搜档网
当前位置:搜档网 › 第17章勾股定理小结和复习

第17章勾股定理小结和复习

第17章勾股定理小结和复习
第17章勾股定理小结和复习

第17章勾股定理小结和复习

教学目标

1-理解勾股定理的内容,已知直角三角形的两边,会运用勾股定理求第三边 2. 勾股定理的应用.

3. 会运用勾股定理的逆定理,判断直角三角形.

重点:掌握勾股定理及其逆定理. 难点:理解勾股定理及其逆定理的应用. 教学过程 一?复习回顾

在本章中,我们探索了直角三角形的三边尖系,并在此基础上得到了勾股定理, 并学习了如何利用拼图验证勾股定理,介绍了勾股定理的用途;本章后半部分学习 了勾股定理的逆定理以及它的应用?其知识结构如下:

勾 般 定 理 的 逆 毎 用

1?勾股定理:

(1) ______________________ 直角三角形两直角边的

和等于的平方?就是 说

,

对于任意的直

角三角形,如果它的两条直角边分别为a b,斜边为c,那么一定有:?这就是勾股定 理

.

(2)勾股定理揭示了直角三角形一之间的数量矣系,是解决有尖线段计算问题的重要依据.

(22|2?2222?2 . --------------------------------------------- -------------------

a二c?b\ 二c?a,c = .ab a = v c2 _b2,b = vC2 -a2

2.勾股定理逆定理

若三角形的两条边的平方和等于第三边的平方,则这个三角形为_____________ ?这一命题是勾股定理的逆定理?它可以帮助我们判断三角形的形状?为根据边的尖系解决

角的有尖问题提供了新的方法?定理的证明采用了构造法?利用已知三角形的边

a,b,c(a+b2=c2),先构造一个直角边为a,b的直角三角形,由勾股定理证明第三边为c,进而通过“SSSE明两个三角形全等,证明定理成立.

3.勾股定理的作用:

(1)已知直角三角形的两边,求第三边;

(2)在数轴上作出表示川(n为正整数)的点.

勾股定理的逆定理是用来判定一个三角形是否是直角三角形的?勾股定理的逆定理也可用来证明两直线是否垂直,勾股定理是直角三角形的性质定理,而勾股定理的逆定理是直角三角形的判定定理,它不仅可以判定三角形是否为直角三角形,还可以判定哪一个角是直角,从而产生了证明两直线互相垂直的新方法:利用勾

股定理的逆定理,通过计算来证明,体现了数形结合的思想.

2十2 2

⑶ 三角形的三边分别为a、b、c,其中c为最大边,若玄13“,则三角形是直角三角形;若* b °,则三角形是锐角三角形;若玄b ” :°「,则三角形是钝角三角形?所以使用勾股定理的逆定理时首先要确定三角形的最大边?

考点一、已知两边求第三边

1 ?在直角三角形中,若两直角边的长分别为1cm,2cm,则斜边长为__________ .

2._____________________________________________________ 已知直

角三角形的两边长为3、2,则另一条边长是________________________________ ?3.在数轴上作出表示的点.

4 ?已知,如图在△ ABC 中,AB=BC=CA=2cm , AD 是边BC±的高.

考点二、利用列方程求线段的长

1?如图,铁路上A ,B 两点相距25km, C ,D 为两村庄,DA 丄AB 于A , CB 丄AB 于B ,已知DA=15km ,CB=10km ,现在要在铁路AB 上建一个土特产品收购 站 E,使得C ,D 两村到E 站的距离相等,则E 站应建在离A 站多少km 处?

2.如图,某学校(A 点)与公路(直线L )的距离为300米,又与公路车站(D 点)

的距离为500米,现要在公路上建一个小商店(C 点),使之与该校A 及车站D 的距离相等,求商店与车站之间的距离.

考点三、判别一个三角形是否是直角三角形

1 ?分别以下列四组数为一个三角形的边长: (D 3、4、5

(2) 5、12、13 (3) 8

求?AD 的长;②厶ABC 的面积

.

15、17 (4) 4、5、6,其中能够成直角三角形的有 ______________

2. __________________________________________________________ 若三角形

的三别是a+b2,2ab,f ?b%a>b>0),则这个三角形是 ___________________ ?

2

3.如图1,在厶ABC 中,AD 是高,且AD 二BD CD ,求证:△ ABC 为直角三角

考点四、灵活变通

1-在RtAABC 中,a,b, c 分别是三条边‘ / B=90°,已知a=6, b=10,则边长

2.

边为边长的两个正方形的面积为

边为边长的正方形的面积为 ___________ cm 2

.

柱'底圆周长6cm,高4cm, 一只蚂蚁沿外壁爬行,要从A 点爬到

4- ___________________________________ 如图:带阴影部分的半圆的

面积是

直角三角形中,以直角

7cm 2 , 8cm 2

‘ 则以斜

3.如图一个圆

—只蚂蚁

B 点,那

I

B 点,则最少要爬行 _______ cm

(二取3) 5.

从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到

么它所爬行的最短路线的长是 _________________

6若一个三角形的周长12、.3cm—边长为3cm,其他两边之差为3 cm,则这个

二角形是_______________________ :.

7?如图:在一个高6米,长10米的楼梯表面铺地毯,则该地毯的长度至少是米

考点五、能力提升

1.已知:如图,△ ABC中,AB> AC, AD是BC边上的高.

2 2

求证:AB -AC =BC(BD-DC).

