搜档网
当前位置:搜档网 › 数据挖掘简介

数据挖掘简介

数据挖掘简介
数据挖掘简介

数据挖掘简介

数据挖掘是一个多学科交叉领域,涉及数据库技术、机器学习、统计学、神经网络、模式识别、知识库信息提取、高性能计算等诸多领域,并在工业、商务、财经、通讯、医疗卫生、生物工程、科学研究等众多行业得到广泛应用。本章在介绍数据挖掘一般概念的基础上,简要介绍统计学习中的Logistic回归。

11.1 数据挖掘的一般概念

现代计算机、通信和网络计算正在改变着整个人类生活方式以及社会生产经营和管理方式,其中大量的信息在给人们的生活、工作带来方便的同时也带来许多问题。例如,信息过量,难以消化;信息真假难以辨识;信息安全难以保证;信息方式不一致,难以统一处理;信息的有效提取变得更困难,需要的时间成倍增加;信息之间的关联及因果更加难以把握等等。人们开始考虑如何才能不被信息淹没,能及时从中发现有用的信息,提高信息利用率。数据挖掘(data mining)正是在这样的背景下产生的。具体地讲,由于超大数据库的出现(比如商业数据仓库和计算机自动收集的数据记录)、先进的计算技术、对海量数据的快速访问以及较难的统计方法运用于分析计算等等因素,激发了数据挖掘的开发、应用和研究的发展。

11.1.1 数据挖掘的概念及知识分类

数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中提出隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。它是一类深层次的数据分析方法。数据分析本身已经有很长历史,只不过过去数据收集和分析的主要目的是用于科学研究,加之由于以前计算机技术的局限,对大数据量处理进行的复杂数据分析方法受到很大限制。现在各行各业均实现业务自动化,商业领域产生了大量的业务数据,这些数据不再是为了分析的目的而收集的,而是由于纯商业运作而产生的;分析这些数据不再是单纯为了研究的需要,更重要的是为商业决策提供真正有价值的信息,进而提高管理水平、生产效率和利润等等。但所有企业面临的一个共同的问题是:企业数据量非常大,而其中真正对自己有价值的信息却很少,因此,从大量的数据中经过深层次分析获得有利于商业运作、提高竞争力的信息很有必要。

数据挖掘发现的知识最常见的可分为以下四类:

(1)广义知识

广义知识(generalization)指类别特征的概括性描述知识。根据数据的微观特性发现其表征的、带有普遍性的、较高层次概念的、中观和宏观的知识,反映同类事物的共同性质,是对数据的概况、提炼和抽象。

(2)关联知识

它是反映一个事件和其他事件之间依赖或关联的知识。如果两项或多项属性之间存在关联,那么其中一项的属性值就可以依据其他属性进行预测。最为著名的关联规则发现方法是Agrawal提出的Apriori算法。关联规则的发现可分为两步,第一步是迭代识别所有的频繁项目集,要求频繁项目的支持率不低于用户设定的最低值;第二步是从频繁项目集中构造可信度不低于用户设定值的规则。识别和发现所有频繁项目集是关于关联规则发现算法的核心,也是计算量最大的部分。

(3)分类知识

它是反映同类事物共同性质的特征型知识和不同事物之间的差异型特征知识。它除了用主成分分析和判别分析等数理统计方法获得外,最为典型的方法是从基于决策树的分类方法得到,也有用神经网络方法在数据库中进行分类和规则提取。

(4)预测型知识

它根据时间序列型数据,由历史的和当前的数据去预测未来的数据,也可以认为是以时间为关键属性的关联知识。研究或获取这种知识的方法,有经典的统计方法、神经网络和机器学习等,还有经典的平稳时间序列方法和现代的非平稳时间序列分析方法等等。

11.1.2 数据挖掘的功能、步骤和分类

1.数据挖掘的功能

数据挖掘通过预测未来趋势及行为作出前瞻的、基于知识的决策。数据挖掘的目标是从数据库中发现隐含的、有意义的知识,主要有以下五大类功能:

(1)自动预测趋势和行为

数据挖掘自动在数据库中寻找预测性信息,以往需要进行大量手工分析的问题如今可以迅速直接由数据本身得出结论。

(2)关联分析

数据关联是数据库中存在的一类重要的可被发现的知识。若两个或多个变量的取值之间存在某种规律性,就称为关联。关联可分为简单关联、时间关联、因果关联等。关联分析的目的是找出数据库中隐藏的关联网。有时并不知道数据库中数据的关联函数,即使知道也是不确定的,因此,关联分析生成的规则用可信度来表示该规则的置信程度。

(3)聚类

数据库中的记录可被划分为一系列的子集,即聚类。聚类增强了人们对客观现实的认识,是概念描述和偏差分析的先决条件。聚类技术包括传统数理统计中的聚类分析,还有现代的概念聚类技术,其要点是在划分对象时不仅考虑对象之间某种距离,还要求划分出的类具有某种内涵描述,从而避免了传统技术的某些片面性。

(4)概念描述

概念描述就是对某类对象的内涵进行描述,并概况这类对象的有关特征。概念描述分为特征性描述和区别性描述。前者描述某类对象的共同特征,后者描述不同类对象之间的区别。

(5)异常检测

数据库中的数据常有一些异常记录,从数据库中检测这些异常很有意义。异常包括很多潜在的知识,如分类中的反常实例、不满足规则的特例、观测结果与模型预测值的偏差等等。异常检测的基本方法是寻找观测结果与参照值之间有意义的差别。

2.数据挖掘的步骤

实施数据挖掘的步骤如下:

