搜档网
当前位置:搜档网 › 高等代数矩阵的运算

高等代数矩阵的运算

线性代数行列式算与性质

线性代数行列式的计算与性质 行列式在数学中,是一个函数,其定义域为的矩阵,取值为一个标量,写作或。行列式可以看做是有向面积或体积的概 念在一般的欧几里得空间中的推广。或者说,在维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。 行列式概念最早出现在解线性方程组的过程中。十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现了线性自同态和矢量组的行列式的定义。 行列式的特性可以被概括为一个多次交替线性形式,这个本质使得行列式在欧几里德空间中可以成为描述“体积”的函数。 矩阵 A 的行列式有时也记作 |A|。绝对值和矩阵范数也使用这个记法,有可能和行列式的记法混淆。不过矩阵范数通常以双垂直线来表示(如: ),且可以使用下标。此外,矩阵的绝对值是没有定义的。因此,行 列式经常使用垂直线记法(例如:克莱姆法则和子式)。例如,一个矩阵: A= ? ? ? ? ? ? ? i h g f e d c b a , 行列式也写作,或明确的写作: A= i h g f e d c b a , 即把矩阵的方括号以细长的垂直线取代 行列式的概念最初是伴随着方程组的求解而发展起来的。行列式的提出可以追溯到十七世纪,最初的雏形由日本数学家关孝和与德国数学家戈特弗里德·莱布尼茨各自独立得出,时间大致相同。

2-matlab矩阵的代数运算 (1)

乘法运算乘法运算符为”*”,运算规则和现行代数中矩阵乘法运算相同,即放在前面的矩阵的行元素,分别与放在后面的矩阵的各列元素对应相乘并相加。 1、两个矩阵相乘:必须满足前一矩阵的列数等于后一矩阵的行数。 2、矩阵的数乘:返回数与矩阵中每一个元素相乘后的矩阵 3、向量的点乘(内积):维数相同的两个向量的点乘;A.*B表示A与B对应的元素相乘,返回的是一个向量 4、向量点积: (1)C=dot(A,B) %若A、B为向量,A与B长度相同;若为矩阵,则A与B有相同维数 (2)C=dot(A,B,dim) %在dim维数中给出A与B的点积 5、向量叉乘:在数学上,两向量的叉乘是一个过两向量交点且垂直于两向量所在平面的向量。 (1)C=cross(A,B) %若A、B为向量,则返回A与B的叉乘,即C=AXB;若为矩阵,则返回一个3Xn矩阵,其中列是A与B对应列的叉积,A、B都是3Xn矩阵 (2)C=cross(A,B,dim) %在dim维数中给出向量A与B的叉积注:A与B必须具有相同维数,size(A,dim)和size(B,dim)必须是3 6、矩阵卷积和多项式乘法:w=conv(u,v) (反褶积deconv(u,v))长度为m的向量序列u和长度为n的向量序列v的卷积定义为 ∑ = + = k 1 j j) -1 u(j)v(k )k( w,其中w向量序列长度为(m+n-1) 多项式的乘法实际上是多项式系数向量间的卷积运算,举例如下:展开多项式(s2+2s+2)(s+4)(s+1) >>w=conv([1,2,2],conv([1,4],[1,1])) w = 1 7 16 18 8 >>p=poly2str(w,’s’) %将w表示成多项式 p=s^4 +7 s^3 +16 s^2 +18 s + 8 7、张量积 C=kron(A,B) %A为mxn矩阵,B为pxq矩阵,则C为mpxnq矩阵A与B的张量积定义为: 加、减运算加、减运算符为”+”、”--”。运算规则为对应元素相加、减 pow2函数命令:X=pow2(F,E),表示F*2E;命令:X=pow2(E),表示2E 矩阵的代数 运算

