搜档网
当前位置:搜档网 › 船舶柴油机冷却水系统的智能控制

船舶柴油机冷却水系统的智能控制

船舶柴油机冷却水系统的智能控制
船舶柴油机冷却水系统的智能控制

大连海事大学毕业论文

专业班级:

姓名:王逸飞

指导教师:张跃文

继续教育学院

船舶柴油机冷却水系统的智能控制

内容摘要

本文针对传统的船舶柴油机冷却水PID控制系统不能快速、准确、稳定地调节冷却水温度的问题,提出了智能冷却水温度控制系统总体控制方案和具体方法。在建立船舶柴油机中央冷却系统高温淡水(缸套冷却水)冷却回路的动态热力学模型的基础上,又将柴油机功率模糊控制信号引入到高温冷却水温度控制系统中。通过预先调节三通阀的开度,达到降低冷却水温度动态偏差,快速调节冷却水温度的目的。应用Matlab软件对系统的仿真结果表明,基于功率信号模糊预调节与水温Smith+PID调节的智能控制方法,明显优于常规PID控制方法。在实际应用中实现了对船舶柴油机冷却水的智能精确控制,减少了油耗,延长了发动机的使用寿命。

关键词:智能温度控制;功率信号;精度高;响应快

ABSTRACT

The system cannot fast, accurate, and stable control of cooling water temperature control machine cooling water of PID marine diesel engine the traditional, proposed intelligent cooling water temperature control system overallcontrol plan and specific method. In the establishment of the central cooling system of ship diesel engine (high temperature water jacket cooling water) dynamically basedon the thermodynamic model of the cooling circuit, and the power of the diesel engine fuzzy control signal into high temperature of cooling water temperature control system.Through the opening of the regulating valve in advance, to reduce the temperature of the cooling water dynamic deviation, rapid adjusting cooling water temperature in the.The system simulation results show that the power signalusing Matlab software, the fuzzy intelligent control methodand preconditioned regulating water temperature based on Smith+PID, is superior to the conventional PID control method. In the practical application to realize accurate control of the intelligent marine diesel engine cooling water,reduce oil consumption, prolong the service life of the engine.

I

船舶柴油机冷却水系统的智能控制

目录

内容摘要 ..................................................................................................................................I 引言 . (1)

1 船舶柴油机中央冷却水系统 (1)

1.1 高温冷却水系统热力学模型 (3)

1.2 高温淡水冷却器热力学模型 (4)

1.3 冷却水系统三通阀分配比例模型 (4)

2 系统结构组成及其工作原理 (4)

2.1 控制系统结构 (4)

2.2 控制系统Matlab仿真结果 (5)

2.3 系统硬件组成 (6)

2.3.1 测温电路 (7)

2.3.2 A/D转换电路 (8)

2.3.3 功率信号测量 (9)

2.3.4 膨胀水箱液位信号的测量 (9)

2.3.5 压力信号的测量 (10)

2.3.6 报警电路 (8)

2.3.7 AT89S51 (10)

2.3.8 三通阀门控制电路 (10)

2.3.9 海水泵控制电路 (11)

2.4 系统软件程序 (11)

2.4.1 主程序模块 (12)

2.4.2 中断程序模块 (12)

2.4.3 中值滤波程序模块 (13)

3 系统控制工作过程 (13)

4 结论 (14)

参考文献 (15)

II

船舶柴油机冷却水系统的智能控制

引言

船舶柴油机冷却水的温度是影响柴油机工作的重要热工参数。如果冷却水温度过低,燃气中酸根与水结合,生成酸类物质,使气缸的磨损增加;如果柴油机冷却水的温度过高,这将会加快润滑油的老化,加速零件的磨损,缸套冷却水的温度控制的好坏直接影响柴油机的工作状态。船舶柴油机冷却水系统对柴油机缸套的合理冷却,将减轻缸套的磨损,精确的温度控制会有效地控制柴油机缸套的低温腐蚀、高温腐蚀并减小热应力。保持柴油机冷却水的温度在最佳的温度范围内,对于提高柴油机的动力性、减少废气的产生、减少燃料消耗量、增强柴油机工作平稳性等方面都有着重要的意义。

国内外关于船舶柴油机冷却水温度控制系统的研究主要集中在冷却水温度的控制方法上。2002年,杜玉恒提出了“船用柴油机冷却水温度的模糊控制”方法,但模糊控制在精确控制水温时效果不太理想;2003年,“主机缸套冷却水出口温度控制方法”及“基于功率的缸套冷却水出口温度控制系统的研究”其针对缸套冷却水“惯性大,缸套冷却水出口温度经常超调”的特点,提出了在现有的传统PID 反馈控制的基础上,采用“前馈”方法,引入以船舶主柴油机输出功率作为反映缸套冷却水热负荷扰动信号的前馈控制,以减小缸套冷却水出口温度的动态偏差,并利用Matlab仿真进行了验证。仿真结果表明,这种控制方法比传统的控制方法具有更好的控制性能;2004年吴桂涛等人提出了船舶主柴油机缸套冷却水出口温度的智能控制,其将基于神经网络的模糊PID控制引入到缸套冷却水出口温度控制系统中,以实现对控制对象进行在线控制。仿真结果表明,基于神经网络的模糊PID自适应控制比传统的PID控制的控制性能更好而且前者具有适应控制环境变化的能力和自学习能力,当柴油机运行工况发生变化时仍具有很好的控制性能。还有针对船舶柴油机冷却水系统的时滞特性提出了Smith预估器与PID控制方法,并取得了较为理想的控制效果。总之,船舶柴油机冷却水温度控制系统应能够在柴油机功率突变时,在冷却水温度波动时快速、精准、以最小的超调量来调节冷却水的温度。

目前,船舶柴油机冷却系统以中央冷却水系统为主。由于冷却水流经一定长度的管路,需要一定的时间,同时控制信号的执行部件,如电动机、三通阀门等都使得系统具有较大的时滞性和非线性特性。传统船舶柴油机冷却水温度控制系统的PID控制方法控制效果不佳,在实际控制系统中不能实现快速、稳定的调节船

1

船舶柴油机冷却水系统的智能控制

舶柴油机缸套冷却水的温度,且极易使冷却水温度控制系统超调。因此在现有的中央冷却水系统PID反馈控制的基础上,采用“前馈”方法,引入以柴油机输出“功率”作为反映缸套冷却水热负荷扰动信号的前馈控制,以减小缸套冷却水出口温度的动态偏差。此系统能够在柴油机功率突变时,在冷却水温度波动时快速、精准、以最小的超调量来调节冷却水的温度。

1 船舶柴油机中央冷却水系统

船舶柴油机中央冷却水系统由高温冷却回路、低温冷却回路和海水部分构成其简化图如图1.1所示。高温冷却回路的冷却水由柴油机缸套流出,经高温淡水冷却器。三通阀门、高温淡水泵后流入柴油机缸套。在柴油机缸套冷却水的进口和出口分别装有温度传感器,并在进口处装压力传感器,实时监测缸套冷却水的进口温度和出口温度及压力。高温淡水回路和主要作用是冷却柴油机的缸套,高温淡水温度的调节原理是:通过改变三通阀门的开度,改变流过高温淡水冷却器的流量,进而改变冷、热水的配比,调节冷却水的温度。

图1.1 中央冷却水系统简化图

2

船舶柴油机冷却水系统的智能控制

3

低温冷却水回路的冷却水由淡水泵流出后经中央冷却器、三通阀、柴油机滑油冷却器、空气冷却器后流入高温淡水冷却器,冷却高温淡水。在滑油冷却器和空气冷却器的冷却水进口和出口处均装有温度传感器,并在中央冷却器的进口处装压力传感器,以实现监测冷却水温度和压力。低温冷却回路冷却原理同高温冷却水回路,也是通过三通阀调节冷却器的旁通水量,改变冷、热水的比例,达到调节水温的目的。低温淡水回路的功能主要是冷却柴油机的滑油冷却器和空气冷却器,同时用低温淡水冷却高温淡水冷却器。海水冷却部分的作用是通过海水泵从弦外引入海水,冷却中央冷却器。

1.1 高温冷却水系统热力学模型

船舶柴油机中央冷却水系统高温冷却水回路热力模型由缸套冷却热力数学模型和高温淡水冷却器热力数学模型两部分组成,根据热量平衡,在某一微元时间内有下列关系:

缸套冷却水及缸套热量变化=该微元时间内气缸内燃气传递给冷却水的热量-该微元时间内系统通过热传递等传热方式传给环境的热量。

当环境温度为t 0时,有下列关系式:

(1)

当系统中各个参数稳定时,有

若考虑以各变量相对于其稳定状态的微元变化量为参数,设温度变化量 Δt =t-t 稳定 ,则式(1)可变为:

(2)

式(2)中:t hi 为柴油机缸套冷却水出口温度;t Di 为柴油机缸套冷却水进水温度;??