(1)确定业务对象

清楚地定义出业务问题,认清数据挖掘的目的是数据挖掘的重要一步。挖掘的最后结果是不可预测的,但要探索的问题应是有预见的。为了数据挖掘而挖掘往往带有盲目性,是不

数据挖掘综述

数据挖掘综述 摘要:数据挖掘是一项较新的数据库技术,它基于由日常积累的大量数据所构成的数据库,从中发现潜在的、有价值的信息——称为知识,用于支持决策。数据挖掘是一项数据库应用技术,本文首先对数据挖掘进行概述,阐明数据挖掘产生的背景,数据挖掘的步骤和基本技术是什么,然后介绍数据挖掘的算法和主要应用领域、国内外发展现状以及发展趋势。 关键词:数据挖掘,算法,数据库 ABSTRACT:Data mining is a relatively new database technology, it is based on database, which is constituted by a large number of data coming from daily accumulation, and find potential, valuable information - called knowledge from it, used to support decision-making. Data mining is a database application technology, this article first outlines, expounds the background of data mining , the steps and basic technology, then data mining algorithm and main application fields, the domestic and foreign development status and development trend. KEY WORDS: data mining ,algorithm, database 数据挖掘产生的背景 上世纪九十年代.随着数据库系统的广泛应用和网络技术的高速发展,数据库技术也进入一个全新的阶段,即从过去仅管理一些简单数据发展到管理由各种计算机所产生的图形、图像、音频、视频、电子档案、Web页面等多种类型的复杂数据,并且数据量也越来越大。在给我们提供丰富信息的同时,也体现出明显的海量信息特征。信息爆炸时代.海量信息给人们带来许多负面影响,最主要的就是有效信息难以提炼。过多无用的信息必然会产生信息距离(the Distance of Information-state Transition,信息状态转移距离,是对一个事物信息状态转移所遇到障碍的测度。简称DIST或DIT)和有用知识的丢失。这也就是约翰·内斯伯特(John Nalsbert)称为的“信息丰富而知识贫乏”窘境。因此,人们迫切希望能对海量数据进行深入分析,发现并提取隐藏在其中的信息.以更好地利用这些数据。但仅以数据库系统的录入、查询、统计等功能,无法发现数据中存在的关系和规则,无法根据现有的数据预测未来的发展趋势。更缺乏挖掘数据背后隐藏知识的手段。正是在这样的条件下,数据挖掘技术应运而生。 数据挖掘的步骤 在实施数据挖掘之前,先制定采取什么样的步骤,每一步都做什么,达到什么样的目标是必要的,有了好的计划才能保证数据挖掘有条不紊的实施并取得成功。很多软件供应商和数据挖掘顾问公司投提供了一些数据挖掘过程模型,来指导他们的用户一步步的进行数据挖掘工作。比如SPSS公司的5A和SAS公司的SEMMA。 数据挖掘过程模型步骤主要包括:1定义商业问题;2建立数据挖掘模型;3分析数据;4准备数据;5建立模型;6评价模型;7实施。 1定义商业问题。在开始知识发现之前最先的同时也是最重要的要求就是了

一、解答题(满分30分,每小题5分) 1. 怎样理解数据挖掘和知识发现的关系?请详细阐述之 首先从数据源中抽取感兴趣的数据,并把它组织成适合挖掘的数据组织形式;然后,调用相应的算法生成所需的知识;最后对生成的知识模式进行评估,并把有价值的知识集成到企业的智能系统中。 知识发现是一个指出数据中有效、崭新、潜在的、有价值的、一个不可忽视的流程,其最终目标是掌握数据的模式。流程步骤:先理解要应用的领域、熟悉相关知识,接着建立目标数据集,并专注所选择的数据子集;再作数据预处理,剔除错误或不一致的数据;然后进行数据简化与转换工作;再通过数据挖掘的技术程序成为模式、做回归分析或找出分类模型;最后经过解释和评价成为有用的信息。 2. 时间序列数据挖掘的方法有哪些,请详细阐述之 时间序列数据挖掘的方法有: 1)、确定性时间序列预测方法:对于平稳变化特征的时间序列来说,假设未来行为与现在的行为有关,利用属性现在的值预测将来的值是可行的。例如,要预测下周某种商品的销售额,可以用最近一段时间的实际销售量来建立预测模型。 2)、随机时间序列预测方法:通过建立随机模型,对随机时间序列进行分析,可以预测未来值。若时间序列是平稳的,可以用自回归(Auto Regressive,简称AR)模型、移动回归模型(Moving Average,简称MA)或自回归移动平均(Auto Regressive Moving Average,简称ARMA)模型进行分析预测。 3)、其他方法:可用于时间序列预测的方法很多,其中比较成功的是神经网络。由于大量的时间序列是非平稳的,因此特征参数和数据分布随着时间的推移而变化。假如通过对某段历史数据的训练,通过数学统计模型估计神经网络的各层权重参数初值,就可能建立神经网络预测模型,用于时间序列的预测。

一、数据挖掘概述 1、数据挖掘 定义:通过自动或半自动化的工具对大量的数据进行探索和分析的过程,其目的是发现其中有意义的模式和规律。 ——数据挖掘是一门技能,不是一种现成的产品。 2、数据挖掘能做什么 6种方法:分类(classification)、估计(estimation)、预测(prediction)、组合或关联法则(affinity grouping or association rules)、聚类(clustering)、描述与可视化(description and visualization) 前三种方法属于直接的数据挖掘,目标是应用可得到的数据建立模型,用其他可得到的数据来描述我们感兴趣某一变量。 后三种方法属于间接的数据挖掘,没有单一的目标变量,目标是在所有变量中发现某些联系。 1)分类:其特点是先对不同的类别加以定义,并由预先分类的样本构成训练集。任务是建立一个模型并应用这一模型对未分类数据进行分类。分类处理的是离散的结果。 2)估计处理的是连续的结果。 3)组合法的任务是确认哪些事物会一起出现。 4)聚类的任务是将相似的事物分成一类,差异较大的事物分在不同的类中。聚类与分类的区别是聚类并不依赖于事先确定好的组别。 3、技术层面的数据挖掘 1)算法与技巧 2)数据 3)建模实践 二、数据挖掘方法论:互动循环系统 1、数据挖掘的两种类型 一种是自上而下的方法,称之为有监督的数据挖掘方法,当明确知道要搜索的目标时,可以是用这种方法。 一种是自下而上的方法,称之为无监督的数据挖掘方法,实际就是让数据解释自己。此方法是在数据中寻找模式,然后把产生的结果留给使用者去判断其中哪些模式重要。 数据挖掘的结果通常是这两种方法的结合。 1)有监督的数据挖掘 黑匣子模型:使用一个或多个输入值产生一个输出的模型。我们并不关心模型如何运作,那只是黑盒子,我们只关心可能的最优结果。 我们根据已知事例,分析其相关资料,将分析结果用在从未联络的潜在客户,这样的模型称之为预测模型。预测模型使用历史记录来计算某些相应结果中的得分。成功预测的要领之一是拥有足够支持结果的数据来训练模型。 2)无监督的数据挖掘 半透明模型:有时需要使用模型能够得到与数据相关的重要信息,我们也需要了解模型的运作细节,这就好比一组半透明的盒子。 2、数据挖掘的互动循环过程 数据挖掘的互动过程是一种高层次的流程,由四个重要的业务过程所构成: 理解业务问题; 将数据转换成可执行的结果;