线性代数---特殊行列式及行列式计算方法总结

特殊行列式及行列式计算方法总结 一、 几类特殊行列式 1. 上(下)三角行列式、对角行列式(教材P7例5、例6) 2. 以副对角线为标准的行列式 11112112,1221222,1 1,21,1 1,11 2 ,1 (1)2 12,11 000000 00 000 0000 (1) n n n n n n n n n n n nn n n n n n nn n n n n n a a a a a a a a a a a a a a a a a a a a a a ---------== =- 3. 分块行列式(教材P14例10) 一般化结果: 00n n m n n m n m m n m m n m A C A A B B C B ????==? 0(1)0n m n n m n mn n m m m n m m n A C A A B B C B ????==-? 4. 范德蒙行列式(教材P18例12) 注:4种特殊行列式的结果需牢记! 以下几种行列式的特殊解法必须熟练掌握!!! 二、 低阶行列式计算 二阶、三阶行列式——对角线法则 (教材P2、P3) 三、 高阶行列式的计算 【五种解题方法】 1) 利用行列式定义直接计算特殊行列式; 2) 利用行列式的性质将高阶行列式化成已知结果的特殊行列式; 3) 利用行列式的行(列)扩展定理以及行列式的性质,将行列式降阶进行计算 ——适用于行列式的某一行或某一列中有很多零元素,并且非零元素的代数余子式很容易计算; 4) 递推法或数学归纳法; 5) 升阶法(又称加边法)

【常见的化简行列式的方法】 1. 利用行列式定义直接计算特殊行列式 例1 (2001年考研题) 00010002000199900 02000000 002001 D = 分析:该行列式的特点是每行每列只有一个元素,因此很容易联想到直接利用行列式定义进行计算。 解法一:定义法 (1,2,...,2,1,)012...19990(1)2001!(1)2001!2001!n n n D τ--+++++=-=-= 解法二:行列式性质法 利用行列式性质2把最后一行依次与第n -1,n -2,…,2,1行交换(这里n =2001),即进行2000次换行以后,变成副对角行列式。 2001(20011) 20011 20011 2 000020010 001000200(1) (1) (1)2001!2001!0199900 02000 000D ?---=-=--= 解法三:分块法 00010002000199900 02000000 002001 D = 利用分块行列式的结果可以得到

高等代数 矩阵练习题参考答案

第四章 矩阵习题参考答案 一、 判断题 1. 对于任意n 阶矩阵A ,B ,有A B A B +=+. 错. 2. 如果20,A =则0A =. 错.如2 11,0,011A A A ??==≠ ?--??但. 3. 如果2A A E +=,则A 为可逆矩阵. 正确.2()A A E A E A E +=?+=,因此A 可逆,且1A A E -=+. 4. 设,A B 都是n 阶非零矩阵,且0AB =,则,A B 的秩一个等于n ,一个小于n . 错.由0AB =可得()()r A r B n +≤.若一个秩等于n ,则该矩阵可逆,另一个秩为零,与两个都是非零矩阵矛盾.只可能两个秩都小于n . 5.C B A ,,为n 阶方阵,若,AC AB = 则.C B = 错.如112132,,112132A B C ?????? === ? ? ?------?????? ,有,AC AB =但B C ≠. 6.A 为n m ?矩阵,若,)(s A r =则存在m 阶可逆矩阵P 及n 阶可逆矩阵Q ,使 .00 0??? ? ??=s I PAQ

正确.右边为矩阵A 的等价标准形,矩阵A 等价于其标准形. 7.n 阶矩阵A 可逆,则*A 也可逆. 正确.由A 可逆可得||0A ≠,又**||AA A A A E ==.因此*A 也可逆,且11 (*)|| A A A -= . 8.设B A ,为n 阶可逆矩阵,则.**)*(A B AB = 正确.*()()||||||.AB AB AB E A B E ==又 ()(**)(*)*||*||*||||AB B A A BB A A B EA B AA A B E ====. 因此()()*()(**)AB AB AB B A =.由B A ,为n 阶可逆矩阵可得AB 可逆,两边同时左乘式AB 的逆可得.**)*(A B AB = 二、 选择题 1.设A 是n 阶对称矩阵,B 是n 阶反对称矩阵()T B B =-,则下列矩阵中为反对称矩阵的是(B ). (A) AB BA - (B) AB BA + (C) 2()AB (D) BAB (A)(D)为对称矩阵,(B )为反对称矩阵,(C )当,A B 可交换时为对称矩阵. 2. 设A 是任意一个n 阶矩阵,那么( A )是对称矩阵. (A) T A A (B) T A A - (C) 2A (D) T A A - 3.以下结论不正确的是( C ).

