搜档网
当前位置:搜档网 › 12500KVA工业硅矿热炉的设计说明

12500KVA工业硅矿热炉的设计说明

12500KVA工业硅矿热炉的设计说明
12500KVA工业硅矿热炉的设计说明

第五章工业硅冶炼能源节约技术的研究

5.1概述

能源安全已构成我国整体战略安全的一个极大隐患,成为经济社会发展的瓶颈。我国人均煤炭、石油、天然气资源量仅为世界平均水平的60%、10%和5%。目前,我国已成为世界第二大能源消费国和第二大石油消费国,能源供应紧局面日趋严重[81]。

与此同时,我国也存在严重能源利用效率低的问题。近年来的快速增长在很大程度上是靠消耗大量物质资源实现的。我国单位产出的能耗和资源消耗水平明显高于国际先进水平,如火电供煤消耗高达22.5%,吨钢可比能耗高21%,水泥综合能耗高达45%。据测算,我国每创造一美元GDP所消耗的能源是美国的4.3倍,是日本的11.5倍。能源利用率仅为美国的26.9%,日本的11.5%[82]。因此,提高能源使用效率是在能源总量不变条件成为中国发展中的刻不容缓的任务。

工业硅生产是高能耗行业,平均每吨工业硅需要消耗13000KWh电以上,全国年产100万吨工业硅需要13亿KWh以上。而国外先进水平吨硅消耗量为11000KWh,我国工业硅电耗比国外先进水平高10—20%,能源节约潜力仍很大(预计年节约0.2亿KWh,相当0.1亿元)。另外,国外先进水平也不是最理想的能耗水平,我国如能在国外先进水平基础上再配以精工细作,吨硅消耗量应该在10000—11000KWh间。

我国工业硅生产能源消耗高主要是因为设计上不合理、控制水平与管理水平不高。设计上不合理体现在我国普遍使用的是6300KV A左右的小炉型(散热大、产量低)、炉型设计上为隔热措施不严密、电路设计不合理、极心圆尺寸大小不合理等许多细节方面。控制水平不高体现在人工操作围大、炉况稳定性差、造成因调整炉况波动费时较长而使得非生产性能耗损失大。管理水平不高体现在管理上不严、制度不健全、操作细节缺乏,造成物资或能源上的消耗浪费。

目前工业硅生产中能源节约途径主要有:1)炉型的大型化方向;2)炉型的密闭化方向;3)余热利用化方向;4)提高炉子电效率措施如改进短网结构设计、改善变压器性能、改善电参数、采用低频电源等;5)提高炉子热效率;6)

改变炉反应机制;7)改变原料性能方向;8)采用自动控制方向;9)管理制度建设方向。由于上述诸多途径尚处于讨论阶段,形成固定技术并推广者仅有短网改进、管理制度建设上,许多技术细节缺乏,因此真正意义上可以直接使用的工业硅生产中能源节约技术还需要研究与试验。

经过多年的摸索探讨,目前我国工业硅电弧炉的电效率平均在92%以上,各种提高电效率的技术或措施也比较成熟如改进短网结构设计、使用优质导电材质、采用低压补偿技术、改善电参数等方面。但是,我国工业硅电弧炉的热效率普遍比较低,这是导致我国工业硅生产能耗高、能源利用效率低的主要原因,表5-1是我国某厂6300KV A电弧炉的热平衡分析表[21]。

表5-1 我国某厂6300KV A电弧炉的热平衡分析

从表5-1可以看出6300KV A电弧炉在工业硅生产过程中,电效率为92.21%,热效率为65%,能源大部分由于热效率低而被损失掉,损失途径主要是逸出气体带走热、炉面散热、炉体散热、短网热损失、冷却水带走热。因此,提高工业硅电弧炉冶炼过程中的热效率应当是今后研究的重点。

在本文研究中,我主要从提高工业硅矿热炉冶炼过程中的热效率角度来研究工业硅冶炼能源节约技术。

提高工业硅冶炼能源的热效率是一项综合性能源节约技术,它应当包括所有能够能够提高热效率、减少热损失的技术或措施。但是在本文中只研究炉型的大型化方向、炉型的密闭化方向、余热利用化方向、隔热设计技术四个方面来提高工业硅冶炼过程中的热效率。因为从表5-1可以看出,工业硅矿热炉热效率低就

是因为逸出气体带走热、炉面散热、炉体散热、短网热损失、冷却水带走热这五个方面热损失大。

炉型大型化则单位热容率增大,能量供应集中,通过外围表面单位面积散热小、炉子热稳定增强,有利于降低热损失。同时炉型大型化也是今后工业硅行业发展的方向,大型炉具有热容量大、产量高、有利于二次精炼提高产品质量、单位产品成本低、便于烟气余热利用等诸多好处。因此,研究炉型大型化不仅是降低热损失的需要,也是满足今后工业硅行业长期发展的需要,具有双重意义。