数据挖掘:是从大量数据中发现有趣(非平凡的、隐含的、先前未知、潜在有用)模式,这些数据可以存放在数据库,数据仓库或其他信息存储中。 挖掘流程: 1.学习应用域 2.目标数据创建集 3.数据清洗和预处理 4.数据规约和转换 5.选择数据挖掘函数(总结、分类、回归、关联、分类) 6.选择挖掘算法 7.找寻兴趣度模式 8.模式评估和知识展示 9.使用挖掘的知识 概念/类描述:一种数据泛化形式,用汇总的、简洁的和精确的方法描述各个类和概念,通过(1)数据特征化:目标类数据的一般特性或特征的汇总; (2)数据区分:将目标类数据的一般特性与一个或多个可比较类进行比较; (3)数据特征化和比较来得到。 关联分析:发现关联规则,这些规则展示属性-值频繁地在给定数据集中一起出现的条件,通常要满足最小支持度阈值和最小置信度阈值。 分类:找出能够描述和区分数据类或概念的模型,以便能够使用模型预测类标号未知的对象类,导出的模型是基于训练集的分析。导出模型的算法:决策树、神经网络、贝叶斯、(遗传、粗糙集、模糊集)。 预测:建立连续值函数模型,预测空缺的或不知道的数值数据集。 孤立点:与数据的一般行为或模型不一致的数据对象。 聚类:分析数据对象,而不考虑已知的类标记。训练数据中不提供类标记,对象根据最大化类内的相似性和最小化类间的原则进行聚类或分组,从而产生类标号。 第二章数据仓库 数据仓库是一个面向主题的、集成的、时变的、非易失的数据集合,支持管理部门的决策过程。从一个或多个数据源收集信息,存放在一个一致的模式下,并且通常驻留在单个站点。数据仓库通过数据清理、变换、继承、装入和定期刷新过程来构造。面向主题:排除无用数据,提供特定主题的简明视图。集成的:多个异构数据源。时变的:从历史角度提供信息,隐含时间信息。非易失的:和操作数据的分离,只提供初始装入和访问。 联机事务处理OLTP:主要任务是执行联机事务和查询处理。 联系分析处理OLAP:数据仓库系统在数据分析和决策方面为用户或‘知识工人’提供服务。这种系统可以用不同的格式和组织提供数据。OLAP是一种分析技术,具有汇总、合并和聚集功能,以及从不同的角度观察信息的能力。

第1 章数据仓库的概念与体系结构 1. 面向主题的,相对稳定的。 2. 技术元数据,业务元数据。 3. 联机分析处理OLAP。 4. 切片(Slice),钻取(Drill-down 和Roll-up 等)。 5. 基于关系数据库。 6. 数据抽取,数据存储与管理。 7. 两层架构,独立型数据集市,依赖型数据集市和操作型数据存储,逻辑型数据集市和实时数据仓库。 8. 可更新的,当前值的。 9. 接近实时。 10. 以报表为主,以分析为主,以预测模型为主,以营运导向为主。 11. 答: 数据仓库就是一个面向主题的(Subject Oriented)、集成的(Integrate)、相对稳定的(Non-Volatile)、反映历史变化(Time Variant)的数据集合,通常用于辅助决策支持。 数据仓库的特点包含以下几个方面: (1)面向主题。操作型数据库的数据组织是面向事务处理任务,各个业务系统之间各 自分离;而数据仓库中的数据是按照一定的主题域进行组织。主题是一个抽象的概念,是指用户使用数据仓库进行决策时所关心的重点领域,一个主题通常与多个操作型业务系统或外部档案数据相关。 (2)集成的。面向事务处理的操作型数据库通常与某些特定的应用相关,数据库之间 相互独立,并且往往是异构的。而数据仓库中的数据是在对原有分散的数据库数据作抽取、清理的基础上经过系统加工、汇总和整理得到的,必须消除源数据中的不一致性,以保证数据仓库内的信息是关于整个企事业单位一致的全局信息。也就是说存放在数据仓库中的数据应使用一致的命名规则、格式、编码结构和相关特性来定义。 (3)相对稳定的。操作型数据库中的数据通常实时更新,数据根据需要及时发生变化。 数据仓库的数据主要供单位决策分析之用,对所涉及的数据操作主要是数据查询和加载,一旦某个数据加载到数据仓库以后,一般情况下将作为数据档案长期保存,几乎不再做修改和删除操作,也就是说针对数据仓库,通常有大量的查询操作及少量定期的加载(或刷新)操作。 (4)反映历史变化。操作型数据库(OLTP)主要关心当前某一个时间段内的数据,而 数据仓库中的数据通常包含较久远的历史数据,因此总是包括一个时间维,以便可以研究趋势和变化。数据仓库系统通常记录了一个单位从过去某一时点(如开始启用数据仓库系统的时点)到目前的所有时期的信息,通过这些信息,可以对单位的发展历程和未来趋势做出定量分析和预测。 12. 答: (1)两层架构(Generic Two-Level Architecture)。 (2)独立型数据集市(Independent Data Mart)。 (3)依赖型数据集市和操作型数据存储(Dependent Data Mart and Operational Data Store)。 (4 )逻辑型数据集市和实时数据仓库(Logical Data Mart and Real-Time Data