线性代数的基本运算

111 第5章 线性代数的基本运算 本章学习的主要目的: 1 复习线性代数中有关行列式、矩阵、矩阵初等变换、向量的线性相关性、线性方程组的求解、相似矩阵及二次型的相关知识. 2学会用MatLab 软件进行行列式的计算、矩阵的基本运算、矩阵初等变换、向量的线性相关性的判别、线性方程组的求解、二次型化标准形的运算. 5.1 行列式 5.1.1 n 阶行列式定义 由2n 个元素),,2,1,(n j i a ij 组成的记号 D=nn n n n n a a a a a a a a a 212222111211 称为n 阶行列式.其值是所有取自不同行不同列的n 个元素的乘积n np 2p 21p 1a a a 的代数和,各项的符号由n 级排列n p p p 21决定,即

112 D= ∑ -n p p p n p p p 21n np 2 p 21 p 1) 21( a a a )1(τ, 其中 ∑n p p p 21表示对所有n 级排列求和, ) ,,,(21n p p p τ是排列 n p p p 21的逆序数. 5.1.2 行列式的性质 (1) 行列式与它的转置行列式相等. (2) 互换行列式的两行(列),行列式变号. (3) 若行列式有两行(列)完全相同,则此行列式为零. (4) 行列式的某一行(列)中所有的元素都乘以同一数k,等于用数k 乘此行列式. (5) 若行列式有两行(列)元素成比例,则此行列式为零. (6) 若行列式的某一列(行)的元素是两数的和,则此行列式等 于对应两个行列式之和.即 nn n n ni n n i i nn n n ni n n i i nn n n ni ni n n i i i i a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a 21'2 1 '22221 '11211212 1 22221 112 1121'2 1 '222221'111211+ =+++ (7) 若行列式的某一行(列)的各元素乘以同一数加到另一行(列)对应的元素上去,行列式不变.

矩阵代数基本知识

附录I 矩阵代数基本知识 矩阵和行列式是研究多元统计分析的重要工具,这里针对本书的需要,对有关矩阵代数的基本知识作回顾性的介绍,其中有些内容是过去教学计划中没有涉及到的。 一、 向量矩阵的定义 将n p ?个实数111212122212,,,,,,,,,,,,p p n n np a a a a a a a a a 排成如下形式的矩形数表,记为A 111212122212p p n n np a a a a a a a a a ?? ??? ?=???????? A 则称A 为n p ?阶矩阵,一般记为()ij n p a ?=A ,称ij a 为矩阵A 的元素。当 n p =时,称A 为n 阶方阵;若1p =,A 只有一列,称其为n 维列向量, 记为 1121 1n a a a ???????????? 若1n =,A 只有一行,称其为 p 维行向量,记为 () 11121,,,p a a a

当A 为n 阶方阵,称1122,,,nn a a a 为A 的对角线元素,其它元素称为非对角元素。若方阵A 的非对角元素全为0,称A 为对角阵,记为 11221122(,,,)nn nn a a diag a a a a ??????==???????? A 进一步,若11221nn a a a ==== ,称A 为n 阶单位阵,记为n I 或 =A I 。 如果将n p ?阶矩阵A 的行与列彼此交换,得到的新矩阵是p n ?的矩阵,记为 112111222212n n p p np a a a a a a a a a ????? ?'=???????? A 称其为矩阵A 的转置矩阵。 若A 是方阵,且'= A A ,则称A 为对称阵; 若方阵()ij n n A a ?=,当 对一切i j <元素0ij a =,则称 112122 12 n n nn a a a a a a ???? ??=??????A 为下三角阵;若'A 为下三角阵,则称A 为上三角阵。

