搜档网
当前位置:搜档网 › 高中数学必修四 任意角与弧度制 知识点汇总(教师版)

高中数学必修四 任意角与弧度制 知识点汇总(教师版)

高中数学必修四  任意角与弧度制     知识点汇总(教师版)
高中数学必修四  任意角与弧度制     知识点汇总(教师版)

高中数学必修四任意角与弧度制知

识点汇总(教师版) https://www.sodocs.net/doc/e913464389.html,work Information Technology Company.2020YEAR

任意角与弧度制 知识梳理:

一、任意角和弧度制 1、角的概念的推广

定义:一条射线OA 由原来的位置,绕着它的端点O 按一定的方向旋转到另一位置OB ,就形成了角α,记作:角α或α∠ 可以简记成α。 注意:

(1)“旋转”形成角,突出“旋转”

(2)“顶点”“始边”“终边”“始边”往往合于x 轴正半轴 (3)“正角”与“负角”——这是由旋转的方向所决定的。

例1、若

13590<<<αβ,求βα-和βα+的范围。(0,45) (180,270)

2、角的分类:

由于用“旋转”定义角之后,角的范围大大地扩大了。可以将角分为正角、零角和负角。

正角:按照逆时针方向转定的角。 零角:没有发生任何旋转的角。 负角:按照顺时针方向旋转的角。

例2、(1)时针走过2小时40分,则分针转过的角度是 -960

(2)将分针拨快10分钟,则分针转过的弧度数是 3

π .

3、 “象限角”

为了研究方便,我们往往在平面直角坐标系中来讨论角,角的顶点合于坐标原点,角的始边合于x 轴的正半轴。

角的终边落在第几象限,我们就说这个角是第几象限的角

角的终边落在坐标轴上,则此角不属于任何一个象限,称为轴线角。

例1、30? ;390? ;-330?是第 象限角 300? ; -60?是第 象限角

585? ; 1180?是第 象限角 -2000?是第 象限角。

例2、(1)A={小于90°的角},B={第一象限的角},则A∩B= ④ (填序号). ①{小于90°的角} ②{0°~90°的角} ③ {第一象限的角}

④以上都不对

(2)已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是(B )

A .B=A∩C

B .B ∪C=C

C .A ?C

D .A=B=C

例3、写出各个象限角的集合:

例4、若α是第二象限的角,试分别确定2α,2

α 的终边所在位置.

解 ∵α是第二象限的角,

∴k ·360°+90°<α<k ·360°+180°(k ∈Z ).

(1)∵2k ·360°+180°<2α<2k ·360°+360°(k ∈Z ), ∴2α是第三或第四象限的角,或角的终边在y 轴的非正半轴上. (2)∵k ·180°+45°<2

α

<k ·180°+90°(k ∈Z ), 当k =2n (n ∈Z )时, n ·360°+45°<

2

α

<n ·360°+90°; 当k =2n +1(n ∈Z )时, n ·360°+225°<2

α

<n ·360°+270°. ∴

2

α

是第一或第三象限的角. 拓展:已知α是第三象限角,问3

α是哪个象限的角?

∵α是第三象限角,∴180°+k ·360°<α<270°+k ·360°(k ∈Z ), 60°+k ·120°<

3

α

<90°+k ·120°. ①当k =3m (m ∈Z )时,可得 60°+m ·360°<3

α

<90°+m ·360°(m ∈Z ). 故

3

α

的终边在第一象限.

②当k =3m +1 (m ∈Z )时,可得 180°+m ·360°<3

α

<210°+m ·360°(m ∈Z ). 故

3

α

的终边在第三象限. ③当k =3m +2 (m ∈Z )时,可得 300°+m ·360°<3

α

<330°+m ·360°(m ∈Z ). 故

3

α

的终边在第四象限. 综上可知,

3

α

是第一、第三或第四象限的角. 4、常用的角的集合表示方法 1、终边相同的角:

(1)终边相同的角都可以表示成一个0?到360?的角与)(Z k k ∈个周角的和。 (2)所有与α终边相同的角连同α在内可以构成一个集合

{}Z k k S ∈?+==,360| αββ

即:任何一个与角α终边相同的角,都可以表示成角α与整数个周角的和 注意:

1、Z ∈k

2、α是任意角

3、终边相同的角不一定相等,但相等的角的终边一定相同。终边相同的角有无数个,它们相差360°的整数倍。

4、一般的,终边相同的角的表达形式不唯一。 例1、(1)若θ角的终边与

58π角的终边相同,则在[]π2,0上终边与4

θ

的角终边相同的角为 。 若θ角的终边与8π/5的终边相同 则有:θ=2kπ+8π/5 (k 为整数)

所以有:θ/4=(2kπ+8π/5)/4=kπ/2+2π/5 当:0≤kπ/2+2π/5≤2π

有:k=0 时,有2π/5 与θ/4角的终边相同的角 k=1 时,有9π/10 与θ/4角的终边相同的角

(2)若βα和是终边相同的角。那么βα-在 X 轴正半轴上 例2、求所有与所给角终边相同的角的集合,并求出其中的最小正角,最大负角:

(1) 210-; (2)731484'- .

例3、求θ,使θ与 900-角的终边相同,且[]

1260180,

-∈θ. 2、终边在坐标轴上的点:

终边在x 轴上的角的集合: {}Z k k ∈?=,180| ββ 终边在y 轴上的角的集合:{}Z k k ∈+?=,90180| ββ 终边在坐标轴上的角的集合:{}Z k k ∈?=,90| ββ 3、终边共线且反向的角:

终边在y =x 轴上的角的集合:{}Z k k ∈+?=,45180| ββ 终边在x y -=轴上的角的集合:{}Z k k ∈-?=,45180| ββ 4、终边互相对称的角:

若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k 360 若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+= 180360k 若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k 180 角α与角β的终边互相垂直,则角α与角β的关系: 90360±+=βαk

例1、若θα+?= 360k ,),(360Z m k m ∈-?=θβ 则角α与角β的中变得位置关系是( )。

A.重合

B.关于原点对称

C.关于x 轴对称

D.有关于y 轴对称 例2、将下列各角化成0到π2的角加上)(2Z k k ∈π的形式 (1)

π3

19

(2) 315- 例3、设集合{}Z k k x k x A ∈+?<<+?=,30036060360| ,

{}

Z k k x k x B ∈?<<-?=,360210360| ,求B A ,B A .