模糊数学在数据挖掘研究综述 一、模糊数学 关于数学的分类,根据所研究对象的确定性可以分为经典数学、随机数学以及模糊数学。三者的关系如图1所示。经典数学建立在集合论的基础上,一个对象对于一个集合要么属于,要么不属于,两者必居其一,且仅居其一,绝不可模棱两可,由于这个要求,大大限制了数学的应用范围,使它无法处理日常生活中大量的不明确的模糊现象与概念。随着发展,过去那些与数学毫无关系或关系不大的学科如生物学,心理学,等都迫切要求定量化和数学化。 图1依照研究对象是否确定的数学分类 在日常生活中,我们经常会遇到一些模糊不清的概念。例如,“高个子”、“矮个子”等。如果把1.80米的人算高个子,那么,身高1.76米的人算不算高个子呢?这就很难说,因为“高个子”,“矮个子”并没有二者明确的标准,因而这些概念就显得模糊不清。为了适应这些学科自身的特点,只有通过改造数学,使它应用的面更为广泛。模糊数学就是研究事物这种模糊性质的一门数学学科。 模糊数学诞生于1965年,创始人是美国自动控制专家查德,他最早提出了模糊集合的概念,引入了隶属函数。自诞生之日起,就与电子计算机息息相关。今天精确的数学计算当然是不可少的,然而,当我们要求脑功能的时候,精确这个长处反而成了短处。例如,我们在判别走过的人是谁时,总是将来人的高矮,胖瘦、走路姿势与大脑存储的样子进行比较,从而作出判断。一般说来,这不是件难事,即使是分别多年的老友,也会很快地认出他来,但是若让计算机做这件事,使用精确数学就太复杂了。得测量来人的身高、体重、手臂摆的角度以及鞋底对地面的正压力、磨擦力、速度、加速度等数据,而且非要精确到后几十位才肯罢休。如果有位熟人最近稍为瘦了或胖了一些,计算机就“翻脸不认了”。显然,这样的“精确”容易使人糊涂。由此可见,要使计算机能模拟人功能,一定程度的模糊是必要的。模糊数学就是在这样的背景下诞生的。 随机数学与模糊数学都是对不确定性量的研究,但与模糊数学不同的是,随机数学是研究随机现象统计规律性的一个数学分支,涉及四个主要部分:概率论、随机过程、数理统计、随机运筹。随机数学更强调对数据的统计规律;而模糊数学强调的是变量的定义的模糊性。 模糊数学是一门新兴学科,过去那些与数学毫不相关或关系不大的学科(如生物学、心理学、语言学、社会科学等)都有可能用定量化和数学化加以描述和处理,从而使数学的应用范围大大扩展。它已初步应用于模糊控制、模糊识别、模糊聚类分析、模糊决策、模糊评判、系统理论、信息检索、医学、生物学等各个方面,并且在气象、结构力学、控制、心理学等方面已有具体的研究成果。模糊数学最重要的应用领域是计算机职能,它与新一代计算机的研制有密切的联系。 二、模糊计算

一、解答题(满分30分,每小题5分) 1. 怎样理解数据挖掘和知识发现的关系?请详细阐述之 首先从数据源中抽取感兴趣的数据,并把它组织成适合挖掘的数据组织形式;然后,调用相应的算法生成所需的知识;最后对生成的知识模式进行评估,并把有价值的知识集成到企业的智能系统中。 知识发现是一个指出数据中有效、崭新、潜在的、有价值的、一个不可忽视的流程,其最终目标是掌握数据的模式。流程步骤:先理解要应用的领域、熟悉相关知识,接着建立目标数据集,并专注所选择的数据子集;再作数据预处理,剔除错误或不一致的数据;然后进行数据简化与转换工作;再通过数据挖掘的技术程序成为模式、做回归分析或找出分类模型;最后经过解释和评价成为有用的信息。 2.时间序列数据挖掘的方法有哪些,请详细阐述之 时间序列数据挖掘的方法有: 1)、确定性时间序列预测方法:对于平稳变化特征的时间序列来说,假设未来行为与现在的行为有关,利用属性现在的值预测将来的值是可行的。例如,要预测下周某种商品的销售额,可以用最近一段时间的实际销售量来建立预测模型。 2)、随机时间序列预测方法:通过建立随机模型,对随机时间序列进行分析,可以预测未来值。若时间序列是平稳的,可以用自回归(Auto Regressive,简称AR)模型、移动回归模型(Moving Average,简称MA)或自回归移动平均(Auto Regressive Moving Average,简称ARMA)模型进行分析预测。 3)、其他方法:可用于时间序列预测的方法很多,其中比较成功的是神经网络。由于大量的时间序列是非平稳的,因此特征参数和数据分布随着时间的推移而变化。假如通过对某段历史数据的训练,通过数学统计模型估计神经网络的各层权重参数初值,就可能建立神经网络预测模型,用于时间序列的预测。

大数据理论与技术读书报告 -----K最近邻分类算法 指导老师: 陈莉 学生姓名: 李阳帆 学号: 201531467 专业: 计算机技术 日期 :2016年8月31日

摘要 数据挖掘是机器学习领域内广泛研究的知识领域,是将人工智能技术和数据库技术紧密结合,让计算机帮助人们从庞大的数据中智能地、自动地提取出有价值的知识模式,以满足人们不同应用的需要。K 近邻算法(KNN)是基于统计的分类方法,是大数据理论与分析的分类算法中比较常用的一种方法。该算法具有直观、无需先验统计知识、无师学习等特点,目前已经成为数据挖掘技术的理论和应用研究方法之一。本文主要研究了K 近邻分类算法,首先简要地介绍了数据挖掘中的各种分类算法,详细地阐述了K 近邻算法的基本原理和应用领域,最后在matlab环境里仿真实现,并对实验结果进行分析,提出了改进的方法。 关键词:K 近邻,聚类算法,权重,复杂度,准确度

1.引言 (1) 2.研究目的与意义 (1) 3.算法思想 (2) 4.算法实现 (2) 4.1 参数设置 (2) 4.2数据集 (2) 4.3实验步骤 (3) 4.4实验结果与分析 (3) 5.总结与反思 (4) 附件1 (6)

