搜档网
当前位置:搜档网 › 矩阵特征值和特征向量的几何意义

矩阵特征值和特征向量的几何意义

矩阵特征值和特征向量的几何意义
矩阵特征值和特征向量的几何意义

矩阵特征值和特征向量的几何意义(---by 小马哥整理)

从定义来理解特征向量的话,就是经过一个矩阵变换后,空间沿着特征向量的方向上相当于只发生了缩放,比如我们考虑下面的矩阵:

A=1.50.50.5 1.0??????

求这个变换的特征向量和特征值,分别是:0.850.530.530.85U -??=????

(列向量) 特征值为:1λ=1.81,2λ=0.69 注意,这里U 是正交矩阵,根据正交矩阵的性质,我们有1T U U -=。

用一个形象的例子来说明一下几何意义,我们考虑下面笑脸图案:

图1.1

为方便演示笑脸图案在[0,0]和[1,1]围起来的单位正方形里,同时也用两个箭头标出来了特征向量的方向。经过矩阵A=1.50.50.5 1.0??????

的变换,也就是用这个图案中的每个点的坐标和这个矩阵做乘法,得到下面图案:

图1.1

可以看到就是沿着两个正交的,特征向量的方向进行了缩放。

根据特征向量的定义,我们知道1U AU -=Λ,也即,T U AU =Λ,那么:T

A U U =Λ

假设我们把笑脸图案也看作某一个矩阵C ,那么,矩阵A*C ,即把矩阵A 作用于C ,可以理解为:T

U U C Λ我们从这个式子就可以看出来,A 矩阵是从旋转和沿轴缩放的角度来作用于C ,分成三步:

第一步,把特征向量所指的方向分别转到横轴和纵轴,这一步相当于用U 的转置,也就是T U 进行了变换

图1.2

第二步,然后把特征值作为缩放倍数,构造一个缩放矩阵1.81

0.69??????

,矩阵分别沿着横轴和纵轴进行缩放:

图1.3 第三步,很自然地,接下来只要把这个图案转回去,也就是直接乘U 就可以了

图1.4

所以,从旋转和缩放的角度,一个矩阵变换就是,旋转-->沿坐标轴缩放-->转回来,的三步操作。

多提一句,这里给的是个(半)正定矩阵的例子,对于不镇定的矩阵,也是能分解为,旋转-->沿坐标轴缩放-->旋转,的三步的,只不过最后一步和第一步的两个旋转不是转回去的关系了,表达如下:

T

T U V

=∑

这个就是SVD分解,就不详细说了。另外,这个例子是二维的,高维类似,但是形象理解需要脑补。

矩阵特征值、特征向量的研究【开题报告】

毕业论文开题报告 数学与应用数学 矩阵特征值、特征向量的研究 一、选题的背景、意义 (1)选题的背景、意义 “矩阵(Matrix)”术语是由西尔维斯特创用并由凯莱首先明确其概念的。19世纪50年代,西尔维斯特引入“矩阵”一词来表示“一项由几行H列元素组成的矩形阵列”或“各种行列式组”,凯莱作为矩阵理论的创立者,首先为简化记法引进矩阵,然后系统地阐述了矩阵的理论体系。随后,弗罗伯纽斯等人发展完善了矩阵的理论体系形成了矩阵的现代理论。然而,矩阵思想的萌芽由来已久,早在公元前l世纪中国的《九章算术》就已经用到类似于矩阵的名词。但那时矩阵仅是用来作为一种矩形阵列解决实际问题,并没有建立起独立完善的矩阵理论。18世纪末到19世纪中叶,这种排列形式在线性方程组和行列式计算中应用日益广泛,行列式等理论的发展提供了矩阵发展的条件,矩阵概念由此产生,矩阵理论得到系统的发展。20世纪初,无限矩阵理论得到进一步发展[]1。 线性代数(Linear Algebra)是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中[]2。 由于费马和笛卡儿的工作,线性代数基本上出现于十七世纪。直到十八世纪末,线性代数的领域还只限于平面与空间。十九世纪上半叶才完成了到n维向量

空间的过渡矩阵论始于凯莱,在十九世纪下半叶,因若当的工作而达到了它的顶点。1888年,皮亚诺以公理的方式定义了有限维或无限维向量空间。托普利茨将线性代数的主要定理推广到任意体上的最一般的向量空间中.线性映射的概念在大多数情况下能够摆脱矩阵计算而引导到固有的推理,即是说不依赖于基的选择。不用交换体而用未必交换之体或环作为算子之定义域,这就引向模的概念,这一概念很显著地推广了向量空间的理论和重新整理了十九世纪所研究过的情况。 “代数”这一个词在我国出现较晚,在清代时才传入中国,当时被人们译成“阿尔热巴拉”,直到1859年,清代著名的数学家、翻译家李善兰才将它翻译成为“代数学”,一直沿用至今[]3[]4。 线性代数是讨论矩阵理论、与矩阵结合的有限维向量空间及其线性变换理论的一门学科。 (2)国内外研究现状和发展趋势 主要理论成熟于十九世纪,而第一块基石(二、三元线性方程组的解法)则早在两千年前出现(见于我国古代数学名著《九章算术》)[]5。 ①线性代数在数学、力学、物理学和技术学科中有各种重要应用,因而它在各种代数分支中占居首要地位; ②在计算机广泛应用的今天,计算机图形学、计算机辅助设计、密码学、虚拟现实等技术无不以线性代数为其理论和算法基础的一部分; ③该学科所体现的几何观念与代数方法之间的联系,从具体概念抽象出来的公理化方法以及严谨的逻辑推证、巧妙的归纳综合等,对于强化人们的数学训练,增益科学智能是非常有用的; ④随着科学的发展,我们不仅要研究单个变量之间的关系,还要进一步研究多个变量之间的关系,各种实际问题在大多数情况下可以线性化,而由于计算机的发展,线性化了的问题又可以计算出来,线性代数正是解决这些问题的有力工具。 线性代数起源于对二维和三维直角坐标系的研究。在这里,一个向量是一个有方向的线段,由长度和方向同时表示。这样向量可以用来表示物理量,比如

