16) 附录4:源程序 (17)

1 课程设计的目的 (1)掌握单片机原理及应用课程所学的理论知识; (2)了解使用单片机设计的基本思想和方法,学会科学分析和解决问题; (3)学习单片机仿真、调试、测试、故障查找和排除的方法、技巧; (4)培养认真严谨的工作作风和实事求是的工作态度; (5)锻炼自己的动手动脑能力,以提高理论联系实际的能力。 2 课程设计的任务和要求 (1)采用LED 数码管显示温度; (2)测量温度范围为-10℃~110℃; (3)测量精度误差小于0.5℃。 3 设计方案与论证 方案一:本方案主要是在温度检测部分利用了一款新型的温度检测芯片DS18B20,这个芯片大大简化了温度检测模块的设计,它无需A/D 转换,可直接将测得的温度值以二进制形式输出。该方案的原理框图如图3-1所示。 DS18B20是美国达拉斯半导体公司生产的新型温度检测器件,它是单片结构,无需外加A/D 即可输出数字量,通讯采用单线制,同时该通讯线还可兼作电源线,即具有寄生电源模式。它具有体积小、精度易保证、无需标定等特点,特别适合与单片机合用构成智能温度检测及控 制系统。 图3-1 方案一系统框图 单片机 最小系统 数码 显示 温度传感器 DS18B20

温度监测及报警电路(热敏电阻+LM324)

温度监测及报警电路(热敏电阻+LM324)姓名:_____孔亮______ 学号:____0928401116____ 一、元件介绍: 1、热敏电阻MF53-1:

2、LM324: LM324是四运放集成电路,它采用14脚双列直插塑料封装,lm324原理图如图所示。它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。 每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的相位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。lm324引脚图见图2。 图一图二由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。 3、LED——发光二极管 LED(Light-Emitting-Diode中文意思为发光二极管,是一种能够将电能转化为可见光的半导体,它改变了白炽灯钨丝发光与节能灯三基色粉发光的原理,而采用电场发光。据分析,LED的特点非常明显,寿命长、光效高、无辐射与低功耗。LED的光谱几乎全部集中于可见光频段,其发光效率可超过150lm/W(2010年)。 一般LED工作时,加10mA足以使之正常工作,故电阻值为V o/10mA,即为外加电阻的值,如+5V的电压下可以使用500欧姆的电阻。 二、设计原理: 检测电路采用热敏电阻RT(MF53-1)作为测温元件;采用LM324作比较电路;用发光二极管实现自动报警。 报警分三级:温度>20O C,一个灯亮; 温度>40O C,二个灯亮; 温度>60O C,三个灯亮。

10K热敏电阻分度表

热敏电阻是开发早、种类多、发展较成熟的敏感元器件.热敏电阻由半导体陶瓷材料组成,热敏电阻是用半导体材料,大多为负温度系数,即阻值随温度增加而降低。温度变化会造成大的阻值改变,因此它是最灵敏的温度传感器。但热敏电阻的线性度极差,并且与生产工艺有很大关系。制造商给不出标准化的热敏电阻曲线。热敏电阻体积非常小,对温度变化的响应也快。但热敏电阻需要使用电流源,小尺寸也使它对自热误差极为敏感。 热敏电阻的电阻-温度特性可近似地用下式表示:R=R0exp{B(1/T-1/T0)}:R:

温度T(K)时的电阻值、Ro:温度T0、(K)时的电阻值、B:B值、*T(K)=t(º;C)+273.15。实际上,热敏电阻的B值并非是恒定的,其变化大小因材料构成而异,最大甚至可达5K/°C。因此在较大的温度范围内应用式1时,将与实测值之间存在一定误差。此处,若将式1中的B 值用式2所示的作为温度的函数计算时,则可降低与实测值之间的误差,可认为近似相等。 BT=CT2+DT+E,上式中,C、D、E为常数。另外,因生产条件不同造成的B值的波动会引起常数E发生变化,但常数C、D不变。因此,在探讨B值的波动量时,只需考虑常数E即可。常数C、D、E的计算,常数C、D、E可由4点的(温度、电阻值)数据(T0,R0).(T1,R1).(T2,R2)and(T3,R3),通过式3~6计算。首先由式样3根据T0和T1,T2,T3的电阻值求出B1,B2,B3,然后代入以下各式样。 电阻值计算例:试根据电阻-温度特性表,求25°C时的电阻值为5(kΩ),B值偏差为50(K)的热敏电阻在10°C~30°C的电阻值。步骤(1)根据电阻-温度特性表,求常数C、D、E。T o=25+273.15T1=10+273.15T2=20+273.15T3=30+273.15(2)代入BT=CT2+DT+E+50,求BT。(3)将数值代入R=5exp {(BT1/T-1/298.15)},求R。*T:10+273.15~30+273.15。