高等代数(张禾瑞版)备课教案-第5章矩阵

第五章 矩 阵 教学目的: 1. 掌握矩阵的加法,乘法及数与矩阵的乘法运算法则。及其基本性质,并熟练地对矩阵进行运算。 2. 了解几种特殊矩阵的性质。 教学内容: 5.1 矩阵的运算 1 矩阵相等 我们将在一个数域上来讨论。令F 是一个数域。用F 的元素a ij 作成的一个m 行n 列矩阵 A= ?????? ? ??a a a a a a a a a mn m m n n 2 1 222 2111211 叫做F 上一个矩阵。A 也简记作(a ij )。为了指明 A 的行数和列数,有时也把它记作A mn 或 (a ij )mn 。 一个 m 行n 列矩阵简称为一个m*n 矩阵。特别,把一个n*n 矩阵叫做一个 n 阶正方阵,或n 阶矩阵。 F 上两个矩阵,只有在它们有相同的行数和列数,并且对应位置上的 元素都相等时,才认为上相等的。 以下提到矩阵时,都指的是数域F 上的矩阵。 我们将引进三种运算:数与矩阵的乘法,矩阵的加法以及矩阵的乘法。 先引入前两种运算。 2 矩阵的线性运算 定义 1 数域F 的数 a 与F 上一个m*n 矩阵A=(a ij ) 的乘法aA 指的是m*n 矩阵(aa ij ) 定义 2 两个m*n 矩阵A=(a ij ),B=(b ij ) 的和A+B 指的是m*n 矩阵(a ij +b ij )。 注意 ,我们只能把行数相同,列数相同的两个矩阵相加。 以上两种运算的一个重要特例是数列的运算。 现在回到一般的矩阵。我们把元素全是零的矩阵叫做零矩阵,记作0。如果矩阵 A=(a ij ), 我们就把矩阵(- a ij ),叫做A 的负矩阵,记作—A 。 3 矩阵线性运输的规律 A+B=B+A ; (A+B)+C=A+(B+C); 0+A=A ; A+(-A)=0; a(A+B)=Aa+Ab ; (a+b)A=Aa+Ba ; a(bA)=(ab)A ; 这里A,B 和 C 表示任意m*n 矩阵,而a 和 b 表示 F 中的任意数。

线性代数之行列式的性质及计算

第二节 行列式的性质与计算 § 行列式的性质 考虑111212122212 n n n n nn a a a a a a D a a a = 将它的行依次变为相应的列,得 112111222212n n T n n nn a a a a a a D a a a = 称T D 为D 的转置行列式 . 性质1 行列式与它的转置行列式相等.(T D D =) 事实上,若记1112 12122212 n n T n n nn b b b b b b D b b b = 则(,1,2, ,)ij ji b a i j n == 12 12 () 12(1)n n p p p T p p np D b b b τ∴=-∑12 12() 12(1).n n p p p p p p n a a a D τ=-=∑ 说明:行列式中行与列具有同等的地位, 因此行列式的性质凡是对行成立的结论, 对列也同样成立. 性质2 互换行列式的两行(i j r r ?)或两列(i j c c ?),行列式变号. 例如 123 123086351.351 086 =- 推论 若行列式D 有两行(列)完全相同,则0D =. 证明: 互换相同的两行, 则有D D =-, 所以0D =. 性质3 行列式某一行(列)的所有元素都乘以数k ,等于数k 乘以此行列式,即 111211112 11212 1 2 12 n n i i in i i in n n nn n n nn a a a a a a ka ka ka k a a a a a a a a a =

推论:(1) D 中某一行(列)所有元素的公因子可提到行列式符号的外面; (2) D 中某一行(列)所有元素为零,则0D =; 性质4: 行列式中如果有两行(列)元素对应成比例, 则此行列式等于零. 性质5: 若行列式某一行(列)的所有元素都是两个数的和,则此行列式等于两个行列式的和.这两个行列式的这一行(列)的元素分别为对应的两个加数之一,其余各行(列)的元素与原行列式相同 .即 1112111221 2 n i i i i in in n n nn a a a a b a b a b a a a +++=1112112 12n i i in n n nn a a a a a a a a a +1112112 12 n i i in n n nn a a a b b b a a a . 证: 由行列式定义 12 12() 12(1)()n i i n p p p p p ip ip np D a a a b a τ=-+∑ 12 12 12 12() () 1212(1)(1).n n i n i n p p p p p p p p ip np p p ip np a a a a a a b a ττ=-+-∑∑ 性质6 行列式D 的某一行(列)的各元素都乘以同一数k 加到另一行(列)的相应元素上,行列式的值不变()i j r kr D D +=,即 11121121 2 i j n r kr i i in n n nn a a a a a a a a a +=1112111221 2 n i j i j in jn n n nn a a a a ka a ka a ka a a a +++ 计算行列式常用方法: 利用性质2,3,6, 特别是性质6把行列式化为上(下)三角形行列式, 从而, 较容易的计算行列式的值. 例1: 计算行列式 2 324311112321311 (1)(2) 323 4 11310 4 25 1113 D --= -