第五章 矩阵的特征值与特征向量

第五章 矩阵的特征值与特征向量 5.1矩阵的特征值与特征向量 5.1.1矩阵的特征值与特征向量的概念 设A 是n 阶矩阵,若存在数λ及非零的n 维列向量α,使得:λαα=A (0≠α)成立,则称λ是矩阵A 的特征值,称非零向量α是矩阵A 属于特征值λ的特征向量. 5.1.2矩阵的特征值与特征向量的求法 把定义公式λαα=A 改写为()0=-αλA E ,即α是齐次方程组()0=-x A E λ的非零解.根据齐次方程组有非零解的充分条件可得:0=-A E λ. 所以可以通过0=-A E λ求出所有特征值,然后对每一个特征值i λ,分别求出齐 次方程组()0=-x A E i λ的一个基础解系,进而再求得通解. 【例5.1】求??? ? ? ?????------=324262423A 的特征值和特征向量. 解:根据()()0273 2 4 26 24 23 2 =+-=---= -λλλλλλA E ,可得71=λ,22-=λ. 当7=λ时,??? ? ? ?????? ??? ???????=-0000002124242124247A E , 所以()07=-x A E 的一个基础解系为:()T 0,2,11-=α,()T 1,0,12-=α,则相应的特征向量为2211ααk k +,其中21,k k 是任意常数且()()0,0,21≠k k . 当2-=λ时,???? ? ?????--? ??? ? ??????---=--00012014152428242 52A E ,所以()02=--x A E 的一个基础解系为()T 2,1,23=α,则相应的特征向量为33αk ,其中3k 是任意常数且

矩阵特征值和特征向量的研究

矩阵特征值与特征向 量的研究

目录 一矩阵特征值与特征向量研究的背景及意义 (3) 二、特征值与特征向量的定义及其性质 (4) 2.1 定义 (4) 2.2 性质 (4) 三特征值及其特征向量的求法及其MATLAB的实现 (5) 3.1 QR方法 (5) 3.1.1 基本原理 (5) 3.1.2 具体实例 (5) 3.2 用多项式的方法来求解特征值 (10) 四特征值与特征向量的简单应用 (12) 五小结 (16)

一矩阵特征值与特征向量研究的背景及意义 矩阵的特征值与特征向量是高等代数的重要组成部分,通过对矩阵特征值与特征向量的性质介绍,以及对矩阵特征值与特征向量理论的分析,将特征值与特征向量应用于方程组的求解问题是高等代数中的重要内容。 随着社会到的进步,计算机的飞速发展,高等代数这门课程已经渗透到各行各业里面。在许多方面都有着很重要的应用。在多数高等代数教材中,特征值与特征向量描述为线性空间中线性变换A的特征值与特征向量。从理论上来讲只要求出线性变换A的特征值和特征向量就可以知道矩阵A的特征值和特征向量。因此求矩阵的特征值与特征向量就变得尤为重要的引入是为了研究线性空间中线性变换A的属性。 在物理,力学,工程技术中有很多问题在数学上都归结为求矩阵的特征值和特征向量的问题。现在教材中给出的求解特征值和特征性向量的方法基本上都是通过求解特方程来求解。有时候特征方程会极其的麻烦。有一些文章中虽然给了初等行列变换的方法来较少计算量,但是仍未摆脱参数行列式计算的问题。本文中我们将首先讲解有关特征值和特征向量的相关知识,另外介绍一些简单实用的方法来求解矩阵的特征值与特征向量。

矩阵的特征值和特征向量

第五章矩阵的特征值和特征向量 来源:线性代数精品课程组作者:线性代数精品课程组 1.教学目的和要求: (1) 理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量. (2) 了解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对 角矩阵. (3) 了解实对称矩阵的特征值和特征向量的性质. 2.教学重点: (1) 会求矩阵的特征值与特征向量. (2) 会将矩阵化为相似对角矩阵. 3.教学难点:将矩阵化为相似对角矩阵. 4.教学内容: 本章将介绍矩阵的特征值、特征向量及相似矩阵等概念,在此基础上讨论矩阵的对角化问题. §1矩阵的特征值和特征向量 定义1设是一个阶方阵,是一个数,如果方程 (1) 存在非零解向量,则称为的一个特征值,相应的非零解向量称为属于特征值的特 征向量. (1)式也可写成, (2) 这是个未知数个方程的齐次线性方程组,它有非零解的充分必要条件是系数行列式 , (3) 即 上式是以为未知数的一元次方程,称为方阵的特征方程.其左端是的 次多项式,记作,称为方阵的特征多项式.

== = 显然,的特征值就是特征方程的解.特征方程在复数范围内恒有解,其个数为方程的次数(重根按重数计算),因此,阶矩阵有个特征值. 设阶矩阵的特征值为由多项式的根与系数之间的关系,不难证明 (ⅰ) (ⅱ) 若为的一个特征值,则一定是方程的根, 因此又称特征根,若为 方程的重根,则称为的重特征根.方程的每一个非 零解向量都是相应于的特征向量,于是我们可以得到求矩阵的全部特征值和特征向量的方法如下: 第一步:计算的特征多项式; 第二步:求出特征方程的全部根,即为的全部特征值; 第三步:对于的每一个特征值,求出齐次线性方程组: 的一个基础解系,则的属于特征值的全部特征向量是 (其中是不全为零的任意实数). 例1 求的特征值和特征向量. 解的特征多项式为 =