热敏电阻温度测量电路

热敏电阻温度测量电路 下图是温度在0~50℃范围的测量电路。当温度为0℃时输出电压是0V ,温度为50℃时是5V 。他可以与电压表链接来测量温度,也可以连接AD 转换器变换为数字量,利用计算机之类进行测量。 1、工作原理 该电路由检测温度的热敏电阻和1个运算放大器电路,以及将0~50℃的温度信息变换为0~5V 电压的2个运算放大器电路构成。 热敏电阻检测温度时,利用热敏电阻TH R 与电阻3R 分压后的电压作为检测电压进行处理,在这里是利用运算放大器1OP 的电压跟随器电路提取的。输出电压的极性为正,随着温度的上升,热敏电阻的电阻值降低,所以输出电压也下降。 检出的信号加在1OP 和电阻~4R 7R 构成的差动放大电路的正输入端上,而加在负输入端上的是由8R 、9R 、1VR 对5V 分压后的电压,这部分是电压调整电路,可以在温度为0℃时将1OP 的输出电压调整为0V ,这样就可以输出与温度上升成比例的负电压。 2OP 的输出加在由3OP 构成的反转放大电路上被放大,放大倍数为—10211/)(R VR R +倍。调整2VR 可以使温度达50℃时3OP 的输出电压为+5V 。 通过调整1VR 和2VR ,可以在0℃时得到0V 的输出电压,50℃时得到5V 的输出电压,使输出电压与温度成比例。 2、设计 (1)温度测量范围以及输出电压、电源电压的确定:设定温度测量范围为0~50℃,这时的输出电压是0~5V 。电路使用的电源为±15V ,基准电压为5V 。 (2)热敏电阻和运算放大器的选定:这里使用NTC 型热敏电阻,选用25℃的电阻值为10K Ω,误差在±1%以内的NTH4G39A 103F02型,这种热敏电阻的常数为B=3900。 (3)补偿电阻3R 的确定:电阻3R 的作用是当热敏电阻的温度变化时,将相对应的输出电压的变化线性化。设线性化的温度范围是0~50℃,,那么补偿电阻3 R

热敏电阻

热敏电阻根据温度系数分为两类:正温度系数热敏电阻和负温度系数热敏电阻。由于特性上的区别,应用场合互不相同。 正温度系数热敏电阻简称PTC(是Positive Temperature Coefficient 的缩写),超过一定的温度(居里温度---居里温度是指材料可以在铁磁体和顺磁体之间改变的温度。低于居里温度时该物质成为铁磁体,此时和材料有关的磁场很难改变。当温度高于居里温度时,该物质成为顺磁体,磁体的磁场很容易随周围磁场的改变而改变。这时的磁敏感度约为10的负6次方。)时,它的电阻值随着温度的升高呈阶跃性的增高。其原理是在陶瓷材料中引入微量稀土元素,如La、Nb...等,可使其电阻率下降到10Ω.cm以下,成为良好的半导体陶瓷材料。这种材料具有很大的正电阻温度系数,在居里温度以上几十度的温度范围内,其电阻率可增大 4~10个数量级,即产生所谓PTC效应。 目前大量被使用的PTC热敏电阻种类:恒温加热用PTC热敏电阻;低电压加热用PTC热敏电阻;空气加热用热敏电阻;过电流保护用PTC热敏电阻;过热保护用PTC热敏电阻;温度传感用PTC热敏电阻;延时启动用PTC 热敏电阻。 负温度系数热敏电阻简称NTC(是Negative Temperature Coefficient 的缩写),泛指负温度系数很大的半导体材料或元器件。它是以锰、钴、镍和铜等金属氧化物为主要材料,采用陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。NTC热敏电阻器在室温下的变化范围在10O~1000000欧姆,温度系数-2%~-6.5%。NTC热敏电阻器可广泛应用于温度测量、温度补偿、抑制浪涌电流等场合。 PTC、NTC两种热敏电阻都可以用作温度传感,在目前的实际应用中,多采用NTC热敏电阻作为温度测量、控制的温度传感器。 NTC负温度系数热敏电阻专业术语 零功率电阻值R T(Ω) R T指在规定温度T时,采用引起电阻值变化相对于总的测量误差来说可以忽略不计的测量功率测得的电阻值。