????----=-=)(1)()(1

)(1a hi Di hi w h D out in D

in t t R t t c m t Q C Q Q C dt dt τ0)(1)()(=----a hi Di hi w h t t R

t t c m t Q a D Di D h w D hi D D

h w in t RC t C m c C Q t RC C m c d dt ?+?+?=???????++11τ

船舶柴油机冷却水系统的智能控制

4

C D = m w c w +m c c c 为冷却水和缸套热容;m w 为冷却水质量;m c 为缸套质量;c w 和c c 为冷却水和钢的比热容;Q(t)为柴油机燃烧传入冷却水的热量; R 为气缸壁热阻。

1.2 高温淡水冷却器热力数学模型

由图1.1可得,从柴油机流出的高温淡水流经管系进入高温淡水冷却器,根据热量平衡原理可得高温冷却水侧的热量传递关:

(3)

式(3)中:Δt m 为高温淡水冷却器平均温差;C 1 = m h c h +m b c b 为高温淡水

侧热容,m h 为高温水质量,m b 为铜管质量,c h 高温水比热容;c b o 为黄铜比热容;R 为高温淡水冷却器热阻,,a 1、a

2分别高温水侧和低温水侧的换热系数,K 为冷却器总的传热系数。 同理可得低温冷却水热量传递关系:

(4)

式中:C 2为低温冷却水侧热容,C 2 = m l c l +m b c b ,其中为低温水质量,为低温水比热容。在稳定工况下,高温冷却水传递给铜管的热量等于铜管传递给低温冷却水的热量。

1.3 冷却水系统三通阀分配冷、热水比例模型

船舶中央冷却系统是通过改变三通阀门的开度来改变冷、热水的比例。设x 为三通阀某一开度时冷热水的比例,考虑各变量相对于其稳定状态微元变化量为参数,设温度变化量Δt =t-t 稳定,则m b ﹒Δt Di = m l ﹒Δt bo +m 2﹒c hi 。

2 系统结构组成及其工作原理

2.1 控制系统结构

传统的船舶柴油机冷却水PID 控制方法,不能很好控制缸套冷却水的温度。??

?????--=m bo hi h in t R t t c m C d dt 1)(111τKA A a A a R 11121=++=

λδ??

????--?=)(112li lo l l m lo t t c m t R C d dt τ

船舶柴油机冷却水系统的智能控制

5

实践证明,主机缸套水温度经常超调,特别是在扰动功率较大情况下,传统PID 调节更显得无能为力。Smith 预估控制可以预测未来的系统偏差,对系统输出进行提前校正,这种超前预估作用克服了时滞的不利影响,但是由于这种预估器需要系统的精确数学模型,而且当预估模型和实际对象不匹配时,其对系统的误差非常敏感,控制效果较差。

船舶柴油机缸套冷却水温度的变化,主要是由于主机功率发生了变化。船舶柴油机冷却水温度经常超调,是由于控制方法存在一定缺陷。本文将功率扰动信号引入控制系统中,通过模糊决策,使系统能够在功率变化的时候,预先调节阀门开度,改变冷、热水配比,可大大降低主机缸套冷却水温度超调量,并用Smith 预估PID 控制器精确调节水温,优化控制系统的调节能力。智能控制器控制系统结构如图2.1所示。

图2.1智能控制器控制系统结构图

将模糊控制与Smith 预估器结合是模糊控制在纯滞后系统应用中比较成功的一种方式。针对船舶柴油机中央冷却水温度控制对象的特点。本文提出了冷却水温度智能控制器,本系统在Smith 预估器PID 控制器的基础上,将柴油机功率的模糊控制含量信号引入到冷却水温度控制系统中,使系统能够在柴油机的功率变化以后,立即做出反应,来预先调节三通阀的开度,从而达到降低冷却水温度动超调量,快速调节冷却水温度的目的。

2.2 系统Matlab 仿真及结果

以MAN B&W 6L23/30A 主柴油机高温冷却水系统为例,利用Matlab 对其高温冷却水温度系统动态数学模型仿真,得到缸套冷却水出口温度随三通阀门位置变化的近似传递函数G 1(s)=17.133e -7.05t /(152.5s+1)和冷却水温度随功率变化的近似

传递函数G 2=0.1046/(134.38s+1).系统采用模糊控制调节器控制扰动功率信号,

在功率变化时输出预先调节信号;温度偏差PID

调节器,精确调节冷却水温度。

船舶柴油机冷却水系统的智能控制

模糊控制信号与PID调节信号加和共同控制三通阀阀门开度。

首先,当主机冷却水温为80℃,设定值为85℃时,仿真结果如图2.2。引入扰动功率模糊调节信号的智能控制系统大大降低了缸套冷却水出口处温度,提高系统的响应速度。采用智能控制方法后:

1.冷却水温度超调量大大降低。系统采用PID控制时缸套冷却水温度超调量非常大,峰值为89.5℃;采用智能控制后,调节过程中冷却水的最高温度由原来的89.5℃下降到85.7℃。

2.温度控制更加平稳。采用PID控制时,振荡情况严重,冷却水温度波动加大,波动范围为84.3℃~89.5℃;采用智能控制后冷却水温度波动较小,控制非常平稳。

3.系统达到稳定状态的时间也由原来的140s减小到92s。

图2.2冷却水温度智能控制与PID控制比较

6

船舶柴油机冷却水系统的智能控制

其次,假设船舶离港前设定温度为80℃;离港后主机功率增加,将冷却水温

度设定为85

℃;以便于提高柴油机的综合性能。引入扰动功率模糊控制信号的主

要目的是预先调节阀门的开度,从而降低冷却水温度的超调量。引入功率模糊控制信号和未引入的对比结果如图2.3。未引入扰动功率模糊控制信号前,冷却水最

t/s

图2.3有无扰动功率模糊控制信号对比图

高温度是86.5℃;引入后,冷却水最高温度为85.6℃。引入扰动功率模糊控制信号后,在一定程度上降低了冷却水温度的超调量。

2.3 系统硬件组成

该系统由步进电动机三通阀门、海水泵、淡水泵、冷却水温度智能控制器组成 。其电气结构图如图2.4所示。在温度测量电路中,采用热电阻PT100作为测温传感器。采用电桥法测量功率信号。选择浮子式液位传感器测量膨胀水箱液位信号。采集的模拟信号通过精确A/D 转换器ADC0809转换成数字信号,并送到微处理器中。系统采用了ATMEL 公司生产的8位处理器AT89S51,来实现冷却水温度、压力、膨胀水箱液位的越限报警,海水泵、淡水泵的控制等。采用三相步进电动机精确地控制三通阀门的开度。

船舶柴油机冷却水系统的智能控制

8

图2.4 冷却水温度智能控制系统结构图

2.3.1 测温电路

为了避免或减小导线电阻对测温的影响,工业中热电阻多采用三线制接法,由热电阻PT100与电桥共同构成测量电路,其结构如图2.5所示。

图2.5 温度测量电路图

图中热电阻R t 的三根导线粗细相同,长度相同,阻值都是r ,即R a =R b =R c =r 。

其中一根导线串联在电桥的电源上,对电桥的平衡无影响,另外两根分别串联在相邻的两臂上,使相邻两臂的阻值都增加相同的阻值r 。这样,导线对热电阻测量温度的准确性毫无影响。测温电路选择OP27作为放大器。OP27它是一种低噪音、高精准、高速运算放大器,适应的温度范围较广。本系统选用的放大器适宜的工作温度范围为-25℃~85℃,完全能够适应船舶环境,这无疑提高了温度测量的精度。信号放大部分属于V-V 放大,将电桥等效成差分放大电路,可以得运算放大部分的增益A=R5/R4。另外,可通过调节桥臂上的电位器RT3使电桥平衡。

2.3.2 A/D 转换电路

传感器采集的信号是模拟信号,需要转换成数字信号后才能由微处理器进行处理。A/D 转换电路ADC 电路有两大类:直接转换型(通过基准电压与采样——保持电路的输出信号进行比较,直接转换为数字量)、间接转换型(将采样——保持电路输出的信号首先转换成时间或频率,然后再将时间或频率转换成数字量)。直接转换电路转换速度高,转换精度容易变;间接转换电路转换速度低,转换精度可以做的较高,对干扰抑制能力强,在测试仪表中应用广泛。本系统主要用于控制,对测量的精度要求不太高,所以使用ADC0809转换器。ACD0809是一款8位逐次逼近型A/D 转换器,带有8个模拟量输入通道,芯片内带有地址译码锁存器,

船舶柴油机冷却水系统的智能控制

9

输出带有三态数据锁存器,启动信号方式为脉冲启动方式,每一通道的转换时间大约100μs ,转换精度为0.4℃。ADC0809的启动信号由AT89S51的P2.7和写信号/WR 的或非产生,这要求一条向ADC0809的写指令启动转换。模拟通道的地址A 、

