搜档网
当前位置:搜档网 › 磁性材料基本知识

磁性材料基本知识

磁性材料基本知识
磁性材料基本知识

磁性材料基本知识

磁粉芯是由铁磁性粉粒与绝缘介质混合压制而成的一种软磁材料.由于铁磁性颗粒很小(高频下使用的为0.5~5 微米),又被非磁性电绝缘膜物质隔开,因此,一方面可以隔绝涡流,材

料适用于较高频率;另一方面由于颗粒之间的间隙效应,导致材料具有低导磁率及恒导磁特性;又由于颗粒尺寸小,基本上不发生集肤现象,磁导率随频率的变化也就较为稳定.主要用于高频电感.磁粉芯的磁电性能主要取决于粉粒材料的导磁率、粉粒的大小和形状、它们的填充系数、绝缘介质的含量、成型压力及热处理工艺等.

常用的磁粉芯有铁粉芯、坡莫合金粉芯及铁硅铝粉芯三种.

磁芯的有效磁导率μe及电感的计算公式为: μe = DL/4N2S × 109

其中:D 为磁芯平均直径(cm),L为电感量(享),N 为绕线匝数,S为磁芯有效截面积(cm2). 常用铁粉芯是由碳基铁磁粉及树脂碳基铁磁粉构成.在粉芯中价格最低.饱和磁感应强度值在1.4T左右;磁导率范围从22~100;初始磁导率μi随频率的变化稳定性好;直流电流叠加性能好;但高频下损耗高.

铁粉芯是磁性材料四氧化三铁的通俗说法,主要应用于电器回路中解决电磁兼容性(EMC)问题.实际应用时,根据不同波段下对滤波要求不同会添加各种不同的其他物质(一般为企业机密).

电磁兼容是指电器回路中由于各种不同原因产生的杂波,这些杂波不仅对电器回路的正常运转有妨害,而且其辐射对人体有一定害处.所以各国(尤其是欧盟)对此有各种规定,即电磁兼容性(EMC).

电线上面的杂波主要通过磁环来解决其电磁兼容性问题.当一定波段的杂波通过磁环时,磁环的电磁特性导致这一波段的电流被转化为磁力以及部分热量从而被消耗掉.来达到降低杂波的目的.

磁环的材料目前比较多的是铁粉芯(价格低廉,应用广泛),高级的还有稀土材料等.

实验表明,任何物质在外磁场中都能够或多或少地被磁化,只是磁化的程度不同.根据物质在外磁场中表现出的特性,物质可粗略地分为三类:顺磁性物质,抗磁性物质,铁磁性物质.

根据分子电流假说,物质在磁场中应该表现出大体相似的特性,但在此告诉我们物质在外磁场中的特性差别很大.这反映了分子电流假说的局限性.实际上,各种物质的微观结构是有差异的,这种物质结构的差异性是物质磁性差异的原因.

我们把顺磁性物质和抗磁性物质称为弱磁性物质部铁磁性物质称为强磁性物质.通常所说的磁性材料是指强磁性物质.磁性材料按磁化后去磁的难易可分为软磁性材料和硬磁性材料.磁化后容易去掉磁性的物质叫软磁性材料,不容易去碰的物质叫硬磁性材料.一般来讲软磁性材料剩磁较小.硬磁性材料剩磁较大.

磁性材料按化学成份分,常见的有两大类:金属磁性材料和铁氧体.铁氧体是以氧化铁为主要成分的磁性氧化物.软磁性材料的剩磁弱,而且容易去磁.适用于需要反复磁化的场合.可以用来制造半导体收音机的天线磁棒、录音机的磁头、电子计算机中的记忆元件,以及变压器、交流发电机、电磁铁和各种高频元件的铁芯等.常见的金属软磁性材料有软铁、硅钢、镍铁合金等,常见的软磁铁氧体有锰锌铁氧体、镍锌铁氧体等.硬磁性材料的剩磁强,而且不易退磁,适合制成永磁铁,应用在磁电式仪表、扬声器、话筒、永磁电机等电器设备中.常见的金属硬磁性材料有碳钢、钨钢、铝镍钴合金等,常见的硬磁铁氧体为钡铁氧体和锯铁氧体.Saturation (CoEv) 饱和

当磁化力(H)增加时,如果磁性材料中的磁通密度(B)没有相应地随之增加,这时称作饱和.饱和与磁芯的磁性有关.每种材料都只能储存一定数量的磁通密度.超出这个磁通密度,磁芯的导磁率将急遽下降,结果导致电感量下降.

Saturation (Raychem) 饱和

在磁性材料能够存在的最大磁通量.

Saturation Flux Density饱和磁通密度

磁性材料饱和时的磁通磁度.

Saturation Current (CoEv) 饱和电流

在电感器中流过的直流偏置电流,和没有直流偏置电流时的电感量相比较,它会引起电感量下降一个规定的数值.在用於储能的情况下,对於铁氧体磁芯规定这个数值是下降10%,对於铁粉磁芯则规定这个数值是下降20%.

Saturation Current (Raychem) 饱和电流

在电感器中流过、引起电感量下降一个规定数量的直流偏置电流.电感量下降的数量是从直流电流为零时的电感量开始计算.通常电感量下降的数量规定為1%和20%.铁氧体磁心的电感量下降规定为10%,用于储存能量的粉末磁心的电感量下降规定为20%.直流偏置电流之所以会引起电感下降是与磁心的磁性有关.磁心和磁心周围的空间只能存储一定量的磁能.超出磁通密度最大点以后,磁心的导磁率降低.因此,电感随之下降.空心电感并不存在磁心饱和的问题.

电感值跟导磁率成正比,

导磁率=B/H

B是磁通密度

H是磁场强度

B跟H不懂没关系,再简单一点说,B场就是简单的我们实实在在感觉到的磁场,只要B不等于零,我们就会实实在在的感受到磁场,H是由电流产生的磁场,有时候,看简单一点,H跟外加电流成正比就是了.

你就简单当是你加的电流也可以啦.

饱和磁通密度嘛就是我们的磁性材料不好嘛,这没办法呀,是磁性材料的特性呀.(如果不满意,找飞利浦算帐,ferrite是他们发明的.)

一定会饱和啦,

我们对磁性材料慢慢外加电流,磁流密度会跟著增加,

当加电流至某一程度时,我们会发现,磁通密求会增加得很慢,

而且会趋近一渐近线.当趋近这一渐近线时,这时的磁通密度,我们就称為饱和磁通密度,饱和磁通密度干什麼的?有什麼重要?

电感值跟导磁率成正比,

导磁率=B/H

B是磁通密度,H是磁场强度(电流增加,H会增加.)

H会增加,但B不会增加,

那会有什么很果,那很简单嘛,导磁率会趋近零啦!

电感值跟导磁率成正比,

导磁率趋近零,那电感值会是多少?

当然是会没感值啦!

没感值的电感还是电感吗?

没感值的变压器会感应磁场吗?

都不会啦!

加电流到了饱和磁通密度,那已经是没有感值的东西,

不是电感或者是变压器了!

简单吧!

如果要了解磁性材料的磁滞曲线长成什么样子,我有空会贴给出来.

导磁率跟磁滞曲线是一致的.产品应用时,磁滞曲线是怎麼跑的;

而且导磁率是复数,不单是复数,而且是张量.(反正是很恐怖的数学就是了,真的很恐怖喔,不然我也不会忘记!)

不过,做电感或变压器,了解到复数就够应用了.

Bs高:相同的磁通需要较小磁心截面积,磁性元件体积小.低频时Bs限制了最大工作磁通密度,高频时,主要是损耗限制了磁通密度的选取,Bs显得并不重要.事实上Bs基本上跟饱和电流关系不大,Bs-Br才决定了饱和的电流,因为这个会使得B-H曲线更加倾斜,单纯的Bs不会有此决定意义.

同一条磁化曲线,不同变压器工作点不同.电流互感器工作于曲线直线部分.工频电源变压器工作于磁化曲线靠近饱和部分.直流变换器和开关电源变压器磁化曲线的饱和点是一个重要参数,不可自由选择.输出变压器和阻流圈又要求磁性材料的导磁率、小脉冲变压器则要求脉冲导磁率.大脉冲变压器则要求、Bs-Br,诸此等等.