(推荐)热敏电阻测温电路

热敏电阻测温电路 热敏电阻测量电路 本测温控温电路适用于家用空调、电热取暖器、恒温箱、温床育苗、人工孵化、农牧科研等电热设备。其使用温度范围是0~50℃,测控温精度为±(0.2~0.5)℃. 2.2.1 原理电路 本测温控温电路由温度检测、显示、设定及控制等部分组成,见图2.2.1。图中D1~D4为单电源四运放器LM324的四个单独的运算放大器。RT1~RTn为PTC感温探头,其用量取决于被测对象的容积。 RP1用于对微安表调零,RP2用于调节D2的输出使微安表指满度。S 为转换开关。 图2.2.1 测温控温电路由RT检测到的温度信息,输入D1的反馈回路。该信息既作为D2的输入信号,经D2放大后通过微安表显示被测温度;又作为比较器D4的同相输入信号,与D3输出的设定基准信号,构成D4的差模输入电压。当被控对象的实际温度低于由RP3预设的温度时,RT的阻值较小,此时D4同相输入电压的绝对值小于反相输入电压的绝对值,于是D4输出为高电位,从而使晶体管V饱和导通,继电器K得电吸合常开触点JK,负载RL由市电供电,对被控物进行加热。当被控对象的实际温度升到预设值时, D4同相输入电压的绝对值大于反相输入电压的绝对值, D4的输出为低电位,从而导致V截止,K失电释放触点JK至常开,市电停止向RL供电,被控物进入恒温阶段。如此反复运行,达到预设的控温目的。

2.2.2 主要元器件选择本测温控温电路选用PTC热敏电阻为感温元件,该元件在0℃时的电阻值为264Ω,制作成温度传感器探测头,按图2.2.2线化处理后封装于护套内, 其电阻-温度特性见图2.2.3. 图2.2.2 线化电路线化后的PTC热敏电阻感温探头具有良好的线性,其平均灵敏度达16Ω/℃左右。如果采用数模转换网络、与非门电路及数码显示器,替代本电路的微安表显示器,很容易实现远距离多点集中的遥测。继电器的选型取决于负载功率。为便于调节,RP1~RP4选用线性带锁紧机构的微调电位器。 2.2.3 安装与调试调试工作主要是调整指示器的零点和满度指示。先将S接通R0,调节RP1使微安表指零,于此同时,调节RP4使其阻值与RP1相同,以保持D1与D4的对称性。然后将S接通R1,调节RP2使微安表指满度。最后,按RT的标准阻-温曲线,将RP3调到与设定温度相应的阻值,即可投入使用。本测温控温电路适用于家用空调、电热取暖器、恒温箱、温床育苗、人工孵化、农牧科研等电热设备。其使用温度范围是0~50℃,测控温精度为±(0.2~0.5)℃.