特征值和特征向量的几何意义是什么

特征值和特征向量的几何意义是什么? 特征向量的几何意义 特征向量确实有很明确的几何意义,矩阵(既然讨论特征向量的问题,当然是方阵,这里不讨论广义特征向量的概念,就是一般的特征向量)乘以一个向量的结果仍 是同维数的一个向量,因此,矩阵乘法对应了一个变换,把一个向量变成同维数的另一个向量,那么变换的效果是什么呢?这当然与方阵的构造有密切关系,比如可 以取适当的二维方阵,使得这个变换的效果就是将平面上的二维向量逆时针旋转30度,这时我们可以问一个问题,有没有向量在这个变换下不改变方向呢?可以想 一下,除了零向量,没有其他向量可以在平面上旋转30度而不改变方向的,所以这个变换对应的矩阵(或者说这个变换自身)没有特征向量(注意:特征向量不能 是零向量),所以一个变换的特征向量是这样一种向量,它经过这种特定的变换后保持方向不变,只是进行长度上的伸缩而已(再想想特征向量的原始定义Ax= cx,你就恍然大悟了,看到了吗?cx 是方阵A 对向量x 进行变换后的结果,但显然cx 和x 的方向相同),而且x 是特征向量的话,ax 也是特征向量(a 是标 量且不为零),所以所谓的特征向量不是一个向量而是一个向量族, 另外,特征值只不过反映了特征向量在变换时的伸缩倍数而已,对一个变换而言,特征向量指明的方向才是很重要的,特征值不是那么重要,虽然我们求这两个量时 先求出特征值,但特征向量才是更本质的东西! 比如平面上的一个变换,把一个向量关于横轴做镜像对称变换,即保持一个向量的横坐标不变,但纵坐标取相反数,把这个变换表示为矩阵就是 A=??? ? ??-1001 显然??? ? ??-=???? ?????? ??-b a b a 1001 这正是我们想要的效果,那么现在可以猜一下了,这个矩阵的特征向量是什么? 想想什么向量在这个变换下保持方向不变,显 然,横轴上的向量在这个变换下保持方向不变 (记住这个变换是镜像对称变换,那镜子表面上(横轴上)的向量当然不会变化) 所以可以直接猜测其特征向量是 )0( ,0≠??? ? ??a a 还有其他的吗?有,那就是纵轴上的向量,这时经过变换后,其方向反向,但仍在同一条轴上,所以也被认为是方向没有变化,所以 )0( ,0≠??? ? ??b b 也是其特征向量,去求求矩阵A 的特征向量就知道对不对了! (来自百度网站)

浅谈矩阵的特征向量特征值的意义

浅谈矩阵的特征向量特征值的意义 描述了矩阵的特征向量和特征值的定义,简述了矩阵的特征向量特征值在数学、物理、信息和哲学上的一些意义,对于从多角度深入理解矩阵的特征向量特征值有积极意义。 标签:线性代数;矩阵;特征向量;特征值 1 线性变换与矩阵的特征向量特征值[1] 线性变换是指一个n维列向量被左乘一个n阶矩阵后得到另一个n维列向量,它是同维向量空间中的把一个向量线性映射成了另一个向量。即 Y=AX (Y,X∈Rn A=(aij)A=(aij)n×n) 如果对于数λ,存在一个n维零列向量X(即X∈Rn且X≠0),使得 AX=?姿X 则称数λ为矩阵A的一个特征值,X为矩阵A对应于λ的特征向量。 在线性代数中研究线性变换就是研究相应的矩阵A,矩阵A的特征向量和特征值是线性变换研究的重要内容。 2 在数学上的意义 矩阵乘法对应了一个变换,是把任意一个向量变成另一个方向或长度都大多不同的新向量。在这个变换的过程中,原向量主要发生旋转、伸缩的变化。如果矩阵对某一个向量或某些向量只发生伸缩变换,不对这些向量产生旋转的效果,那么这些向量就称为这个矩阵的特征向量,伸缩的比例就是特征值。这里可以将特征值为负,特征向量旋转180度,也可看成方向不变,伸缩比为负值。所以特征向量也叫线性不变量。特征向量的不变性是他们变成了与其自身共线的向量,他们所在的直线在线性变换下保持不变;特征向量和他的变换后的向量们在同一根直线上,变换后的向量们或伸长或缩短,或反向伸长或反向缩短,甚至变成零向量(特征值为零时)[2]。 对对称矩阵而言,可以求得的特征向量是正交的,就是把矩阵A所代表的空间,进行正交分解,使得A的向量集合可以表示为每个向量a在各个特征向量上面的投影长度。 例如,对于x,y平面上的一个点(x,y),我对它作线性变换A, 这个线性变换相当于关于横轴x做镜像。我们可以求出矩阵A的特征向量

矩阵特征值的意义

矩阵特征值的意义 数学里面的特征值和特征矩阵到底有什么用,它的物理意义在于什么 矩阵的特征值要想说清楚还要从线性变换入手,把一个矩阵当作一个线性变换在某一组基下的矩阵,最简单的线性变换就是数乘变换,求特征值的目的就是看看一个线性变换对一些非零向量的作用是否能够相当于一个数乘变换,特征值就是这个数乘变换的变换比,这样的一些非零向量就是特征向量,其实我们更关心的是特征向量,希望能把原先的线性空间分解成一些和特征向量相关的子空间的直和,这样我们的研究就可以分别限定在这些子空间上来进行,这和物理中在研究运动的时候将运动分解成水平方向和垂直方向的做法是一个道理! 特征值时针对方阵而言的。 两个向量只有维数相同时才能考虑相等的问题,才能有和、有差。 引入特征值与特征向量的概念 ? 引例 在一个n 输入n 输出的线性系统y=Ax 中,其中 ? 我们可发现系统A 对于某些输入x ,其输出y ? 恰巧是输入x 的 倍,即 ;对某些输入,其输出与输入就不存在这种按比例放大的关系。 ??????? ??=??????? ??=??????? ??=n n nn n n n n y y y y x x x x a a a a a a a a a A M M L L L L L L L 2121212222111211,,λx y λ=