一软磁材料的发展

软磁材料在工业中的应用始于19世纪末.随着电力工及电讯技术的兴起,开始使用低碳钢制造电机和变压器,在电话线路中的电感线圈的磁芯中使用了细小的铁粉、氧化铁、细铁丝等.到20世纪初,研制出了硅钢片代替低碳钢,提高了变压器的效率,降低了损耗.直至现在硅钢片在电力工业用软磁材料中仍居首位.到20年代,无线电技术的兴起,促进了高导磁材料的发展,出现了坡莫合金及坡莫合金磁粉芯等.从40年代到60年代,是科学技术飞速发展的时期,雷达、电视广播、集成电路的发明等,对软磁材料的要求也更高,生产出了软磁合金薄带及软磁铁氧体材料.进入70年代,随着电讯、自动控制、计算机等行业的发展,研制出了磁头用软磁合金,除了传统的晶态软磁合金外,又兴起了另一类材料—非晶态软磁合金.

二常用软磁磁芯的种类

铁、钴、镍三种铁磁性元素是构成磁性材料的基本组元. 按(主要成分、磁性特点、结构特点)制品形态分类: (1) 粉芯类: 磁粉芯,包括:铁粉芯、铁硅铝粉芯、高磁通量粉芯(High Flux)、坡莫合金粉芯(MPP)、铁氧体磁芯 (2) 带绕铁芯:硅钢片、坡莫合金、非晶及纳米晶合金

三常用软磁磁芯的特点及应用

(一) 粉芯类

1. 磁粉芯磁粉芯是由铁磁性粉粒与绝缘介质混合压制而成的一种软磁材料.由于铁磁性颗粒很小(高频下使用的为0.5~5 微米),又被非磁性电绝缘膜物质隔开,因此,一方面可以隔绝涡流,材料适用于较高频率;另一方面由于颗粒之间的间隙效应,导致材料具有低导磁率及恒导磁特性;又由于颗粒尺寸小,基本上不发生集肤现象,磁导率随频率的变化也就较为稳定.主要用于高频电感.磁粉芯的磁电性能主要取决于粉粒材料的导磁率、粉粒的大小和形状、它们的填充系数、绝缘介质的含量、成型压力及热处理工艺等. 常用的磁粉芯有铁粉芯、坡莫合金粉芯及铁硅铝粉芯三种. 磁芯的有效磁导率μe及电感的计算公式为: μe = DL/4N2S ×109 其中:D 为磁芯平均直径(cm),L为电感量(享),N 为绕线匝数,S为磁芯有效截面积(cm2).

(1) 铁粉芯常用铁粉芯是由碳基铁磁粉及树脂碳基铁磁粉构成.在粉芯中价格最低.饱和磁感应强度值在1.4T左右;磁导率范围从22~100;初始磁导率μi随频率的变化稳定性好;直

流电流叠加性能好;但高频下损耗高.

(2)坡莫合金粉芯坡莫合金粉芯主要有钼坡莫合金粉芯(MPP)及高磁通量粉芯(High Flux). MPP 是由81%Ni、2%Mo及Fe粉构成.主要特点是:饱和磁感应强度值在7500Gs左右;磁导率范围大,从14~550;在粉末磁芯中具有最低的损耗;温度稳定性极佳,广泛用于太空设备、露天设备等;磁致伸缩系数接近零,在不同的频率下工作时无噪声产生.主要应用于300kHz以下的高品质因素Q滤波器、感应负载线圈、谐振电路、在对温度稳定性要求高的LC电路上常用、输出电感、功率因素补偿电路等, 在AC电路中常用, 粉芯中价格最贵. 高磁通粉芯HF是由50%Ni、50%Fe粉构成.主要特点是:饱和磁感应强度值在15000Gs 左右;磁导率范围从14~160;在粉末磁芯中具有最高的磁感应强度,最高的直流偏压能力;磁芯体积小.主要应用于线路滤波器、交流电感、输出电感、功率因素校正电路等, 在DC 电路中常用,高DC 偏压、高直流电和低交流电上用得多.价格低于MPP.

(3) 铁硅铝粉芯(Kool MμCores) 铁硅铝粉芯由9%Al、5%Si, 85%Fe粉构成.主要是替代铁粉芯,损耗比铁粉芯低80%,可在8kHz以上频率下使用;饱和磁感在 1.05T 左右;导磁率从26~125;磁致伸缩系数接近0,在不同的频率下工作时无噪声产生;比MPP有更高的DC偏压能力;具有最佳的性能价格比.主要应用于交流电感、输出电感、线路滤波器、功率因素校正电路等.有时也替代有气隙铁氧体作变压器铁芯使用.

2. 软磁铁氧体(Ferrites) 软磁铁氧体是以Fe2O3为主成分的亚铁磁性氧化物,采用粉末冶金方法生产.有Mn-Zn、Cu-Zn、Ni-Zn等几类,其中Mn-Zn铁氧体的产量和用量最大,Mn-Zn 铁氧体的电阻率低,为1~10 欧姆/米,一般在100kHZ以下的频率使用.Cu-Zn、Ni-Zn铁氧体的电阻率为102~104欧姆/米,在100kHz~10 兆赫的无线电频段的损耗小,多用在无线电用天线线圈、无线电中频变压器.磁芯形状种类丰富,有E、I、U、EC、ETD形、方形(RM、EP、PQ)、罐形(PC、RS、DS)及圆形等.在应用上很方便.由于软磁铁氧体不使用镍等稀缺材料也能得到高磁导率,粉末冶金方法又适宜于大批量生产,因此成本低,又因为是烧结物硬度大、对应力不敏感,在应用上很方便.而且磁导率随频率的变化特性稳定,在150kHz以下基本保持不变.随着软磁铁氧体的出现,磁粉芯的生产大大减少了,很多原来使用磁粉芯的地方均被软磁铁氧体所代替. 国内外铁氧体的生产厂家很多,在此仅以美国的Magnetics公司生产的Mn-Zn 铁氧体为例介绍其应用状况.分为三类基本材料:电信用基本材料、宽带及EMI材料、功率型材料. 电信用铁氧体的磁导率从750~2300, 具有低损耗因子、高品质因素Q、稳定的磁导率随温度/时间关系, 是磁导率在工作中下降最慢的一种,约每10年下降3%~4%.广泛应用于高Q滤波器、调谐滤波器、负载线圈、阻抗匹配变压器、接近传感器.宽带铁氧体也就是常说的高导磁率铁氧体,磁导率分别有5000、10000、15000.其特性为具有低损耗因子、高磁导率、高阻抗/频率特性.广泛应用于共模滤波器、饱和电感、电流互感器、漏电保护器、绝缘变压器、信号及脉冲变压器,在宽带变压器和EMI上多用.功率铁氧体具有高的饱和磁感应强度,为4000~5000Gs.另外具有低损耗/频率关系和低损耗/温度关系.也就是说,随频率增大、损耗上升不大;随温度提高、损耗变化不大.广泛应用于功率扼流圈、并列式滤波器、开关电源变压器、开关电源电感、功率因素校正电路.

(二) 带绕铁芯

1. 硅钢片铁芯硅钢片是一种合金,在纯铁中加入少量的硅(一般在 4.5%以下)形成的铁硅系合金称为硅钢.该类铁芯具有最高的饱和磁感应强度值为20000Gs;由于它们具有较好的磁电性能,又易于大批生产,价格便宜,机械应力影响小等优点,在电力电子行业中获得极为广泛的应用,如电力变压器、配电变压器、电流互感器等铁芯.是软磁材料中产量和使用量最大的材料.也是电源变压器用磁性材料中用量最大的材料.特别是在低频、大功率下最为适用.常用的有冷轧硅钢薄板DG3、冷轧无取向电工钢带DW、冷轧取向电工钢带DQ,适用于各类电

子系统、家用电器中的中、小功率低频变压器和扼流圈、电抗器、电感器铁芯,这类合金韧性好,可以冲片、切割等加工,铁芯有叠片式及卷绕式.但高频下损耗急剧增加,一般使用频率不超过400Hz.从应用角度看,对硅钢的选择要考虑两方面的因素:磁性和成本.对小型电机、电抗器和继电器,可选纯铁或低硅钢片;对于大型电机,可选高硅热轧硅钢片、单取向或无取向冷轧硅钢片;对变压器常选用单取向冷轧硅钢片.在工频下使用时,常用带材的厚度为0.2~0.35毫米;在400Hz下使用时,常选0.1毫米厚度为宜.厚度越薄,价格越高.