【高等代数】理解矩阵

线性代数课程,无论你从行列式入手还是直接从矩阵入手,从一开始就充斥着莫名其妙。比如说,在全国一般工科院系教学中应用最广泛的同济线性代数教材(现在到了第四版),一上来就介绍逆序数这个“前无古人,后无来者”的古怪概念,然后用逆序数给出行列式的一个极不直观的定义,接着是一些简直犯傻的行列式性质和习题——把这行乘一个系数加到另一行上,再把那一列减过来,折腾得那叫一个热闹,可就是压根看不出这个东西有嘛用。大多数像我一样资质平庸的学生到这里就有点犯晕:连这是个什么东西都模模糊糊的,就开始钻火圈表演了,这未免太“无厘头”了吧!于是开始有人逃课,更多的人开始抄作业。这下就中招了,因为其后的发展可以用一句峰回路转来形容,紧跟着这个无厘头的行列式的,是一个同样无厘头但是伟大的无以复加的家伙的出场——矩阵来了!多年之后,我才明白,当老师犯傻似地用中括号把一堆傻了吧叽的数括起来,并且不紧不慢地说:“这个东西叫做矩阵”的时候,我的数学生涯掀开了何等悲壮辛酸、惨绝人寰的一幕!自那以后,在几乎所有跟“学问”二字稍微沾点边的东西里,矩阵这个家伙从不缺席。对于我这个没能一次搞定线性代数的笨蛋来说,矩阵老大的不请自来每每搞得我灰头土脸,头破血流。长期以来,我在阅读中一见矩阵,就如同阿Q见到了假洋鬼子,揉揉额角就绕道走。 事实上,我并不是特例。一般工科学生初学线性代数,通常都会感到困难。这种情形在国内外皆然。瑞典数学家Lars Garding在其名著Encounter with Mathematics中说:“如果不熟悉线性代数的概念,要去学习自然科学,现在看来就和文盲差不多。”,然而“按照现行的国际标准,线性代数是通过公理化来表述的,它是第二代数学模型,...,这就带来了教学上的困难。”事实上,当我们开始学习线性代数的时候,不知不觉就进入了“第二代数学模型”的范畴当中,这意味着数学的表述方式和抽象性有了一次全面的进化,对于从小一直在“第一代数学模型”,即以实用为导向的、具体的数学模型中学习的我们来说,在没有并明确告知的情况下进行如此剧烈的paradigm shift,不感到困难才是奇怪的。 大部分工科学生,往往是在学习了一些后继课程,如数值分析、数学规划、矩阵论之后,才逐渐能够理解和熟练运用线性代数。即便如此,不少人即使能够很熟练地以线性代数为工具进行科研和应用工作,但对于很多这门课程的初学者提出的、看上去是很基础的问题却并不清楚。比如说: * 矩阵究竟是什么东西?向量可以被认为是具有n个相互独立的性质(维度)的对象的表示,矩阵又是什么呢?我们如果认为矩阵是一组列(行)向量组成的新的复合向量的展开式,那么为什么这种展开式具有如此广泛的应用?特别是,为什么偏偏二维的展开式如此有用?如果矩阵中每一个元素又是一个向量,那么我们再展开一次,变成三维的立方阵,是不是更有用? * 矩阵的乘法规则究竟为什么这样规定?为什么这样一种怪异的乘法规则却能够在实践中发挥如此巨大的功效?很多看上去似乎是完全不相关的问题,最后竟然都归结到矩阵的乘法,这难道不是很奇妙的事情?难道在矩阵乘法那看上去莫名其妙的规则下面,包含着世界的某些本质规律?如果是的话,这些本质规律是什么? * 行列式究竟是一个什么东西?为什么会有如此怪异的计算规则?行列式与其对应方阵本质上是什么关系?为什么只有方阵才有对应的行列式,而一般矩阵就没有(不要觉得这个问题很蠢,如果必要,针对m x n矩阵定义行列式不是做不到的,之所以不做,是因为没有这个必要,但是为什么没有这个必要)?而且,行列式的计算规则,看上去跟矩阵的任何计算规则都没有直观的联系,为什么又在很多方面决定了矩阵的性质?难道这一切仅是巧合? * 矩阵为什么可以分块计算?分块计算这件事情看上去是那么随意,为什么竟是可行的? * 对于矩阵转置运算AT,有(AB)T = BTAT,对于矩阵求逆运算A-1,有(AB)-1 = B-1A-1。两个看上去完