二、弧度与弧度制 1、弧度与弧度制:

弧度制—另一种度量角的单位制, 它的单位是rad 读作弧度 定义:长度等于 的弧所对的圆心角称为1弧度的角。

如图:∠AOB=1rad ,∠AOC=2rad , 周角=2πrad 注意:

1、正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是0

2、角α的弧度数的绝对值 r

l

=

α(l 为弧长,r 为半径) 3、用角度制和弧度制来度量零角,单位不同,但数量相同(都是0) 用角度制和弧度制来度量任一非零角,单位不同,量数也不同。 4、在同一个式子中角度、弧度不可以混用。

o r

C 2rad 1rad r l=2r o A A B

2、角度制与弧度制的换算

弧度定义:对应弧长等于半径所对应的圆心角大小叫一弧度 角度与弧度的互换关系:∵ 360?= rad 180?= rad

∴ 1?=

rad rad 01745.0180

≈π

'185730.571801

=≈??

? ??=πrad

注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零. 例1、 把'3067 化成弧度

解:

???

??=2167'3067 ∴ rad rad ππ832167180'3067=?=

例2、 把rad π53

化成度

解: 10818053

53=?=rad π

例2、将下列各角从弧度化成角度 (1)

36π

rad (2)2.1 rad (3) rad π5

3

例3、用弧度制表示:1?终边在x 轴上的角的集合 2?终边在y 轴上的角的集合 3?终边在坐标轴上的角的集合

解:1?终边在x 轴上的角的集合 {}Z k k S ∈==,|1πββ

2?终边在y 轴上的角的集合 ?

?????∈+==Z k k S ,2|2ππββ

3?终边在坐标轴上的角的集合 ?

??

???∈==Z k k S ,2|3πββ

三、弧长公式和扇形面积公式

r l α= ; 22

1

21r lR S α==

例1、已知扇形的周长是 6 cm ,面积是 2 cm 2

,则扇形的中心角的弧度数是 1或

4 .

例2、若两个角的差为1弧度,它们的和为 1,求这连个角的大小分别为 。

例3、 直径为20cm 的圆中,求下列各圆心所对的弧长 ⑴3

⑵ 165 解: cm r 10= ⑴: )(3

401034cm r l ππα=?=

?= ⑵:rad rad 1211)(165180165ππ=?= ∴)(655101211cm l π

π=?=

例4、(1)一个半径为r 的扇形,若它的周长等于弧所在的半圆的长,那么扇形的圆心角是多少弧度是多少度扇 形的面积是多少?

(2)一扇形的周长为20 cm ,当扇形的圆心角α等于多少弧度时,这个扇形的面积最大?

解 (1)设扇形的圆心角是θrad ,因为扇形的弧长是r θ, 所以扇形的周长是2r +r θ. 依题意,得2r +r θ=πr ,

∴θ=π-2=(π-2)×?

??

?

??π180

≈1.142×57.30°≈65.44°≈65°26′, ∴扇形的面积为S =

21r 2θ=2

1(π-2)r 2

. (2)设扇形的半径为r ,弧长为l ,则l +2r =20, 即l =20-2r (0<r <10)

扇形的面积S =2

1

lr ,将①代入,得 S =

2

1(20-2r )r =-r 2+10r =-(r -5)2

+25, 所以当且仅当r =5时,S 有最大值25.此时 l =20-2×5=10,α=

r

l

=2. 所以当α=2 rad 时,扇形的面积取最大值.

例5、(1)已知扇形的周长为10,面积为4,求扇形中心角的弧度数;

(2)已知扇形的周长为40,当它的半径和中心角取何值时,才能使扇形的面积最大最大面积是多少

解 设扇形半径为R ,中心角为θ,所对的弧长为l . (1)依题意,得??

???=+=,102,

4212

R R R θθ

∴2θ2

-17θ+8=0,∴θ=8或2

1. ∵8>2π,舍去,∴θ=

2

1. (2)扇形的周长为40,∴θR +2R =40,

S =21lR =21θR 2

=41θR ·2R ≤41100222

=??

? ??+R R θ. 当且仅当θR =2R ,即R =10, θ=2时面积取得最大值,最大值为100.

(七)任意角的三角函数(定义) 1.

设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y ),则

P 与原点的距离0222

2

>+=+=y x y

x r

2.比值

r

y

叫做α的正弦 记作: r y =αsin ;比值r x 叫做α的余弦 记作:

r x

=αcos

比值

x

y

叫做α的正切 记作: x y =αtan ;比值y x 叫做α的余切 记作:

y

x

=

αcot 比值

x r 叫做α的正割 记作: x

r

=αsec ;比值y r 叫做α的余割 记作:

y

r

=

αcsc 注意突出几个问题:①角是“任意角”,当β=2k π+α(k ∈Z)时,β与α的同名三角函数值应该是相等的,即凡是终边相同的角的三角函数值相等。

②实际上,如果终边在坐标轴上,上述定义同样适用。③三角函数是以“比值”为函数值的函数

④0>r ,而x,y 的正负是随象限的变化而不同,故三角函数的符号应由象限确

三角函数在各象限的符号: ⑤定义域:

αααtan cos sin ===y y y α

ααcsc sec cot ===y y y

4. α是第二象限角,P (x ,5)为其终边上一点,且cos α=x 42,则sin α=

410

. . 已知角α的终边落在直线y =-3x (x <0)上,则

=-α

αα

αcos cos sin sin 2 .