? 例如,对系统 ,若输入 ? 则 ? ? 若输入 ,则 ? 所以,给定一个线性系统A ,到底对哪些输入,能使其输出按比例放大,放大倍数 等于多少这显然是控制论中感兴趣的问题。 基于此给出特征值与特征向量的概念: ? 定义 设A 是一个n 阶方阵,若存在着一个数 和一个非零n 维向量x ,使得 则称 是方阵A 的特征值,非零向量x 称为A 对应于特征值 的特征向量,或简称为A 的特征向量 ???? ??=4312A ? ?? ? ??=31x x Ax y 5315155314312=???? ??=???? ??=???? ?????? ??==???? ??=52x x Ax y λ≠???? ??=???? ?????? ??==269524312λx Ax λ=λλ

矩阵特征值求解

矩阵特征值求解的分值算法 12组 1.1 矩阵计算的基本问题 (1)求解线性方程组的问题.即给定一个n 阶非奇异矩阵A 和n 维向量b ,求一个n 维向量x ,使得 b Ax = (1.1.1) (2)线性最小二乘问题,即给定一个n m ?阶矩阵A 和m 维向量b ,求一个n 维向量 x ,使得 },min{n R y b Ay b Ax ∈-=- (1.1.2) (3)矩阵的特征问题,即给定一个n 阶实(复)矩阵A ,求它的部分或全部特征值以及对应的特征向量,也就是求解方程 x Ax λ= (1.1.3) 一对解(λ,x ),其中)(),(n n C R x C R ∈∈λ,即λ为矩阵A 的特征值,x 为矩阵 A 的属于特征值λ的特征向量。 在工程上,矩阵的特征值具有广泛的应用,如大型桥梁或建筑物的振动问题:机械和机件的振动问题;飞机机翼的颤振问题;无线电电子学及光学系统的电磁振动问题;调节系统的自振问题以及声学和超声学系统的振动问题.又如天文、地震、信息系统、经济学中的一些问题都与矩阵的特征值问题密切相关。 在科学上,计算流体力学、统计计算、量子力学、化学工程和网络排队的马尔可夫链模拟等实际问题,最后也都要归结为矩阵的特征值问题.由于特征值问题在许多科学和工程领域中具有广泛的应用,因此对矩阵的特征值问题的求解理论研究算法的开发软件的制作等是当今计算数学和科学与工程计算研究领域的重大课题,国际上这方面的研究工作十分活跃。 1.2 矩阵的特征值问题研究现状及算法概述 对一个n n ?阶实(复)矩阵A,它的特征值问题,即求方程(I.1.3)式的非平凡解,是数值线性代数的一个中心问题.这一问题的内在非线性给计算特征值带来许多计算问题.为了求(l.1.3)式中的λ,一个简单的想法就是显式地求解特征方程 0)det(=-I A λ (1.2.1) 除非对于个别的特殊矩阵,由于特征方程的系数不能够用稳定的数值方法由行列式的计算来求得,既使能精确计算出特征方程的系数,在有限精度下,其特征多项式)det()(I A f λλ-=的根可能对多项式的系数非常敏感.因此,这个方法只能在理论上是有意义的,实际计算中对一般矩阵是不可行的.首先,若矩阵A 的阶数较大,则行列式)det(I A λ-的计算量将非常大;其次,根据Galois 理论,对于次数大于四的多项式求根不存在一种通用的方法,基于上述原因,人们只能寻求其它途径.因此,如何有效地!精确地求解矩阵特征值问题,就成为数值线性代数领

矩阵的特征值与特征向量习题

第五章 矩阵的特征值与特征向量 习题 1 试用施密特法把下列向量组正交化 (1)?? ? ? ? ??=931421111) , ,(321a a a (2)???? ?? ? ??---=011101110111) , ,(321a a a 2 设x 为n 维列向量 x T x 1 令H E 2xx T 证明H 是对称的正交 阵 3 求下列矩阵的特征值和特征向量: (1)??? ?? ??----20133 521 2; (2)??? ? ? ??633312321. 4 设A 为n 阶矩阵 证明A T 与A 的特征值相同 5 设 0是m 阶矩阵A m n B n m 的特征值 证明 也是n 阶矩阵BA 的特 征值. 6 已知3阶矩阵A 的特征值为1 2 3 求|A 35A 2 7A | 7 已知3阶矩阵A 的特征值为1 2 3 求|A * 3A 2E | 8 设矩阵??? ? ? ??=50413102x A 可相似对角化 求x

9 已知p (1 1 1)T 是矩阵???? ? ??---=2135212b a A 的一个特征向量 (1)求参数a b 及特征向量p 所对应的特征值 (2)问A 能不能相似对角化?并说明理由 10 试求一个正交的相似变换矩阵, 将对称阵??? ? ? ??----020212022化为对角 阵. 11 设矩阵????? ??------=12422421x A 与??? ? ? ? ?-=Λy 45 相似 求x y 并 求一个正交阵P 使P 1AP 12 设3阶方阵A 的特征值为1 2 2 2 3 1 对应的特征 向量依次为p 1 (0 1 1)T p 2(1 1 1)T p 3(1 1 0)T 求A . 13 设3阶对称矩阵A 的特征值 1 6 2 3 3 3 与特征值 1 6对应的特征向量为p 1 (1 1 1)T 求A . 14 设?? ? ? ? ??-=340430241A 求A 100