行列式与矩阵幂迹的代数关系

行列式与矩阵幂迹的代数关系 计算]det[xB A +的公式 (1)递归推导法: ∑=+=i i i x C xB A w ]det[]det[ ... ]det[)(]det[)(]det[]det[)()ln (]det[21)(ln )(ln w v v w w v w ww w w w w tr tr tr tr e tr e x x x tr x tr x x +?=?=?=?=?=?- 001)](det[]det[)(!==+?=?=x i x x n x i tr i C v w w ... 2)()()()()()(3 1 1 1 1 1 1 1 11122111v ww ww ww w w ww ww w w ww w w w w v v w w ww w w v -=???-??-?=???+???=?-=?-?=??=?-------------x x x x x x x x x x x x x x x x x x )()1)..(1)(()(n m m n x tr n m m m tr ++-----=?v v () m x m n m m n m n x x i x i i i i tr tr tr n m m m tr m tr tr i C x C x )()()()1)..(1)(()()(1)(! det ]det[100 B A v v v v v A B A -=+==+-----=-=?+?= =+∑ (2)直接展开法

∑ ∏∑∑ ∏∑∑∏ ∑∑∏∑∏∑∑∏∑∑∑∑∑=-+∞ ==+∞ ==∞===∞==∞=+=∞ =+--∑ -=+∑ -=∑=∑==∑=≡-=-=+=++≡+=+=+n jm m m i m i m i n n n jm m m i m i m i n n n jm m i m i n n m i m i jm m i im m i m m m m i im m i m i i i m m i i i i m i i i i j j i i i i i j j i i i i i j j i i i i i i j j i i i i i i i i i i m tr x x i m tr x m P x m P x m x P m x P P x m i tr x m i tr x x tr x x x x x }, {)1(0 }, {)1(0 },{0}{}{0},{1 01101 1!)))((()1(]det[]det[!))(()1(!!!!) (!1))()1((!1) ) ()1(exp())ln(exp(]det[]det[det ]det[det ]det[det ]det[B A A B A D D D D δD δD δA B A δA B A δA B A 111 按照分配

高等代数北大版第四章矩阵知识点总结

高等代数北大版第四章矩阵知 识点总结 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第四章 矩阵( * * * ) 一、复习指导:矩阵这一章节可以说是一个基础章节,它不仅很重要,而且还是其他章节的基础,学好矩阵十分重要,我们要对逆矩阵,转置矩阵,对称矩阵等等的概念都要弄清楚,除此之外,还要知道矩阵的运算性质,矩阵的秩。在考试中,很有可能会出与矩阵这一章节有关的证明题,例如证明相互关联的矩阵的秩,矩阵的逆之间的关系,还有可能有与求矩阵的逆有关的题目。总的来说,这一个章节是一个关键的章节,高等代数这本书里面的知识都是融会贯通的,学好了矩阵能够为后面的章节夯实基础。 二、考点精讲: (一) 基本概念及其运算 1.基本概念 矩阵—形如????? ? ? ??mn m m n n a a a a a a a a a 212222111211称为m 行n 列的矩阵,记为n m ij a A ?=)(,行数与列数相等的矩阵称为方阵,元素全为零的矩阵称为零矩阵。 (1)若矩阵中所有元素都为零,该矩阵称为零矩阵,记为O 。 (2)对n m ij a A ?=)(,若n m =,称A 为n 阶方阵。 (3)称??? ? ? ??=11 E 为单位矩阵。 (4)对称矩阵—设n n ij a A ?=)(,若),,2,1,(n j i a a ji ij ==,称A 为对称矩阵。 (5)转置矩阵—设??????? ??=mn m m n n a a a a a a a a a A 2 122221 11211 ,记?? ? ? ? ? ? ??=mn n n m m T a a a a a a a a a A 212221212111 , 称T A 为矩阵A 的转置矩阵。 (6)同型矩阵及矩阵相等—若两个矩阵行数与列数相同,称两个矩阵为同型 矩阵,若两个矩阵为同型矩阵,且对应元素相同,称两个矩阵相等。 (7)伴随矩阵—设n n ij a A ?=)(为n 矩阵,将矩阵A 中的第i 行和j 列去掉,余下的元素按照原来的元素排列次序构成的1-n 阶行列式,称为元素ij a 的余子式,记为ij M ,同时称ij j i ij M A +-=)1(为元素ij a 的代数余子式,这样矩阵中的每