例8、 已知α的终边经过点P(2,-3),求α的六个三角函数值

解:13)3(2,3,222=-+=-==r y x ∴sin α=-13133 cos α=13

13

2 α=-2

3 cot α=-3

2

α=213 csc α=-3

13 例9、 求下列各角的六个三角函数值 ⑴ 0 ⑵ π ⑶

2

2

π 解:⑴ ⑵ ⑶的解答见P16-17

⑷ 当α=

时 r y x ==,0 ∴sin 2π=1 cos 2π=0 tan 2π不存在 cot 2π

=0

sec 2π不存在 csc 2π

=1

例10、 ⑴ 已知角α的终边经过P(4,-3),求2sin α+cos α的值

⑵已知角α的终边经过P(4a,-3a),(a ≠0)求2sin α+cos α的值

解:⑴由定义 :5=r sin α=-53 cos α=54 ∴2sin α+cos α=-52

⑵若0>a a r 5= 则sin α=-53 cos α=54 ∴2sin α+cos α=-52

若0

2

(完整版)任意角与弧度制题型小结

任意角与弧度制 【知识梳理】 1.按旋转方向分 2. (1)角的终边在第几象限,则此角称为第几____;(2)角的终边在__上,则此角不属于任何一个象限. 3. 所有与角α终边相同的角,连同角α在内,可构成一个集合S=_________________,即任一与角α终边相同的角,都可以表示成角α与__________的和. 【常考题型】 题型一、象限角的判断 【例1】已知角的顶点与坐标原点重合,始边落在x轴的非负半轴上,作出下列各角,并指出它们是第几象限角. (1)-75°;(2)855°;(3)-510°. 【类题通法】象限角的判断方法 (1)根据图形判定,在直角坐标系中作出角,角的终边落在第几象限,此角就是第几象限角. (2)根据终边相同的角的概念.把角转化到0°~360°范围内,转化后的角在第几象限,此角就是第几象限角. 【对点训练】 在直角坐标系中,作出下列各角,在0°~360°范围内,找出与其终边相同的角,并判定它是第几象限角. (1)360°;(2)720°;(3)2 012°;(4)-120°. 题型二、终边相同的角的表示 【例2】(1)写出与α=-1 910°终边相同的角的集合,并把集合中适合不等式-720°≤β<360°的元素β写出来. (2)分别写出终边在下列各图所示的直线上的角的集合.

(3)写出终边落在图中阴影部分(包括边界)的角的集合. 【类题通法】 1.终边相同的角常用的三个结论 (1)终边相同的角之间相差360°的整数倍. (2)终边在同一直线上的角之间相差180°的整数倍. (3)终边在相互垂直的两直线上的角之间相差90°的整数倍. 2.区域角是指终边落在坐标系的某个区域的角,其写法可分三步 (1)先按逆时针方向找到区域的起始和终止边界; (2)由小到大分别标出起始、终止边界对应的一个角α,β,写出所有与α,β终边相同的角; (3)用不等式表示区域内的角,组成集合. 【对点训练】 已知角α的终边在如图所示的阴影部分内,试指出角α的取值范围. 题型三、确定n α及 n α 所在的象限 【例3】 若α是第二象限角,则2α,α 2 分别是第几象限的角? 【类题通法】 1.n α所在象限的判断方法 确定n α终边所在的象限,先求出n α的范围,再直接转化为终边相同的角即可. 2.αn 所在象限的判断方法

任意角及弧度制知识点总结

任意角及弧度制知识点总结 1、角的概念的推广:平面内一条射线绕着端点从一个位置旋转到另一个位置所的图形。按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,一条射线没有作任何旋转时,称它形成一个零角。射线的起始位置称为始边,终止位置称为终边。 2、象限角的概念:在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。如果角的终边在坐标轴上,就认为这个角不属于任何象限。 3. 终边相同的角的表示: (1)α终边与θ终边相同(α的终边在θ终边所在射线上)?2()k k αθπ=+∈Z ,注意:相等的角的终边一定相同,终边相同的角不一定相等.如与角 1825-的终边相同,且绝对值最小的角的度数是___,合___弧度。 (2)α终边与θ终边共线(α的终边在θ终边所在直线上) ?()k k αθπ=+∈Z . (3)α终边与θ终边关于x 轴对称?2()k k αθπ=-+∈Z . (4)α终边与θ终边关于y 轴对称?2()k k απθπ=-+∈Z . (5)α终边与θ终边关于原点对称?2()k k απθπ=++∈Z . (6)α终边在x 轴上的角可表示为:,k k Z απ=∈;α终边在y 轴上的角可表 示为:,2k k Z παπ=+∈;α终边在坐标轴上的角可表示为:,2k k Z π α=∈.如α 的终边与6 π 的终边关于直线x y =对称,则α=____________。 4、α与2α的终边关系:由“两等分各象限、一二三四”确定.如若α是第二象 限角,则2 α 是第_____象限角 5.弧长公式:||l R α=,扇形面积公式:211||22 S lR R α==,1弧度(1rad)57.3≈. 如已知扇形AOB 的周长是6cm ,该扇形的中心角是1弧度,求该扇形的面积。 6、任意角的三角函数的定义:设α是任意一个角,P (,)x y 是α的终边上的任意 一点(异于原点),它与原点的距离是0r =>,那么sin ,cos y x r r αα==, ()tan ,0y x x α=≠,cot x y α=(0)y ≠,sec r x α=()0x ≠,()csc 0r y y α=≠。三角 函数值只与角的大小有关,而与终边上点P 的位置无关。如

必修4_任意角和弧度制、任意角的三角函数练习

必修4 任意角和弧度制、任意角的三角函数各题型与练习 题型一 角的概念辨析 例1 下列各命题正确的是( ) A .0°~90°的角是第一象限角 B .第一象限角都是锐角 C .锐角都是第一象限角 D .小于90°的角都是锐角 题型二 终边相同的角 例2 与-457°角终边相等的角的集合是( ) A .}{Z k k ∈?+??=,457360|αα B .}{Z k k ∈?+??=,97360|αα C .}{Z k k ∈?+??=,263360|αα D .}{Z k k ∈?-??=,263360|αα 例3 如果角α与β终边相同,则有( ) A .α-β=π B .α+β=0 C .α-β=2k π(k ∈Z ) D .α+β=2k π(k ∈Z ) 题型三 已知角α所在象限,求角2α、2α 所在象限问题 例4 已知角α是第二象限角,求角2α是第几象限角 例5 若α是第一象限角,则2α 是第几象限角? 题型四 弧度制的概念问题 例6 下列诸命题中,假命题是( ) A .“度”与“弧度”是度量角的两种不同的度量单位 B .一度的角是周角的3601,一弧度的角是周角的π21 C .1弧度是长度等于半径长的弧所对的圆心角,它是角的一种度量单位 D .不论是用角度制还是弧度制度量角,它们均与圆的半径长短有关 题型五 角度与弧度互化问题 例7 (1)将112°30′化为弧度 (2)将125π -rad 化为度 题型六 与弧长、扇形面积有关问题 例8 已知扇形的周长是6cm ,面积是2cm 2,试求扇形的中心角的弧度数 题型七 用弧度表示终边相同角的问题 例9 将-1485°表示成Z k k ∈+,2απ的形式,且πα20<≤

任意角与弧度制知识点汇总

任意角与弧度制 知识梳理: 一、任意角和弧度制 1、角的概念的推广 定义:一条射线OA由原来的位置,绕着它的端点O按一定的方向旋转到另一位置OB,就形成了角α,记作:角α或α ∠可以简记成α。 2、角的分类: 由于用“旋转”定义角之后,角的范围大大地扩大了。可以将角分为正角、零角和负角。 正角:按照逆时针方向转定的角。 零角:没有发生任何旋转的角。 负角:按照顺时针方向旋转的角。 3、“象限角” 为了研究方便,我们往往在平面直角坐标系中来讨论角,角的顶点合于坐标原点,角的始边合于x轴的正半轴。 角的终边落在第几象限,我们就说这个角是第几象限的角 角的终边落在坐标轴上,则此角不属于任何一个象限,称为轴线角。例1、(1)A={小于90°的角},B={第一象限的角},则A∩B=(填序号). ①{小于90°的角} ②{0°~90°的角} ③ {第一象限的角} ④以上都不对 (2)已知A={第一象限角},B={锐角},C={小于90°的角},那么A、