1.引言 随着数据库技术的飞速发展,人工智能领域的一个分支—— 机器学习的研究自 20 世纪 50 年代开始以来也取得了很大进展。用数据库管理系统来存储数据,用机器学习的方法来分析数据,挖掘大量数据背后的知识,这两者的结合促成了数据库中的知识发现(Knowledge Discovery in Databases,简记 KDD)的产生,也称作数据挖掘(Data Ming,简记 DM)。 数据挖掘是信息技术自然演化的结果。信息技术的发展大致可以描述为如下的过程:初期的是简单的数据收集和数据库的构造;后来发展到对数据的管理,包括:数据存储、检索以及数据库事务处理;再后来发展到对数据的分析和理解, 这时候出现了数据仓库技术和数据挖掘技术。数据挖掘是涉及数据库和人工智能等学科的一门当前相当活跃的研究领域。 数据挖掘是机器学习领域内广泛研究的知识领域,是将人工智能技术和数据库技术紧密结合,让计算机帮助人们从庞大的数据中智能地、自动地抽取出有价值的知识模式,以满足人们不同应用的需要[1]。目前,数据挖掘已经成为一个具有迫切实现需要的很有前途的热点研究课题。 2.研究目的与意义 近邻方法是在一组历史数据记录中寻找一个或者若干个与当前记录最相似的历史纪录的已知特征值来预测当前记录的未知或遗失特征值[14]。近邻方法是数据挖掘分类算法中比较常用的一种方法。K 近邻算法(简称 KNN)是基于统计的分类方法[15]。KNN 分类算法根据待识样本在特征空间中 K 个最近邻样本中的多数样本的类别来进行分类,因此具有直观、无需先验统计知识、无师学习等特点,从而成为非参数分类的一种重要方法。 大多数分类方法是基于向量空间模型的。当前在分类方法中,对任意两个向量: x= ) ,..., , ( 2 1x x x n和) ,..., , (' ' 2 ' 1 'x x x x n 存在 3 种最通用的距离度量:欧氏距离、余弦距 离[16]和内积[17]。有两种常用的分类策略:一种是计算待分类向量到所有训练集中的向量间的距离:如 K 近邻选择K个距离最小的向量然后进行综合,以决定其类别。另一种是用训练集中的向量构成类别向量,仅计算待分类向量到所有类别向量的距离,选择一个距离最小的类别向量决定类别的归属。很明显,距离计算在分类中起关键作用。由于以上 3 种距离度量不涉及向量的特征之间的关系,这使得距离的计算不精确,从而影响分类的效果。

第37卷第7期测绘与空间地理信息 GEOMATICS &SPATIAL INFORMATION TECHNOLOGY Vol.37,No.7收稿日期:2014-01-22 作者简介:马宏斌(1982-),男,甘肃天水人,作战环境学专业博士研究生,主要研究方向为地理空间信息服务。 大数据时代的空间数据挖掘综述 马宏斌1 ,王 柯1,马团学 2(1.信息工程大学地理空间信息学院,河南郑州450000;2.空降兵研究所,湖北孝感432000) 摘 要:随着大数据时代的到来,数据挖掘技术再度受到人们关注。本文回顾了传统空间数据挖掘面临的问题, 介绍了国内外研究中利用大数据处理工具和云计算技术,在空间数据的存储、管理和挖掘算法等方面的做法,并指出了该类研究存在的不足。最后,探讨了空间数据挖掘的发展趋势。关键词:大数据;空间数据挖掘;云计算中图分类号:P208 文献标识码:B 文章编号:1672-5867(2014)07-0019-04 Spatial Data Mining Big Data Era Review MA Hong -bin 1,WANG Ke 1,MA Tuan -xue 2 (1.Geospatial Information Institute ,Information Engineering University ,Zhengzhou 450000,China ; 2.Airborne Institute ,Xiaogan 432000,China ) Abstract :In the era of Big Data ,more and more researchers begin to show interest in data mining techniques again.The paper review most unresolved problems left by traditional spatial data mining at first.And ,some progress made by researches using Big Data and Cloud Computing technology is introduced.Also ,their drawbacks are mentioned.Finally ,future trend of spatial data mining is dis-cussed. Key words :big data ;spatial data mining ;cloud computing 0引言 随着地理空间信息技术的飞速发展,获取数据的手 段和途径都得到极大丰富,传感器的精度得到提高和时空覆盖范围得以扩大,数据量也随之激增。用于采集空间数据的可能是雷达、红外、光电、卫星、多光谱仪、数码相机、成像光谱仪、全站仪、天文望远镜、电视摄像、电子 显微镜、CT 成像等各种宏观与微观传感器或设备,也可能是常规的野外测量、人口普查、土地资源调查、地图扫描、 地图数字化、统计图表等空间数据获取手段,还可能是来自计算机、 网络、GPS ,RS 和GIS 等技术应用和分析空间数据。特别是近些年来,个人使用的、携带的各种传感器(重力感应器、电子罗盘、三轴陀螺仪、光线距离感应器、温度传感器、红外线传感器等),具备定位功能电子设备的普及,如智能手机、平板电脑、可穿戴设备(GOOGLE GLASS 和智能手表等),使人们在日常生活中产生了大量具有位置信息的数据。随着志愿者地理信息(Volunteer Geographic Information )的出现,使这些普通民众也加入到了提供数据者的行列。 以上各种获取手段和途径的汇集,就使每天获取的 数据增长量达到GB 级、 TB 级乃至PB 级。如中国遥感卫星地面站现在保存的对地观测卫星数据资料达260TB ,并以每年15TB 的数据量增长。比如2011年退役的Landsat5卫星在其29年的在轨工作期间,平均每年获取8.6万景影像,每天获取67GB 的观测数据。而2012年发射的资源三号(ZY3)卫星,每天的观测数据获取量可以达到10TB 以上。类似的传感器现在已经大量部署在卫 星、 飞机等飞行平台上,未来10年,全球天空、地空间部署的百万计传感器每天获取的观测数据将超过10PB 。这预示着一个时代的到来,那就是大数据时代。大数据具有 “4V ”特性,即数据体量大(Volume )、数据来源和类型繁多(Variety )、数据的真实性难以保证(Veracity )、数据增加和变化的速度快(Velocity )。对地观测的系统如图1所示。 在这些数据中,与空间位置相关的数据占了绝大多数。传统的空间知识发现的科研模式在大数据情境下已经不再适用,原因是传统的科研模型不具有普适性且支持的数据量受限, 受到数据传输、存储及时效性需求的制约等。为了从存储在分布方式、虚拟化的数据中心获取信息或知识,这就需要利用强有力的数据分析工具来将