2.如图,四边形ABCD中,F为DC的中点,E为BC上一点,且CE二丄BC ?你能说明/ AFE是直角吗?

3.如图,有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC

沿直线AD折叠,使它落在斜边AB上,且与AE重合,你能求出CD的长吗?

B A

三、随堂检测

1.已知△ ABC 中,/ A= / B= / C,则它的三条边之比为(

).

A. 1 : 1 : 1

B. 1: 1 : 2

C. 1: 2 : 3

D. 1: 4: 1 下列各组线段中,能够组成 )?

A. 6, 7, 8

B. 5, 6, 7

C. 4, 5, 6

D. 3, 4, 5 3.若等边△ ABC 的边长为2cm,那么△ ABC 的面积为().

— 2222

A . 3 cm

B . 2 cm

C . 3 cm

D . 4cm 4.

角形的两直角边分别为5cm, 12cm,其中斜边上的高为(

A . 6cm

B . 8 . 5cm

C . 30/ 13cm

5.有两棵树,一棵高6米,另一棵高3米,两树相距4米?一只小鸟从一棵树的

树梢飞到另一棵树的树梢,至少飞了 ______ 米.

6?一座桥横跨一江,桥长12m, 一般小船自桥北头出发,向正南方驶去,因水流

原因到达南岸以后,发现已偏离桥南头5m,则小船实际行驶 __________ m .

7.

个三角形的三边的比为5 : 12 : 13,它的周长为60cm,则它的面积是 _________

8?已知直角三角形一个锐角60。斜边长为1,那么此直角三角形的周长是 _________ 9.

要通过一个长方形的门,

有一个小朋友拿着一根竹竿

如果把竹竿竖放就比门高

出1尺,斜放就恰好等于门的对角线长,已知门宽 4尺?求竹竿咼与门咼.

2.

直角三角形的是(

直角三 )

D . 60/13 cm

10.如图1所示,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2m,S 子的顶端B

到地面的距离为7m .现将梯子的底端A向外移动到A使梯子的

底端A倒墙根0的距离为3m,同时梯子的顶端B下降到叭那么BB也等于

1m吗?

门?已知:如图△ ABC中、AB=AC=10 , BC=16,点D在BC上,DA丄CA于A .

求:BD的长.

四、小结与反思

勾股定理全章复习与小结

第17章勾股定理小结与复习 一、课件说明 本课是对全章知识的回顾和复习,通过知识整理,进一步理解勾股定理及其逆定理,体会勾股定理在距离(线段长度)计算中的作用,理解勾股定理与它的逆定理之间的关系,并尝试综合运用这两个定理解决简单的实际问题. 二、学习目标: 知识与技能: 1、进一步理解勾股定理入其逆定理,弄清两定理之间的关系。 2、回顾本章知识,在回顾过程中主动构建起本章知识结构; 过程与方法: 1、} 2、复习直角三角形的有关知识,形成知识体系。 2、思考勾股定理及其逆定理的发现证明和应用过程,体会出入相补思想、数形结合思想、转化思想在解决数学问题中的作用. 情感态度恶劣与价值观: 通过运用勾股定理及其逆定理解决问题,体会到数学来源于生活,应用于生活。 三、学习重点: 勾股定理及其逆定理的应用. 四、教学过程: (一)创设情境引出课题 ;

问题1 如图,这是矗立在萨摩斯岛上的雕像,这个雕像给你怎样的数学联想(出示图形) (背景介绍:我们知道,古希腊数学家毕达哥拉斯发现了勾股定理.在西方,勾股定理又称为“毕达哥拉斯定理”.人们为了纪念这位伟大的科学家,在他的家乡建了这个雕像.) (二)层层提问,讲练相融 追问1 在本章我们学习了直角三角形一个重要的定理,你能叙述这个定理吗 如果直角三角形两直角边分别为a,b,斜边为c,那么a2+b2=c2 知识点一:勾股定理的运用: 1.已知直角三角形两边,直接利用勾股定理求出第三边. 基础练习1 在Rt△ABC中,已知a=1,b=3,∠B=90°,则第三边c 的长为. ' 变式在Rt△ABC中,已知a=1,b=3,则第三边c的长为. 温馨提示:求第三边时应看清题目中所说的边是直角边还是斜边,如果题中没有说明,则应分两种情况求. 2.未已知直角三角形的两边,则一般通过设未知数列方程解决。 基础练习2 小明想知道学校旗杆的高,他发现旗杆的绳子垂到地面还多1 m,当他把绳子的下端拉开5 m后,发现下端刚好接触地面,则旗杆的高为(). A.8 m B.10 m C.12 m D.14 m

勾股定理知识点总结

第18章 勾股定理复习 一.知识归纳 1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,221 4()2 ab b a c ?+-=,化简可证. c b a H G F E D C B A 方法二: b a c b a c c a b c a b 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221 422S ab c ab c =?+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c += 方法三:1()()2S a b a b =+?+梯形,211 2S 222 ADE ABE S S ab c ??=+=?+梯形,化简得证

a b c c b a E D C B A 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用 ①已知直角三角形的任意两边长,求第三边 在ABC ?中,90C ∠=? ,则c ,b = ,a ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5 、利用勾股定理作长为 的线段 作长为 、 、 的线段。 思路点拨:由勾股定理得,直角边为1的等腰直角三角形,斜边长就等于,直角边为 和1的直 角三角形斜边长就是,类似地可作 。 作法:如图所示 (1)作直角边为1(单位长)的等腰直角△ACB ,使AB 为斜边; (2)以AB 为一条直角边,作另一直角边为1的直角。斜边为 ; (3)顺次这样做下去,最后做到直角三角形,这样斜边 、 、 、 的长度就是 、 、 、 。 举一反三 【变式】在数轴上表示的点。 解析:可以把 看作是直角三角形的斜边, , 为了有利于画图让其他两边的长为整数, 而10又是9和1这两个完全平方数的和,得另外两边分别是3和1。