2. 坡莫合金坡莫合金常指铁镍系合金,镍含量在30~90%范围内.是应用非常广泛的软磁合金.通过适当的工艺,可以有效地控制磁性能,比如超过105的初始磁导率、超过106的最大磁导率、低到2‰奥斯特的矫顽力、接近1或接近0的矩形系数,具有面心立方晶体结构的坡莫合金具有很好的塑性,可以加工成1μm的超薄带及各种使用形态.常用的合金有1J50、1J79、1J85等.1J50 的饱和磁感应强度比硅钢稍低一些,但磁导率比硅钢高几十倍,铁损也比硅钢低2~3倍.做成较高频率(400~8000Hz)的变压器,空载电流小,适合制作100W以下小型较高频率变压器.1J79 具有好的综合性能,适用于高频低电压变压器,漏电保护开关铁芯、共模电感铁芯及电流互感器铁芯.1J85 的初始磁导率可达十万以上,适合于作弱信号的低频或高频输入输出变压器、共模电感及高精度电流互感器等.

3. 非晶及纳米晶软磁合金(Amorphous and Nanocrystalline alloys) 硅钢和坡莫合金软磁材料都是晶态材料,原子在三维空间做规则排列,形成周期性的点阵结构,存在着晶粒、晶界、位错、间隙原子、磁晶各向异性等缺陷,对软磁性能不利.从磁性物理学上来说,原子不规则排列、不存在周期性和晶粒晶界的非晶态结构对获得优异软磁性能是十分理想的.非晶态金属与合金是70年代问世的一个新型材料领域.它的制备技术完全不同于传统的方法,而是采用了冷却速度大约为每秒一百万度的超急冷凝固技术,从钢液到薄带成品一次成型,比一般冷轧金属薄带制造工艺减少了许多中间工序,这种新工艺被人们称之为对传统冶金工艺的一项革命.由于超急冷凝固,合金凝固时原子来不及有序排列结晶,得到的固态合金是长程无序结构,没有晶态合金的晶粒、晶界存在,称之为非晶合金,被称为是冶金材料学的一项革命.这种非晶合金具有许多独特的性能,如优异的磁性、耐蚀性、耐磨性、高的强度、硬度和韧性,高的电阻率和机电耦合性能等.由于它的性能优异、工艺简单,从80年代开始成为国内外材料科学界的研究开发重点.目前美、日、德国已具有完善的生产规模,并且大量的非晶合金产品逐渐取代硅钢和坡莫合金及铁氧体涌向市场.

磁性材料基本参数详解

磁性材料基本参数详解 磁性是物质的基本属性之一,磁性现象与各种形式的电荷的运动相关联,物质内部电子的运动和自旋会产生一定大小的磁矩,因而产生磁性。 自然界物质按其磁性的不同可分为:顺磁性物质、抗磁性物质、铁磁性物、反铁磁性物质以及亚铁磁性物质,其中铁磁性物质和亚铁磁性物质属于强磁性物质,通常将这两类物质统称为“ 磁性材料” 。 铁氧体颗粒料: 是已经过配料、混合、预烧、粉碎和造粒等工序,可以直接用于成形加工的铁氧体料粒。顾客使用该料可直接压制成毛坯,经烧结、磨削后即可制成所需磁芯。本公司生产并销售高品质的铁氧体颗粒料,品种包括功率铁氧体JK 系列和高磁导率铁氧体JL 系列。 锰锌铁氧体: 主要分为高稳定性、高功率、高导铁氧体材料。它是以氧化铁、氧化锌为主要成分的复合氧化物。其工作频率在1kHz 至10MHz 之间。主要用着开关电源的主变压器用磁芯. 。 随着射频通讯的迅猛发展,高电阻率、高居里温度、低温度系数、低损耗、高频特性好(高电阻率ρ、低损耗角正切tg δ)的镍锌铁氧体得到重用,我司生产的Ni-Zn 系列磁芯,其初始磁导率可由10 到2500 ,使用频率由1KHz 到100MHz 。但主要应用于1MHz 以上的频段、磁导率范围在7-1300 之间的EMC 领域、谐振电路以及超高频功率电路中。磁粉芯: 磁环按材料分为五大类:即铁粉芯、铁镍钼、铁镍50 、铁硅铝、羰基铁。使用频率可达100KHZ ,甚至更高。但最适合于10KHZ 以下使用。 磁场强度H : 磁场“ 是传递运动电荷或者电流之间相互作用的物理物” 。 它可以由运动电荷或者电流产生,同时场中其它运动或者电流发生力的作用。 均匀磁场中,作用在单位长磁路的磁势叫磁场强度,用H 表示; 使一个物体产生磁力线的原动力叫磁势,用F 表示:H=NI/L, F = N I H 单位为安培/ 米(A/m ),即: 奥斯特Oe ;N 为匝数;I 为电流,单位安培(A ),磁路长度L 单位为米(m )。 在磁芯中,加正弦波电流,可用有效磁路长度Le 来计算磁场强度: 1 奥斯特= 80 安/ 米 磁通密度,磁极化强度,磁化强度 在磁性材料中,加强磁场H 时,引起磁通密度变化,其表现为: B= ц o H+J= ц o (H+M) B 为磁通密度( 磁感应强度) ,J 称磁极化强度,M 称磁化强度,ц o 为真空磁导率,其值为4 π× 10 ˉ 7 亨利/ 米(H/m ) B 、J 单位为特斯拉,H 、M 单位为A/m, 1 特斯拉=10000 高斯(Gs ) 在磁芯中可用有效面积Ae 来计算磁通密度:

磁性材料基本特性

1. 磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H作用下,必有相应的磁化强度M或磁感应强度B,它们随磁场强度H的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。 材料的工作状态相当于M~H曲线或 B~H曲线上的某一点,该点常称为工作点。 饱和磁感应强度 Bs: 其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列; 剩余磁感应强度Br: 是磁滞回线上的特征参数,H回到0时的B值. 矩形比: Br/Bs; 矫顽力Hc: 是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等); 磁导率m:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关 初始磁导率mi、最大磁导率mm、微分磁导率md、振幅磁导率ma、有效磁导率me、脉冲磁导率mp 居里温度Tc: 铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性, 该临界温度为居里温度. 它确定了磁性器件工作的上限温度 损耗P: 磁滞损耗Ph及涡流损耗Pe P=Ph+Pe=af+bf2+cPeμf2t2/,r 降低磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe的方法是减薄磁性材料的厚度t及提高材料的电阻率r 在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(亳瓦特)/表面积(平方厘米) 3. 软磁材料的磁性参数与器件的电气参数之间的转换 设计软磁器件通常包括三个步骤:正确选用磁性材料;

强力磁铁知识及规格

强力磁铁知识及规格 强力磁铁 强力磁铁,是指钕铁硼磁铁。它相比于铁氧体磁铁、铝镍钴、钐钴的磁性能大大的超越了其他几种磁铁,钕铁硼磁铁可以吸附本身重量的640倍的重量,所以钕铁硼常被业外人士称为强力磁铁。 中文名强力磁铁外文名Strong magnet别称钕铁硼磁铁吸附重量640倍的重量成分铼、钕、铁、硼 强力磁铁的存放注意事项: 1、强力磁铁不要接近电子器材,接近的话会影响电子设备及控制回路而影响使用。 2、磁铁不要存放在潮湿的环境中,以免其氧化,导致外观、物理特性及磁性能发生变化。 3、对金属物体有敏感反应的人若接近磁体,会照成皮肤粗糙、泛红。若出现上述反应,请不要接触强力磁铁。 4、不要将磁铁接近软盘、硬盘驱动器、信用卡、磁带、借记卡、电视显像管等。若将磁铁接近磁性记录器等器件,会影响甚至破坏记录数据。 磁铁作用 1 指南北 2 吸引磁性小物体