B 、

C 由74LS373的高三位来提供。

2.3.3 功率信号的测量

现代船舶的集控室中一般都有柴油机输出功率监测显示功能。为降低系统的成本,如果船舶上已有功率信号采集系统,我们可以直接利用其采集的功率信号。如果船舶上没有功率采集系统,我们可采用转矩传感器用来检测柴油机的轴功率。其工作原理是轴的扭矩与轴的扭转角成比例。扭矩传感器有多种,可选择相位差式扭矩传感器。测得的功率信号直接或经过放大处理送至A/D 转换器。

2.3.4 膨胀水箱液位信号

膨胀水箱液位是冷却水系统的一个重要参数。船舶上的液位传感器种类很多,如浮子式、电极式及参考水位式等。本系统选用浮子式液位传感器。其结构如图

2.6所示。它由浮筒、弹簧和天翻地覆差动变压器组成。当水位变化时,浮筒也随水位上下浮动,从而改变了铁心在差动变压器中的位置,这样差动变压器输出一个与液位成比例的电压信号。液位信号的放大电路与测温电路相同。

图2.6 膨胀水箱液位信号传感器

2.3.5 压力信号的测量

本系统选用电阻式压力传感器测量冷却水的回路的压力。其原理是电阻的阻值随压力的变化而变化。压力测量电路与温度测量电路几乎相同,只是将电桥中的热电阻传感器换成了电阻式压力传感器。

2.3.6 报警电路

报警电路由控制板报警电路和机舱报警电路两部分组成。报警电路如图 2.7所示,

由单片机、反向器、发光二极管及蜂鸣器组成,当单片机的P2.5管角的电平发生变化时,无极性电容放电,三极管导通,LED

发光,同时蜂鸣器,外接的机电继电

船舶柴油机冷却水系统的智能控制

器动作,接通机舱24V报警器。

图2.7 报警电路

2.3.7 AT89S51

由于系统的水温变化不快,系统要求的运算速度不高,因此系统采用了ATMEL 公司生产的8位处理器AT89S51,来实现冷却水温度、压力、膨胀水箱液位的越限报警,智能地调节冷却水温度,以及完成温度、压力、液位显示,海水、淡水泵的控制等。AT89S51是AT89C51的替代产品,它是ATMEL公司推出的又一款在线可编程单片机,通过相应的ISP软件,用户可以对单片机程序存储器Flash中的代码进行方便的修改。AT89S51与AT89C51的引脚完全兼容,其技术参数如下:

1.4KB的系统可编程Flash程序存储器,3级安全保护,128B的内部数据存储器;

2.4.0~5.5V的工作电压;

3.最高工作频率33MHZ;

4.32个可编程I/O口;

5.2个16位的定时器/计数器;

6.6个中断源,可以在掉电模式下响应中断;

7.1个全双工的串行口;

8.双数据指针使程序运行的更快。

AT89S51是控制电路的核心,在控制系统中它的功能是:配合相应的外围电路,实现温度、压力、液位信号的采集,同时处理采集的信号,实现智能控制算法,输出阀门开度调节信号。

10

船舶柴油机冷却水系统的智能控制

2.3.8三通阀门控制电路

为了达到精确、快速调节三通阀门开度的目的,必须选择良好的执行部件,本系统选择三相步进电动机控制三通阀门的开度。由于它可以直接接收微机送来的数字控制信号,而不需要进行D/A转换所以为控制应用系统的设计带来很大的方便。步进电动机的特点是快速起停能力。如果负荷不超过步进电动机的动态转矩值,就能够在一刹那使步进电动机起动和停止。一般步进电动机的步进速率为200-1000步/秒,如果步进电动机是以逐渐加速到最大值,然后再减小到零的方式工作,其步进速率将增加2~4倍,而且不会失掉一步。在没有齿轮滑动的情况下,步值可由每步90°低到每步只有0.36°,而且它们都能精确地返回到原来的位置上。调节三通阀门开度的步进电动机控制电路如图2.6所示,AT89S51的P1.3、P1.4、P1.5三个管角控制步进电动机的正、反转及步数。为增强系统的抗干扰能力,在驱动器与单片机之间加一级光电隔离器。当P1.3管角置1时,经反向器变为低电平,光藕导通,控制信号经过光电隔离器后驱动达林顿管,放大的电流在驱动步进电动机。三相步进电动机的导通方式为三相单三拍导通方式,即:A→B →C→A。按照这个顺序通电,步进电动机正转;如果按相反方向通电,则步进电动机反转。

图2.6 步进电动机控制电路图

2.3.9海水泵控制电路

海水泵控制电路的目的是实现冷却海水流量控制(通过控制主海水泵的工作

11

船舶柴油机冷却水系统的智能控制

12

台数及运转速度)。海水泵共有三台,N0.1和NO.2海水泵为单速,NO.3海水泵为双速。通过对三台海水泵的不同布置,可以得到三种不同流量,以满足中央冷却器在不同热负荷情况下的需求。变流量冷却可以达到节能的目的。海水泵台数控制电路如图所示,按键S6是海水泵控制电路手动控制与自动控制切换键,每按一次,可以进行手动控制与自动控制模式之间的切换。单片机的P2.2、P2.3、P2.4管角输出信号经光电隔离后,接入海水泵控制箱。

三个管角的电平变化形成4种组合,控制三台海水泵。控制信号与海水泵运行台数对应表,如表1.1所示。

S1、S2、S3

为海水泵手动控制键,按下各键后,经光藕隔离,控制继电器动作,

船舶柴油机冷却水系统的智能控制

相应的海水泵启动。

2.4 系统软件程序

系统的软件程序采用了模块化的设计思想。系统软件程序由主程序模块、A/D 转换模块、中断程序模块、智能控制算法模块等组成。

2.4.1 主程序模块

主程序首先完成各个存储单元的初始化任务,包括清标志,清暂存单元等。初始化结束后,程序进入T0中断和T1中断。首先根据功率信号模糊预调节阀门开度,然后进入T1中断,执行温度数据采集、数据处理、以及输出控制信号等。

2.4.2 中断程序模块

T0中断程序,首先根据模糊经验判断功率信号是否有用,这样可排除瞬时扰动信号的干扰。如果判定功率信号可用,则将模糊调节输出量作为阀门开度的预调节信号。数据采集、标度转换、数字滤波以及智能控制算法等由定时器T1完成。程序首先设置采样通道的首地址,然后启动A/D转换。如果采样被中断,则向上发送采集数据,否则,判断采样次数,若满足三次,则进入中值滤波程序,否则继续采样。完成滤波后,判断温度是否超限,若是则报警,否则进入PID调节程序,输出调节信号。

2.4.3 中值滤波程序模块

由于船舶机舱环境非常复杂,外界干扰非常多,如温度和湿度变化大、振动和噪声干扰也很大,特别是强烈的电磁干扰会对系统采集的数据精度产生严重的影响,造成数据失真。在进行软件设计时,必须进行滤波,以降低各种干扰的影响,以免产生误操作。控制系统中,采用了软件数字小小滤波方式对采样信号进行处理。常用的软件数字滤波方法有程序判断滤波、中值滤波、算术平均滤波、加权平均滤波、去极值平均滤波、RC低通数字滤波、复合数字滤波等。软件滤波与模拟RC滤波相比有投资小成本低、设计简单。系统可靠性高、多通道可以共享及使用方便灵活等特点。本系统采用的中值滤波就是连续三次采样,取中间值作为本次采样值。三次采样值分别存放在2CH、2DH、2EH中,取中间值放入累加器A中,同时也转存在2AH单元内,以备进行温度标度转换用。

3 系统控制工作过程

当冷却水智能控制器开始工作后,程序首先根据功率信号模糊预调节三通阀门开度。然后根据冷却水的温度信号调节三通阀的开度。柴油机低功率运行时(发动机水温(70℃),单片机根据检测来的温度数据处理分析向执行元件发出控制信

13

船舶柴油机冷却水系统的智能控制

号,使其完成如下操作:

a.减小三通阀的开度至关闭位置;

b.停止海水泵的运行;

由于三通阀关闭,海水泵不工作,以至冷却水中没有与外界的热量交换;发动机水温上升很快。当水温升至85℃,单片机根据检测来的温度数据处理分析向执行元件发出控制信号,使三通阀的开度增大,海水泵开始低速运行。当水温达到90℃时,单片机又发出指令,使三通阀处于敞开状态。此时可充分利用海水泵打上来的海水对中央冷却器的冷却作用,使柴油机的冷却水温度达到平衡。当水温高达95℃时,单片机经数据分析发出控制指令使海水泵全速工作,三通阀仍处于敞开状态。这时中央冷却器的冷却能力最大,实现快速降温。当发动机水温降至89℃时,单片机根据采样数据分析处理发出控制指令,使执行元件完成以下操作:

a.海水泵低速工作;

b.三通阀处于敞开状态;