数据挖掘研究现状及发展趋势摘要:从数据挖掘的定义出发,介绍了数据挖掘的神经网络法、决策树法、遗传算法、粗糙集法、模糊集法和关联规则法等概念及其各自的优缺点;详细总结了国内外数据挖掘的研究现状及研究热点,指出了数据挖掘的发展趋势。 关键词:数据挖掘;挖掘算法;神经网络;决策树;粗糙集;模糊集;研究现状;发展趋势 Abstract:From the definition of data mining,the paper introduced concepts and advantages and disadvantages of neural network algorithm,decision tree algorithm,genetic algorithm,rough set method,fuzzy set method and association rule method of data mining,summarized domestic and international research situation and focus of data mining in details,and pointed out the development trend of data mining. Key words:data mining,algorithm of data mining,neural network,decision tree,rough set,fuzzy set,research situation,development tendency 1引言 随着信息技术的迅猛发展,许多行业如商业、企业、科研机构和政府部门等都积累了海量的、不同形式存储的数据资料[1]。这些海量数据中往往隐含着各种各样有用的信息,仅仅依靠数据库的查询检索机制和统计学方法很难获得这些信息,迫切需要能自动地、智能地将待处理的数据转化为有价值的信息,从而达到为决策服务的目的。在这种情况下,一个新的技术———数据挖掘(Data Mining,DM)技术应运而生[2]。 数据挖掘是一个多学科领域,它融合了数据库技术、人工智能、机器学习、统计学、知识工程、信息检索等最新技术的研究成果,其应用非常广泛。只要是有分析价值的数据库,都可以利用数据挖掘工具来挖掘有用的信息。数据挖掘典型的应用领域包括市场、工业生产、金融、医学、科学研究、工程诊断等。本文主要介绍数据挖掘的主要算法及其各自的优缺点,并对国内外的研究现状及研究热点进行了详细的总结,最后指出其发展趋势及问题所在。 江西理工大学

1、数据仓库定义:数据仓库是一种新的数据处理体系结构,它与组织机构的操作数据库分别维护,允许将各种应用系统一起,为统一的历史数据分析提供坚实的平台,对信息处理提供支持。数据仓库是面向主题的、集成的、相对稳定的、反映历史变化的数据集合,为企业决策支持系统提供所需的集成信息。设计和构造步骤:1)选取待建模的商务处理;2)选取商务处理的粒变;3)选取用于每个事实表记录的维;4)选取事实表中每条记录的变量 系统结构:(1)底层是仓库数据服务器,总是关系数据库系统。(2)中间层是OLAP服务器,有ROLAP 和MOLAP,它将对多维数据的操作映射为标准的关系操作(3)顶层是前端客户端,它包括查询和报表工具、分析工具和数据挖掘工具 2、数据仓库的多维数据模型:(1)星形模式:在此模型下,数据仓库包括一个大的包含大批数据并且不含冗余的中心表,一组小的附属表,维表围绕中心事实表显示的射线上。特征:星型模型四周的实体是维度实体,其作用是限制和过滤用户的查询结果,缩小访问围。每个维表都有自己的属性,维表和事实表通过关键字相关联。【例子:sales数据仓库的星形模式,此模式包含一个中心事实表sales,它包含四个维time, item, branch和location。 (2)雪花型模式:它是星形模式的变种,其中某些维表是规化的,因而把数据进一步分解到附加的表中。特征:雪花模型通过最大限度地减少数据存储量和联合较小的维表来改善查询性能,增加了用户必须处理的表数量和某些查询的复杂性,但同时提高了处理的灵活性,可以回答更多的商业问题,特别适合系统的逐步建设要求。【例子同上,只不过把其中的某些维给扩展了。 (3)事实星座形:复杂的应用可能需要多个事实表共享维表,这种模式可看作星形模式的汇集。 特征:事实星座模型能对多个相关的主题建模。例子:有两个事实表sales和shipping,它们可以共享维表time, item和location。 3、OLAP:即联机分析处理,是在OLTP基础上发展起来的、以数据仓库基础上的、面向高层管理人员和专业分析人员、为企业决策支持服务。特点:1.实时性要求不是很高。2.数据量大。3.因为重点在于决策支持,所以查询一般是动态的,也就是说允许用户随机提出查询要求。 OLAP操作:上卷:通过沿一个维的概念分层向上攀登,或者通过维归约,对数据立方体进行类聚。下钻:是上卷的逆操作,它由不太详细的数据得到更详细的数据,下钻可以通过沿维的概念分层向下或引入附加的维来实现。切片:对给定方体的一个维进行进行选择,导致一个子立方体。切块:通过对两个或多个维执行选择,定义子立方体。转轴:是一种可视化操作,它转动数据的视角,提供数据的替代表示。 OLTP:即联机事务处理,是以传统数据库为基础、面向操作人员和低层管理人员、对基本数据进行查询和增、删、改等的日常事务处理。OLTP的特点有:a.实时性要求高;b.数据量不是很大。C.交易一般是确定的,是对确定性数据进行存取。d.并发性要求高且严格的要求事务的完整性,安全性。 OLTP和OLAP的区别:1)用户和系统的面向性:OLTP面向顾客,而OLAP面向市场;2)数据容:OLTP 系统管理当前数据,而OLAP管理历史的数据;3)数据库设计:OLTP系统采用实体-联系(ER)模型和面向应用的数据库设计,而OLAP系统通常采用星形和雪花模型;4)视图:OLTP系统主要关注一个企业或部门部的当前数据,而OLAP 系统主要关注汇总的统一的数据;5)访问模式:OLTP访问主要有短的原子事务组成,而OLAP系统的访问大部分是只读操作,尽管许多可能是复杂的查询。 7、PageRank算法原理:1)在初始阶段:构建Web图,每个页面初始设置相同的PageRank 值,通过迭代计算,会得到每个页面所获得的最终PageRank值。2)在一轮中更新页面 PageRank得分的计算方法:每个页面将其当前的PageRank值平均分配到本页面包含的出 链上。每个页面将所有指向本页面的入链所传入的权值求和,即可得到新的PageRank得分。 优点:是一个与查询无关的静态算法,所有网页的PageRank值通过离线计算获得;有效减 少在线查询时的计算量,极大降低了查询响应时间。 缺点:1)人们的查询具有主题特征,PageRank忽略了主题相关性,导致结果的相关性和主 题性降低。2)旧的页面等级会比新页面高。因为即使是非常好的新页面也不会有很多上游, 除非它是某个站点的子站点。