B 、 C 关系是( ) A .B=A∩C B .B∪C= C C .A ?C D .A=B=C 4、常用的角的集合表示方法 1、终边相同的角: (1)终边相同的角都可以表示成一个0?到360?的角与)(Z k k ∈个周角的和。 (2)所有与?终边相同的角连同?在内可以构成一个集合 {}Z k k S ∈?+==,360| αββ 即:任何一个与角?终边相同的角,都可以表示成角?与整数个周角的和 注意: 1、Z ∈k 2、α是任意角 3、终边相同的角不一定相等,但相等的角的终边一定相同。终边相同的角有无数个,它们相差360°的整数倍。 4、一般的,终边相同的角的表达形式不唯一。 例1、(1)若θ角的终边与 58π角的终边相同,则在[]π2,0上终边与4 θ 的角终边相同的角为 。 (2)若βα和是终边相同的角。那么βα-在 例2、求所有与所给角终边相同的角的集合,并求出其中的最小正角,最大负角: (1) 210-; (2)731484'- . 例3、求θ,使θ与 900-角的终边相同,且[] 1260180, -∈θ.

必修4-任意角和弧度制-练习题整理

1、下列六个命题:其中正确的命题有 . ①时间经过3小时,时针转过的角是90°②小于90°的角是锐角③大于90°的角是钝角④若α 是锐角,则α 的终边在第一象限 ⑤若α 的终边在第二象限,则α 是钝角⑥若α 的终边在第四象限,则α 是负角 2、练习:角度与弧度互化: 0°= .;30° ;45° ;3π ;2π ;120° ;135° ;150° ; 54π ,-43π 、310 π 、-210° 、75° ,0330 ,0900 23π- ,405° , -280° , 1680° , π411- ,5π ,67π 780° ,-1560° ,67.5° ,π310- , 12π ,4 7π 3、在0°~360°间,找出与下列角终边相同角:(将下列角化成0360()k k Z α?+∈的形式) -150° 、1040° 、-940° .0 300 01125 0660- -1050° 01485- 4、下列各对角中终边相同的角是( ) A.πππk 222+-和(k ∈z ) B.-3π和322π C.-97π和911π D. 9 122320ππ和 5、用弧度制表示下列角的集合。 (1)x 轴上的角; (2)第四象限角; (3)与 6 π的终边关于x 轴对称的角; (4)终边在直线y=x 上。 (5) 终边落在一、三象限角平分线上 6、写出角的终边在下图中阴影区域内角的集合(包括边界). 7、若α 是第二象限的角,则2 α所在的象限是( ) A .第一、二象限 B .第一、三象限 C .第二、四象限 D .第二、三象限 8、若角α是第三象限角,则2 α角的终边在 . 9、若α是第四象限角,则π-α一定在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 10、已知:α是第三象限角,求(1)2α (2) 2α (3) 3 α终边所在的位置

任意角的概念与弧度制

任意角的概念与弧度制 1、角的概念的推广: 角可以看作平面内一条射线绕端点从一个位置(始边)旋转到另一个位置(终边)形成的图形.规定按照逆时针方向旋转而成的角叫做正角;按照顺时针方向旋转而成的角叫做负角:射线没有旋转时称零角.任意角的概念与弧度制 1.角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形. 正角:按逆时针方向旋转所形成的角. 负角:按顺时针方向旋转所形成的角. 零角:如果一条射线没有做任何旋转,我们称它形成了一个零角. 要点诠释: 角的概念是通过角的终边的运动来推广的,既有旋转方向,又有旋转大小,同时没有旋转也是一个角,从而得到正角、负角和零角的定义. 2.终边相同的角、象限角 终边相同的角为 角的顶点与原点重合,角的始边与轴的非负半轴重合.那么,角的终边(除端点外)在第几象限,我们就说这个角是第几象限角. 要点诠释: (1)终边相同的前提是:原点,始边均相同; (2)终边相同的角不一定相等,但相等的角终边一定相同; (3)终边相同的角有无数多个,它们相差的整数倍. 3、终边相同的角与象限角: 与角终边相同的角构成一个集合,;顶点与坐标原点重合,始边与轴正半轴重合,角的终边在第几象限,就把这个角叫做第几象限的角.知识点二:弧度制 弧度制 (1)长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1,或1弧度,或1(单

位可以省略不写). (2)弧度与角度互换公式: 1rad=≈°=57°18′,1°=≈(rad) (3)弧长公式:(是圆心角的弧度数), 扇形面积公式:. 要点诠释: (1)角有正负零角之分,它的弧度数也应该有正负零之分,如等等,一般地, 正角的弧度数是 一个正数,负角的弧度数是一个负数,零角的弧度数是0,角的正负主要由角的旋转方向来决定. (2)角的弧度数的绝对值是:,其中,是圆心角所对的弧长,是半径. 3、弧度制的概念及换算: 规定长度等于半径长的圆弧所对的圆心角叫做1弧度的角.弧度记作rad.注意在用弧度制时,“弧度”或“rad”可以略去不写. 在半径为的圆中,弧长为的弧所对圆心角为,则 所以,rad,(rad),1(rad). 4、弧度制下弧长公式: ;弧度制下扇形面积公式. 类型一:象限角 1.已知角; (1)在区间内找出所有与角有相同终边的角;

最新高中数学必修4《任意角和弧度制》教案

最新高中数学必修4《任意角和弧度制》教案 高中数学必修4《任意角和弧度制》教案【一】教学准备 教学目标 一、知识与技能 (1)理解并掌握弧度制的定义;(2)领会弧度制定义的合理性;(3)掌握并运用弧度制表示的弧长公式、扇形面积公式;(4)熟练地进行角度制与弧度制的换算;(5)角的集合与实数集之间建立的一一对应关系.(6) 使学生通过弧度制的学习,理解并认识到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系. 二、过程与方法 创设情境,引入弧度制度量角的大小,通过探究理解并掌握弧度制的定义,领会定义的合理性.根据弧度制的定义推导并运用弧长公式和扇形面积公式.以具体的实例学习角度制与弧度制的互化,能正确使用计算器. 三、情态与价值 通过本节的学习,使同学们掌握另一种度量角的单位制---弧度制,理解并认识到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系.角的概念推广以后,在弧度制下,角的集合与实数集之间建立了一一对应关系:即每一个角都有唯一