勾股定理典型题总结(较难)

勾股定理 一.勾股定理证明与拓展 模型一 . 图中三个正方形面积关系 思考:如下图,以直角三角形a 、b 、c 为边,向外作等边三角形、半圆、等腰直角三角形和正方形,上述四种情况的面积有和关系? 例1、有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上上生出两个小正方形(如图1),其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,生出了4个正方形(如图2),如果按此规律继续“生长”下去,它将变得“枝繁叶茂”;在“生长”了2017次后形成的图形中所有正方形的面积和是 . 变式1:在直线l 上依次摆放着七个正方形(如图1所示).已知斜放置的三个正方形的面积分别是1,1. 21,1. 44,正放置的四个正方形的面积依次是1234S S S S ,,,,则41S S =______.

变式2:如图,四边形ABCD 中,AD ∥BC ,∠ABC +∠DCB =90°,且BC =2AD ,以AB 、BC 、DC 为边向外作正方形,其面积分别为S 1、S 2、S 3,若S 1=3,S 3=9,求S 2. (变式2) (变式3) 变式3:如图,Rt △ABC 的面积为10cm 2 ,在AB 的同侧,分别以AB ,BC ,AC 为直径作三个半圆,则阴影部分的面积为 . (难题)如图,是小明为学校举办的数学文化节设计的标志,在△ABC 中,∠ACB = 90°,以△ABC 的各边为边作三个正方形,点 G 落在 HI 上,若 AC +BC =6,空白部分面积为 10.5,则阴影部分面积 模型二 外弦图 D C B A 内弦图 G F E H 例题2.四年一度的国际数学大会于2002年8月20日在北京召开,大会会标如图所示,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形,若大正方形的面积为 13,每个直角三角形两直角边的和是5。求中间小正方形的面积为__________;

勾股定理及常见题型分类

勾股定理及常见题型分类 一、知识要点: 1、勾股定理 2、勾股定理证明方法及勾股树 3、勾股定理逆定理 4、勾股定理常见题型回顾 二、典型题 题型一:“勾股树”及其拓展类型求面积 1. 右图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A 、B 、C 、D 的边长分别是3、5、2、3,则最大正方形E 的面积是( ) A.13 B.26 C.47 D.94 2.如图,直线l 上有三个正方形a,b,c,若a,c 的边长分别为6和8,求b 的面积。 3. 如图,以Rt △ABC 的三边为直径分别向外作三个半圆,试探索三个半圆的面积之间的关系. 4、如图所示,分别以直角三角形的三边向外作三个正三角形,其面积分别是S 1、S 2、S 3,则它们之间的关系是( ) A. S 1- S 2= S 3 B. S 1+ S 2= S 3 C. S 2+S 3< S 1 D. S 2- S 3=S 1 S 3 S 2 S 1 甲 乙 图1

5、在直线上依次摆放着七个正方形(如图4所示)。已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是 、 =_____________。 题型二:勾股定理与图形问题 1、已知△ABC 是边长为1的等腰直角三角形,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三个等腰Rt △ADE ,…,依此类推,第n 个等腰直角三角形的斜边长是 . 2.如图,求该四边形的面积 3.如图2,已知,在△ABC 中,∠A = 45°,AC = 2,AB = 3+1,则边BC 的长为 . 4.某公司的大门如图所示,其中四边形ABCD是长方形,上部是以AD为直径的半圆,其中AB=2.3m,BC=2m,现有一辆装满货物的卡车,高为2.5m,宽为1.6m,问这辆卡车能否通过公司的大门?并说明你的理由 . 5.如图是一块地,已知AD=8m ,CD=6m ,∠D=90°,AB=26m ,BC=24m ,求这块地的面积。 题型三:在直角三角形中,已知两边求第三边 A B C D E F G

勾股定理思维导图题型总结

(一)勾股定理 1:勾股定理 如果直角三角形的两条直角边长分别为a 、b ,斜边长为c,那么a 2+b 2=c 2 我国古代学者把直角三角形较短的直角边称为“勾”,较长的直角边称为“股”,斜边称为“弦”. 要点诠释: 2、勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用: (1)已知直角三角形的两边求第三边(在ABC ?中,90C ∠=? ,则c ,b , a ) (2)已知直角三角形的一边及另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 3:勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法,用拼图的方法验证勾股定理的思路是 ①图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一: 4EFGH S S S ?+=正方形正方形ABCD ,22 14()2ab b a c ?+-=,化简可证. 方法二:四个直角三角形的面积及小正方形面积的和等于大正方形的面积. 四个直角三角形的面积及小正方形面积的和为22 1 422S ab c ab c =?+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c += 方法三:1()()2S a b a b =+?+梯形, 2 112S 222ADE ABE S S ab c ??=+=?+梯形,化简得证 c b a H G F E D C B A a b c c b a E D C B A b a c b a c c a b c a b 弦 股 勾