数据仓库与数据挖掘技术复习资料 一、单项选择题 1.数据挖掘技术包括三个主要的部分( C ) A.数据、模型、技术 B.算法、技术、领域知识 C.数据、建模能力、算法与技术 D.建模能力、算法与技术、领域知识 2.关于基本数据的元数据是指: ( D ) A.基本元数据与数据源,数据仓库,数据集市和应用程序等结构相关的信息; B.基本元数据包括与企业相关的管理方面的数据和信息; C.基本元数据包括日志文件和简历执行处理的时序调度信息; D.基本元数据包括关于装载和更新处理,分析处理以及管理方面的信息。 3.关于OLAP和OLTP的说法,下列不正确的是: ( A) A.OLAP事务量大,但事务内容比较简单且重复率高 B.OLAP的最终数据来源与OLTP不一样 C.OLTP面对的是决策人员和高层管理人员 D.OLTP以应用为核心,是应用驱动的 4.将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?( C ) A. 频繁模式挖掘 B. 分类和预测 C. 数据预处理 D. 数据流挖掘5.下面哪种不属于数据预处理的方法? ( D ) A.变量代换 B.离散化 C. 聚集 D. 估计遗漏值 6.在ID3 算法中信息增益是指( D ) A.信息的溢出程度 B.信息的增加效益 C.熵增加的程度最大 D.熵减少的程度最大 7.以下哪个算法是基于规则的分类器 ( A ) A. C4.5 B. KNN C. Bayes D. ANN 8.以下哪项关于决策树的说法是错误的( C ) A.冗余属性不会对决策树的准确率造成不利的影响 B.子树可能在决策树中重复多次 C.决策树算法对于噪声的干扰非常敏感 D.寻找最佳决策树是NP完全问题 9.假设收入属性的最小与最大分别是10000和90000,现在想把当前值30000映射到区间[0,1],若采用最大-最小数据规范方法,计算结果是( A )

可视化空间数据挖掘研究综述 贾泽露1,2 刘耀林2 (1. 河南理工大学测绘与国土信息工程学院,焦作,454000;2. 武汉大学资源与环境科学学院,武汉,430079)摘要:空间数据挖掘针对的是更具有可视化要求的地理空间数据的知识发现过程,可视化能提供同用户对空间目标心理认知过程相适应的信息表现和分析环境,可视化与空间数据挖掘的结合是该领域研究发展的必然,并已成为一个研究热点。论文综述了空间数据挖掘和可视化的研究现状,重点阐述了空间数据挖掘中的可视化化技术及其应用,并对可视化空间数据挖掘的发展趋势进行了阐述。 关键词:数据挖掘;空间数据挖掘;数据可视化;信息可视化;GIS; 空间信息获取技术的飞速发展和各种应用的广泛深入,多分辨率、多时态空间信息大量涌现,以及与之紧密相关的非空间数据的日益丰富,对海量空间信息的综合应用和处理技术提出了新的挑战,要求越来越高。空间数据挖掘技术作为一种高效处理海量地学空间数据、提高地学分析自动化和智能化水平、解决地学领域“数据爆炸、知识贫乏”问题的有效手段,已发展成为空间信息处理的关键技术。然而,传统数据挖掘“黑箱”作业过程使得用户只能被动地接受挖掘结果。可视化技术能为数据挖掘提供直观的数据输入、输出和挖掘过程的交互探索分析手段,提供在人的感知力、洞察力、判断力参与下的数据挖掘手段,从而大大地弥补了传统数据挖掘过程“黑箱”作业的缺点,同时也大大弥补了GIS重“显示数据对象”轻“刻画信息结构”的弱点,有力地提高空间数据挖掘进程的效率和结果的可信度[1]。空间数据挖掘中可视化技术已由数据的空间展现逐步发展成为表现数据内在复杂结构、关系和规律的技术,由静态空间关系的可视化发展到表示系统演变过程的可视化。可视化方法不仅用于数据的理解,而且用于空间知识的呈现。可视化与空间数据挖掘的结合己成为必然,并已形成了当前空间数据挖掘1与知识发现的一个新的研究热点——可视化空间数据挖掘(Visual Spatial Data Mining,VSDM)。VSDM技术将打破传统数据挖掘算法的“封闭性”,充分利用各式各样的数据可视化技术,以一种完全开放、互动的方式支持用户结合自身专业背景参与到数据挖掘的全过程中,从而提高数据挖掘的有效性和可靠性。本文将对空间数据挖掘、可视化的研究概况,以及可视化在空间数据挖掘中的应用进行概括性回顾总结,并对未来发展趋势进行探讨。 一、空间数据挖掘研究概述 1.1 空间数据挖掘的诞生及发展 1989年8月,在美国底特律市召开的第一届国际联合人工智能学术会议上,从事数据库、人工智能、数理统计和可视化等技术的学者们,首次出现了从数据库中发现知识(knowledge discovery in database,KDD)的概念,标志着数据挖掘技术的诞生[1]。此时的数据挖掘针对的 作者1简介:贾泽露(1977,6-),男,土家族,湖北巴东人,讲师,博士,主要从事空间数据挖掘、可视化、土地信息系统智能化及GIS理论、方法与应用的研究和教学工作。 作者2简介:刘耀林(1960,9- ),男,汉族,湖北黄冈人,教授,博士,博士生导师,武汉大学资源与环境科学学院院长,现从事地理信息系统的理论、方法和应用研究和教学工作。