这样,直到发动机水温返升至95℃,海水泵又全速工作。

4 结论

由于船舶工作的特殊环境及其自身的原因,现代船舶的控制系统问题日趋复杂。船舶柴油机冷却水温度这一控制对象具有时滞性和时变性,对象参数随时间和工作点的变化而变化,大时滞现象更是船舶柴油机冷却水温度控制系统的难题。因此,船舶柴油机冷却水温度这一大时滞系统的控制,一直受到许多学者的关注,成为重要的研究课题之一。本文针对船舶柴油机冷却水温度系统的时滞问题提出了一种智能控制方法,即在原PID控制系统的基础上,引入柴油机功率模糊控制信号,使得系统能够在柴油机功率变化的瞬间,立即输出控制信号,预先调节三通阀门的开度,有效地降低由于水温的时滞特性引起的水温超调量。从控制系统的仿真结果来看,引入功率模糊控制信号的智能温度控制系统,有效克服了水温的时滞特性,大大地降低了冷却水温度的超调量,并提高了系统的响应速度;这种柴油机冷却系统智能控制系统实现了船舶柴油机冷却水温度控制的智能化,可以精确、自动地调节冷却水的温度,把发动机的工作温度限制在最佳阶段,延长发动机的使用寿命,提高发动机的工作效率,减少发动机的故障率。该控制系统可根据柴油机的功率、发动机的冷却水温来综合控制冷却系统,从而可达到减少

14

船舶柴油机冷却水系统的智能控制

电耗7%-10%、减少油耗10%的效果。性能稳定,工作可靠,节能潜力大,具有良好的推广前景。

1.7.3 参考文献

[1] 郑凤阁.企业管理创新论文.第1版.大连:海事大学出版社,1999.

[2] 李全利,仲伟峰,徐军.企业管理论文范文.第1版.北京:清华大学出版社,2006.

[3] 于海生.企业成本管理论文.第1版.北京:清华大学出版社,1999.

[4] 孙建忠,刘凤春.企业行政管理论文.第1版.北京:机械工业出版社,2007.

[5] 王洪玉,李小兵.企业战略管理论文.第1版.北京:电子工业出版社,2007.

致谢

感谢大连海事大学的各位老师,在学业上给予了我极大地鼓励和帮助,在生活上给与了我亲切热情的关怀。感谢轮机工程学院的老师教授我专业知识,为我即将参加的工作奠定了坚实基础。感谢家人和朋友对我的支持和鼓励,使我精神饱满、幸福快乐地度过大学时光。感谢张跃文老师对我毕业论文的辛勤指导,张文跃老师谦逊谨慎的治学作风、尽职尽责的工作态度将使我终身受益。在此,我向你们表示崇高的敬意和衷心的感谢!

15

柴油机冷却水系统处理

柴油机冷却水系统处理 【摘要】柴油机是柴油车的心脏,在车辆行驶过程中有相当重要的作用,为使柴油机在合适的温度下能够安全有效的工作,对于冷却水系统就显得格外重要。本文对柴油机冷却水在检修、清洗及防腐步骤进行论述。 【关键词】柴油机冷却水系统清洗防腐 柴油机冷却系统的主要功能是用来控制发动机的工作、温度和驱散多余的热能(含润滑系统的散热),系统的好坏对发动机的工作和使用寿命有直接关系,因此,日常检查和清洗及防腐就显得尤为重要。 1 冷却水系统的防腐保护 冷却水必须仔细处理、保存和检测,以避免腐蚀或形成沉淀,从而使热传导效率降低。因此要进行对冷却水处理。 1.1 处理步骤 (1)清理冷却水系统。(2)注满带防腐剂的无离子水或蒸馏水。(3)对冷却水系统和状况进行定期检查。遵守以上规定,会使冷却水引起的故障降至最低。 1.2 冷却水系统的清洁处理 (1)在防腐处理前,必须除去系统中的石灰沉淀层、铁锈和油泥,以改善热传导和确保防腐剂对表面进行保护的均匀性。(2)清洁处理应包括油泥酸洗除锈和清洗水垢。(3)水乳清洁剂和弱碱性清洁剂一样可以用于除油污过程。(4)不得使用含有易燃物的预混合清洁剂,通常采用氨基酸、柠檬酸、酒石酸为主,这些易溶于水,不会散发有害蒸汽,清洁剂不直接使用,要溶于水后再加入系统中。(5)清洗时不必拆卸发动机零件,水在发动机循环才能达到最佳效果。(6)清洁可使不良配合的结合处或有缺陷的垫片部位渗漏更明显,因此在净化过程中应进行检查,在清洁后的24小时要检查润滑系统的含酸量(机油)。 2 未净化的水 (1)建议使用无离子水或蒸馏水作为冷却水,由于硬度较低,这种冷却水还具有相当的腐蚀性p (1)加满清洁的自来水,原有的水可以放掉,将水加热到60℃在发动机中连续循环,按规定剂量加入除油化学剂在规定周期循环清洁化学制剂。(2)冷却水系统必须在无压力状态下检查并排除任何泄露,放掉系统中的水再加满清洁的自来水,将水循环两小时后放掉。 4.2 酸洗除锈

船舶柴油机复习资料

1.柴油机特性曲线:用曲线形式表现的柴油机性能指标和工作参数随运转工况变化的规律。2.扫气过量空气系数:每一循环中通过扫气口的全部扫气量与进气状态下充满气缸工作容积的理论容气量之比 3.封缸运行:航行时船舶柴油机的一个或一个以上的气缸发生了一时无法排除的故障,所采取的停止有故障气缸运转的措施。 4.12小时功率:柴油机允许连续运行12小时的最大有效功率。 5.有效燃油消耗率:每一千瓦有效功率每小时所消耗的燃油数量。 6.示功图:是气缸内工质压力随气缸容积或曲轴转角变化的图形。 7.燃烧过量空气系数:对于1kg燃料,实际供给的空气量与理论空气需要量之比。 8.敲缸:柴油机在运行中产生有规律性的不正常异音或敲击声的现象。 9.1小时功率:柴油机允许连续运行1小时的最大有效功率。(是超负荷功率,为持续功率的110%。) 10.平均有效压力:柴油机单位气缸工作容积每循环所作的有效功。 11.热机:把热能转换成机械能的动力机械。 12.内燃机:两次能量转化(即第一次燃料的化学能转化成热能,第二次热能转化成机械能)过程在同一机械设备的内部完成的热机。 13.外燃机: 14.柴油机:以柴油或劣质燃料油为燃料,压缩发火的往复式内燃机。 15.上止点:活塞在气缸中运动的最上端位置,也是活塞离曲轴中心线最远的位置。下止点 16.行程:活塞从上止点移动到丅止点间的位移,等于曲轴曲柄半径R的两倍。 17.气缸工作容积:活塞在气缸中从上止点移动到丅止点时扫过的容积。 18.压缩比:气缸总容积与压缩室容积之比值,也称几何压缩比。 19.气阀定时:进排气阀在上.丅止点前启闭的时刻称为气阀定时,通常气阀定时用距相应止点的曲轴转角表示。 20.气阀重叠角:同一气缸在上止点前后进气阀与排气阀同时开启的曲轴转角。(进排气阀相通,依靠废气流动惯性,利用新鲜空气将燃烧室内废气扫出气缸) 21.扫气:二冲程柴油机进气和排气几乎重叠在丅止点前后120-150曲轴转角内同时进行,用新气驱赶废气的过程。 22.直流扫气:气流在缸内的流动方向是自下而上的直线运动。(空气从气缸下部扫气口,沿气缸中心线上行驱赶废气从气缸盖排气阀排出气缸) 23.弯流扫气:扫气空气由下而上,然后由上而下清扫废气。 24.横流扫气:进排气口位于气缸中心线两侧,空气从进气口一侧沿气缸中心线向上,然后再燃烧室部位回转到排气口的另一侧,再沿中心线向下,把废气从排气口清扫出气缸。 25.回流扫气:进排气口在气缸下部同一侧,排气口在进气口上方,进气流沿活塞顶面向对侧的缸壁流动并沿缸壁向上流动,到气缸盖转向下流动,把废气从排气口中清扫出气缸。 26.增压:提高气缸进气压力的方法,使进入气缸的空气密度增加,从而增加喷入气缸的燃油量,提高柴油机平均有效压力和功率。 27.指示指标:以气缸内工作循环示功图为基础确定的一些列指标。只考虑缸内燃烧不完全及传热等方面的热损失,不考虑各运动副件存在的摩擦损失,评定缸内工作循环的完善程度。 28.有效指标:以柴油机输出轴得到的有效功为基础,考虑热损失,也考虑机械损失,是评定柴油机工作性能的最终指标。 29.平均指示压力:一个工作循环中每单位气缸工作容积的指示功。 30.指示功率:柴油机气缸内的工质在单位时间所做的指示功。 31.有效功率:从柴油机曲轴飞轮端传出的功率。