的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应,为下一节学习三角函数做好准备https://www.sodocs.net/doc/e913464389.html, 教学重难点 重点: 理解并掌握弧度制定义;熟练地进行角度制与弧度制地互化换算;弧度制的运用. 难点: 理解弧度制定义,弧度制的运用. 教学工具 投影仪等 教学过程 一、创设情境,引入新课 师:有人问:海口到三亚有多远时,有人回答约250公里,但也有人回答约160英里,请问那一种回答是正确的?(已知1英里=1.6公里) 显然,两种回答都是正确的,但为什么会有不同的数值呢?那是因为所采用的度量制不同,一个是公里制,一个是英里制.他们的长度单位是不同的,但是,他们之间可以换算:1英里=1.6公里. 在角度的度量里面,也有类似的情况,一个是角度制,我们已经不再陌生,另外一个就是我们这节课要研究的角的另外一种度量制 ---弧度制.

高二数学任意角和弧度制知识点总结

高二数学任意角和弧度制知识点总结 在中国古代把数学叫算术,又称算学,最后才改为数学。小编准备了高二数学任意角和弧度制知识点,希望你喜欢。 1.任意角 (1)角的分类: ①按旋转方向不同分为正角、负角、零角. ②按终边位置不同分为象限角和轴线角. (2)终边相同的角: 终边与角相同的角可写成+k360(kZ). (3)弧度制: ①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角. ②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,||=,l是以角作为圆心角时所对圆弧的长,r 为半径. ③用弧度做单位来度量角的制度叫做弧度制.比值与所取的r 的大小无关,仅与角的大小有关. ④弧度与角度的换算:360弧度;180弧度. ⑤弧长公式:l=||r,扇形面积公式:S扇形=lr=||r2. 2.任意角的三角函数 (1)任意角的三角函数定义: 设是一个任意角,角的终边与单位圆交于点P(x,y),那么

角的正弦、余弦、正切分别是:sin =y,cos =x,tan =,它们都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数. (2)三角函数在各象限内的符号口诀是:一全正、二正弦、三正切、四余弦. 3.三角函数线 宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。至元明清之县学一律循之不变。明朝入选翰林院的进士之师称“教习”。到清末,学堂兴起,各科教师仍沿用“教习”一称。其实“教谕”在明清时还有学官一意,即主管县一级的教育生员。而相应府和州掌管教育生员者则谓“教授”和“学正”。“教授”“学正”和“教谕”的副手一律称“训导”。于民间,特别是汉代以后,对于在“校”或“学”中传授经学者也称为“经师”。在一些特定的讲学场合,比如书院、皇室,也称教师为“院长、西席、讲席”等。设角的顶点在坐标原点,始边与x 轴非负半轴重合,终边与单位圆相交于点P,过P作PM垂直于x轴于M.由三角函数的定义知,点P的坐标为(cos_,sin_),即P(cos_,sin_),其中cos =OM,sin =MP,单位圆与x轴的正半轴交于点A,单位圆在A点的切线与的终边或其反向延长线相交于点T,则tan =AT.我们把有向线段OM、MP、AT叫做的余弦线、正弦线、正切线. 这个工作可让学生分组负责收集整理,登在小黑板上,每周一

人教版高中数学必修四任意角和弧度制

任意角和弧度制 __________________________________________________________________________________ __________________________________________________________________________________ 1.理解1弧度的角、弧度制的定义. 2.掌握角度与弧度的换算公式 3.熟记特殊角的弧度数 (一)角的概念: 1 任意角 正角:按顺时针方向形成的角 负角:按逆时针方向形成的角 2 象限角 定义:角的顶在原点始边与x 轴重合,终边在第几象限此角就是第几象限角。 与角α有相同终边所有角表示为:α+2kπ(k 为任意整数) (1)在直角坐标系内讨论角: 注意:若角的终边在坐标轴上,就说这个角不属于任何象限,它叫象限界角。 (2)①与α角终边相同的角的集合:},2|{},360|{0 Z k k Z k k ∈+=∈+=απββαββ或 (3)区间角的表示: ①象限角: 象限角 象限角的集合表示 第一象限角的集合 o o o {|360<<36090,x k k k α??+∈Z } 第二象限角的集合 o o o o {|36090<<360180,x k k k α?+?+∈Z } 第三象限角的集合 o o o o {|360180<<360270,x k k k α?+?+∈Z } 第四象限角的集合 o o o o {|360270<<360360,x k k k α?+?+∈Z } ②写出图中所表示的区间角: 由α的终边所在的象限, 来判断 2α所在的象限,来判断3 α 所在的象限 (二)弧度制 1 弧度角的规定.

高中数学必修四 任意角与弧度制 知识点汇总(教师版)

任意角与弧度制 知识梳理: 一、任意角和弧度制 1、角的概念的推广 定义:一条射线OA 由原来的位置,绕着它的端点O 按一定的方向旋转到另一位置OB ,就形成了角α,记作:角α或α∠ 可以简记成α。 注意: (1)“旋转”形成角,突出“旋转” (2)“顶点”“始边”“终边”“始边”往往合于x 轴正半轴 (3)“正角”与“负角”——这是由旋转的方向所决定的。 例1、若ο ο13590<<<αβ,求βα-和βα+的范围。(0,45) (180,270) 2、角的分类: 由于用“旋转”定义角之后,角的范围大大地扩大了。可以将角分为正角、零角和负角。 正角:按照逆时针方向转定的角。 零角:没有发生任何旋转的角。 负角:按照顺时针方向旋转的角。 例2、(1)时针走过2小时40分,则分针转过的角度是 -960 (2)将分针拨快10分钟,则分针转过的弧度数是 3 π . 3、 “象限角” 为了研究方便,我们往往在平面直角坐标系中来讨论角,角的顶点合于坐标原点,角的始边合于x 轴的正半轴。 角的终边落在第几象限,我们就说这个角是第几象限的角 角的终边落在坐标轴上,则此角不属于任何一个象限,称为轴线角。 例1、30? ;390? ;-330?是第 象限角 300? ; -60?是第 象限角 585? ; 1180?是第 象限角 -2000?是第 象限角。 例2、(1)A={小于90°的角},B={第一象限的角},则A∩B= ④ (填序号).