NTC热敏电阻器在高精度温度测量中的应用

NTC热敏电阻器在高精度温度测量中的应用 于丽丽1,王剑华2,殳伟群2 (1.同济大学电子信息学院,上海200092;2.同济大学中德学院,上海200092) 摘 要:介绍了用NT C热敏电阻器进行高精度温度测量的几点考虑。分析了影响测量精度的各种因素,并提出了一些解决方法,主要的措施有:直流恒流源微安级电流;四线制测量电路;高分辨力(24位)ADC;数字滤波;仪器自校准等。实际测量表明:使用恰当的热敏电阻器在较窄的范围内(0~60℃)测量精度可达±0.001℃。 关键词:热敏电阻器;高精度温度测量;校准 中图分类号:TP223 文献标识码:A 文章编号:1000-9787(2004)12-0075-03 Application of NTC thermistor in high accurate temperature measurement Y U Li2li1,W ANGJian2hua2,SH U Wei2qun2 (1.Dept of E lct I nfo,Tongji U niversity,Sh angh ai200092,China; 2.Dept of China2G erm any,Tongji U niversity,Sh angh ai200092,China) Abstract:A few res olvents of the problems in high accurate tem perature measurement using NT C thermistors are intro2 duced.The various factors affected measurement accuracy are analyzed,and a few res olvents are advanced.S ome mea2 sures are used:constant current s ource offering microam pere current,4wire tem perature measuring circuit,ADC with ex2 cellent res olution,digital filter,instrument recalibration itself,etc.I t is indicated that high accuracy of0.001℃in a nar2 row range of tem perature(0~60℃)can be achieved by using fit thermistors. K ey w ords:thermistor;high2accurate tem perature measurement;calibration 0 引 言 NT C热敏电阻器除具有体积小、响应快、耐振动等优点外,还有阻值高、温度特性曲线的斜率大等特点。由于阻值高,往往可以忽略引线电阻的影响,即允许采用二线制接法。由于阻值随温度变化大,相应输出较大,对二次仪表的要求相对较低。缺点是量程窄、互换性差。 针对本文涉及研制项目温度测量量程窄、测量精度要求高(22℃±0.01℃)等特点,选用了经反复老化、长期稳定性指标优于0.002℃/a的热敏电阻器。尽管其阻值很高,仍然采用四线制的接法,以消除很小一点的引线电阻影响。对单支传感器进行了量程范围内多个温度点的严格标定。将其与采用特殊结构的61 2 电阻测量仪表相配合,最后,得到了期待的精度[1]。 1 高精度温度测量系统的研究 1.1 数学模型 热敏电阻与温度的关系是严重非线性。为了对这种非线性进行尽可能准确的描述,采用了如下的S teinhart2Hart 方程 收稿日期:2004-06-27 R=exp(A+ B T +C T2 +D T3 ),(1)式中 T为绝对温度值,K;R为热敏电阻器在温度为T时的电阻值,Ω。A,B,C,D则为4个特定的参数。一般需要采用多个温度点(至少4点)的标定获得热敏电阻器在已知温度点的阻值,然后,经过拟合获得模型的参数。这是一个从T和R出发推算A,B,C,D的过程,即校准或建模的过程。而测量时,则是在已知A,B,C,D的前提下,根据测出的R和数学模型推算出T的过程,这实际上是个内插的过程。 1.2 影响测量精度的因素 为了用热敏电阻器进行高精度的温度测量,必须研究各种影响因素,并采取相应的对策。在不考虑热敏电阻器的长期稳定性的前提下,尚有如下因素应当考虑: (1)热敏电阻器的标定:从第1.1节的表述可以看出:高精度的测量实际是一个高精度的内插问题。而要进行高精度的内插,需要事先进行高精度的建模。而高精度的建 57  2004年第23卷第12期 传感器技术(Journal of T ransducer T echnology)

热敏电阻测温电路的设计说明

课程题目:热敏电阻测温电路的设计院系:机电汽车工程学院 班级: 学生: 学号: 小组成员: 指导教师:

目录 一、设计目的、要求及方案选择-----------------------------------------------------(2) 1、设计目的---------------------------------------------------------------------------(2) 2、设计要求---------------------------------------------------------------------------(2) 3、设计方案的选择--------------------------------------------------------------------( 2) 二、硬件系统各模块电路的设计---------------------------------------------------(3) 1、单片机系统的设计---------------------------------------------------------------(3)1-1、AT89C51的简介及管脚功能---------------------------------------------(3) 1-1、AT89C51的最小系统介绍-----------------------------------------------(5) 2、基于MF58的NTC热敏电阻温度测量电路设计 ---------------------------(7) 2-1、MF58热敏电阻的介绍---------------------------------------------------(8) 2-2、温度测量电路的设计----------------------------------------------------(10) 3、LED数码管显示电路的设计---------------------------------------------------(11) 3-1、显示电路驱动系统的设计