3 电磁铁可以做电磁继电器 4.电动机 5 发电机 性能曲线 处于强力磁铁技术饱和磁化后的磁体在被反向充磁时,使磁感应强度降为零所需反向磁场强度的值称之为磁感矫顽力(Hcb)。但此时磁体的磁化强度并不为零,只是所加的反向磁场与磁体的磁化强度作用相互抵消。(对外磁感应强度表现为零)此时若撤消外磁场,磁体仍具有一定的磁性能。钕铁硼的矫顽力一般是11000Oe以上。 将一个磁体在闭路环境下被外磁场充磁到技术饱和后撤消外磁场,此时磁体表现的磁感应强度我们称之为剩磁。它表示磁体所能提供的最大的磁通值。从退磁曲线上可见,它对应于气隙为零时的情况,故在实际磁路中磁体的磁感应强度都小于剩磁。钕铁硼是现今发现的Br最高的实用永磁材料。 强力磁铁使磁体的磁化强度降为零所需施加的反向磁场强度,我们称之为内禀矫顽力。内禀矫顽力是衡量磁体抗退磁能力的一个物理量,如果外加的磁场等于磁体的内禀矫顽力,磁体的磁性将会基本消除。钕铁硼的Hcj会随着温度的升高而降低所以需要工作在高温环境下时应该选择高Hcj的牌号。 磁的发现 先秦时代我们的先人已经积累了许多这方面的认识,在探寻铁矿时常会遇到磁铁矿,即磁石(主要成分是四氧化三铁)。这些发现很早就被记载下来了。《管子》的数篇中最早记载了这些发现:“山上有磁石者,其下有金铜。” 其他古籍如《山海经》中也有类似的记载。磁石的吸铁特性很早就被人发现,《吕氏春秋》九卷精通篇就有:“慈招铁,或引之也。”那时的人称“磁”为“慈”他们把磁石吸引铁看作慈母对子女的吸引。并认为:“石是铁的母亲,但石有慈和不慈两种,慈爱的石头能吸引他的子女,不慈的石头就不能吸引了。” 汉以前人们把磁石写做“慈石”,是慈爱石头的意思。 既然磁石能吸引铁,那么是否还可以吸引其他金属呢?我们的先民做了许多尝试,发现磁石不仅不能吸引金、银、铜等金属,也不能吸引砖瓦之类的物品。西汉的时候人们已经认识到磁石只能吸引铁,而不能吸引其他物品。当把两块磁铁放在一起相互靠近时,有时候互相吸引,有时候相互排斥。现在人们都知道磁体有两个极,一个称N 极,一个称S 极。同性极相互排斥,异性极相互吸引。那时的人们并不知道这个道理,但对这个现象还是能够察觉到的。 到了西汉,有一个名叫栾大的方士,他利用磁石的这个性质做了两个棋子般的东西,通过调整两个棋子极性的相互位置,有时两个棋子相互吸引,有时相互排斥。栾大称其为“斗棋”。他把这个新奇的玩意献给汉武帝,并当场演示。汉武帝惊奇不已,龙心大悦,竟封栾大为“五利将军”。栾大利用磁石的性质,制作了新奇的玩意蒙骗了汉武帝。 地球也是一个大磁体,它的两个极分别在接近地理南极和地理北极的地方。因此地球表面的磁体,可以自由转动时,就会因磁体同性相斥,异性相吸的性质指示南北。这个道理古人不够明白,但这类现象他们很清楚。 磁现象的应用 「在传统工业中的应用」: 在讲述磁性材料的磁性来源、电磁感应、磁性器件时,我们已经提到了有些磁性材料的实际应用。实际上,磁性材料已经在传统工业的各个方面得到了广泛应用。 例如,如果没有磁性材料,电气化就成为不可能,因为发电要用到发电机、输电要用到变压器、电力机械要用到电动机、电话机、收音机和电视机中要用到扬声器。众多仪器仪表都要用到磁钢线圈结构。这些都

磁学基础与磁性材料+严密第一章、三章以及第七章答案

磁性材料的分类

第一章磁学基础知识 答案: 1、磁矩 2、磁化强度

3、磁场强度H 4、磁感应强度 B 磁感应感度,用B表示,又称为磁通密度,用来描述空间中的磁场的物理量。其定义公式为 5、磁化曲线 6、磁滞回线 () (6 磁滞回线 (hysteresis loop):在磁场中,铁磁体的磁感应强度与磁场强度的关系可用曲线来表示,当磁化磁场作周期性变化时,铁磁体中的磁感应强度与磁场强度的关系是一条闭合线,这条闭合线叫做磁滞回线。) 7、磁化率

磁化率,表征磁介质属性的物理量。常用符号x表示,等于磁化强度M与磁场 强度H之比。对于各向同性磁介质,x是标量;对于各向异性磁介质,磁化率是 一个二阶张量。 8、磁导率 磁导率(permeability):又称导磁系数,是衡量物质的导磁性能的 一个物理量,可通过测取同一点的B、H值确定。 二 矫顽力----内禀矫顽力和磁感矫顽力的区别与联系 矫顽力分为磁感矫顽力(Hcb)和内禀矫顽力(Hcj)。磁体在反向充磁时,使磁感应强度B降为零所需反向磁场强度的值称之为磁感矫顽力。但此时磁体的磁化强度并不为零,只是所加的反向磁场与磁体的磁化强度作用相互抵消。(对外磁感应强度表现为零)此时若撤消外磁场,磁体仍具有一定的磁性能。使磁体的磁化强度M降为零所需施加的反向磁场强度,我们称之为内禀矫顽力。内禀矫顽力是衡量磁体抗退磁能力的一个物理量,是表示材料中的磁化强度M退到零的矫顽力。在磁体使用中,磁体矫顽力越高,温度稳定性越好。 (2)退磁场是怎样产生的?能克服吗?对于实测的材料磁化特性曲线如何进行退磁校正? 产生: 能否克服:因为退磁场只与材料的尺寸有关,短而粗的样品,退磁场就很大,因此可以将样品做成长而细的形状,退磁场就将会减小。