①{小于90°的角} ②{0°~90°的角} ③ {第一象限的角} ④以上都不对 (2)已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是(B ) A .B=A∩C B .B ∪C= C C .A ?C D .A=B=C 例3、写出各个象限角的集合: 例4、若α是第二象限的角,试分别确定2α,2 α 的终边所在位置. 解 ∵α是第二象限的角, ∴k ·360°+90°<α<k ·360°+180°(k ∈Z ). (1)∵2k ·360°+180°<2α<2k ·360°+360°(k ∈Z ), ∴2α是第三或第四象限的角,或角的终边在y 轴的非正半轴上. (2)∵k ·180°+45°<2 α <k ·180°+90°(k ∈Z ), 当k =2n (n ∈Z )时, n ·360°+45°< 2 α <n ·360°+90°; 当k =2n +1(n ∈Z )时, n ·360°+225°<2 α <n ·360°+270°. ∴ 2 α 是第一或第三象限的角. 拓展:已知α是第三象限角,问3 α是哪个象限的角? ∵α是第三象限角,∴180°+k ·360°<α<270°+k ·360°(k ∈Z ), 60°+k ·120°< 3 α <90°+k ·120°. ①当k =3m (m ∈Z )时,可得 60°+m ·360°<3 α <90°+m ·360°(m ∈Z ). 故 3 α 的终边在第一象限. ②当k =3m +1 (m ∈Z )时,可得 180°+m ·360°<3 α <210°+m ·360°(m ∈Z ). 故 3 α 的终边在第三象限. ③当k =3m +2 (m ∈Z )时,可得 300°+m ·360°< 3 α <330°+m ·360°(m ∈Z ).

高中数学人教版必修4任意角和弧度制教学设计

1.1 任意角和弧度制 1.1.1 任意角 整体设计 教学分析 教材首先通过实际问题的展示,引发学生的认知冲突,然后通过具体例子,将初中学过的角的概念推广到任意角,在此基础上引出终边相同的角的集合的概念.这样可以使学生在已有经验(生活经验、数学学习经验)的基础上,更好地认识任意角、象限角、终边相同的角等概念.让学生体会到把角推广到任意角的必要性,引出角的概念的推广问题.本节充分结合角和平面直角坐标系的关系,建立了象限角的概念.使得任意角的讨论有一个统一的载体.教学中要特别注意这种利用几何的直观性来研究问题的方法,引导学生善于利用数形结合的思想方法来认识问题、解决问题.让学生初步学会在平面直角坐标系中讨论任意角.能熟练写出与已知角终边相同的角的集合,是本节的一个重要任务. 学生的活动过程决定着课堂教学的成败,教学中应反复挖掘“探究”栏目及“探究”示图的过程功能,在这个过程上要不惜多花些时间,让学生进行操作与思考,自然地、更好地归纳出终边相同的角的一般形式.也就自然地理解了集合S={β|β=α+k·360°,k∈Z}的含义.如能借助信息技术,则可以动态表现角的终边旋转的过程,更有利于学生观察角的变化与终边位置的关系,让学生在动态的过程中体会,既要知道旋转量,又要知道旋转方向,才能准确刻画角的形成过程的道理,更好地了解任意角的深刻涵义. 三维目标 1.通过实例的展示,使学生理解角的概念推广的必要性,理解并掌握正角、负角、零角、象限角、终边相同角的概念及表示,树立运动变化的观点,并由此深刻理解推广之后的角的概念. 2.通过自主探究、合作学习,认识集合S中k、α的准确含义,明确终边相同的角不一定相等,终边相同的角有无限多个,它们相差360°的整数倍.这对学生的终身发展,形成科学的世界观、价值观具有重要意义. 3.通过类比正、负数的规定,让学生认识正角、负角并体会类比、数形结合等思想方法的运用,为今后的学习与发展打下良好的基础. 重点难点 教学重点:将0°—360°范围的角推广到任意角,终边相同的角的集合. 教学难点:用集合来表示终边相同的角. 课时安排 1课时 教学过程 导入新课 图1 思路 1.(情境导入)如图1,在许多学校的门口都有摆设的一些游戏机,只要指针旋转到阴影部分即可获得高额奖品.由此发问:指针怎样旋转,旋转多少度才能赢?还有我们所熟悉

(完整版)任意角和弧度制知识点和练习

知识点一:任意角的表示 正角:按逆时针方向旋转形成的角 1、任意角负角:按顺时针方向旋转形成的角 零角:不作任何旋转形成的角 知识点二:象限角的范围 2、角的顶点与原点重合,角的始边与x轴的非负半轴重合,终边落在第几象限,则称为第几 象限角. k 360°180°k 360°270°, k k 360°270°k 360°360°, k 终边在x轴上的角的集合为k 180°,k 终边在y轴上的角的集合为k 180°90°,k 终边在坐标轴上的角的集合为k 90°,k 知识点三:终边角的范围 3、与角终边相同的角的集合为k 360°,k 4、已知是第几象限角,确定一n *所在象限的方法:先把各象限均分n等份,再从x轴的正 n 半轴的上方起,依次将各区域标上一、二、三、四,则原来是第几象限对应的标号即为一终边 n 所落在的区域. 知识点四:弧度制的转换 5、长度等于半径长的弧所对的圆心角叫做1弧度. 6、半径为r的圆的圆心角所对弧的长为I,则角的弧度数的绝对值是| | - r ° 7、弧度制与角度制的换算公式:2 360°,1°,1 180 57.3°. 180 知识点五:扇形 8、若扇形的圆心角为为弧度制,半径为r,弧长为1,周长为C,面积为S,则1 r 1 1 C 2r I,S -lr 2 22 r . 第一象限角的集合为k 360°k 360°90°,k 第二象限角的集合为 第三象限角的集合为 第四象限角的集合为 k 360°90°k 360°180°,k