勾股定理知识点总结

第十七章勾股定理知识点总结 一.基础知识点: 1:勾股定理 直角三角形两直角边a、b的平方和等于斜边c的平方。(即:a2+b2=c2) 要点诠释: 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用: (1)已知直角三角形的两边求第三边(在ABC ?中,90 ∠=?,则c, C b,a=) (2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2:勾股定理的逆定理 如果三角形的三边长:a、b、c,则有关系a2+b2=c2,那么这个三角形是直角三角形。 要点诠释: 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意:(1)首先确定最大边,不妨设最长边长为:c; (2)验证c2与a2+b2是否具有相等关系,若c2=a2+b2,则△ABC是以∠C为直角的直角三角形 (若c2>a2+b2,则△ABC是以∠C为钝角的钝角三角形;若c2

区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理; 联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。 4:互逆命题的概念 如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。 规律方法指导 1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。 2.勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。 3.勾股定理在应用时一定要注意弄清谁是斜边谁直角边,这是这个知识在应用过程中易犯的主要错误。 4. 勾股定理的逆定理:如果三角形的三条边长a ,b ,c 有下列关系:a 2+b 2=c 2,?那么这个三角形是直角三角形;该逆定理给出判定一个三角形是否是直角三角形的判定方法. 5.?应用勾股定理的逆定理判定一个三角形是不是直角三角形的过程主要是进行代数运算,通过学习加深对“数形结合”的理解. 我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理) 5:勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,221 4()2 ab b a c ?+-=,化简可证. c b a H G F E D C B A

勾股定理回顾与思考教学设计

第一章勾股定理 回顾与思考 一、学生起点分析 通过前面三节的学习,学生已经基本掌握了勾股定理及逆定理的知识,并能应用勾股定理及其逆定理解决一些具体的实际问题,因而学生已经具备解决本课问题所需的知识基础和活动经验基础.同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力. 八年级学生已初步具有几何图形的观察,几何证明的理论思维能力.他们希望老师创设便于他们进行观察的几何环境,给他们发表自己见解和表现自己才华的机会,希望老师满足他们的创造愿望,让他们实际操作,使他们获得施展自己创造才能的机会.但对于勾股定理的综合应用,还需要学生具备一定的分析、归纳的思维方法和运用数学的思想意识,但学生在这一方面的可预见性和耐挫折能力并不是很成熟,可能部分同学会有一些困难. 二、教学任务分析 勾股定理是反映自然界基本规律的一条重要结论,它揭示了直角三角形三边之间的数量关系,将形与数密切联系起来,理论上占有重要的地位,它有着悠久的历史,在数学发展中起过重要的作用,在现实世界中也有着广泛的应用,勾股定理的应用蕴含着丰富的文化价值.勾股定理也是后续有关几何度量运算和代数学习必要的基础,具有学科的基础性与广泛的应用.

本课时教学是复习课,强调让学生经历数学知识的形成与应用过程,鼓励学生自主探索与合作交流,以学生自主探索为主,并强调同桌之间的合作与交流,强化应用意识,培养学生多方面的能力.让学生通过动手、动脑、动口自主探索,感受数学的美,以提高学习兴趣.为此,本节课的教学目标是: ①让学生回顾本章的知识,同时重温这些知识尤其是勾股定理的获得和验证的过程,体会勾股定理及其逆定理的广泛应用. ②在回顾与思考的过程中,提高解决问题,反思问题的能力. ③在反思和交流的过程中,体验学习带来的无尽的乐趣.通过对勾股定理历史的再认识,培养爱国主义精神,体验科学给人来带来的力量. 三、教学过程设计 本节课设计了六个环节.第一环节:情境引入;第二环节:知识结构梳理;第三环节:合作探究;第四环节:拓展提升;第五环节:交流小结;第六环节:布置作业. 第一环节情境引入 勾股定理,我们把它称为世界第一定理.它的重要性,通过这一章的学习已深有体验。首先,勾股定理是数形结合的最典型的代表;其次,了解勾股定理历史的同学知道,正是由于勾股定理得发现,导致无理数的发现,引发了数学的第一次危机,这一点,我们将在《实数》一章里讲到,第三,勾股定理中的公式是第一个不定方程,有许许多多的数满足这个方程,也是有完整的解答的最早的不定方程,最

勾股定理教学设计与教学反思

勾股定理教学设计 富裕县逸夫学校任晓娟 【教学目标】 一、知识目标 1.了解勾股定理的历史背景,体会勾股定理的探索过程. 2.掌握直角三角形中的三边关系和三角之间的关系。 二、数学思考 在勾股定理的探索过程中,发现合理推理能力.体会数形结合的思想. 三、解决问题 1.通过探究勾股定理(正方形方格中)的过程,体验数学思维的严谨性。 2.在探究活动中,学会与人合作并能与他人交流思维的过程和探究的结果。 四、情感态度目标 1.学生通过适当训练,养成数学说理的习惯,培养学生参与的积极性,逐 步体验数学说理的重要性。 2.在探究活动中,体验解决问题方法的多样性,培养学生的合作交流意识 和探究精神。 【重点难点】 重点:探索和证明勾股定理。 难点:应用勾股定理时斜边的平方等于两直角边的平方和。 【设计思路】 本课时教学强调让学生经历数学知识的形成与应用过程,鼓励学生探究与合作交流,以学生自主探索为主,并强调同桌之间的合作与交流,强化应用意识,培养学生多方面的能力。 让学生通过动手、动脑、动口自主探索,感受到“无出不在的数学”与数学的美,以提高学习兴趣,进一步体会数学的地位与作用。 【教学流程安排】 活动一:了解历史,探索勾股定理 活动二:拼图验证并证明勾股定理 活动三:例题讲解,巩固练习