船用柴油机冷却水系统处理

船用柴油机冷却水系统处理 摘要船用柴油机是船舶心脏,在航行过程中有着举足轻重的作用,为使柴油机在合适的温度下能够安全有效的工作,对于冷却水系统就显得尤为重要,本文结合日常工作实际,对船用柴油机冷却水系统在检修、清洗及防腐步骤进行论述,使从事柴油机工作人员在进行柴油机的日常维护有所启迪。 关键词船用柴油机;冷却水系统;检查 0引言 柴油机冷却系统的主要功能是用来控制发动机的工作温度和驱散多余的热能(含润滑系统的散热)。系统好坏对发动机的工作和使用寿命有着直接的关系。因此,日常检查和清洗及防腐就显得尤为重要。在船舶柴油机使用过程中,由于缺乏对冷却系统的科学认识,不能正确检查和对冷却水及时去做防腐,甚至误认为冷却水温越低越好,影响了冷却系统的正常功能,造成了柴油机运行不稳定,使其使用寿命大大降低。 1冷却水系统 1.1冷却水系统的防腐保护 柴油机冷却水必须仔细处理,保存和检测,以避免腐蚀或形成沉淀,从而使热传热效率降低。因此很有必要对冷却水进行处理。应按如下步骤进行处理:1)清洗冷却水系统;2)注满带防腐剂的无离子水或蒸馏水(来自淡水发生器的水);3)对冷却水系统和冷却水状况进行定期检查。遵守这些预防规定,确保系统排泄良好,就会使由冷却水引起的故障降至最低。 1.2冷却水系统的清洁处理 1)在防腐处理之前,必须除去系统中的石灰沉淀层,铁锈和油泥,以改善热传导和确保防腐剂对表面进行保护的均匀性; 2)清洁处理应包括除油泥,酸洗除锈和清除水垢; 3)水乳化清洁剂和弱碱性清洁剂一样可以用于除油污过程; 4)不得使用含有易燃物的预混合清洁剂。用酸除锈时,推荐采用以氨基硫酸,柠檬酸,酒石酸为基础的专门产品,这些酸通常固态易溶于水且不会散发出有毒的蒸汽; 5)清洁剂不应直接混合,而应溶于水后再加入到冷却水系统中; 6)清洗时一般不必拆卸柴油机零件,水在柴油机中循环才能达到最佳的效果; 7)清洁可使不良配合的结合处或有缺陷的垫片部位渗漏更明显,因此在净化过程中应进行检查。在清洁后的24小时要检查滑油系统的含酸量。 1.3未净化的水 1)建议使用无离子水或蒸馏水(如由淡水发生器产生水)作为冷却水。由于硬度较低,这种水还具有相当的腐蚀性,应不断加入防腐剂; 2)如果没有无离子水或蒸馏水,特殊情况下可使用饮用水。但是水的总硬度不得超过9°DH。要检查水中的氯化物,氯,硫酸盐,硅酸盐的含量。它们不能超过下列值:氯化物:50ppm(50mg/L);氯:10ppm(10mg/L);硫酸盐:100ppm (100mg/L);硅酸盐:150ppm(150mg/L); 3)水中不得含有硫化物和氨。绝对不能使用雨水,因为雨水可能已被严重污染。应该注意的事,对水的软化处理不会降低硫酸盐和硅酸盐的含量。

柴油机冷却水系统

30. 冷却水系统 说明 冷却水系统…………………………………………………………第30-191页 工作卡 30 101-01冷却水恒温阀…………………………………………第30-193页 30 102-02冷却水泵的检修和更换………………………………第30-195页 备件图页 高温冷却水泵,顺时针方向……………………………………….图页号1 3010 高温冷却水泵,逆时针方向……………………………………….图页号1 3010 低温循环系统的冷却水恒温阀 手动越控………………………………………………………图页号1 3012 高温循环系统的冷却水恒温阀 手动越控………………………………………………………图页号1 3012 高温冷却水管……………………………………………………..图页号1 3016 发布号TOC_1 30 第30-189页

第30-190页 发布号TOC_1 30

冷却水系统 本柴油机只设计为淡水冷却,因此冷却水系统必须是中央/闭式冷却系统。 本柴油机设计几乎是无管子的,即水在前端 箱和气缸组件内部的水腔、水道中流动。所有大的管接头均设在前端箱中。在柴油机后端,供应齿轮箱滑油冷却器的淡水应由船厂连接上。 发布号1 30 A1-01 第30-191页

本柴油机的高、低温冷却水系统配有机带Array 高、低温淡水泵。为加强备用泵的自动启动功能,系统内设置了双作用式止回阀。 淡水泵安装在柴油机前端箱中,由曲轴通过齿轮系驱动。 泵的轴承由柴油机的滑油系统供油自动进行润滑。 控制高、低温冷却水系统的恒温元件也置于前端箱中。 增压空气冷却器分为二级,第一级由高温冷却水系统进行冷却,从增压器出来的高温空气传给冷却水的热量有可能较多地回收。第二级由低温冷却水系统进行冷却,使进入柴油机的空气温度得到进一步的降低。 在北极高寒地区航行时,直接从甲板进入的空气温度低,可采用一种调节系统来控制空气冷却器的第二级冷却水流量,以提高低负 荷下的增压空气温度。

船舶发动机冷却系统

第六章冷却系统 第一节冷却系统的功用、组成和布置 一、冷却系统的功用 柴油机工作时的燃气温度高达1800℃左右,使与燃气直接接触的气缸盖、气缸套、活塞、气阀、喷油器等部件严重受热。严重的受热会造成: ①材料的机械性能下降,产生较大的热应力与变形,导致上述部件产生疲劳裂纹或塑性变形; ②破坏运动部件之间的正常间隙,引起过度磨损,甚至发生相互咬死或损坏事故; ③燃烧室周围部件温度过高,使进气温度升高,密度降低,从而减少进气量;增压 后的空气温度也会升高,并影响进气量; ④润滑油的温度也逐渐升高,粘度下降,不利于摩擦表面油膜的形成,甚至失去润 滑作用。 综上所述,为了保证柴油机可靠工作必须对柴油机受热机件,滑油及增压后的空气等进行冷却。 然而从能量利用观点来看,柴油机的冷却是一种能量损失,过分冷却将导致燃油滞燃期延长,产生爆燃和燃烧不完全,增加加散热损失;机件内外温度差过大,以致热应力超过材料本身的强度而产生裂纹,润滑油粘度变大而增加摩擦功的消耗;在燃用含硫量较高的重油时,将产生低温腐蚀,使缸套严重腐蚀等。 因此,在管理中应既不使柴油机因缺乏冷却而导致机件过热,也不使柴油机因过分冷却而造成不良后果,应有所兼顾。冷却系统的主要任务应是保证柴油机在最适宜的温度状态下工作,达到既能避免零件的损坏和减小其磨损,又能充分发出它的有效功率。近代,从尽量减少冷却损失以充分利用燃烧能量出发,国内、外正在进行绝热发动机的研究,相应发展了一批耐高温的受热部件材料,如陶瓷材料等。 目前,柴油机的冷却方式分为强制液体冷却和风冷两种,绝大多数柴油机使用前者。 而液体冷却的介质通常有淡水、海水、滑油等三种。 淡水的水质稳定,传热效果好并可采用水处理解决其腐蚀和结垢的缺陷,因而它是目前使用最广泛的一种理想冷却介质; 海水的水源充裕但水质难以控制且其腐蚀和结垢问题比较突出,为减少腐蚀和结垢应限制海水的出口温度不应超过55℃; 滑油的比热小,传热效果较差,在高温状态易在冷却腔内产生结焦,但它不存在因漏泄而污染曲轴箱油的危险,因而适于作为活塞的冷却介质。 二、冷却系统的组成和布置 柴油机冷却系统一般是用海水强制冷却淡水和其它载热流体(如滑油、增压空气等)。在系统布置上,海水系统属开式循环,淡水及滑油等属于闭式循环,两者组成的冷却系统称“闭式冷却系统”。 (一)开式循环冷却系统