热敏电阻测量温度(已批阅)

少年班 系 06 级 学号 PB06000680 姓名 张力 日期 2007-4-28 实验题目:热敏电阻测量温度 实验目的:了解热敏电阻的电阻-温度特性和测温原理,掌握惠斯通电桥的原理和使用方法,学习坐标、曲 线改直的技巧和用异号法消除零点误差等方法。 实验原理:1、半导体热敏电阻的电阻-温度特性 对于某些金属氧化物:T B T e R R ∞=,B 为材料常数; 对于金属电阻)](1[1212t t a R R t t -+=,定义其中的dt dR R a t t 1=为温度系数; 两种情况分别图示如下: 两者比较,热敏电阻的电阻和温度是呈非线性的,而金属氧化物的是线性;热敏电阻的温 度系数为负,金属的温度系数为正;热敏电阻对温度变化反应更灵敏。这些差异的产生是因为当温度升高时,原子运动加剧,对金属中自由电子的运动有阻碍作用,故金属的电阻随温度的升高而呈线性缓慢增加;而在半导体中是靠空穴导电,当温度升高时,电子运动更频繁,产生更多的空穴,从而促进导电。 2、惠斯通电桥的工作原理 原理图如右图所示: 若G 中检流为0,则B 和D 等势,故此时02 1R R R R x = ,在 检流计的灵敏度范围内得到R x 的值。

少年班 系 06 级 学号 PB06000680 姓名 张力 日期 2007-4-28 实验内容: 1、按图3.5.2-3接线,先将调压器输出调为零,测室温下的热敏电阻阻值,注意选择惠斯通电桥合适的量 程。先调电桥至平衡得R 0,改变R 0为R 0+ΔR 0,使检流计偏转一格,求出电桥灵敏度;再将R 0改变为R 0-ΔR 0,使检流计反方向偏转一格,求电桥灵敏度。求两次的平均值 2、 调节变压器输出进行加温,从25℃开始每隔5℃测量一次R t ,直到85℃。换水,再用9V 电压和3V 电 压外接电表进行测量,然后绘制出热敏电阻的R t -t 特性曲线。在t=50℃的点作切线,由式(3)求出该点切线的斜率dt dR 及电阻温度系数α。 3、作T R t 1}ln{-曲线,确定式(1)中的常数R ∞和B ,再由式(3)求α(50℃时)。 2 1T B dt dR R t t - == α 1. 比较式(3)和(5)两个结果,试解释那种方法求出的材料常数B 和电阻温度系数α更准确。 实验数据: 实验中,由于时间关系,只测量了内接检流计的情况:

NTC热敏电阻的基本特性

NTC热敏电阻的基本特性 NTC热敏电阻是指具有负温度系数的热敏电阻。是使用单一高纯度材料、具有接近理论密度结构的高性能陶瓷。因此,在实现小型化的同时,还具有电阻值、温度特性波动小、对各种温度变化响应快的特点,可进行高灵敏度、高精度的检测。本公司提供各种形状、特性的小型、高可靠性产品,可满足广大客户的应用需求。 电阻-温度特性 热敏电阻的电阻-温度特性可近似地用式1表示。 (式1) R=R0 exp {B(1/T-1/T0)} R: 温度T(K)时的电阻值 Ro:温度T0(K)时的电阻值 B: B 值 *T(K)= t(oC)+273.15 exp:指数函数,e(无理数)=2.71828;exp {B(1/T-1/T0)} 指e 的{B(1/T-1/T0)} 次方。 但实际上,热敏电阻的B值并非是恒定的,其变化大小因材料构成而异,最大甚至可达5K/°C。因此在较大的温度范围内应用式1时,将与实测值之间存在一定误差。 此处,若将式1中的B值用式2所示的作为温度的函数计算时,则可降低与实测值之间的误差,可认为近似相等。 (式2) B T=CT2+DT+E 上式中,C、D、E为常数。 另外,因生产条件不同造成的B值的波动会引起常数E发生变化,但常数C、D 不变。因此,在探讨B值的波动量时,只需考虑常数E即可。 ?常数C、D、E的计算 常数C、D、E可由4点的(温度、电阻值)数据 (T0, R0). (T1, R1). (T2, R2) and (T3, R3),通过式3~6计算。 首先由式样3根据T0和T1,T2,T3的电阻值求出B1,B2,B3,然后代入以下各式样。