活动四:反思小结,布置作业 活动内容及目的:①通过多勾股定理的发现,(国外、国内)了解历史,激发学生对勾股定理的探索兴趣。②观察、分析方格图,得到指教三角形的性质——勾股定理,发展学生分析问题的能力。③通过拼图验证勾股定理,体会数学的严谨性,培养学生的数形结合思想,激发探究精神,回顾、反思、交流。布置作业,巩固、发展提高。 【教学过程设计】 【活动一】 (一)问题与情景 1、你听说过“勾股定理”吗? (1)勾股定理古希腊数学家毕达哥拉斯发现的, 西方国家称勾股定理为“毕达哥拉斯”定理 (2)我国著名的《算经十书》最早的一部《周髀算经》。书中记载有“勾广三, 股修四,径隅五。”这作为勾股定理特例的出现。 2、毕答哥拉斯是古希腊著名的数学家。相传在2500年以前,他在朋友家做客时,发现朋友家用的地砖铺成的地面反映了直角三角形的某写特性。 (1)现在请你一观察一下,你能发现什么? (2)一般直角三角形是否也有这样的特点吗? (二)师生行为 教师讲故事(勾股定理的发现)、展示图片,参与小组活动,指导、倾听学生交流。针对不同认识水平的学生,引导其用不同的方法得出大正方形的面积等于两个小正方形的面积之和。 学生听故事发表见解,分组交流、在独立思考的基础上以小组为单位,采用分割、拼接、数格子的个数等等方法。阐述自己发现的结论。 (三)设计意图 ①通过讲故事,让学生了解历史,培育学生爱国主义情操,激发学习的积极性。 ②渗透从特殊到一般的数学思想,为学生提供参与数学活动的时间与空间, 发挥学生的主体作用;培养学生的类比迁移能力及探索问题的能力,使学生在相 图 A B C A B C B C A

勾股定理全章知识点归纳总结

全国中考信息资源门户网站 https://www.sodocs.net/doc/e74325446.html, 勾股定理全章知识点归纳总结 一.基础知识点: 1:勾股定理 直角三角形两直角边a 、b 的平方和等于斜边c 的平方。(即:a 2+b 2=c 2) 要点诠释: 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用: (1)已知直角三角形的两边求第三边(在A B C ?中,90C ∠=? ,则22 c a b = +, 2 2 b c a = -,22 a c b = -) (2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2:勾股定理的逆定理 如果三角形的三边长:a 、b 、c ,则有关系a 2+b 2=c 2,那么这个三角形是直角三角形。 要点诠释: 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意: (1)首先确定最大边,不妨设最长边长为:c ; (2)验证c 2与a 2+b 2是否具有相等关系,若c 2=a 2+b 2,则△ABC 是以∠C 为直角的直角三角形 (若c 2>a 2+b 2,则△ABC 是以∠C 为钝角的钝角三角形;若c 2

全国中考信息资源门户网站 https://www.sodocs.net/doc/e74325446.html, 3:勾股定理与勾股定理逆定理的区别与联系 区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理; 联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。 4:互逆命题的概念 如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。 规律方法指导 1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。 2.勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。 3.勾股定理在应用时一定要注意弄清谁是斜边谁直角边,这是这个知识在应用过程中易犯的主要错误。 4. 勾股定理的逆定理:如果三角形的三条边长a ,b ,c 有下列关系:a 2+b 2=c 2,?那么这个三角形是直角三角形;该逆定理给出判定一个三角形是否是直角三角形的判定方法. 5.?应用勾股定理的逆定理判定一个三角形是不是直角三角形的过程主要是进行代数运算,通过学习加深对“数形结合”的理解. 我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理) 5:勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ? +=正方形正方形ABCD ,22 14()2 ab b a c ? +-=,化简可证. c b a H G F E D C B A

初二上勾股定理(经典题型)

初二上勾股定理(经典 题型) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

- 2 - 第十九章 几何证明 ——勾股定理及两点之间的距离公式 【知识回顾】 1、勾股定理:对于任意的直角三角形,如果它的两条直角边分别为a 、b ,斜边为c ,那么一定有222c b a =+(直角三角形两直角边的平方和等于斜边的平方。) 3、勾股定理的逆定理:如果三角形的三边长a,b,c 有关系,222c b a =+,那么这个三角形是直角三角形。 4、常见的勾股数:(3n,4n,5n ),(5n,12n,13n),(8n,15n,17n),(7n,24n,25n),(9n,40n,41n)….. 5、勾股定理的证明图 6、两点之间的距离公式:2 122 12)()(y y x x AB -+-= 【例题讲解】 例题1、细心观察下图,认真分析各式,然后解答问题 (1)请用含n (n 是整数数)的等式表示上述变化规律;

(2)求出的值。 例题3、已知等腰三角形的周长是16cm,底边上的高是4cm,根据这些条件是否能求出这个等腰三角形的腰长和腰上高的长?若能,请把它们求出来,若不能,要说明理由。 例题2、如图所示,已知△ABC的三边 15= = =AC BC AB求△ABC , 20 25 , , 最长边上的高? 例题4、已知如图△ABC中,∠CAB=90°,AB=AC,E、F为BC上的点且 ∠EAF=45°,求证:EF2=BE2+FC2. - 3 -

- 4 - 例题5、如图,已知0090,60=∠=∠=∠D B A ,AB=2,CD=1,求BC 、AD 的长。 例题6、一只2.5m 长的梯子斜靠在一竖直的墙上,这时梯脚距离墙角0.7m ,如果梯子的顶端沿墙下滑0.4m ,那么梯脚移动的距离是多少?