永磁材料基本知识

永磁材料基本知识 1、什么是永磁材料的磁性能,它包括哪些指标? 永磁材料的主要磁性能指标是:剩磁(Jr, Br)、矫顽力(bHc)、内禀矫顽力(jHc)、磁能积(BH)m。我们通常所说的永磁材料的磁性能,指的就是这四项。永磁材料的其它磁性能指标还有:居里温度(Tc)、可工作温度(Tw)、剩磁及内禀矫顽力的温度系数(Brθ, jHcθ)、回复导磁率(μrec.)、退磁曲线方形度( Hk/ jHc)、高温减磁性能以及磁性能的均一性等。 除磁性能外,永磁材料的物理性能还包括密度、电导率、热导率、热膨胀系数等;机械性能则包括维氏硬度、抗压(拉)强度、冲击韧性等。此外,永磁材料的性能指标中还有重要的一项,就是表面状态及其耐腐蚀性能。 2、什么叫磁场强度(H)? 1820年,丹麦科学家奥斯特(H. C. Oersted)发现通有电流的导线可以使其附近的磁针发生偏转,从而揭示了电与磁的基本关系,诞生了电磁学。实践表明:通有电流的无限长导线在其周围所产生的磁场强弱与电流的大小成正比,与离开导线的距离成反比。定义载有1安培电流的无限长导线在距离导线1/2π米远处的磁场强度为1A/m(安/米,国际单位制SI);在CGS单位制(厘米-克-秒)中,为纪念奥斯特对电磁学的贡献,定义载有1安培电流的无限长导线在距离导线0.2厘米远处磁场强度为1Oe(奥斯特),1Oe=1/(4π×103) A/m。磁场强度通常用H表示。 3、什么叫磁极化强度(J),什么叫磁化强度(M),二者有何区别? 现代磁学研究表明:一切磁现象都起源于电流。磁性材料也不例外,其铁磁现象是起源于材料内部原子的核外电子运动形成的微电流,亦称分子电流。这些微电流的集合效应使得材料对外呈现各种各样的宏观磁特性。因为每一个微电流都产生磁效应,所以把一个单位微电流称为一个磁偶极子。定义在真空中每单位外磁场对一个磁偶极子产生的最大力矩为磁偶极矩pm,每单位材料体积内磁偶极矩的矢量和为磁极化强度J,其单位为T(特斯拉,在CGS单位制中,J的单位为Gs,1T=10000Gs)。 定义一个磁偶极子的磁矩为pm/μ0,μ0为真空磁导率,每单位材料体积内磁矩的矢量和为磁化强度M,其SI单位为A/m,CGS单位为Gs(高斯)。 M与J的关系为:J=μ0 M,在CGS单位制中,μ0=1,故磁极化强度与磁化强度的值相等;在SI 单位制中,μ0=4π×10-7 H/m (亨/米)。 4、什么叫磁感应强度(B),什么叫磁通密度(B),B与H,J,M之间存在什么样的关系? 理论与实践均表明,对任何介质施加一磁场H时(该磁场可由外部电流或外部永磁体提供,亦可由永磁体对永磁介质本身提供,由永磁体对永磁介质本身提供的磁场又称退磁场---关于退磁场的概念,见9 Q),介质内部的磁场强度并不等于H,而是表现为H与介质的磁极化强度J 之和。由于介质内部的磁场强度是由磁场H通过介质的感应而表现出来的,为与H区别,称之为介质的磁感应强度,记为B: B=μ0 H+J (SI单位制)(1-1) B=H+4πM (CGS单位制) 磁感应强度B的单位为T,CGS单位为Gs(1T=104Gs)。 对于非铁磁性介质如空气、水、铜、铝等,其磁极化强度J、磁化强度M几乎等于0,故在这些介质中磁场强度H与磁感应强度B相等。 由于磁现象可以形象地用磁力线来表示,故磁感应强度B又可定义为磁力线通量的密度,磁感应强度B和磁通密度B在概念上可以通用。 5、什么叫剩磁(Jr,Br),为什么在永磁材料的退磁曲线上任意测量点的磁极化强度J值和磁感应强度B值必然小于剩磁Jr和Br值? 永磁材料在闭路状态下经外磁场磁化至饱和后,再撤消外磁场时,永磁材料的磁极化强度J 和内部磁感应强度B并不会因外磁场H的消失而消失,而会保持一定大小的值,该值即称为该材

LTE常用参数详解

LTE现阶段常用参数详解 1、功率相关参数 1.1、Pb(天线端口信号功率比) 功能含义:Element)和TypeA PDSCH EPRE的比值。该参数提供PDSCH EPRE(TypeA)和PDSCH EPRE(TypeB)的功率偏置信息(线性值)。用于确定PDSCH(TypeB) 的发射功率。若进行RS功率boosting时,为了保持Type A 和Type B PDSCH 中的OFDM符号的功率平衡,需要根据天线配置情况和RS功率boosting值根 据下表确定该参数。1,2,4天线端口下的小区级参数ρB/ρA取值: PB 1个天线端口2个和4个天线端口 0 1 5/4 1 4/5 1 2 3/5 3/4 3 2/5 1/2 对网络质量的影响:PB取值越大,RS功率在原来的基础上抬升得越高,能获得更好的 信道估计性能,增强PDSCH的解调性能,但同时减少了PDSCH (Type B)的发射功率,合适的PB取值可以改善边缘用户速率, 提高小区覆盖性能。 取值建议:1

1.2、Pa(不含CRS的符号上PDSCH的RE功率与CRS 的RE功率比) 功能含义:不含CRS的符号上PDSCH的RE功率与CRS的RE功率比 对网络质量的影响:在CRS功率一定的情况下,增大该参数会增大数据RE功率 取值建议:-3 1.3、PreambleInitialReceivedTargetPower(初始接收目标功率(dBm)) 功能含义:表示当PRACH前导格式为格式0时,eNB期望的目标信号功率水平,由广播消息下发。 对网络质量的影响:该参数的设置和调整需要结合实际系统中的测量来进行。该参数设 置的偏高,会增加本小区的吞吐量,但是会降低整网的吞吐量;设 置偏低,降低对邻区的干扰,导致本小区的吞吐量的降低,提高整 网吞吐量。 取值建议:-100dBm~-104dBm 1.4、PreambleTransMax(前导码最大传输次数) 功能含义:该参数表示前导传送最大次数。 对网络质量的影响:最大传输次数设置的越大,随机接入的成功率越高,但是会增加对 邻区的干扰;最大传输次数设置的越小,存在上行干扰的场景随机 接入的成功率会降低,但是会减小对邻区的干扰 取值建议:n8,n10

磁铁的原理知识

精心整理 磁铁原理知识等等 磁铁是指可以产生磁场的物体或材质,通常用金属合金制成,具有强磁性。传统上可分作“永久性磁铁”与“非永久性磁铁”。 永久性磁铁可以是天然产物,又称天然磁石,也可以由人工制造(最强的磁铁是钕磁铁)。 非永久性磁铁,有时会失去磁性。 古希腊人和中国人发现自然界中有种天然磁化的石头,称其为“吸铁石”。这种石头可以魔术般的吸起小块的铁片,而且在随意摆动后总是指向同一方向。早期的航海者把这种磁铁作为其最早的指南针在海上来辨别方向。 经过千百年的发展,今天磁铁已成为我们生活中的强力材料。通过合成不同材料的合金可以达和钐钴(SmCo)] 没有取 南极。 摄氏度 软磁包括硅钢片和软磁铁芯;硬磁包括铝镍钴、钐钴、铁氧体和钕铁硼,这其中,最贵的是钐钴磁钢,最便宜的是铁氧体磁钢,性能最高的是钕铁硼磁钢,但是性能最稳定,温度系数最好的是铝镍钴磁钢,用户可以根据不同的需求选择不同的硬磁产品。 怎样来定义磁铁的性能? 主要有如下3个性能参数来确定磁铁的性能: 剩磁Br:永磁体经磁化至技术饱和,并去掉外磁场后,所保留的Br 称为剩余磁感应强度。 矫顽力Hc:使磁化至技术饱和的永磁体的B 降低到零,所需要加的反向磁场强度称为磁感矫顽力,简 称为矫顽力 磁能积BH:代表了磁铁在气隙空间(磁铁两磁极空间)所建立的磁能量密度,即气隙单位体积

的静磁能量。由于这项能量等于磁铁的Bm和Hm的乘积,因此称为磁能积。 磁场:对磁极产生磁作用的空间为磁场 表面磁场:永磁体表面某一指定位置的磁感应强度 如何选择磁铁? 在决定选择哪一种磁铁之前应明确需要磁铁发挥何种作用? 主要的作用:移动物体,固定物体或抬升物体。 所需磁铁的形状:圆片形,圆环形,方块形,瓦片形或特殊形状。 所需磁铁的尺寸:长,宽,高,直径及公差等等。 所需磁铁的吸力,期望价格及数量等等。 指南针就是根据磁铁的性质发明的 1指南北 2 3 4. 5 (主 “山 。 在讲述磁性材料的磁性来源、电磁感应、磁性“器件”时,我们已经提到了有些磁性材料的实际应用。实际上,磁性材料已经在传统工业的各个方面得到了广泛应用。 例如,如果没有磁性材料,电气化就成为不可能,因为发电要用到发电机、输电要用到变压器、电力机械要用到电动机、电话机、收音机和电视机中要用到扬声器。众多仪器仪表都要用到磁钢线圈结构。这些都已经在讲述其它内容时说到了。 「生物界和医学界的磁应用」: 信鸽爱好者都知道,如果把鸽子放飞到数百公里以外,它们还会自动归巢。鸽子为什么有这么好的认家本领呢?原来,鸽子对地球的磁场很敏感,它们可以利用地球磁场的变化找到自己的家。如果在鸽子的头部绑上一块磁铁,鸽子就会迷航。如果鸽子飞过无线电发射塔,强大的电磁波干扰也会使它们迷失方向。 在医学上,利用核磁共振可以诊断人体异常组织,判断疾病,这就是我们比较熟悉的核磁共振