特征值和特征向量的物理意义

ABSTRACT: 特征向量:它经过这种特定的变换后保持方向不变。只是进行长度上的伸缩而已。 特征值:一个变换(矩阵)可由它的所有特征向量完全表示,而每一个向量所对应的特征值,就代表了矩阵在这一向量上的贡献率——说的通俗一点就是能量(power)。 内积:内积可以简单的理解为两个函数的相似程度,内积值越大表示两个函数相似程度越大,内积为零表示完全不相似。两个函数内积为零则两个函数正交,在三维空间中它们的夹角为90度,在三维以上不是这样的。 CONTENT 矩阵(既然讨论特征向量的问题。当然是方阵。这里不讨论广义特征向量的概念)乘以一个向量的结果仍是同维数的一个向量。因此。矩阵乘法对应了一个变换。把一个向量变成同维数的另一个向量。那么变换的效果是什么呢?这当然与方阵的构造有密切关系。比如可以取适当的二维方阵。使得这个变换的效果就是将平面上的二维向量逆时针旋转30度。这时我们可以问一个问题。有没有向量在这个变换下不改变方向呢?可以想一下。除了零向量。没有其他向量可以在平面上旋转30度而不改变方向的。所以这个变换对应的矩阵(或者说这个变换自身)没有特征向量(注意:特征向量不能是零向量)。所以一个变换的特征向量是这样一种向量。它经过这种特定的变换后保持方向不变。只是进行长度上的伸缩而已(再想想特征向量的原始定义Ax= cx。你就恍然大悟了。看到了吗?cx是方阵A 对向量x进行变换后的结果。但显然cx和x的方向相同)。而且x是特征向量的话。ax也是特征向量(a是标量且不为零)。所以所谓的特征向量不是一个向量而是一个向量族。另外。特征值只不过反映了特征向量在变换时的伸缩倍数而已。对一个变换而言。特征向量指明的方向才是很重要的。特征值不是那么重要。虽然我们求这两个量时先求出特征值。但特征向量才是更本质的东西! 比如平面上的一个变换。把一个向量关于横轴做镜像对称变换。即保持一个向量的横坐标不变。但纵坐标取相反数。把这个变换表示为矩阵就是[1 0;0 -1]。其中分号表示换行。显然[1 0;0 -1]*[a b]'=[a –b]'。其中上标' 表示取转置。这正是我们想要的效果。那么现在可以猜一下了。这个矩阵的特征向量是什么?想想什么向量在这个变换下保持方向不变。显然,横轴上的向量在这个变换下保持方向不变(记住这个变换是镜像对称变换。那镜子表面上(横轴上)的向量当然不会变化)。所以可以直接猜测其特征向量是[a 0]'(a不为0)。还有其他的吗?有。那就是纵轴上的向量。这时经过变换后。其方向反向。但仍在同一条轴上。所以也被认为是方向没有变化。 当我们引用了Spectral theorem(谱定律)的时候,情况就不一样了。Spectral theorem的核心内容如下:一个线性变换A(用矩阵乘法表示)可表示为它的所

特征值和特征向量的物理意义

特征向量体现样本之间的相关程度,特征值则反映了散射强度。 特征向量的几何意义 .矩阵(既然讨论特征向量的问题 .当然是方阵 .这里不讨论广义特征向量的概念)乘以一个向量的结果仍是同维数的一个向量 .因此 .矩阵乘法对应了一个变换 .把一个向量变成同维数的另一个向量.那么变换的效果是什么呢 ?这当然与方阵的构造有密切关系 .比如可以取适当的二维方阵 .使得这个变换的效果就是将平面上的二维向量逆时针旋转30 度 .这时我们可以问一个问题 .有没有向量在这个变换下不 改变方向呢 ?可以想一下 .除了零向量 .没有其他向量可以在平面上旋转 30 度而不改变方向的 .所以这个变换对应的矩阵(或者说这个变换自身)没有特征向量(注意 :特征向量不能是零向量).所以一个变换的特征向量是这样一种向量 .它经过这种特定的变换后保持方向不变 .只是进行长度上的伸缩而已(再想想特征向量的原始定义 Ax= cx. 你就恍然大悟了 .看到了吗 ?cx 是方阵 A 对向量 x 进行变换后的结果 .但显然 cx 和 x 的方向相同).而且 x 是特征向量的话 .ax也是特征向量(a 是标量且不为零).所以所谓的特征向量不是一个向量而是一个向量族 . 另外 .特征值只不过反映了特征向量在变换时的伸缩倍数而已.对一个变换而言 .特征向量指明的 方向才是很重要的 .特征值不是那么重要 . 虽然我们求这两个量时先求出特征值 .但特征向量才是更本质的东西! 比如平面上的一个变换 .把一个向量关于横轴做镜像对称变换 .即保持一个向量的横坐标不变 .但纵坐标取相反数.把这个变换表示为矩阵就是[ 1 0,0 -1].其中分号表示换行 .显然[ 1 0,0 -1]*[ a b]'=[a -b]'. 其中上标'表示取转置 .这正是我们想要的效果 .那么现在可以猜一下了 .这个矩阵的特征向量是什么 ?想想什么向量在这个变换下保持方向不变 .显然.横轴上的向量在这个变换下保持方向不变(记住这个变换是镜像 对称变换 .那镜子表面上(横轴上)的向量当然不会变化).所以可以直接猜测其特征向量是[a 0]'(a不为 0). 还有其他的吗 ?有 .那就是纵轴上的向量 .这时经过变换后 .其方向反向 .但仍在同一条轴上 .所以也被认为是方向没有变化。 综上,特征值只不过反映了特征向量在变换时的伸缩倍数而已,对一个变换而言,特征向量指明的方向才是很重要的,特征值似乎不是那么重要;但是,当我们引用了Spectral theorem(谱定律)的时候,情况就 不一样了。 Spectral theorem 的核心容如下:一个线性变换(用矩阵乘法表示)可表示为它的所有的特征向量的一个线性组合,其中的线性系数就是每一个向量对应的特征值,写成公式就是: T(V)= λ1(V 1.V)V 1+λ2(V 2.V)V 2+λ3(V 3.V)V 3+... 从这里我们可以看出,一个变换(矩阵)可由它的所有特征向量完全表示,而每一个向量所对应的特征值,就代表了矩阵在这一向量上的贡献率——说的通俗一点就是能量( power),至此,特征值翻身做主人,彻底掌握了对特征向量的主动:你所能够代表这个矩阵的能量高低掌握在我手中,你还吊什么吊?我们知道,一个变换可由一个矩阵乘法表示,那么一个空间坐标系也可视作一个矩阵,而这个坐标系就可由这个矩阵的所有特征向量表示,用图来表示的话,可以想象就是一个空间开的各个坐标角度,这一组向量可以完全表示一个矩阵表示的空间的“特征”,而他们的特征值就表示了各个角度上的能量(可以想象成从各个角度上伸出的长短,越长的轴就越可以代表这个空间,它的 “特征”就越强,或者说显性,而短轴自然就成了隐性特征),因此,通过特征向量 /值可以完全描述某一几何空间这一特点,使得特征向量与特征值在几何(特别是空间几何)及其应用中得以发挥。 关于特征向量(特别是特征值)的应用实在是太多太多,近的比如俺曾经提到过的 PCA 方法,选取特征值最高的 k 个特征向量来表示一个矩阵,从而达到降维分析+ 特征显示的方法;近的比如 Google 公司的成名作 PageRank,也是通过计算一个用矩阵表示的图(这个图代表了整个 Web 各个网页“节点”之间的关联)的特征向量来对每一个节点打“特征值”分;再比如很多人脸识别,数据流模式挖掘分析等方面,都有应用,