例题分析 【例1】如果 角是第二象限的角,那么一角是第几象限的角?说说你的理由 2 【例3】一扇形周长为20cm 当扇形的圆心角 等于多少弧度时,这个扇形的面积最大?并求此 扇形的最 大面积? 针对练习 3. 如果一扇形的弧长为2冗cm ,半径等于2cm ,则扇形所对圆心角为( ) A.n B. 2n C.n D. 3n 2 2 4. 若a 是第四象限角,则180° + a 一定是( ) A .第一象限角 B. 第二象限角 C. 第三象限角 D. 第四象限角 5. —个半径为R 的扇形,它的周长为4R ,则这个扇形所含弓形的面积为( ) A. 1 1 2 -2 —sin2 R 2 B. !R 2 si n2 2 2 2 C. 丄R 2 D. 2 R 1 2 -R sin 2 2 2 6.若 角的终边落在第三或: 第四象限, 则 -的终边落在( ) 2 A.第一或第三象限 B.第二或第四象限 C ?第一或第四象限 D.第三或第四象限 7.某扇形的面积为1cm 2,它的周长为4cm ,那么该扇形圆心角的度数为 ( ) A. 1弧度角的大小与圆的半径无关 B.大圆中1弧度角比小圆中1弧度角大 C ?圆心角为1弧度的扇形的弧长都相等 D .用弧度表示的角都是正角 sin 1 、填空题 10. _____________________________________________________________ 若三角形的三个 内角的比等于2:3: 7,则各内角的弧度数分别为 __________________________________ . 11. 将时钟拨快了 10分钟,则时针转了 度,分针 转了 弧度. 12. __________________________________________________________________ 若角a 的 1. F 列角中终边与330°相同的角是( A .30 ° B.-30 ° C.630 2. 下列 命题正确的是( ) A .终边相同的角一定相等。 D.-630 B. 第一象限的角都是锐角 C. 锐角都是第一象限的角 D. 小于90的角都是锐角 A. 2° B. 2 8.下列说法正确的是 C. 4° D. 4 ( ) 9.已知弧度数为 2的圆心角所对的弦长也是 2,则这个圆心角所对的弧长是 A. 2 B. C. 2sin1 D. sin2

必修四-任意角与弧度制--知识点汇总(教师版)

美博教育任意角与弧度制 知识梳理: 一、任意角和弧度制 1、角的概念的推广 定义:一条射线OA 由原来的位置,绕着它的端点O 按一定的方向旋转到另一位置OB ,就形成了角α,记作:角α或α∠ 可以简记成α。 注意: (1)“旋转”形成角,突出“旋转” (2)“顶点”“始边”“终边”“始边”往往合于x 轴正半轴 (3)“正角”与“负角”——这是由旋转的方向所决定的。 例1、若οο13590<<<αβ,求βα-和βα+的范围。(0,45) (180,270) 2、角的分类: 由于用“旋转”定义角之后,角的范围大大地扩大了。可以将角分为正角、 零角和负角。 正角:按照逆时针方向转定的角。 零角:没有发生任何旋转的角。 负角:按照顺时针方向旋转的角。 例2、(1)时针走过2小时40分,则分针转过的角度是 (2)将分针拨快10分钟,则分针转过的弧度数是 . 3、 “象限角” 为了研究方便,我们往往在平面直角坐标系中来讨论角,角的顶点合于坐标原点,角的始边合于x 轴的正半轴。 角的终边落在第几象限,我们就说这个角是第几象限的角 角的终边落在坐标轴上,则此角不属于任何一个象限,称为轴线角。 例1、30? ;390? ;-330?是第 象限角 300? ; -60?是第 象限角 585? ; 1180?是第 象限角 -2000?是第 象限角。

例2、(1)A={小于90°的角},B={第一象限的角},则A∩B=(填序号). ①{小于90°的角} ②{0°~90°的角} ③ {第一象限的角} ④以上都不对 (2)已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C关系是() A.B=A∩C B.B∪C=C C.A?C D.A=B=C 例3、写出各个象限角的集合: α的终边所在位置. 例4、若α是第二象限的角,试分别确定2α, 2 解∵α是第二象限的角, ∴k·360°+90°<α<k·360°+180°(k∈Z). (1)∵2k·360°+180°<2α<2k·360°+360°(k∈Z), ∴2α是第三或第四象限的角,或角的终边在y轴的非正半轴上. α<k·180°+90°(k∈Z), (2)∵k·180°+45°< 2 当k=2n(n∈Z)时, α<n·360°+90°; n·360°+45°< 2 当k=2n+1(n∈Z)时, α<n·360°+270°. n·360°+225°< 2 α是第一或第三象限的角. ∴ 2 α是哪个象限的角? 拓展:已知α是第三象限角,问 3 ∵α是第三象限角,∴180°+k·360°<α<270°+k·360°(k∈Z), α<90°+k·120°. 60°+k·120°< 3 ①当k=3m(m∈Z)时,可得 α<90°+m·360°(m∈Z). 60°+m·360°< 3 α的终边在第一象限. 故 3 ②当k=3m+1 (m∈Z)时,可得 α<210°+m·360°(m∈Z). 180°+m·360°< 3 α的终边在第三象限. 故 3 ③当k=3m+2 (m∈Z)时,可得 α<330°+m·360°(m∈Z). 300°+m·360°< 3

任意角和弧度制及任意角的三角函数知识点与题型归纳

?高考明方向 1. 了解任意角的概念? 2■了解弧度制的概念,能进行弧度与角度的互化 3■理解任意角的三角函数(正弦、余弦、正切)的定义. ★备考知考情 1. 三角函数的定义与三角恒等变换等相结合, 考查三角函数求值问题. 2. 三角函数的定义与向量等知识相结合,考查三角函数定义的应用. 3■主要以选择题、填空题为主,属中低档题 一、知识梳理《名师一号》P47 知识点一角的概念⑴分类:按终边位置不同分为象限角和轴线角. ⑵终边相同的角:所有与角a终边相同的角,连同角a 在内,可构成一个集合S = { 3#a+ k 360°, k€ Z}. 《名师一号》P47 对点自测1、2 1、《名师一号》P48问题探究问题1、2 相等的角终边相同,终边相同的角也一定相等吗?相等 1

的角终边一定相同,但终边相同的角却不一定相等,终边相同的角有无数个,它们之间相差360°的整数倍. 角的表示形式是唯一的吗?角的集合的表示形式不是唯一的,女口:终边在y轴的负半轴上的角的集合可以表示为{x|x= k 360°- 90°, k € Z},也可以表示为{x|x= k 360°+ 270°, k€ Z}. (补充) 2、正角> 零角> 负角 3、下列概念应注意区分 小于90°的角;锐角;第一象限的角;0°?90°的角. 4、(1)终边落在坐标轴上的角 1)终边落在x轴非负半轴上的角 {x|x= 2k n k€ Z} 2)终边落在x轴非正半轴上的角 {x|x= 2k n k€ Z} 终边落在x轴上的角 {x|x= k n, k € Z} 3)终边落在y轴非负半轴上的角 {x|x= 2kk€ Z} 4)终边落在y轴非正半轴上的角 {x|x= 2k廿号,k€ Z} 2