钕铁硼基本知识

磁材基本知识讲座

主要内容: 第一章磁物理基础 第二章磁性材料的发展概况 第三章钕铁硼的主要特点及应用第四章钕铁硼的主要成份组成第五章钕铁硼生产工艺及设备第六章性能参数测量原理及设备第七章机械加工工艺及设备 第八章表面处理工艺及设备 第九章充磁包装

第一章磁物理基础 1 物质的磁现象 磁性材料:magnetic material 钕铁硼磁铁:nd-fe-b magnet 铁氧体磁铁:ferrite magnet 牛磁棒:magnetic bar for cattle? 磁力架:magnetic separator 物质的磁性是一个历史悠久的研究领域,约在三千年前就已受到人们的注意。中国是最早应用磁性的国家,公元前四世纪,我国制成了世界上最早的指南针,成为中国的四大发明之一。磁学史上第一部关于磁性的专著是英国(WGilbert)吉耳伯特的《论磁石》(1600年),这本书介绍了那时书籍有关的磁性知识。然而,磁性作为一门科学却到19世纪前半期才开始发展。 1820年,丹麦物理学家奥斯特发现电流的磁效应,拉开了磁电之间联系的序幕; 1820年末,法国物理学安培证明通电圆形线圈和普通的磁铁一样具有吸引和排斥的现象。 1831年,英国科学家法拉第发现了电磁感应现象,并提出电磁感应定律,从而揭示电和磁之间的内在联系; 后来,苏格兰科学家麦克斯韦,将电磁的联系建立起严密的电磁场理论。他发展了法拉第的思想,用数学的形式总结出电场和磁场的联系,即麦克斯韦方程。 2 磁性的起源 物质的磁性起源于原子磁矩。 原子物理学告诉我们,组成物质的最小单元是原子,原子又由电子和原子核组成。电子的排布遵循三大原则:1 洪特规则,2泡利不相容规则,3 能量最低原理。原子中的电子绕着原子核进行高速运转,电子运转时同时有两种运动形式,即电子绕原子核的轨道运动和电子绕本身轴的旋转。前者叫电子轨道运动,后者叫电子自旋。处于旋转运动状态的电子相当于电流闭合回路,必然伴随有磁矩的

IGBT基本参数详解

第一部分IGBT模块静态参数 1,:集射极阻断电压 在可使用的结温范围内,栅极和发射极短路状况下,集射极最高电压。手册里一般为25℃下的数据,随着结温的降低,会逐渐降低。由于模块内外部的杂散电感,IGBT在关断时最容易超过限值。 2,:最大允许功耗 在25℃时,IGBT开关的最大允许功率损耗,即通过结到壳的热阻所允许的最大耗散功率。 其中,为结温,为环境温度。二极管的最大功耗可以用同样的公式获得。 在这里,顺便解释下这几个热阻, 结到壳的热阻抗,乘以发热量获得结与壳的温差; 芯片热源到周围空气的总热阻抗,乘以发热量获得器件温升; 芯片结与PCB间的热阻抗,乘以单板散热量获得与单板的温差。 3,集电极直流电流 在可以使用的结温范围流集射极的最大直流电流。根据最大耗散功率的定义,可以由最大耗散功率算出该值。所以给出一个额定电流,必须给出对应的结和外壳的温度。 ) 4,可重复的集电极峰值电流 规定的脉冲条件下,可重复的集电极峰值电流。 5,RBSOA,反偏安全工作区 IGBT关断时的安全工作条件。如果工作期间的最大结温不被超过,IGBT在规定的阻断电压下可以驱使两倍的额定电流。 6,短路电流

短路时间不超过10us。请注意,在双脉冲测试中,上管GE之间如果没有短路或负偏压,就很容易引起下管开通时,上管误导通,从而导致短路。 7,集射极导通饱和电压 在额定电流条件下给出,Infineon的IGBT都具有正温度效应,适宜于并联。 随集电极电流增加而增加,随着增加而减小。 可用于计算导通损耗。根据IGBT的传输特性, 计算时,切线的点尽量靠近工作点。对于SPWM方式,导通损耗由下式获得, M为调制因数;为输出峰值电流;为功率因数。 第二部分IGBT模块动态参数 1,模块内部栅极电阻 为了实现模块内部芯片的均流,模块内部集成了栅极电阻,该电阻值常被当成总的驱动电阻的一部分计算IGBT驱动器的峰值电流能力。 2,外部栅极电阻 数据手册中往往给出的是最小推荐值,可以通过以下电路实现不同的和。

磁铁常识资料

常用的磁性材料通常分为 5===其它 而比较常用的是铁氧体永磁和钕铁硼永磁 主要有粘结和烧结两种加工形式 主要加工成圆环,圆片,圆柱,方块,扇形,瓦形,T形等形状 1===xxxx'S 2===汇微张'S 3===435万磁解'R 不过磁铁一般都加工成规则形状且尺寸一般都做成整数位负公差尺寸;所以设计时应当尽量往这两点上靠,在成本和交期上都会比较占优;而异形磁铁则需要专门向厂商订做,成本相对增加一些,交期看订货量一般在5-7天左右. 磁铁常识 1如何订购磁铁? 为使我们能更有效地配合您的工作,我们需要您在下订单之前确认以下内容: 1.什么材质,性能? 2.尺寸与公差? 3.是否要充磁?若要充磁,是何种方式,轴向?径向? 4.磁铁工作环境的最高温度?

5.订购数量? 6.表面处理?镀锌,镀镍? 7.如需特别处理,请告知。 2钕铁硼磁铁有哪些应用? 钕铁硼永磁体以其优异的性能、丰富的原料、合理的价格正得以迅猛的发展和广泛的应用。其主要应用在微特电机、永磁仪表、电子工业、汽车工业、石油化工、核磁共振装置、传感器,音响器材、磁悬浮系统、磁性传动机构和磁疗设备等方面。 3磁性材料类比 铁氧体性能低和中,价格最低,温度特性良,耐腐蚀,性能价格比好 钕铁硼性能最高,价格中,强度好,不耐高温和腐蚀 钐钴性能高,价格最高,脆,温度特性优,耐腐蚀 铝镍钴性能低和中,价格中,温度特性优,耐腐蚀,耐干扰性差 SmCo,铁氧体,钕铁硼可用烧结和粘结方法制造,烧结磁性能高,成型较差,粘结磁铁成型性好,性能降低很多。 AlNiCo可用铸造和烧结方法制造,铸造磁铁性能较高,成型性较差好,烧结磁铁较低,成型性较好。 4钕铁硼由那些材料组成? 钕铁硼永磁铁的主要原材料有稀土金属钕(Nd)32%、金属元素铁(Fe)64%和非金属元素硼(B)1%(少量添加镝(Dy)、铽(Tb)、钴(Co)、铌(Nb)、镓(Ga)、铝(Al)、铜(Cu)等元素)。钕铁硼三元系永磁材料是以Nd2Fe14B化合物作为基体的,其成分应与化合物Nd2Fe14B分子式相近。但完全按Nd2Fe14B成分配比时,磁体的磁性能很低,甚至无磁。只是实际的磁体当中钕和硼的含量比Nd2Fe14B化合物的钕和硼含量多时才能获得较好的永磁性能。

磁性材料的基本特性

一.磁性材料的基本特性 1.磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H作用下,必有相应的磁化强度M或磁感应强度B,它们随磁场强度H的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。 材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。 2.软磁材料的常用磁性能参数 ?饱和磁感应强度Bs: 其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列; ?剩余磁感应强度Br: 是磁滞回线上的特征参数,H回到0时的B值. 矩形比: Br/Bs; ?矫顽力Hc: 是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等); ?磁导率m:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关; ?初始磁导率mi、最大磁导率mm、微分磁导率md、振幅磁导率ma、有效磁导率me、脉冲磁导率mp; ?居里温度Tc: 铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性, 该临界温度为居里温度. 它确定了磁性器件工作的上限温度; ?损耗P: 磁滞损耗Ph及涡流损耗Pe P=Ph+Pe=af+bf2+cPeμf2t2/,r 降低磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe的方法是减薄磁性材料的厚度t及提高材料的电阻率r; ?在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(亳瓦特)/表面积(平方厘米) 3.软磁材料的磁性参数与器件的电气参数之间的转换 ?设计软磁器件通常包括三个步骤:正确选用磁性材料;