第一章_船舶动力装置系统_第一节_燃油系统

第一章船舶动力装置系统 现代船舶动力装置,按推进装置的形式,可分为5大类: (1)·柴油机推进动力装置;(2)·汽油机推进动力装置;(3)·燃气轮机推进动力装置;(4)·核动力推进动力装置;(5)·联合动力推进装置。 现代民用船舶中,所采用的动力装置系统绝大多数是柴油机动力装置,因此,本书主要介绍以柴油机为动力装置的船舶,图1-1为船舶柴油机动力装置系统燃油供应系统原理图。 图1-1 柴油机动力装置系统燃油供应系统原理图 柴油机燃油系统包括三大功能系统,分别是输送、日用和净化。 1)油输送系统 燃油输送系统是为了实现船上各燃油舱柜间驳运及注入排出而设计的,所以,系统应包括燃油舱柜、输送泵、通岸接头和相应的管子和阀件。通过管路的正确连接和阀件的正确设置,实现规格书所要求的注入、调拨和溢流等功能。 设计前,要认真阅读规格书和规范的有关章节,落实本系统所涉及的舱柜和设备所要求的输送功能。 设计时,应注意如下几个方面: a.规格书无特殊要求,注入管应直接注入至各储油舱,再通过输送泵送至各日用柜和沉淀柜,各种油类的注入总管应设有安全阀,泄油至溢流舱,泄油管配液流视察器; b.所有用泵注入的燃油舱柜都要有不小于注入管直径的溢流管,溢流至相应的溢流舱或储油舱,具体规定见各船级社规范,溢流管要配液流视察器; c.从日用柜至沉淀柜的溢流,在日用柜哪的管子上都要开透气孔以防止虹吸作用,两柜的连接管处要有液流视察器。 d.装在日用柜和沉淀壁上低于液面的阀,有的船级社规范对其材料有具体的规定,选阀时应予以注意。 e.一般情况下输送系统的介质,温度和压力都是较低的,所以系统的管材选用III级管即可。

柴油机冷却水处理

Motor Ship Test Kit -P Alkalinity DROP TEST METHOD 1.Measure out 20mls of sample water. 2.Add 4 drops of reagent mPA1 to give a pink colour. (If no pink colour develops record P -Alkalinity as zero). 3.Add reagent mPA3 drop by drop whilst swirling the sample bottle. Count the number of drops required until the pink colour disappears. 4.P Alkalinity (ppm) = No. of drops x 40. 5.Retain Sample for chloride test. 6.Record the result on log sheet and/or Waterproof. Motor Ship Test Kit -777066 Reagent mPA1 -777124 , Reagent mPA3 - 777125

Motor Ship Test Kit -Chloride DROP TEST METHOD 1. Continue with the sample from the P Alkalinity Test.2. Add 4 drops of reagent mBC1 to give a yellow colour.3.Add drops of reagent mBC2 whilst swirling the sample bottle until the yellow colour turns to orange/brown. Count the number of drops. 4.Chloride (ppm) = No. of drops x 20. 5. Record the result on log sheet and/or in Waterproof. Motor Ship Test Kit -777066 Reagent mBC1 -777050 , Reagent mBC2 -777051 NB! For higher expected chloride levels reduce the water sample size e.g. 10 ml sample; will give steps of 40ppm per drop used. For lower expected chloride levels increase the water sample size e.g. 40ml sample; will give steps of 10ppm per drop used. For lower expected chloride levels increase the water sample size e.g. 80 ml sample; will give steps of 5ppm per drop used.

船用柴油机

上海国际海事信息与文献网发布时间:2007-03-20 浏览:3123 【摘要】从船用柴油机的市场、产品、技术等方面介绍了柴油机的现状及发展动向。论述当前国外气缸直径160 mm以上,单机功率大于1000 kW的大功率低速、中速、高速柴油机的总体技术水平、技术发展概况,特别是在提高可靠性、改善其低工况特性、降低其排放和智能柴油机等方面进行阐述,并预测今后的发展趋势。 0 引言 柴油机因其功率范围大、效率高、能耗低、使用维修方便而优于蒸汽机、燃气轮机等,在民用船舶和中小型舰艇推进装置中确立了主导地位。船用柴油机的整体结构及其零部件结构不断改进,特别是电子技术、自动控制技术在柴油机上的应用,使其各项技术指标不断创新,市场上已有一批性能好、油耗低、功率范围大、废气排放符合法定标准、可靠性高的产品。 柴油机相对汽油机的最大优点在于高压缩比。这使最大功率、热效率提高,油耗降低;发动机坚固、耐用,寿命变长。但柴油机缺点在于比功率低于汽油机,对空气利用率低,摩擦损失大。 1 低速柴油机 低速柴油机由于性能优良、可靠性好、使用维护方便、能燃用劣质燃油等优点,已成为大型油船、大型干散货船、大型集装箱船的主要动力。最新型低速柴油机在许多方面趋于一致。即结构方面,采用非冷却式喷油器、可变喷油定时油泵、长尺寸连杆、液压驱动式排气门、单气门直流扫气、定压增压、高效涡轮增压器;性能方面,平均有效压力不断提高,增加活塞平均速度,改进零部件结构,增加强度,保持原有的低燃油消耗水平,使单缸功率不断增大,使用寿命延长。电子液压控制系统取代传统的机械式的凸轮驱动机构,简化柴油机设计,降低成本,优化运行控制。近年来,其爆发压力从8 MPa上升到16 MPa,燃油消耗率从208g/(kw·h)降至155g/(kw·h)左右。 目前世界船用低速柴油机市场仍被MAN B&W、Wartsila-New Sulzer和日本三菱重工三大公司垄断,以生产总功率来说,分别约占57%、33%和10%。 MAN B&W公司通过提高气缸平均有效压力和活塞平均速度来提高单缸功率。为使MC系列柴油机的NOx排放量降低,采用提高压缩比和可导致平稳燃烧的喷射系统等措施。 为了在减少NOx排放时不影响燃油消耗率,在设计时应考虑采用增加喷射压力、压缩比、燃烧压力、增压器效率等措施。MAN B&W 6L60MC型柴油机是世界上第一台正式投入使用的“智能化”主机,其燃油喷射和排气阀控制均通过电子计算机完成,达到了低油耗、NOx低排放的目标。 Wartsila-New Sulzer公司通过重组后,在开发、设计和制造能力方面骤然大增。RTA系列低速柴油机为该公司20世纪80年代开发,至今近20年来该公司通过提高平均有效压力、增加活塞平均速度,探索达到更大功率的可能性。 通过增大行程/缸径比,探索提高推进效率的方法;通过提高最大燃烧压力和可变燃油正

船舶柴油机冷却水温度控制技术参考资料

目前,船舶主机缸套冷却水温度的自动控制大多使用的是模拟式调节仪表,由电子器件的逻辑运算输出控制信号来驱动继电器,从而对电动机进行转向控制,实现对温度的控制。从整体上看主要存在以下两个明显的缺点:一是采用的元器件比较落后,导致电路较为复杂,使用的逻辑元器件也较多,增加了备件管理和维护工作的难度;二是由于系统整体比较复杂和模拟仪表的实现功能的限制,这些温度控制器都采用了较简单的控制规律,不能提供很好的控制性能。综合这些不利因素,此类控制系统已经无法满足日益提高的控制性能需求,必须采用新的控制方式。 1.1 直接作用式控制方式 在20世纪50年代末期,船舶柴油机冷却水温度控制是采用直接作用方式。这是一种早期的反馈式控制方式。其特点是,不需要外加能源,而是根据在冷却水管路中的测量元件内充注的工作介质的压力随温度成比例变化而产生的力来驱动三通调节阀,进而改变流经淡水冷却器的淡水流量和旁通淡水流量,从而实现温度调节。 这种控制方式的缺点是显而易见的,测量元件内充注的工作介质对密封性要求很高,如果测量元件内充注的工作介质泄漏,那么其本身的压力就不能随温度成比例进行变化,因而使得温度控制失去作用。同时,其控制精度不高,冷却水温度变化较大,对船舶柴油机的稳定运行也会不利。 整个船舶主机冷却水温度控制系统主要是由单片机测控平台、温度传感器组、执行机构,以及控制软件等部分组成的。 其中,温度采集模块是由分布在柴油机冷却水系统各部分的温度传感器组成的,采用了具有良好性能的感温元件,用来测量冷却水的温度;单片机测控平台内置单片微处理器,由温度采集接口电路、键盘与显示电路、以及执行机构接口电路所组成,可以对柴油机冷却水的温度进行监控,对执行机构发出控制指令,实现温度的检测与控制[3]。 2.2 系统各组成部分功能说明 下面分别对单片机测控平台、温度传感器组、执行机构和控制软件等部分进行详细的说明: 1)单片机测控平台 单片机测控平台是整个温度控制系统的重要组成部分,它要获取温度传感器组的测量数据,并且与温度设定值进行比较,同时输出控制信号到执行机构,实现温度的检测与控制。 系统控制过程是,当测量温度比设定温度高时,单片机断续输出控制信号,经过光电隔离和驱动放大后,输出给增大输出继电器,继电器控制三相伺服交流电动机断续运转,使得连接在电机上的三通调节阀转动,减少不经冷却器的旁通水量,增加经冷却器的淡水量;若是测量温度比设定温度低时,单片机断续输出控制信号,经过光电隔离和驱动放大后,输出给减小输出继电器,继电器控制三相伺服交流电动机断续运转,使得连接在电机上的三通调节阀转动,增加不经冷却器的旁通水量,减少经冷却器的淡水量。经过此自动控制过程,使主机缸套冷却水温度稳定在设定数值,或是设定数值附近,从而达到自动控制温度的目的。 2)温度传感器组 本系统采用了具有良好性能的铂热电阻pt100,用来测量冷却水的温度。同时,为了保证测量的准确性,采用了多点测量的方法,即在主机缸套冷却水的进口和出口,及缸套壁处都安装了温度传感器,分别测量这几点的温度,然后单片机控制多路开关,分别采集这几点的温度数值。在某一时刻,单片机采集的是某个点的温度实际数值,然后与该点的设定数值相比较,再输出控制信号。 3)执行机构 执行机构是指进行温度调节的机械装置,即控制继电器、三相伺服交流电动机和三通调节阀。由于水是一种大惯性的传热介质,当控制系统对水温进行调节时,由于冷却水的热容量大,温度响应速度很慢,水温并不是立即调整到指定数值,而是一个缓慢、渐进的变化过程,因此,就需要执行机构进行断续地控制,以一定量的延迟时间来确定水温的变化。 本测控系统采用了AT89C51作为微处理器,采用铂电阻(pt100)作为温度传感器,与运算放大器相结合构成精密测温电路,采用了ADC0809芯片作为精密测温电路与单片机的转换通道。接触式编码器用来指示柴油机油门的位置。键盘矩阵采用2行3列非编码方式,显示部分为3位LED数码管显示。系统输出环节通过单