勾股定理思维导图题型总结归纳

(一)勾股定理 2 2 2 1:勾股定理如果直角三角形的两条直角边长 分别为a、b,斜边长为c,那么a2+b2=c2 我国古代学者把直角三角形较短的直角边称为“勾” 要点诠释: 2、勾股定理反映了直角三角形三边之间的关 系,是直角三角形的重要性质之一,其主要应 用: 1)已知直角三角形的两边求第三边(在ABC 中, C 90 ,则 c a2 b2,b c2 a2,a c2 b2) (2)已知直角三角形的一边与另两边的关 系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的 问题 3:勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方 法,用拼图的方法验证勾股定理的思路是 ①图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股 定理 常见方法如下:b 方法 1 4S S S 4 ab (b a) 4S S正方形EFGH S正方形ABCD,2 22 c ,化简可证. 方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面 积. a 四个直角三角形的面积与小正方形面积的和为 S 4 1 ab c 2 2 2 2ab c 2 2 2 2 2 2 大正方形面积为S (a b) a 2ab b 所以 a2 b2 c2 S梯形 2(a b) (a b),S梯形2S ADE S ABE 1 2 ab 12 c 较长的直角边称为“股”,斜边称为“弦”

4:勾股数

B C ①能够构成直角三角形的三边长的三个正整数称为勾股数,即 时,称 a ,b , c 为一组勾股数 3,4,5 ; 6,8,10 ; 5,12,13 ; 7,24,25 ; 8,15,17 ; 9,40,41 等 22 2n 1,2n 2n,2n 2n 1( n 为正整数) 5、注意: (1)勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。 (2)勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的 题目。 3)勾股定理在应用时一定要注意弄清谁是斜边谁直角边,这是这个知识在应用过程中易犯的主 要错误 (4)推理格式:∵△ ABC 为直角三角形 ∴AC 2+BC 2=AB 2. (或 a 2+b 2=c 2) 二)勾股定理的逆定理 如果三角形的三边长分别为: a 、 b 、 c ,且满足 a2+b2=c2,那么这个三角形是直角三角形。 要点诠释: 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法, 它通过“数转化为形” 来 确定三角形的可能形状,在运用这一定理时应注意: (1)首先确定最大边,不妨设最长边长为: c ; (2)验证 c2 与 a2+b2是否具有相等关系,若 c2=a2+b2,则△ ABC 是以∠ C 为直角的直角三角形 (若 c2>a2+b2,则△ ABC 是以∠ C 为钝角的钝角三角形;若 c2

勾股定理题型总结83533

勾股定理知识技能和题型归纳(一)——知识技能 一、本章知识内容归纳 1、勾股定理——揭示的是平面几何图形本身所蕴含的代数关系。 (1)重视勾股定理的叙述形式: ①直角三角形直角边上的两个正方形的面积之和等于斜边上的正方形的面积. ②直角三角形斜边长度的平方,等于两个直角边长度平方之和. 从这两种形式来看,有“形的勾股定理”和“数的勾股定理”之分。 (2)定理的作用: ①已知直角三角形的两边,求第三边。 ②证明三角形中的某些线段的平方关系。 ③作长为n 的线段。(利用勾股定理探究长度为,3,2……的无理数线段的几何作图方法,并在数轴上将这些点表示出来,进一步反映了数与形的互相表示,加深对无理数概念的认识。) 2、勾股定理的逆定理 (1)勾股定理的逆定理的证明方法,通过构造一个三角形与直角三角形全等,达到证明某个角为直角的目的。 (2)逆定理的作用:判定一个三角形是否为直角三角形。 (3)勾股定理的逆定理是把数转化为形,是利用代数计算来证明几何问题。要注意叙述及书写格式。运用勾股定理的逆定理的步骤如下: ①首先确定最大的边(如c ) ②验证2 2 b a +与2 c 是否具有相等关系: 若2 2 2 c b a =+,则△ABC 是以∠C 为90°的直角三角形。 若2 2 2 c b a ≠+,则△ABC 不是直角三角形。 补充知识: 当222c b a >+时,则是锐角三角形;当2 22c b a <+时,则是钝角三角形。 (4)通过总结归纳,记住一些常用的勾股数。如:3,4,5;5,12,13;6,8,10;8,15,17;9,40,41;……以及这些数组的倍数组成的数组。 勾股数组的一般规律: ① 丢番图发现的:式子n m n m mn n m >+-(,2,2 2 2 2 的正整数) ② 毕达哥拉斯发现的:122,22,122 2 ++++n n n n n (1>n 的整数) ③ 柏拉图发现的:1,1,222 +-n n n (1>n 的整数)