永磁材料基本知识

永磁材料基本知识 2006 年08 月26 日星期六08:56 1、什么是永磁材料的磁性能,它包括哪些指标? 永磁材料的主要磁性能指标是:剩磁(Jr, Br)、矫顽力(bHc)、内禀矫顽力(jHc)、磁能积(BH)m。我们通常所说的永磁材料的磁性能,指的就是这四项。永磁材料的其它磁性能指标还有:居里温度(Tc)、可工作温度(Tw)、剩磁及内禀矫 顽力的温度系数(Br 0 , jHc 0 )、回复导磁率(卩rec.)、退磁曲线方形度(Hk/jHc)、高温减磁性能以及磁性能的均一性等。 除磁性能外,永磁材料的物理性能还包括密度、电导率、热导率、热膨胀系数等;机械性能则包括维氏硬度、抗压(拉)强度、冲击韧性等。此外,永磁材料的性能指标中还有重要的一项,就是表面状态及其耐腐蚀性能。 2、什么叫磁场强度(H)? 1820 年,丹麦科学家奥斯特(H. C. Oersted)发现通有电流的导线可以使其附近的磁针发生偏转,从而揭示了电与磁的基本关系,诞生了电磁学。实践表明:通有电流的无限长导线在其周围所产生的磁场强弱与电流的大小成正比,与离开导线的距离成反比。定义载有1安培电流的无限长导线在距离导线1/2 n米远处的磁场强度为1A/m(安/米,国际单 位制SI);在CGS单位制(厘米-克-秒)中,为纪念奥斯特对电磁学的贡献,定义载有1安培电流的无限长导线在距离导 线0.2厘米远处磁场强度为1Oe (奥斯特),10e=1/(4 n x 103) A/m。磁场强度通常用H表示。 3、什么叫磁极化强度(J),什么叫磁化强度(M),二者有何区别? 现代磁学研究表明:一切磁现象都起源于电流。磁性材料也不例外,其铁磁现象是起源于材料内部原子的核外电子运动形成的微电流,亦称分子电流。这些微电流的集合效应使得材料对外呈现各种各样的宏观磁特性。因为每一个微电流都产生磁效应,所以把一个单位微电流称为一个磁偶极子。定义在真空中每单位外磁场对一个磁偶极子产生的最大力矩为磁偶极矩pm,每单位材料体积内磁偶极矩的矢量和为磁极化强度J,其单位为T (特斯拉,在CGS单位制中,J的单 位为Gs,1T=10000Gs)。 定义一个磁偶极子的磁矩为pm/卩0,卩0为真空磁导率,每单位材料体积内磁矩的矢量和为磁化强度M其SI单位为 A/m,CGS单位为Gs(高斯)。 M与J的关系为:J=卩0 M在CGS单位制中,卩0=1,故磁极化强度与磁化强度的值相等;在SI单位制中,卩0=4 n X 10-7H/m (亨/ 米)。 4、什么叫磁感应强度(B),什么叫磁通密度(B),B与H,J,M之间存在什么样的关系? 理论与实践均表明,对任何介质施加一磁场H 时(该磁场可由外部电流或外部永磁体提供,亦可由永磁体对永磁介质本身提供,由永磁体对永磁介质本身提供的磁场又称退磁场--- 关于退磁场的概念,见9 Q),介质内部的磁场强度并不 等于H,而是表现为H与介质的磁极化强度J之和。由于介质内部的磁场强度是由磁场H通过介质的感应而表现岀来 的,为与H区别,称之为介质的磁感应强度,记为B: B=^ 0 H+J (SI 单位制)(1-1 ) B=H+4t M (CGS单位制)

磁性材料的基本特性16505

1.磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H作用下,必有相应的磁化强度M或磁感应强度B,它们随磁场强度H的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。 材料的工作状态相当于M~H曲线或B ~H曲线上的某一点,该点常称为工作点。 饱和磁感应强度Bs: 其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列; 剩余磁感应强度Br: 是磁滞回线上的特征参数,H回到0时的B值. 矩形比: Br/Bs; 矫顽力Hc: 是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等); 磁导率m:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关 初始磁导率mi、最大磁导率mm、微分磁导率md、振幅磁导率ma、有效磁导率me、脉冲磁导率mp 居里温度Tc: 铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性, 该临界温度为居里温度. 它确定了磁性器件工作的上限温度 损耗P: 磁滞损耗Ph及涡流损耗Pe P=Ph+Pe=af+bf2+cPeμf2t2/,r 降低磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe的方法是减薄磁性材料的厚度t及提高材料的电阻率r 在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(亳瓦特)/表面积(平方厘米) 3.软磁材料的磁性参数与器件的电气参数之间的转换 ?设计软磁器件通常包括三个步骤:正确选用磁性材料; ?合理确定磁芯的几何形状及尺寸;

汽车基本参数详解

1.悬挂系统与汽车的发动机和变速器被称为汽车的三大主要部件,是一部汽车的核心技术。 2.车长,长宽,长高, 单位mm. 3.轮距(较宽的轮距有更好的横向的稳定性与较佳的操纵性能), 4.轴距(反应汽车内部空间重要参数), 5.最小离地间距(汽车底盘与地面的距离,距离越大,车辆的通过性就越好) 6.最小转弯直径: 外转向轮的轨迹圆直径(将车辆方向盘向某个方向打满,驾驶车辆转一个圈.表明汽车转弯性能灵活 与否的参数.) 7.空车质量(按出厂技术装备完整,油水加满后的质量.单位为kg) 8.允许总质量:汽车在正常条件下准备行驶时,包括载人/物时的允许总质量. 9.允许总质量-空车质量=汽车承重质量 10.车门数(2门, 3门,4门,5门,6门) 11.座位数(2位,5位不等),行李箱容积(单位L) 12.油箱容积:指一辆车能够携带燃油的体积,单位为L.一般油箱容积与该车的油耗有关,油箱要能保证车行驶500公里 以上.百公里耗油10升的话,油箱容积在60升左右. 13.前后配重:指车身前轴与车身后轴各自所承担重量的比.汽车的配重,一般是在50:50最平均. 14.接近角:汽车满载静止时,汽车前端突出点向前轮所引切线与地面的夹角. 15.离去角: 汽车满载静止时,身车身后端出点向后轮引切线与地面之间的夹角. 16.爬坡角度: 当汽车满载时在良好路面上用第一档克报的最大坡度角,它表汽车的爬坡能力.用度数表示. 17.最大涉水深度: 汽车所能通过的最深水域.单位mm. 评价汽车越野性能的重要指标. 18.发动机: 又称引擎,把化学能转化为机械能.装配在汽车上主要以汽油,柴油,电池等. 标准的描述方法:排气量+排列形 式+汽缸数+发动机特殊功能. 如宝马3升直列6缸双涡轮增压直喷发动机. 奔驰1.8升直列4缸机械增压发动机. 18.1发动机放置位置: 前置,中置,后置发动机. 或分为横向式/纵向式发动机. 18.2发动机结构: L直列V形, W形,H形,转子发动机(尺寸小,重量轻,功率大,但是技术复杂,成本高,耐用性低) 18.3进气方式: 自然吸气, 涡轮增压, 机械增压, 18.3.1自然吸气: 利用汽缸内产生的负压力,将外部空气吸入.(常用,寿命长,维修方便) 18.3.2涡轮增压: 相当一个空气压缩机.利用发动机排出的废气作为动力来推动涡轮室内的涡轮.优点是发动 机动力增加40%,缺点就是迟滞性. 18.3.3机械增压: 采用皮带与发动机曲轴皮带连接,利用发动机转速来带动机械增压器内部叶片,以产生增压 空气送入引擎进气管内.以此达到增压并使发动机输出动力变高的目的 18.4混合气形成方式: 单点电喷, 多点电喷, 直喷式 18.4.1单点电喷:以喷油嘴取代了化油器,进气总管中的节流阀体内设置一只喷射器,对各缸实施集中喷射,汽 油被喷入进气气流中,形成可燃混合气,同上进气歧分配到各个气缸内.(电子控制,但无法精确均匀混合 与分配) 18.4.2多点电喷:每个气缸都由单独的喷油嘴喷射燃油.(目前主流的形式,能够按照每个气缸的需求实现精确 的按需供油,因此,降低了油耗和排放. 18.4.3直喷式: 燃油喷嘴安装在气缸内,直接将燃油喷入气缸内与进气混合.喷射压力也进一步提高,使燃油雾 化更加细致,真正实现了精准地按比例控制喷油并与进气混合,并且消除了缸外喷射的缺点. 18.5排气量:指活塞从上止点到下止点所扫过的气体容积,又称单缸排量.它取决于缸径和活塞行程.排气量越大,功 率和扭矩就会越大.单位为升(L) 18.6最大功率: 也叫马力,单位是kw或ps. 千瓦/匹.输出功率与发动机的转速关系很大.有100kw/6000rpm. 18.7最大扭矩: 发动机性能的一个重要参数,是指定发动机运转时从曲轴端输出的平均力矩.扭矩的大小也是和发 动机转速有关系的.在不同的转速就会有不同的扭矩.扭矩越大,发动机输出的劲就越大.扭矩决定了汽车的加速能力,爬坡能力和牵引力. 18.8汽缸: 按照冷却方式分为水冷发动机(水套)和风冷发动机气缸体(散热片) 一般来说,缸数越多,排量越大, 功率 越高,速度越高,加速度也越快. 18.9每缸气门数: 指发动机每个汽缸所拥有的气门数,有2,3,4,5,6几种.但超过6结构复杂,寿命短.常用为4气门. 气 门与气缸数量可以作为判断发动机优劣标准之一,但不是唯一的. 18.10凸轮轴: 活塞发动机里的一个部件,它的作用是控制气门的开启和闭合动作.其材质一般是特种铸铁,或者锻件. 凸轮轴的主体是一根与汽缸组长度相同的圆柱形棒体.上面套有若干个凸轮,用于驱动气门.凸轮轴的一端是轴承支承点,另一端与驱动轮相连接.