柴油机空调系统和冷却系统的关系

Analysis and simulation of mobile air conditioning system coupled with engine cooling system Zhao-gang Qi *,Jiang-ping Chen,Zhi-jiu Chen Institute of Refrigeration and Cryogenics,School of Mechanical Engineering,Shanghai Jiao Tong University, No.1954,Huashan Road,Shanghai 200030,PR China Received 19September 2005;received in revised form 28March 2006;accepted 8October 2006 Available online 6December 2006 Abstract Many components of the mobile air conditioning system and engine cooling system are closely interrelated and make up the vehicle climate control system.In the present paper,a vehicle climate control system model including air conditioning system and engine cooling system has been proposed under di?erent operational conditions.All the components have been modeled on the basis of experimental data.Based on the commercial software,a computer simulation procedure of the vehicle climate control system has been developed.The performance of the vehicle climate control system is simulated,and the calculational data have good agreement with experimental data.Furthermore,the vehicle climate control simulation results have been compared with an individual air conditioning system and engine cooling system.The in?uences between the mobile air conditioning system and the engine cooling system are discussed.ó2006Elsevier Ltd.All rights reserved. Keywords:Air conditioning system;Engine cooling system;Coupled analysis;Simulation;Comparison 1.Introduction A mobile air conditioning (MAC)system can supply drivers and passengers a safe and comfortable environ-ment.Perfect performance of the MAC is the target that automobile manufacturers pursue in the period of design and development.It is known very well that MAC can sup-ply cold capacity under summer operational conditions and waste heat of the engine is used to heat the passenger com-partment under winter operational conditions.For envi-ronmental factors,researches have been performed extensively to develop and improve the e?ciencies of MAC and engine cooling systems.Heat exchangers are the research emphasis of MAC and engine cooling systems.A lot of correlations,experiments and models about vari-ous heat exchangers have been proposed.Chang and Wang [1,2]and Chang et al.[3]developed thermal characteristics correlations related to the geometrical parameters of heat exchangers with louvered ?ns.Their correlations have good agreement with their and previous experimental data in a wide range of Reynolds numbers based on louver pitch.Nowadays,many advanced technologies have been applied to enhance the performance of the heat exchangers of MAC and engine cooling systems.For engineers and researchers,the simulation procedure [4]of MAC and engine cooling systems can save test cost and manpower considerably.Raman Ali [5]developed a computer pro-gram for the MAC refrigerant circuit.The MAC included a condenser and an evaporator cooled by fans,a ?xed power reciprocating compressor and a thermostatic expan-sion valve.The heat transfer processes of the condenser and evaporator were divided into three parts as liquid,two phase and gas phase.All the nonlinear algebraic equa-tions were solved by iterative procedures.Saiz Jabardo et al.[6]proposed a steady computer program for an auto-mobile air conditioning system.The authors implied that operational parameters such as compressor speed,return air temperature in the evaporator and condensing air tem-peratures have an obvious e?ect on the performance of a 0196-8904/$-see front matter ó2006Elsevier Ltd.All rights reserved.doi:10.1016/j.enconman.2006.10.005 * Corresponding author.Tel.:+862162933242;fax:+862162632601.E-mail address:qizhaogang@https://www.sodocs.net/doc/ea8268779.html, (Z.-g.Qi). https://www.sodocs.net/doc/ea8268779.html,/locate/enconman Energy Conversion and Management 48(2007) 1176–1184

船用柴油机主要系统介绍-燃油,滑油,冷却

第五章柴油机系统 第一节燃油系统 一、作用和组成 燃油系统是柴油机重要的动力系统之一,其作用是把符合使用要求的燃油畅通无阻地输送到喷油泵入口端。该系统通常由五个基本环节组成:加装和测量、贮存、驳运、净化处理、供给。 燃油的加装是通过船上甲板两舷装设的燃油注入法兰接头进行的。这样,从两舷均可将轻、重燃油直接注入油舱。注入管应有防止超压设施。如安全阀作为防止超压设备,则该阀的溢油应排至溢油舱或其他安全处所。注入接头必须高出甲板平面,并加盖板密封,以防风浪天甲板上浪时海水灌入油舱。燃油的测量可以通过各燃油舱柜的测量孔进行,若燃油舱柜装有测深仪表的话,也可以通过测深仪表,然后对照舱容表进行。 加装的燃油贮存在燃油舱柜中。对于重油舱,一般还装设加热盘管,以加热重油,保持其流动性,便于驳油。 燃油系统中还装设有调驳阀箱和驳运泵,用于各油舱柜间驳油。 从油舱柜中驳出的燃油在进机使用前必须经过净化系统净化。燃油净化系统包括燃油的加热、沉淀、过滤和离心分离。图5-1示出了目前大多数船舶使用的重质燃油净化系统。 图5-1 重质燃油净化系统 1-调驳阀箱;2-沉淀油柜燃油进口;3-高位报警;3-低位报警;4-温度传感器;5-沉淀油柜;6、16-水位传感器;7-供油泵; 8-滤器;9-气动恒压阀;9’-流量调节器;10-温度控制器;11、12-分油机;13-连接管;14-日用柜溢油管;15-日用油柜从图可以看出,通过调驳阀箱1,燃油被驳运泵从油舱送入沉淀油柜5,每次补油量限制在液位传感器3与3之间,自动调节蒸汽流量的加温系统加速油的沉淀分离并且可使沉淀油柜提供给供油泵7的油温变化幅度很小。供油泵后设气动恒压阀9和流量控制阀9’,以确保平稳地向分油机输送燃油,有利于提高净化质量。燃油进入分油机前,通过分油机加热器加温,加热温度由温度控制器10控制,使进入分油机的燃油温度几乎保持恒定。系统设有既能与主分油机串联也能并联的备用分油机,还设有备用供油泵,提高了系统的可靠性。分油机所分的净油进入日用油柜15,日用油柜设溢流管。在船舶正常航行的情况下,分油机的分油量将比柴油机的消耗量大一些,故在吸入口接近日用油柜低部设有溢流管,可使日用油柜低部温度较低、杂质和水含量较多的燃油引回沉淀柜,既实现循环分离提高分离效果,又使分油机起停次数减少,延长分油机使用寿命。沉淀柜和日用柜都设有水位传感器6、16,以提醒及时放残。 燃油经净化后,便可通过燃油供给系统送给船舶柴油机。近年来由于高粘度劣质燃油的