线性代数教案 第二章 矩阵及其运算

1 2 m m mn a a a 矩阵。为了表示它是一个整体,总是加一个括号将它界起来,并通常用大写字母表示它。记做 12m m mn a a a ? ?12 m m mn a a a a ??? 。切记不允许使用11 12121 22 212 n n m m mn a a a a a a a a a = A 。 矩阵的横向称行,纵向称列。矩阵中的每个数称为元素,所有元素都是实数的矩阵称为实矩阵,所有元素都是复数的矩阵称为复矩阵。本课中的矩阵除特殊说明外,都指12n n nn a a a ?? 不是方阵没有主对角线。在方阵中,

00nn a ?? 1121 2212000n n nn a a a a a a ?????? (主对角线以上均为零)1122 00000 0nn a a a ????? ???? (既}nn a . 对角元素为1的对角矩阵,记作E 或001???? ()11a ,此时矩阵退化为一个数矩阵的引进为许多实际的问题研究提供方便。 a x +)1(+?n 矩阵: 12 m m mn m a b a a a b ?? 任何一个方程组都可以用这样一个矩阵来描述;反之,一个矩阵也完全刻划了一个方

1 22 m m m mn mn b a b a b ? +++? ? ? ? ???-=4012B ,计算 B A +。 122 m m m mn mn b a b a b ? ---? 与矩阵n m ij a A ?=}{的乘积(称之为数乘),

12 m m mn a a a λλ?? 以上运算称为矩阵的线性运算,它满足下列运算法则:

高等代数北大版教案-第8章λ-矩阵

·91· 第八章 λ-矩阵 本章主要介绍λ-矩阵及其性质,并用这些性质证明若当标准形的主要定理。 §1 λ-矩阵 如果一个矩阵的元素是λ的多项式,即][λP 的元素,这个矩阵就称为λ-矩阵。 为了与λ-矩阵相区别,我们把以数域P 中的数为元素的矩阵称为数字矩阵。由于数域中的数也是][λP 中的元素,所以在λ-矩阵中包括以数为元素的矩阵,即数字矩阵为λ-矩阵的一个特殊情形。 同样可以定义一个λ-矩阵的行列式,既然有行列式,也就有λ-矩阵的子式的概念。利用这个概念。我们有 定义 1 如果λ-矩阵)(λA 中有一个r )1(≥r 级子狮不为零。而所有1+r 级子式(如果有的话)全为零,则称)(λA 的秩为r ,零矩阵的秩规定为零。 定义2 一个n n ?的λ-矩阵)(λA 称为可逆的,如果有一个n n ?的λ-矩阵)(λB 使 )(λA )(λB =)(λB )(λA =E (1) 这里E 是n 级单位矩阵。适合(1)的矩阵)(λB (它是唯一的)称为)(λA 的逆矩阵,记为)(1λ-A 关于λ-矩阵可逆的条件有 定理1 一个n n ?的λ-矩阵)(λA 是可逆的充分必要条件为行列式|)(|λA 是一个非零的数。