?电阻值计算例 试根据电阻-温度特性表,求25°C时的电阻值为5(kΩ),B值偏差为50(K)的热敏电阻在10°C~30°C 的电阻值。 ?步骤 (1) 根据电阻-温度特性表,求常数C、D、E。 T o=25+273.15 T1=10+273.15 T2=20+273.15 T3=30+273.15 (2) 代入B T=CT2+DT+E+50,求B T。 (3) 将数值代入R=5exp {(B T1/T-1/298.15)},求R。 *T : 10+273.15~30+273.15 ?电阻-温度特性图如图1所示

用热敏电阻测量温度试验

用热敏电阻测量温度试 验 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

物理实验报告 实验一 一、实验题目:用热敏电阻测量温度 二、实验目的:了解热敏电阻-温度特性和测温原理,掌握惠斯通电桥的原理和使用方法。学习坐标变换、曲线改直的技巧和用异号法消除零点误差等方法。 三、实验原理:(1)半导体热敏电阻的电阻——温度特性 某些金属氧化物半导体(如:Fe 3O 4、MgCr 2O 4等)的电阻与温度关系满足 式(1): T B T e R R ∞= (1) 式中R T 是温度T 时的热敏电阻阻值,R ∞是T 趋于无穷时热敏电阻的阻值,B 是热敏电阻的材料常数,T 为热力学温度。 两边取对数得; ∞+= R T B ln lnR T (2) 可以通过做T lnR - T 1 曲线,将曲线改直。 根据定义,电阻的温度系数可由式(3)来决定: dt dR R a t t 1= (3) 故在R-t 曲线某一特定点作切线,便可求出该温度时的半导体电阻温度系数a 。 (2)惠斯通电桥的工作原理 在电桥平衡下可推导出来:02 1 R R R R x = 当电桥平衡时检流计无偏转。实验时电桥调到R 1/R 2=1则有R x =R 0。电桥灵敏度S 为: x x R R n S /??= (4)

式中ΔR x 指的是在电桥平衡后R x 的微小改变量(实际上待测电阻R x 若不能改变,可通过改变标准电阻R 0来测电桥灵敏度),Δn 越大,说明电桥灵敏度越高,带来的测量误差就越小。 (3)实验装置图: 四、实验器材:半导体热敏电阻、检流计、惠斯通电桥、电炉、温度计 五、实验步骤:(1)按图3.5.2-3接线,先将调压器输出调为零,测室温下的热敏电 阻阻值,注意选择惠斯通电桥合适的量程。先调电桥至平衡得R 0,改变R 0为R 0+ΔR 0,使检流计偏转一格,求出电桥灵敏度;再将R 0改变为R 0-ΔR 0,使检流计反方向偏转一格,求电桥灵敏度(因为人工所调平衡可能存在误差,而正反测量以后可以减小这种误差) (2)调节变压器输出进行加温,从15℃开始每隔5℃测量一次R t ,直到 85℃。撤去电炉,使水温慢冷却,测量降温过程中,各对应温度点的R t 。求升温和降温时的各R 的平均值,然后绘制出热敏电阻的R t -t 特性曲线 七、实验数据分析 (1)t R t -特性曲线 Data: Data1_B Model: Boltzmann Equation: Weighting: y No weighting