内燃机车冷却水系统故障现象及分析处理

内燃机车冷却水系统故障现象及分析处理 发表时间:2018-10-01T18:06:33.970Z 来源:《基层建设》2018年第24期作者:孟广进 [导读] 摘要:内燃机车是冶金企业厂内铁路运输的主力军,对于它的常见故障的排除与维修至关重要。 宣化钢铁公司河北张家口 075100 摘要:内燃机车是冶金企业厂内铁路运输的主力军,对于它的常见故障的排除与维修至关重要。本文通过对铁路内燃机车中冷却水系统中的部分故障进行了论述,旨在提高铁路内燃机车的维修效率,降低其成本。 关键词:内燃机;冷却水系统;故障分析 机车工作过程中,柴油机等许多零部件强烈受热,需要强迫冷却,因此设置了冷却水系统。机车的冷却水系统分为高温水和中冷水两个循环系统。随着内燃机车发动机的不断强化,冷却系散热能力必须提高。过去汽车发动机那种封闭式冷却系统已满足不了需要,这是因为水、气不能分离,这样就容易使冷却系中产生气阻,从而影响冷却液的循环与冷却的效果。由于冷却水通常使用了防冻液,冷却液的消耗和浓缩严重,容易造成浪费。内燃机车膨胀水箱位于整个机车的顶部,在整个水系统中加入膨胀水箱,当水膨胀时水进入水箱,不至于把水管或机械胀破。膨胀水箱事先放入水,水不足时膨胀水箱也可起到补充水的作用。作为机车冷却系统中的重要部件,膨胀水箱的故障直接关系到机车能否正常运行,同时,膨胀水箱中水位的变化能够间接反映出机车其它部件的故障。故而膨胀水箱的正确检查对于冷却水系统故障的分析处理至关重要,下面本文就膨胀水箱的部分常见故障做了简略的介绍。 内燃机车冷却水系统工作原理 (1)高温冷却水系统工作原理 柴油机高温水泵从散热器高温部分和膨胀水箱补水管道中吸入冷却水,泵入柴油机高温水系统。冷却水在流经柴油机(包括增压器)时,吸入热量后温度升高,热水经由柴油机排水总管、冷却装置左上集流管,进入散热器水腔,由散热片把热量散发给冷却空气。温度降低后的冷却水,由右上集流管,重由高温水泵吸入,继续循环。 (2)低温冷却水系统工作原理 低温水泵从散热器低温部分与膨胀水箱补水管道中吸入冷却水,泵入柴油机中冷器,吸收增压空气热量,进入机油热交换器与柴油机机油交换热量,然后进入散热器,由散热片把热量散发给冷却空气。温度降低后的冷却水经由止回阀再回入低温水泵,继续循环。 (3)放气及补水管路工作原理 高温水系统在工作过程中,随着冷却水温度的升高,冷却水会发生汽化。同时,在冷却水系统的水腔中有可能存在死角,这部分冷却水也会汽化。为了排出这些汽化水,在柴油机出水总管出口到冷却装置左上集流管入口间管道的最高处,安装1根通往膨胀水箱的常开排气管。在低温水系统中冷器出水管最高处,也有1根通往膨胀水箱的常开排气管。这样,极少部分冷却水连同气体将由这2根排气管进入膨胀水箱,汽化水便可由膨胀水箱的排气口排出。 膨胀水箱底部有2根补水管,分别与高、低温水泵的进口相连。当系统工作时,水泵进口处为低压,膨胀水箱里的水在高度差及大压的作用下,经这2根补水管被吸入水泵,以补充排气管散发的冷却水,从而保证系统的正常工作。 (一)膨胀水箱涨水故障 在机车运行过程中,有时会出现膨胀水箱涨水现象。 原因分析: 出现该故障的可能原因包括以下方面:机车运行中气缸盖、气缸套裂纹、中冷器泄漏,压力空气和燃气窜入水系统,使水位上涨显示假水位。 判断及处理: 首先可逐个甩缸检查,若甩缸后涨水现象消失,证明为该气缸盖或缸套裂纹,这时可以停止该缸工作,维持到段进行更换修理。当以上检查不见水箱水位有变化时,可将中冷器排水阀打开验证,如果有水出现,则确定为中冷器漏水,回段后将中冷器吊下,进行水压试验并进行修补。 (二)燃气并未进入水系统,但水箱涨水 上述膨胀水箱涨水现象为有燃气或中冷器中的气体进入冷却水循环管路,但有时会出现燃气并未进入水系统,水箱却涨水现象。 原因分析: 柴油机放水后再上水时,若直接由水箱上部加水或从车体底部上水,但未按规定开放有关排气阀,水系统中的空气不能排出,启机后空气进入水箱,造成水箱溢水。另外,当水系统内有空气时,会使水泵出口压力低,部分空气仍在水系统内循环,柴油机转速极低时,外界空气极容易进入水系统,造成恶性循环。 处理措施: 因冷却装置处排气阀处于水系统末端,水系统有空气时,此处压力更低,故开启此排气阀也不能将空气排出。这时应将柴油机出水总管与水箱连接管处的截止阀关闭,开启冷却装置处的排气阀,待空气排出后再关闭排气阀,开启截止阀。 (三)膨胀水箱水位下降 除了膨胀水箱水位上涨现象以外,有时会出现膨胀水箱水位下降现象,若这种情况不是循环水系统中的水的正常消耗的话,则要进行故障排除。 原因分析: 出现这种现象的具体原因可能包括以下几方面: 一是高低温水泵故障;二是冷却单节漏水;三是水系统管路漏水;四是气缸盖与气缸套之间的密封垫圈损坏;五是气缸套与水套间的密封圈漏水;六是热交换器内铜管裂纹。 判断及处理: 检查高低温水泵泄水腔下部的管接头,只允许有少量的漏水,但在柴油机最高工作转速下水封每分钟的泄漏量不得超过30滴,如果此处大量漏水则证明水封不良,应拆卸后检修。外观目检冷却单节和水系统管路情况,发现漏水立即修复。外观检查各气缸盖与气缸套之间

柴油机的冷却系统1

柴油机的冷却系统 一、冷却系统的方式 冷却系统的功用是保证发动机在正常的温度下工作,把发动机工作时产生的热量通过它散发出去,加以冷却,经常检查冷却系统的工作状况,不能有缺水、漏水或风向、风流、风量不对等现象,以免破坏发动机的正常工作,损坏机件,造成事故。冷却系统按发动机的冷却方式可分为风冷却和水冷却两种[1]。 1.风冷却系统 风冷却一般用于小型发动机上。依靠飞轮上的风扇叶旋转,产生气流,通过导风罩、引风圈、导风板等导风装置的导向作用,直接吹向气缸盖和气缸体的外表,将热量带走。气缸盖、气缸体外表上分布了很多散热片,它的功用是加大与空气的接触面积,提高散热能力。导风罩和引风圈、导风板的作用是将冷空气引导到需要冷却的部位,使各部位冷却均匀,达到维持其适宜工作温度的目的。若不用导风装置,则在气缸盖、气缸体等零件的背面就不能得到足够的冷却,使之温度过高,造成很大温差,引起气缸和其他零件变形,严重时还会发生活塞拉缸和卡死等故障。 2.水冷却系统 水冷却系统的主要部件有水泵、散热水箱、风扇、水温调节装置和水温表。按冷却水循环方式的不同,小型柴油机的冷却系可分为三种:蒸发式冷却、热对流循环式冷却、压流循环式冷却。 ①蒸发式冷却。发动机工作时,气缸体水套和气缸盖水套中的水因接触高温零件而温度升高,这部分水受热膨胀,密度减小,便上升到水箱的顶部,水箱表层的水受到外界空气的冷却,密度加大而下沉,分别进入缸体水套和缸盖水套,形成上下对流,连续不断地循环,从而将气缸体和气缸盖周围的热量带到水箱散发掉。当水箱内的水温升高到沸点时,缸体水套和缸盖水套内水逐渐变成水蒸气,冲击水箱水面散发到空气中去。蒸发式水冷却系统靠水沸腾吸收大量的热并散发到空气中去,加强散热冷却作用。因此,水箱常常出现“开锅”现象,这是正常的,应注意经常补充冷却水,以保证发动机的正常工作温度。 ②热对流式循环冷却。立式195T 和德力1105型柴油机的冷却系统属于此种冷却方式,利用水的温度差所引起的密度变化形成水的热对流自然循环,当柴油机工作时,气缸体水套与气缸盖水套的冷却水由于接触高温零件而温度升高,密度变小,沿上水管进入水箱的上水室,而水箱内的冷却水因密度较大靠自重而进入下水室,经下水管进入气缸体水套和气缸盖水套,缸体水套和缸盖水套的低温水受热后密度变小又上升进入上水室,水箱内的冷却水下沉到下水室进入缸体水套和缸盖水套,如此往复,使冷却水连续不断地循环,达到传热和散热的目的. ③压流循环式冷却。多缸发动机和泰山12型拖拉机配置的195T型柴油机的冷却系统,利用离心式水泵将水加压进行强制循环,主要由水泵、散热器、轴流式风扇及进水橡胶管等组成,散热器及其蒸汽空气阀的结构同热对流循环式相同。发动机工作时,曲轴通过三角皮带,带动冷却水泵的叶轮旋转,冷却水以一定的压力进入气缸体水套、气缸盖水套和散热器上水室,受热的冷却水经散热器芯向下流动,被风扇吹来的大量冷空气冷却,流到散热器下水室,又被吸入水泵,再压入气缸体水套,实现冷却水的强制循环。 水冷却的效果跟冷却液有很大的关系,使用水作为冷却液已经不能满足现代柴油机的冷却要求。应用防冻液和水按不同的比例进行配置,并且添加一定量的

相关主题