任意角与弧度制教案

任意角与弧度制 【基础再现】 1、角的概念的推广 定义:一条射线OA 由原来的位置,绕着它的端点O 按一定的方向旋转到另一位置OB ,就形成了角,记作:角或 可以简记成。 注意: (1)“旋转”形成角,突出“旋转” (2)“顶点”“始边”“终边”“始边”往往合于轴正半轴 (3)“正角”与“负角”——这是由旋转的方向所决定的。 2、角的分类: 由于用“旋转”定义角之后,角的范围大大地扩大了。可以将角分为正角、零角和负角。 正角:按照逆时针方向转定的角。 零角:没有发生任何旋转的角。 负角:按照顺时针方向旋转的角。 3、 “象限角” 为了研究方便,我们往往在平面直角坐标系中来讨论角,角的顶点合于坐标原点,角的始边合于轴的正半轴。 角的终边落在第几象限,我们就说这个角是第几象限的角 角的终边落在坐标轴上,则此角不属于任何一个象限,称为轴线角。 【重点、难点、考点】 ααα∠αx x

一、常用的角的集合表示方法 1、终边相同的角: (1)终边相同的角都可以表示成一个0?到360?的角与个周角的和。 (2)所有与α终边相同的角连同α在内可以构成一个集合 即:任何一个与角α终边相同的角,都可以表示成角α与整数个周角的和 注意: 1、Z ∈k 2、α是任意角 3、终边相同的角不一定相等,但相等的角的终边一定相同。终边相同的角有无数个,它们相差360°的整数倍。 4、一般的,终边相同的角的表达形式不唯一。 2、终边在坐标轴上的点: 终边在x 轴上的角的集合: {}Z k k ∈?=,180| ββ 终边在y 轴上的角的集合:{}Z k k ∈+?=,90180| ββ 终边在坐标轴上的角的集合:{}Z k k ∈?=,90| ββ 3、终边共线且反向的角: 终边在y =x 轴上的角的集合:{}Z k k ∈+?=,45180| ββ 终边在x y -=轴上的角的集合:{}Z k k ∈-?=,45180| ββ )(Z k k ∈{}Z k k S ∈?+==,360| αββ

任意角和弧度制知识点和练习

知识点一:任意角 ?? ??? 正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角 2、象限角:角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为{} 36036090,k k k αα?<

必修4-任意角和弧度制-练习题整理

1、下列六个命题:其中正确的命题有 . ①时间经过3小时,时针转过的角是90°②小于90°的角是锐角③大于90°的角是钝角④若α 是锐角,则α 的终边在第一象限 ⑤若α 的终边在第二象限,则α 是钝角⑥若α 的终边在第四象限,则α 是负角 2、练习:角度与弧度互化: 0°= .;30° ;45° ;3π ;2 π ;120° ;135° ;150° ; 54π ,-43π 、310 π 、-210° 、75° ,0330 ,0900 23π- ,405° , -280° , 1680° , π411- ,5π ,67π 780° ,-1560° ,67.5° ,π310- , 12π ,4 7π 3、在0°~360°间,找出与下列角终边相同角:(将下列角化成0360()k k Z α?+∈的形式) -150° 、1040° 、-940° .0 300 01125 0660- -1050° 01485- 4、下列各对角中终边相同的角是( ) A.πππk 222+-和(k ∈z ) B.-3π和322π C.-97π和911π D. 9 122320ππ和 5、用弧度制表示下列角的集合。 (1)x 轴上的角; (2)第四象限角; (3)与 6 π的终边关于x 轴对称的角; (4)终边在直线y=x 上。 (5) 终边落在一、三象限角平分线上 6、写出角的终边在下图中阴影区域内角的集合(包括边界). 7、若α 是第二象限的角,则2 α所在的象限是( ) A .第一、二象限 B .第一、三象限 C .第二、四象限 D .第二、三象限 8、若角α是第三象限角,则2 α角的终边在 . 9、若α是第四象限角,则π-α一定在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 10、已知:α是第三象限角,求(1)2α (2) 2α (3) 3 α终边所在的位置

任意角和弧度制知识点归纳与练习(含详细答案)第1课时

第一章三角函数 §1.1任意角和弧度制 1.1.1 任意角 课时目标 1.了解任意角的概念,能正确区分正角、负角与零角.2.理解象限角与终边相同的角的定义.掌握终边相同的角的表示方法,并会判断角所在的象限. 1.角 (1)角的概念:角可以看成平面内______________绕着____________从一个位置________到另一个位置所成的图形. (2) 2. 角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是______________.如果角的终边在坐标轴上,就认为这个角不属于任何一个象限. 3.终边相同的角 所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=________________},即任一与角α终边相同的角,都可以表示成角α与______________的和. 归纳总结: 1.对角的理解,初中阶段是以“静止”的眼光看,高中阶段应用“运动”的观点下定义,理解这一概念时,要注意“旋转方向”决定角的“正负”,“旋转幅度”决定角的“绝对值大小”.2.关于终边相同角的认识 一般地,所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和. 注意:(1)α为任意角. (2)k·360°与α之间是“+”号,k·360°-α可理解为k·360°+(-α). (3)相等的角,终边一定相同;终边相同的角不一定相等,终边相同的角有无数多个,它们相差360°的整数倍. (4)k∈Z这一条件不能少.

一、选择题 1.与405°角终边相同的角是( ) A .k ·360°-45°,k ∈Z B .k ·180°-45°,k ∈Z C .k ·360°+45°,k ∈Z D .k ·180°+45°,k ∈Z 2.若α=45°+k ·180° (k ∈Z ),则α的终边在( ) A .第一或第三象限 B .第二或第三象限 C .第二或第四象限 D .第三或第四象限 3.设A ={θ|θ为锐角},B ={θ|θ为小于90°的角},C ={θ|θ为第一象限的角},D ={θ|θ为小于90°的正角},则下列等式中成立的是( ) A .A = B B .B =C C .A =C D .A =D 4.若α是第四象限角,则180°-α是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角 5.集合M =???? ??x |x =k ·180°2±45°,k ∈Z , P =???? ??x |x =k ·180°4±90°,k ∈Z ,则M 、P 之间的关系为( ) A .M =P B .M P C .M P D .M ∩P =? 6.已知α为第三象限角,则α2 所在的象限是( ) A .第一或第二象限 B .第二或第三象限 C .第一或第三象限 D .第二或第四象限 二、填空题 7.若角α与β的终边相同,则α-β的终边落在________. 8.经过10分钟,分针转了________度. 9.如图所示,终边落在阴影部分(含边界)的角的集合是______________________________. 10.若α=1 690°,角θ与α终边相同,且-360°<θ<360°,则θ=________. 三、解答题 11.在0°~360°范围内,找出与下列各角终边相同的角,并判定它们是第几象限角. (1)-150°;(2)650°;(3)-950°15′.

相关主题