单反相机基本参数调试详解

单反相机基本参数调试详解

————————————————————————————————作者: ————————————————————————————————日期:

单反相机基本参数调试详解 单反相机作为一种比较复杂的摄影工具,让一些新手望而却步。其实只要了解了相机的一些简单的参数,想要上手还是比较容易的,今天小编就整理了网上的一些关于单反相机基本参数调试的内容,分享给大家。?一、镜头的焦距?焦距在物理中是指透镜中心到平行光聚集点的距离;而在摄影中,是指当对焦在无穷远时,镜头中心到感光器成像平面的距离。因此,只要知道镜头的焦距是怎样影响拍摄效果的就可以了。图下就是不同焦距拍摄的示意图。? ? ?

二、等效焦距?我们把镜头上标注的焦距定义为绝对焦距。绝对焦距是不会随着相机的改变而改变的,它反映了镜头本身的物理特性。而等效焦距这个概念的出现是因为不同相机有着不同大小的感光器。简单来讲,相同的镜头装在不同大小感光器的相机上,照片拍出来的范围会有区别。 怎么来量化不同大小感光器带来的这种差异呢??尼康(NIKON)和佳能(CANON)全幅相机的感光器大小一般在36mm*24mm左右,如尼康(NIKON)D3x,尼康(NIKON)D700,佳能(CANON)1DsMarkIII,佳能(CANON)5DMark II。尼康(NIKON)和佳能(CA NON)的非全幅(APS-C画幅)相机的感光器大小大约分别在24mm*16mm和22mm*15mm。我们将全幅相机(感光器大小为36mm*24mm的相机)作为摄影衡量标准。也就是说:所有能装在全幅相机上的镜头,等效焦距等于绝对焦距;而镜头在所有其他大小感光器相机上,等效焦距等于绝对焦距乘以一个固定的系数。?举个例子,镜头装在尼康(NIKON)的非全幅(APS-C画幅)相机上,如D300s,D90,等效焦距约等于绝对焦距乘以1.5倍;镜头装在佳能(CANON)的非全幅(APS-C画幅)相机上,如7D,60D,等效焦距约等于绝对焦距乘以1.6倍。意思就是这些镜头装在非全幅(APS-C画幅) 的相机上,拍摄出来的画面范围等效为一个更长的镜头在全幅相机上拍摄出来的范围。图下的几张例图可以很容易的帮助理解。 从图中我们可以看出一个200mm的镜头在APS-C画幅机器尼康(NIKON)D90上拍摄到的范围与一个300mm镜头在全画幅机器尼康(NIKON)D700上一致。 ?三、对焦?对焦又叫聚焦,

磁性材料的基本特性

磁性材料的基本特性 1. 磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H 足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。 2. 软磁材料的常用磁性能参数 饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。 剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。 矩形比:Br∕Bs 矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。 磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。 初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。 居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。它确定了磁性器件工作的上限温度。 损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。在自由静止空气中磁芯的损耗与磁芯的温升关系为: 总功率耗散(mW)/表面积(cm2) 3. 软磁材料的磁性参数与器件的电气参数之间的转换 在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。设计软磁器件通常包括三个步骤:正确选用磁性材料;合理确定磁芯的几何形状及尺寸;根据磁性参数要求,模拟磁芯的工作状态得到相应的电气参数。 磁性材料是一种重要的电子材料。早期的磁性材料主要采用金属及合金系统,随着生产的发展,在电力工业、电讯工程及高频无线电技术等方面,迫切要求提供一种具有很高电阻率的高效能磁性材料。在重新研究磁铁矿及其他具有磁性的氧化物的基础上,研制出了一种新型磁性材料——铁氧体。铁氧体属于氧化物系统的磁性材料,是以氧化铁和其他铁族元素或稀土元素氧化物为主要成分的复合氧化物,可用于制造能量转换、传输和信息存储的各种功能器件。

钕铁硼磁材知识

钕铁硼磁材知识

————————————————————————————————作者:————————————————————————————————日期:

钕铁硼磁材知识内容: 第一章磁物理基础 第二章磁性材料的发展概况 第三章钕铁硼的主要特点及应用 第四章钕铁硼的主要成份组成 第五章钕铁硼生产工艺及设备 第六章性能参数测量原理及设备 第七章机械加工工艺及设备 第八章表面处理工艺及设备 第九章充磁包装

第一章磁物理基础 1 物质的磁现象 磁性材料:magnetic material 钕铁硼磁铁:nd-fe-b magnet 铁氧体磁铁:ferrite magnet 牛磁棒:magnetic bar for cattle? 磁力架:magnetic separator 物质的磁性是一个历史悠久的研究领域,约在三千年前就已受到人们的注意。中国是最早应用磁性的国家,公元前四世纪,我国制成了世界上最早的指南针,成为中国的四大发明之一。磁学史上第一部关于磁性的专著是英国(WGilbert)吉耳伯特的《论磁石》(1600年),这本书介绍了那时书籍有关的磁性知识。然而,磁性作为一门科学却到19世纪前半期才开始发展。 1820年,丹麦物理学家奥斯特发现电流的磁效应,拉开了磁电之间联系的序幕; 1820年末,法国物理学安培证明通电圆形线圈和普通的磁铁一样具有吸引和排斥的现象。 1831年,英国科学家法拉第发现了电磁感应现象,并提出电磁感应定律,从而揭示电和磁之间的内在联系; 后来,苏格兰科学家麦克斯韦,将电磁的联系建立起严密的电磁场理论。他发展了法拉第的思想,用数学的形式总结出电场和磁场的联系,即麦克斯韦方程。 2 磁性的起源 物质的磁性起源于原子磁矩。 原子物理学告诉我们,组成物质的最小单元是原子,原子又由电子和原子核组成。电子的排布遵循三大原则:1 洪特规则,2泡利不相容规则,3 能量最低原理。原子中的电子绕着原子核进行高速运转,电子运转时同时有两种运动形式,即电子绕原子核的轨道运动和电子绕本身轴的旋转。前者叫电子轨道运动,后者叫电子自旋。处于旋转运动状态的电子相当于电流闭合回路,必然伴随有磁矩的发生,电子轨道和电子自旋产生的总磁矩称为原子磁矩。

相关主题