矩阵特征值的运算性质及推广

矩阵特征值的运算性质及推广 摘要:本篇论文主要从五方面来进行讲解:引言;矩阵特征值的性质;矩阵特征值的应用推广;分块矩阵的性质;分块矩阵特征值应用推广。 由于本篇论文是要以矩阵特征值性质的应用为主题,首先介绍总结了矩阵的一些基本概念及矩阵基本运算,然后在文中着重阐述了矩阵特征值性质,罗列出相关引理并予以证明,然后通过五种类型的矩阵特征值的应用例子将矩阵特征值的运算性质进行推广。将矩阵拓展到分块矩阵,讨论分块矩阵的性质及应用. 关键词:矩阵,特征值,特征向量,特征方程,特征多项式 The Operation Properties and Promotion of Eigenvalue Cui haiyang (Institute of Computer Science, Math) Abstract Three aspects to this thesis to explain: Introduction; matrix eigenvalue nature; promote the application of Matrix Eigenvalues. Because of this paper is a matrix eigenvalue to the application of the nature of the theme first introduced some basic concepts of matrix and the matrix of basic operations, and then in the text focuses on the eigenvalue properties, set out the relevant Yin Li, and to prove it. Finally, five types of application examples Eigenvalue Eigenvalue computation will be the nature of promotion. Key words:Matrix , Eigenvalue, Eigenvectors, Characteristic equation,Characteristic polynomial 1引言 矩阵计算领域在不断的发展和成熟,作为一门数学学科,它是众多理工学科重要的数学工具,矩阵理论既是经典数学的基础课程,是数学的一个重要且目前仍然非常活跃的领域,又是一门最有实用价值的数学理论,是计算机科学与工

并行计算-矩阵特征值计算--

9 矩阵特征值计算 在实际的工程计算中,经常会遇到求n 阶方阵 A 的特征值(Eigenvalue)与特征向量(Eigenvector)的问题。对于一个方阵A,如果数值λ使方程组 Ax=λx 即(A-λI n )x=0 有非零解向量(Solution Vector)x,则称λ为方阵A的特征值,而非零向量x为特征值λ所对应的特征向量,其中I n 为n阶单位矩阵。 由于根据定义直接求矩阵特征值的过程比较复杂,因此在实际计算中,往往采取一些数值方法。本章主要介绍求一般方阵绝对值最大的特征值的乘幂(Power)法、求对称方阵特征值的雅可比法和单侧旋转(One-side Rotation)法以及求一般矩阵全部特征值的QR 方法及一些相关的并行算法。 1.1 求解矩阵最大特征值的乘幂法 1.1.1 乘幂法及其串行算法 在许多实际问题中,只需要计算绝对值最大的特征值,而并不需要求矩阵的全部特征值。乘幂法是一种求矩阵绝对值最大的特征值的方法。记实方阵A的n个特征值为λi i=(1,2, …,n),且满足: │λ1 │≥│λ2 │≥│λ3 │≥…≥│λn │ 特征值λi 对应的特征向量为x i 。乘幂法的做法是:①取n维非零向量v0 作为初始向量;②对于 k=1,2, …,做如下迭代: 直至u k+1 ∞ - u k u k =Av k-1 v k = u k /║u k ║∞ <ε为止,这时v k+1 就是A的绝对值最大的特征值λ1 所对应的特征向∞ 量x1 。若v k-1 与v k 的各个分量同号且成比例,则λ1 =║u k ║∞;若v k-1 与v k 的各个分量异号且成比例,则λ1 = -║u k ║∞。若各取一次乘法和加法运算时间、一次除法运算时间、一次比较运算时间为一个单位时间,则因为一轮计算要做一次矩阵向量相乘、一次求最大元操作和一次规格化操作,所以下述乘幂法串行算法21.1 的一轮计算时间为n2+2n=O(n2 )。 算法21.1 单处理器上乘幂法求解矩阵最大特征值的算法 输入:系数矩阵A n×n ,初始向量v n×1 ,ε 输出:最大的特征值m ax Begin while (│diff│>ε) do (1)for i=1 to n do (1.1)sum=0 (1.2)for j= 1 to n do sum=sum+a[i,j]*x[j] end for