·92· §2 λ-矩阵在初等变换下的标准形 λ-矩阵也有初等变换。 定义3 下面的三种变换叫做λ-矩阵的初等变换: (1)矩阵的两行(列)互换位置; (2)矩阵的某一行(列)乘以非零的常数c ; (3)矩阵的某一行(列)加另一行(列)的)(λΦ倍,)(λΦ是一个多项式。 初等变换都是可逆的,并且有 ))(())((),,(),(111---==c i p c i p j i p j i p ,))(,())(,(1?φ-=-j i p j i p 。 为了写起来方便起见,我们采用以下的记号: ],[j i 代表j i ,行(列)互换位置; )]([c i 代表用非零的数c 去乘i 行(列) ; )]([φj i +代表把j 行(列)的)(λφ倍加到i 行(列)。 定义4 λ-矩阵)(λA 称为与)(λB 等价,如果可以经过一系列初等变换将)(λA 化为)(λB 。 等价是λ-矩阵之间的一种关系,这个关系,显然具有下列三个性质: (1) 反身性:每一个λ-矩阵与自己等价。 (2) 对称性:若)(λA 与)(λB 等价,则)(λB 与)(λA 等价。这是由于 初等变换具有可逆性的缘故。 (3) 传递性:若)(λA 与)(λB 等价,)(λB 与)(λC 等价,则)(λA 与 )(λC 等价, 引理 设λ-矩阵)(λA 的左上角0)(11≠λa ,并且)(λA 中至少有一个元素不能被它除尽,那么一定可以找到一个与)(λA 等价的矩阵)(λB ,它的左上角元素也不为零,但是次数比)(11λa 的次数低。

高等代数北大版第四章矩阵知识点总结

第四章 矩阵( * * * ) 一、复习指导:矩阵这一章节可以说是一个基础章节,它不仅很重要,而且还是其他章节的基础,学好矩阵十分重要,我们要对逆矩阵,转置矩阵,对称矩阵等等的概念都要弄清楚,除此之外,还要知道矩阵的运算性质,矩阵的秩。在考试中,很有可能会出与矩阵这一章节有关的证明题,例如证明相互关联的矩阵的秩,矩阵的逆之间的关系,还有可能有与求矩阵的逆有关的题目。总的来说,这一个章节是一个关键的章节,高等代数这本书里面的知识都是融会贯通的,学好了矩阵能够为后面的章节夯实基础。 二、考点精讲: (一) 基本概念及其运算 1.基本概念 矩阵—形如???? ?? ? ??mn m m n n a a a a a a a a a Λ ΛΛ Λ ΛΛΛ21 22221 11211称为m 行n 列的矩阵,记为n m ij a A ?=)(,行数与列数相等的矩阵称为方阵,元素全为零的矩阵称为零矩阵。 (1)若矩阵中所有元素都为零,该矩阵称为零矩阵,记为O 。 (2)对n m ij a A ?=)(,若n m =,称A 为n 阶方阵。 (3)称??? ? ? ??=11 O E 为单位矩阵。 (4)对称矩阵—设n n ij a A ?=)(,若),,2,1,(n j i a a ji ij Λ==,称A 为对称矩阵。 (5)转置矩阵—设??????? ??=mn m m n n a a a a a a a a a A Λ ΛΛ Λ ΛΛΛ21 22221 11211,记?????? ? ??=mn n n m m T a a a a a a a a a A Λ ΛΛΛΛΛ Λ212221212111 ,称T A 为矩阵A 的转置矩阵。 (6)同型矩阵及矩阵相等—若两个矩阵行数与列数相同,称两个矩阵为同型矩阵,若两个矩阵为同型矩阵,且对应元素相同,称两个矩阵相等。 (7)伴随矩阵—设n n ij a A ?=)(为n 矩阵,将矩阵A 中的第i 行和j 列去掉,余下的元素按照原来的元素排列次序构成的1-n 阶行列式,称为元素ij a 的余子式,记为ij M ,同时称ij j i ij M A +-=)1(为元素ij a 的代数余子式, 这样矩阵中的每一个元素都有自己的代数余子式,记????? ? ? ??=*nn n n n n A A A A A A A A A A Λ ΛΛΛΛΛΛ2122212 12111 ,称为矩阵A 的伴随矩阵。 2.矩阵的三则运算

相关主题