数据挖掘主要工具软件简介 Dataminning指一种透过数理模式来分析企业内储存的大量资料,以找出不同的客户或市场划分,分析出消费者喜好和行为的方法。前面介绍了报表软件选购指南,本篇介绍数据挖掘常用工具。 市场上的数据挖掘工具一般分为三个组成部分: a、通用型工具; b、综合/DSS/OLAP数据挖掘工具; c、快速发展的面向特定应用的工具。 通用型工具占有最大和最成熟的那部分市场。通用的数据挖掘工具不区分具体数据的含义,采用通用的挖掘算法,处理常见的数据类型,其中包括的主要工具有IBM 公司Almaden 研究中心开发的QUEST 系统,SGI 公司开发的MineSet 系统,加拿大Simon Fraser 大学开发的DBMiner 系统、SAS Enterprise Miner、IBM Intelligent Miner、Oracle Darwin、SPSS Clementine、Unica PRW等软件。通用的数据挖掘工具可以做多种模式的挖掘,挖掘什么、用什么来挖掘都由用户根据自己的应用来选择。 综合数据挖掘工具这一部分市场反映了商业对具有多功能的决策支持工具的真实和迫切的需求。商业要求该工具能提供管理报告、在线分析处理和普通结构中的数据挖掘能力。这些综合工具包括Cognos Scenario和Business Objects等。 面向特定应用工具这一部分工具正在快速发展,在这一领域的厂商设法通过提供商业方案而不是寻求方案的一种技术来区分自己和别的领域的厂商。这些工

具是纵向的、贯穿这一领域的方方面面,其常用工具有重点应用在零售业的KD1、主要应用在保险业的Option&Choices和针对欺诈行为探查开发的HNC软件。 下面简单介绍几种常用的数据挖掘工具: 1. QUEST QUEST 是IBM 公司Almaden 研究中心开发的一个多任务数据挖掘系统,目的是为新一代决策支持系统的应用开发提供高效的数据开采基本构件。系统具有如下特点: (1)提供了专门在大型数据库上进行各种开采的功能:关联规则发现、序列模式发现、时间序列聚类、决策树分类、递增式主动开采等。 (2)各种开采算法具有近似线性(O(n))计算复杂度,可适用于任意大小的数据库。 (3)算法具有找全性,即能将所有满足指定类型的模式全部寻找出来。 (4)为各种发现功能设计了相应的并行算法。 2. MineSet MineSet 是由SGI 公司和美国Standford 大学联合开发的多任务数据挖掘系统。MineSet 集成多种数据挖掘算法和可视化工具,帮助用户直观地、实时地发掘、理解大量数据背后的知识。MineSet 2.6 有如下特点: (1)MineSet 以先进的可视化显示方法闻名于世。MineSet 2.6 中使用了6 种可视化工具来表现数据和知识。对同一个挖掘结果可以用不同的可视化工具以各种形式表示,用户也可以按照个人的喜好调整最终效果, 以便更好地理解。MineSet 2.6 中的可视化工具有Splat Visualize、Scatter Visualize、Map

必考知识点: 信息增益算法/ ID3决策树(计算) (详细见教材) 使用朴素贝叶斯分类预测类标号(计算) FP-TREE(问答) (详细见教材) 数据仓库的设计(详见第二章)(问答) (见PPT) 数值规约Equi-depth、equi-width、v-optimal、maxdiff(问答) (详细见教材) BUC (这个也要考,但不记得怎么考的了) 后向传播神经网络(名词解释) K-平均,K-中心点,DBSCAN 解析特征化(这个也要考) 总论 数据挖掘:是从大量数据中发现有趣(非平凡的、隐含的、先前未知、潜在有用)模式,这些数据可以存放在数据库,数据仓库或其他信息存储中。 挖掘流程: (1)学习应用域(2)目标数据创建集(3)数据清洗和预处理(4)数据规约和转换(5)选择数据挖掘函数(总结、分类、回归、关联、分类)(6)选择挖掘算法(7)找寻兴趣度模式(8)模式评估和知识展示(9)使用挖掘的知识 概念/类描述:一种数据泛化形式,用汇总的、简洁的和精确的方法描述各个类和概念,通过(1)数据特征化:目标类数据的一般特性或特征的汇总;(2)数据区分:将目标类数据的一般特性与一个或多个可比较类进行比较;(3)数据特征化和比较来得到。 关联分析:发现关联规则,这些规则展示属性-值频繁地在给定数据集中一起出现的条件,通常要满足最小支持度阈值和最小置信度阈值。 分类:找出能够描述和区分数据类或概念的模型,以便能够使用模型预测类标号未知的对象类,导出的模型是基于训练集的分析。导出模型的算法:决策树、神经网络、贝叶斯、(遗传、粗糙集、模糊集)。 预测:建立连续值函数模型,预测空缺的或不知道的数值数据集。 孤立点:与数据的一般行为或模型不一致的数据对象。 聚类:分析数据对象,而不考虑已知的类标记。训练数据中不提供类标记,对象根据最大化类内的相似性和最小化类间的原则进行聚类或分组,从而产生类标号。 第二章数据仓库 数据仓库是一个面向主题的、集成的、时变的、非易失的数据集合,支持管理部门的决策过程。从一个或多个数据源收集信息,存放在一个一致的模式下,并且通常驻留在单个站点。数据仓库通过数据清理、变换、继承、装入和定期刷新过程来构造。面向主题:排除无用数据,提供特定主题的简明视图。集成的:多个异构数据源。时变的:从历史角度提供信息,隐含时间信息。非易失的:和操作数据的分离,只提供初始装入和访问。 联机事务处理OLTP:主要任务是执行联机事务和查询处理。 联系分析处理OLAP:数据仓库系统在数据分析和决策方面为用户或‘知识工人’提供服务。这种系统可以用不同的格式和组织提供数据。OLAP是一种分析技术,具有汇总、合并和聚集功能,以及从不同的角度观察信息的能力。

相关主题