矩阵特征值的计算论文

矩阵特征值的计算方法 SUMMARY : This passage is mainly talking about several digital method to get the eigenvalue of certain matrix,since the eigenvalue is of the most importance to study the matrix linear transformation.First,we come up with the difination of eigenvalue and eigenvector,by which the basic way ——eigenfunction ——is got. Because of the limitation of eigenfunction ,another two means are introduced.Here we can see how these means works.. 内容概要: 由于特征值在矩阵的线性变换中具有重要作用,所以本文主要介绍几种求解某个特定矩阵特征值的方法。文章开始引出了特征值和特征向量的概念,从这个概念出发我们可以得到一种求解的最基本的方法——利用特征函数。但是,这个方法有很多缺陷,而且很难在计算机上实现,为此,我们在这里提出了另外两种方法。本文也就是这两种方法的介绍。 关键字:特征值 特征向量 特征方程 变换法求解 基本幂法 收敛性 一:问题的引入: 我们知道对于在实际的数学应用中矩阵占有重要位置。而线形变换又是矩阵的一种重要运算方式。我们为了利用矩阵来研究线形变换,对于每一个给定的线形变换,我们希望能找到一组基使得它的矩阵具有最简单的形式。为此,我们就必须研究在这个过程中占重要位置的一个概念矩阵的特征值的计算方法。 定义:设A 是数域P 上线性空间V 的一个线性变换,如果对于数域P 中一数λ,存在一个非零向量ξ,使得 A ξ=λξ (1) 那么λ称为A 的一个特征值,而ξ称为A 的属于特征值λ的一个特征向量。从几何上来看,特征向量的方向经过线性变换后,保持在同一条直线上,这时或者方向不变(λ)0)或者方向反向(λ<0),至于λ=0时,特征向量就被线性变换成0。 二:问题的求解 1.利用特征方程求解: 下来我们来寻找求解特征值的方法。设V 是数域P 上n 维线性空间,1ε,2ε,……,n ε是它的一组基,线性变换A 在这组基下的矩阵为A 。设0λ是特征值,它的一个特征向量ξ在1ε,2ε,……,n ε下的坐标是,,0201x x ……n x 0,。 则A ξ的坐标是: ??? ???? ??n x x x A 00201...,0λA 的坐标是:???? ?? ? ??n x x x 002010 ...λ

矩阵的特征值与特征向量的求法

摘要:首先给出了求解矩阵特征值和特征向量的另外两种求法,然后运用特征值的性质讨论了矩阵合同、相似的充要条件,以及逆矩阵的求解等相关问题. 关键词:矩阵的特征多项式,特征值,特征向量,对角矩阵,逆矩阵

Abstract:Firstly,it is given matrix eigenvalues and eigenvectors of two other methods, then with the properties of eigenvalue the contract of matrix discussed,we deeply discuss the sufficient and necessary conditions for the similar matrix contract, and the inverse matrix of the related problem solving. Keywords:matrix characteristic polynomial, eigenvalue, eigenvector, diagonal matrices, inverse matrix

目录 1 前言 (4) 2 矩阵的特征值和特征向量的求法 (4) 2.1 矩阵的初等变换法 (4) 2.2 矩阵的行列互逆变换法 (6) 3 矩阵特征值的一些性质及应用 (7) 3.1 矩阵之间的关系 (7) 3.1.1 矩阵的相似 (7) 3.1.2 矩阵的合同 (7) 3.2 逆矩阵的求解 (8) 3.3 矩阵相似于对角矩阵的充要条件 (8) 3.4 矩阵的求解 (9) 3.5 矩阵特征值的简单应用 (10) 结论 (11) 参考文献 (12) 致谢 (13)

特征向量的几何意义

特征向量的几何意义 长时间以来一直不了解矩阵的特征值和特征向量到底有何意义(估计很多兄弟有同样感受)。知道它的数学公式,但却找不出它的几何含义,教科书里没有真正地把这一概念从各种角度实例化地进行讲解,只是一天到晚地列公式玩理论——有个屁用啊。 根据特征向量数学公式定义,矩阵乘以一个向量的结果仍是同维数的一个向量,因此,矩阵乘法对应了一个变换,把一个向量变成同维数的另一个向量,那么变换的效果是什么呢?这当然与方阵的构造有密切关系,比如可以取适当的二维方阵,使得这个变换的效果就是将平面上的二维向量逆时针旋转30度,这时我们可以问一个问题,有没有向量在这个变换下不改变方向呢?可以想一下,除了零向量,没有其他向量可以在平面上旋转30度而不改变方向的,所以这个变换对应的矩阵(或者说这个变换自身)没有特征向量(注意:特征向量不能是零向量),所以一个特定的变换特征向量是这样一种向量,它经过这种特定的变换后保持方向不变,只是进行长度上的伸缩而已(再想想特征向量的原始定义Ax=cx, cx是方阵A对向量x进行变换后的结果,但显然cx和x的方向相同)。 这里给出一个特征向量的简单例子,比如平面上的一个变换,把一个向量关于横轴做镜像对称变换,即保持一个向量的横坐标不变,但纵坐标取相反数,把这个变换表示为矩阵就是[1 0;0 -1](分号表示换行),