勾股定理回顾与思考教学设计

2013年北师大版数学八年级上 第一章勾股定理 回顾与思考 一、学生起点分析 通过前面三节的学习,学生已经基本掌握了勾股定理及逆定理的知识,并能应用勾股定理及其逆定理解决一些具体的实际问题,因而学生已经具备解决本课问题所需的知识基础和活动经验基础.同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力. 八年级学生已初步具有几何图形的观察,几何证明的理论思维能力.他们希望老师创设便于他们进行观察的几何环境,给他们发表自己见解和表现自己才华的机会,希望老师满足他们的创造愿望,让他们实际操作,使他们获得施展自己创造才能的机会.但对于勾股定理的综合应用,还需要学生具备一定的分析、归纳的思维方法和运用数学的思想意识,但学生在这一方面的可预见性和耐挫折能力并不是很成熟,可能部分同学会有一些困难. 二、教学任务分析 勾股定理是反映自然界基本规律的一条重要结论,它揭示了直角三角形三边之间的数量关系,将形与数密切联系起来,理论上占有重要的地位,它有着悠久的历史,在数学发展中起过重要的作用,在现实世界中也有着广泛的应用,勾股定理的应用蕴含着丰富的文化价值.勾股定理也是后续有关几何度量运算和代数学习必要的基础,具有学科的基础性与广泛的应用. 本课时教学是复习课,强调让学生经历数学知识的形成与应用过程,鼓励学生自主探索与合作交流,以学生自主探索为主,并强调同桌之间的合作与交流,强化应用意识,培养学生多方面的能力.让学生通过动手、动脑、动口自主探索,

感受数学的美,以提高学习兴趣. 为此,本节课的教学目标是: ①让学生回顾本章的知识,同时重温这些知识尤其是勾股定理的获得和验证的过程,体会勾股定理及其逆定理的广泛应用. ②在回顾与思考的过程中,提高解决问题,反思问题的能力. ③在反思和交流的过程中,体验学习带来的无尽的乐趣.通过对勾股定理历史的再认识,培养爱国主义精神,体验科学给人来带来的力量. 三、教学过程设计 本节课设计了六个环节.第一环节:情境引入;第二环节:知识结构梳理;第三环节:合作探究;第四环节:拓展提升;第五环节:交流小结;第六环节:布置作业. 第一环节情境引入 勾股定理,我们把它称为世界第一定理.它的重要性,通过这一章的学习已深有体验,首先,勾股定理是数形结合的最典型的代表;其次,了解勾股定理历史的同学知道,正是由于勾股定理得发现,导致无理数的发现,引发了数学的第一次危机,这一点,我们将在《实数》一章里讲到,第三,勾股定理中的公式是第一个不定方程,有许许多多的数满足这个方程,也是有完整的解答的最早的不定方程,最为著名的就是费马大定理,直到1995年,数学家怀尔斯才将它证明.勾股定理是我们数学史的奇迹,我们已经比较完整地研究了这个先人给我们留下来的宝贵的财富,这节课,我们将通过回顾与思考中的几个问题更进一步了解勾股定理的历史,勾股定理的应用. 目的: 通过对勾股定理历史及地位的解读,让学生了解知识脉络及前后联系,激发学习探究热情. 效果: 从历史的深度提出问题,学生探究热情高涨,为下一环节奠定了良好基础.第二环节:知识结构梳理 本章知识要点及结构:

勾股定理知识点总结归纳

精心整理 第18章勾股定理复习 一.知识归纳 1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a,b,斜边为c,那么222 a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ① ② 定理 常见方法如下: 方法一:4 EFGH S S S ? += 正方形正方形ABCD ,1 4( 2 ab b ?+- 方法二: 四个直角三角形的面积与小正方形面积的和为S= 大正方形面积为22 () S a b a =+=+ 所以222 a b c += 方法三:1()() 2 S a b a b =+?+ 梯形 ,2 2 22 ab c ?+,化简得 证 3. 它只适用于直角三角形,对于锐角三角 因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4. ① 在ABC ?中,90 C ∠=?,则c,b=,a= ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5、利用勾股定理作长为的线段 作长为、、的线段。 思路点拨:由勾股定理得,直角边为1的等腰直角三角形,斜边长就等于,直角边为和1的直角三角形斜边长就是,类似地可作。 b a

作法:如图所示 (1)作直角边为1(单位长)的等腰直角△ACB ,使AB 为斜边; (2)以AB 为一条直角边,作另一直角边为1的直角。斜边为 ; (3)顺次这样做下去,最后做到直角三角形 ,这样斜边 、 、 、 的长度就是 、 、 、 。 举一反三【变式】在数轴上表示的点。 解析:可以把 看作是直角三角形的斜边, 为了有利于画图让其他两边的长为整数, 而10又是9和1 作法:如图所示在数轴上找到A 点,使OA=3,作以O 为圆心做弧,弧与数轴的交点B 即为 。 注:逆命题与勾股定理逆定理 可以判断真假的陈述句叫做命题, 写出下列原命题的逆命题并判断是否正确 1.原命题:猫有四只脚. 23(正确) 4(正确) 思路点拨:解析:1. 2. 3.?(正确) 4.(正确) 总结升华: 6.74页 如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 要点诠释: 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意: (1)首先确定最大边,不妨设最长边长为:c ; (2)验证c 2与a 2+b 2是否具有相等关系,若c 2=a 2+b 2,则△ABC 是以∠C 为直角的直角三角形 (若c 2>a 2+b 2,则△ABC 是以∠C 为钝角的钝角三角形;若c 2