热敏电阻B值

B值是热敏电阻器的材料常数,即热敏电阻器的芯片(一种半导体陶瓷)在经过高温烧结后,形成具有一定电阻率的材料,每种配方和烧结温度下只有一个B值,所以种之为材料常数。 B值可以通过测量在25摄氏度和50摄氏度(或85摄氏度)时的电阻值后进行计算。B值与产品电阻温度系数正相关,也就是说B值越大,其电阻温度系数也就越大。 温度系数就是指温度每升高1度,电阻值的变化率。采用以下公式可以将B值换算成电阻温度系数: 电阻温度系数=B值/T^2 (T为要换算的点绝对温度值) NTC热敏电阻器的B值一般在2000K-6000K之间,不能简单地说B值是越大越好还是越小越好,要看你用在什么地方。一般来说,作为温度测量、温度补偿以及抑制浪涌电阻用的产品,同样条件下是B值大点好。因为随着温度的变化,B值大的产品其电阻值变化更大,也就是说更灵敏。 NTC热敏电阻B值公式的: B= T1T2 Ln(RT1/RT2)/(T2-T1) 其中的B:NTC热敏电阻的B值,由厂家提供; RT1、RT2:热敏电阻在温度分别为T1、T2时的电阻值; T1、T2:绝对温标。V NTC热敏电阻B值公式。 先更正昨天的帖子,我用的热敏电阻的精度是1%,不是3%。 B= T1T2 Ln(RT1/RT2)/(T2-T1) ——(1) B:NTC热敏电阻的B值,由厂家提供;

RT1、RT2:热敏电阻在温度分别为T1、T2时的电阻值,厂家提供的是温度为298.15K (25摄氏度)时的阻值。 T1、T2:绝对温标。 我还是针对昨天的原理图简单的说说:由(1)式可得: RT1/RT2=e B(1/T1-1/T2)————————(2) 取T1=298.15K,此时热敏电阻的阻值为RT1=10K,故取R1=10K,设温 度为T2时的分压值为V2,则:V2=RT2Vcc/(RT2+R1),得 RT2=V2R1/(Vcc-V2),所以 RT1/RT2=Vcc/V2-1 代入(2)式得 e B(1/T1-1/T2) =Vcc/V2-1 得 B(1/T1-1/T2)=Ln(Vcc/V2-1) T2=T1/(1-T1(Ln(Vcc/V2-1))/B)设8位ADC输出值为N,则 Vcc/V2-1=256/N-1 所以 T2=T1(1-T1(Ln(256/N-1))/B)换算为摄氏温度后则 T=T2-273.15 你可以用C或VB编个程序从N=0开始到N=255计算出温度表,然后以N为索引查表直接得到温度。也可以通过实际测试出温度值构成温度表格,采用插值等算法得到温度值。我这里是以T1=25度计算的,你可以通过调整T1的值来测试更高或更低温度。

基于单片机的热敏电阻测温系统设计

第1章绪论 1.1 热敏电阻 热敏电阻器是敏感元件的一类,按照温度系数不同分为正温度系数热敏电阻器(PTC)和负温度系数热敏电阻器(NTC)。热敏电阻器的典型特点是对温度敏感,不同的温度下表现出不同的电阻值。热敏电阻是开发早、种类多、发展较成熟的敏感元器件。热敏电阻由半导体陶瓷材料组成,热敏电阻是用半导体材料,大多为负温度系数,即阻值随温度增加而降低。温度变化会造成大的阻值改变,因此它是最灵敏的温度传感器。但热敏电阻的线性度极差,并且与生产工艺有很大关系。制造商给不出标准化的热敏电阻曲线。热敏电阻体积非常小,对温度变化的响应也快。但热敏电阻需要使用电流源,小尺寸也使它对自热误差极为敏感。 1.2 工作原理 负温度系数热敏电阻主要材料有氧化锰、氧化钴、氧化镍、氧化铜和氧化铝等金属氧化物为主要原料,采用陶瓷工艺制造而成。这些金属氧化物材料都具有半导体性质,完全类似于锗、硅晶体材料,体内的载流子数目少,电阻较高;温度升高,体内载流子数目增加,自然电阻值降低。负温度系数热敏电阻类型很多,使用区分低温(-60~300℃)、中温(300~600℃)、高温(>600℃)三种。 1.3 热敏电阻的特点 1.灵敏度较高,其电阻温度系数要比金属大10~100倍以上,能检测出10-6℃的温度变化; 2.工作温度范围宽,常温器件适用于-55℃~315℃,高温器件适用温度高于315℃(目前最高可达到2000℃),低温器件适用于-273℃~55℃; 3.体积小,能够测量其他温度计无法测量的空隙、腔体及生物体内血管的温度; 4.使用方便,电阻值可在0.1~100kΩ间任意选择; 5.易加工成复杂的形状,可大批量生产; 6.稳定性好、过载能力强。 精选

相关主题