显然[1 0;0 -1]*[a b]'=[a -b]'(上标'表示取转置),这正是我们想要的效果,那么现在可以猜一下了,这个矩阵的特征向量是什么?想想什么向量在这个变换下保持方向不变,显然,横轴上的向量在这个变换下保持方向不变(记住这个变换是镜像对称变换,那镜子表面上(横轴上)的向量当然不会变化),所以可以直接猜测其特征向量是[a 0]'(a不为0),还有其他的吗?有,那就是纵轴上的向量,这时经过变换后,其方向反向,但仍在同一条轴上,所以也被认为是方向没有变化,所以[0 b]'(b不为0)也是其特征向量。 综上,特征值只不过反映了特征向量在变换时的伸缩倍数而已,对一个变换而言,特征向量指明的方向才是很重要的,特征值似乎不是那么重要;但是,当我们引用了Spectral theorem(谱定律)的时候,情况就不一样了。 Spectral theorem的核心内容如下:一个线性变换(用矩阵乘法表示)可表示为它的所有的特征向量的一个线性组合,其中的线性系数就是每一个向量对应的特征值,写成公式就是: 从这里我们可以看出,一个变换(矩阵)可由它的所有特征向量完全表示,而每一个向量所对应的特征值,就代表了矩阵在这一向量上的贡献率——说的通俗一点就是能量(power),至此,特征值翻身做主人,彻底掌握了对特征向量的主动:你所能够代表这个矩阵的能量高低掌握

矩阵特征值和特征向量解法的研究

矩阵特征值和特征向量解法的研究 周雪娇 (德州学院数学系,山东德州 253023) 摘 要:对矩阵特征值和特征向量的一些方法进行了系统的归纳和总结.在比较中能够 更容易发现最好的方法,并提高问题的解题效率. 关键词: 矩阵; 特征值; 特征向量; 解法 引言 矩阵是数学中的一个重要的基本概念,是代数学的一个主要研究对象,也是数学研究和应用的一个重要工具.矩阵计算问题是很多科学问题的核心.在很多工程计算中,常常会遇到特征值和特征向量的计算问题,如:机械、结构或电磁振动中的固有值问题;物理学中的各种临界值等,这些特征值的计算往往意义重大.很多科学问题都要归结为矩阵计算的问题,在这里主要研究矩阵计算中三大问题之——特征值问题. 1 矩阵特征值与特征向量的概念及性质 1.1 矩阵特征值与特征向量的定义 设A 是n 阶方阵,如果存在数λ和n 维非零向量x ,使得x Ax λ=成立,则称 λ为A 的特征值,x 为A 的对应于特征值λ的特征向量. 1.2 矩阵特征值与特征向量的性质 矩阵特征值与特征向量的性质包括: (1)若i i r A 的是λ重特征值,则i i s A 有对应特征值λ个线性无关的特征向量,其中i i r s ≤. (2)若线性无关的向量21,x x 都是矩阵A 的对应于特征值0λ的特征向量,则当21,k k 不全为零时,2211x k x k +仍是A 的对应于特征值0λ的特征向量. (3)若A n 是矩阵λλλ,,,21 的互不相同的特征值,其对应的特征向量分别是 n x x x ,,,21 ,则这组特征向量线性无关.

(4)若矩阵()n n ij a A ?=的特征值分别为n λλλ,,,21 ,则 nn n a a a +++=+++ 221121λλλ,A n =λλλ 21. (5)实对称矩阵A 的特征值都是实数,且对应不同特征值的特征向量正交. (6)若i λ是实对称矩阵A 的i r 重特征值,则对应特征值i λ恰有i r 个线性无关的特征向量. (7)设λ为矩阵A 的特征值,()x P 为多项式函数,则()λP 为矩阵多项式()A P 的特征值.[]1 2 普通矩阵特征值与特征向量的求法 2.1 传统方法 确定矩阵A 的特征值和特征向量的传统方法可以分为以下几步: (1)求出矩阵A 特征多项式()A E f -=λλ的全部特征根; (2)把所求得的特征根()n i i ,,2,1 =λ逐个代入线性方程组()0=-X A E i λ, 对于每一个特征值,解方程组()0=-X A E i λ,求出一组基础解系,这样,我们也就求出了对应于每个特征值的全部线性无关的特征向量.[]2 例1 已知矩阵 ???? ? ?????-=11 111 110 A 求矩阵A 的特征值和特征向量. 解 A E -λ = 1 1 1 1 1 11 ------λλλ = ()21-λλ 所以,由()012=-λλ知A 的特征根1,0321===λλλ.

第五章 习题与复习题详解(矩阵特征值和特征向量)----高等代数

习题 1. (1) 若A 2 = E ,证明A 的特征值为1或-1; (2) 若A 2 = A ,证明A 的特征值为0或1. 证明(1)2 2A E A =±所以的特征值为1,故A 的特征值为1 (2) 2222 2 ,,()0,001 A A A X A X AX X X X λλλλλλλ===-=-==所以两边同乘的特征向量得即由于特征向量非零,故即或 2. 若正交矩阵有实特征值,证明它的实特征值为1或 -1. 证明 1,1 T T T A A A E A A A A A λλλλ -=∴==±设是正交阵,故有与有相同的特征值, 1 故设的特征值是,有=,即 3.求数量矩阵A=aE 的特征值与特征向量. 解 A 设是数量阵,则 000000000000a a A aE a a a E A a λλλλ?? ? ?== ? ??? ---= -L L L L L L L L L L L L 所以:特征值为a (n 重), A 属于a 的特征向量为 k 1(1,0,…,0)T + k 2(0,1,…,0)T + k n (0,0,…,1)T ,(k 1, k 2, …, k n 不全为0)

4.求下列矩阵的特征值与特征向量. (1)113012002-?? ? ? ??? (2)324202423?? ? ? ??? (3)??? ?? ??---122212 221 (4)212533102-?? ?- ? ?--?? ()1112221211(5) , , (0,0)0.T T n n n n a a b a a b A b b b a b a a b αβαβαβ?? ???? ? ? ? ? ? ?====≠≠= ? ? ? ? ? ? ? ? ??? ???? L M M M 其中,且 解(1) 11 3 0120,1,2,00 2A E AX λλλ λλλλ ---=-====-0,123求得特征值为:分别代入=求得 A 属于特征值1的全部特征向量为k(1,0,0)T ,(k ≠0) A 属于特征值2的全部特征向量为k(1,2,1)T ,(k ≠0) 解(2)

相关主题