2019年勾股定理回顾与思考教学设计.doc.doc

第一章勾股定理 回顾与思考 成都市石室联合中学林武 一、学生起点分析 通过前面三节的学习,学生已经基本掌握了勾股定理及逆定理的知识,并能 应用勾股定理及其逆定理解决一些具体的实际问题,因而学生已经具备解决本课问 题所需的知识基础和活动经验基础.同时在以前的数学学习中学生已经经历了很多 合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能 力. 八年级学生已初步具有几何图形的观察,几何证明的理论思维能力.他们希 望老师创设便于他们进行观察的几何环境,给他们发表自己见解和表现自己才华的 机会,希望老师满足他们的创造愿望,让他们实际操作,使他们获得施展自己创造 才能的机会.但对于勾股定理的综合应用,还需要学生具备一定的分析、归纳的 思维方法和运用数学的思想意识,但学生在这一方面的可预见性和耐挫折能力并不 是很成熟,可能部分同学会有一些困难. 二、教学任务分析 勾股定理是反映自然界基本规律的一条重要结论,它揭示了直角三角形三边之 间的数量关系,将形与数密切联系起来,理论上占有重要的地位,它有着悠久的 历史,在数学发展中起过重要的作用,在现实世界中也有着广泛的应用,勾股定理 的应用蕴含着丰富的文化价值.勾股定理也是后续有关几何度量运算和代数学习必 要的基础,具有学科的基础性与广泛的应用. 本课时教学是复习课,强调让学生经历数学知识的形成与应用过程,鼓励学 生自主探索与合作交流,以学生自主探索为主,并强调同桌之间的合作与交流, 强化应用意识,培养学生多方面的能力.让学生通过动手、动脑、动口自主探索,感受数学的美,以提高学习兴趣. 为此,本节课的教学目标是: ①让学生回顾本章的知识,同时重温这些知识尤其是勾股定理的获得和验证

勾股定理及教学反思

19.9勾股定理(1) 吴淞实验学校徐琳教学设计说明 本节课是义务教育课程标准上教版教科书八年级(上)第十九章《几何证明》第九节第1课时. 八年级学生已经具备一定的观察、归纳、探索和推理的能力.在小学,他们已学习了一些几何图形面积的计算方法(包括割补法),但运用面积法和割补思想解决问题的意识和能力还远远不够.部分学生听说过“勾三股四弦五”,但并没有真正认识什么是“勾股定理”.此外,学生普遍学习积极性较高,探究意识较强,课堂活动参与较主动,但合作交流能力和探究能力有待加强.勾股定理揭示了直角三角形三边之间的一种美妙关系,将形与数密切联系起来,在数学的发展和现实世界中有着广泛的作用.本节是直角三角形相关知识的延续,同时也是学生认识无理数的基础,充分体现了数学知识承前启后的紧密相关性、连续性.此外,历史上勾股定理的发现反映了人类杰出的智慧,其中蕴涵着丰富的科学与人文价值. 教学目标 1.理解用面积割补方法证明勾股定理的思路; 2.在探索勾股定理的过程中,体验获得成功的快乐;通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习. 3.进一步发展学生的说理和简单推理的意识及能力;进一步体会数学与现实生活的紧密联系. 教学重点及难点 面积割补法证明勾股定理 教学过程设计 一.创设情境,引入新课 内容:2002年世界数学家大会在我国北京召开,投影显示本届世界数学家大

会的会标: 会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号.今天我们就来一同探索勾股定理.(板书课题) 意图:紧扣课题,自然引入,同时渗透爱国主义教育. 效果:激发起学生的求知欲和爱国热情. 二.探索发现勾股定理 1.探究活动一: 内容:(1)投影显示如下地板砖示意图,让学生初步观察: (2)引导学生从面积角度观察图形: 问:你能发现各图中三个正方形的面积之间有何关系吗? 学生通过观察,归纳发现: 结论1 以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积. 意图:从观察实际生活中常见的地板砖入手,让学生感受到数学就在我们身边.通过对特殊情形的探究得到结论1,为探究活动二作铺垫. 效果:1.探究活动一让学生独立观察,自主探究,培养独立思考的习惯和能力; 2.通过探索发现,让学生得到成功体验,激发进一步探究的热情和愿望. 2.探究活动二:

第十七章 勾股定理 小结 教案

勾股定理复习小结 一、 二. 1、 勾股定理的应用 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用有:(1)已知直角三角形的两边求第三边 (2)已知直角三角形的一边与另两边的关系。求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2、 如何判定一个三角形是直角三角形 (1) 先确定最大边(如c ) (2) 验证2c 与22b a +是否具有相等关系 (3) 若2c =22b a +,则△ABC 是以∠C 为直角的直角三角形;若2c ≠22b a + 则△ABC 不是直角三角形。 3、 勾股数 满足22b a +=2c 的三个正整数,称为勾股数 如(1)3,4,5; (2)5,12,13; (3)6,8,10;(4)8,15,17 (5)7,24,25 (6)9, 40, 41 二、 练习题 1.一个直角三角形,有两边长分别为6和8,下列说法中正确的是( ) A. 第三边一定为10 B.三角形的周长为24 C.三角形的面积为24 D.第三边有可能为10 2.已知一个Rt △的两边长分别为3和4,则第三边长的平方是( ) A 、25 B 、14 C 、7 D 、7或25 3.下列各组数中,以a ,b ,c 为边的三角形不是Rt △的是( ) A 、a=1.5,b=2, c=3 B 、a=7,b=24,c=25 C 、a=6, b=8, c=10 D 、a=3,b=4,c=5 3.三角形的三边长为(a+b )2=c 2+2ab,则这个三角形是( ) A. 等边三角形; B. 钝角三角形; C. 直角三角形; D. 锐角三角形. 4、一个三角形的三边的长分别是3,4,5,则这个三角形最长边上的高是( ) A .4 B .310 C.25 D .5 12 5.已知Rt △ABC 中,∠C=90°,若a+b=14cm ,c=10cm ,则Rt △ABC 的面积是( ) A 、24cm 2 B 、36cm 2 C 、48cm 2 D 、60cm 2

相关主题