炉型密闭化或近密闭化不仅可以减少炉面热辐射损失,而且也可以减少烟气从6个炉门逸出带走的热,也是降低热损失、增加烟气回收能力、改善炉前操作环境的有力措施。

从表5-1可以看出,烟气带走热占据了供应总热量的18.35%,这部分热量又被散发到大气中,造成了能源损耗,致使能源利用率低,国钢铁研究曾经依据钢铁行业余热利用方式设计过余热回收装置,在某厂应用取得较好的使用效果,但是由于该余热回收装置初期投资过大,国工业硅企业又大多数是私营企业,他们不愿意做这么大的投资,所以研究一种新型低造价、多用途、适用于大多数企业的余热利用装置(热材联产装置)很有必要,开辟一条已经被浪费掉的巨大热能集热道路具有非常重要的现实意义。

科技每时每刻都在变化,上世纪60年代所作的设计不应当在这个世纪仍然被当作模来应用。当前,由于国没有实力研究机构来重新对上世纪60年代所作的工业矿热炉设计作改进,致使大多数企业仍用老的设计来建炉子,并且施工队伍都非正规研究机构或有能力去开发建设新型炉子,所以我国目前的工业硅矿热炉普遍都能耗高、设计未能跟上时代发展的需要。问题的重要一方面反映在炉体隔热设计多年来没有多大改变,普遍使用的是碳砖层、耐火砖层、纤维板、钢板四层结构,随着科技的发展这种结构应当革新,因为国际国新材料领域发生的一系列创新已经给我们带来了重新设计炉体结构的机遇。

上述四个以提高工业硅冶炼能源的热效率为目的的研究是目前工业硅冶炼能源节约方面尚未涉及完善但又非常重要的领域,需要既具备丰富的科学理论知识、又掌握国际国工业硅冶炼情况的人员才能完成,它涉及到的冶金、工艺、传热、设备、设计等多方面的知识与创新要求,使得这方面的工作既具体又复杂、既艺术又有意义。

5.2大容量半密闭式12500KV A工业硅矿热炉的设计

5.2.1设计依据

本项工作采用如下设计规:

《中国节能技术政策大纲》(2005);

《冶金企业安全卫生设计暂行规定》(1988);

《建筑设计防火规》(GBJ16-87);

《工业炉窑大气污染排放标准》(GB9078-1996);

《工业炉砌筑工程施工及验收规》(GB50211-2004)。

5.2.2设计容

5.2.2.1变压器选型

大容量矿热炉具有单炉产量大、能量供应均衡性好、便于实现机械化、便于余热综合利用、热稳定性好、便于操作等一系列优点,是业界一致认可的矿热炉发展的方向。为了促进国工业硅行业冶炼水平的提高和设备装备的现代化,因此此次设计采用12500KV A容量的矿热炉变压器。

12500KV A矿热炉变压器具体技术参数如下:

型号:HKSSPZ20-12500/35壳式强油水冷矿热炉变压器;

额定容量:12500KVA,可超载30%;

冷却方式:OFWF;

一次电压(KV):35;

二次额定电压(V):151;

二次电压(V):175,172,169,166,163,160,157,154,151,148,145,142,139,136,133共15档;

阻抗电压(短路电压):ex%=4-6%。

5.2.2.2矿热炉电气参数的确定

在工业硅冶炼过程中矿热炉的状态与电气参数的变化密切相关,控制最佳的供电制度对保证取得好的经济技术指标十分重要。

一般而言,提高矿热炉的二次电压在功率一定情况下电流就可以降下来,这有利于提高线路功率因数和减少电损失,但是过分提高矿热炉电压,电极就不能

深插,炉膛料面就会过热,热损失增加,硅回收率降低,因此每台电炉都有其适宜的二次电压值。在设计电炉时往往利用米古林斯基公式[68、83]来确定矿热炉正常工作时的二次电压:

V2=KP1/3

式中:K为电压系数,取6.0-7.5;P是变压器额定功率,KV A。

因此这次设计时取二次电压V2=6.5×125001/3=150.85≈151V,

=47795.2A。

二次电流I2

5.2.2.3矿热炉结构设计

正确设计矿热炉的结构是保障矿热炉工作性能的先决条件,是设计工作者面临的最大困难。好的矿热炉结构设计不仅有利于炉子保障高产、优质、低能耗、少故障的生产,而且有利于节约筑炉成本、方便其它设备布置、保证操作顺畅。

1、电极直径的选取

在确定矿热炉其它结构尺寸之前,必须先确定电极直径,它决定着矿热炉其它结构尺寸的大小。电极直径有许多计算方法,一般根据电极电流和电极电流密度确定:

d=,

式中I2为电极电流,A,△I为电极电流密度5.5-6.1A/cm2,取5.8计算。

根据国厂家生产碳素电极的标准,取电极直径为1050mm。

2、极心圆直径计算

极心圆直径是一个对冶炼过程有很大影响的设备结构参数,电极极心圆直径选得适当(图5-1),三根电极电弧作用区域部分刚好相交于炉心,各电极反应区既相互相连又重叠部分最小,在这种情况下,炉热量分配合理,坩埚熔池最大,吃料均匀,炉况稳定,炉况也易于调节。如果一设计就不适当,则热量不是过分集中(图5-2)就是热量分散(图5-3),这都会造成炉况调节频繁或根本无法调节的严重错误。

设计中极心圆直径可按下式计算:

D g=ad=2.3×1050=2415mm

式中a为极心圆倍数,a=2.2-2.3,这里取2.3计算。

径选择过小,电极—炉料—炉壁回路上通过的电流增加,反应区偏向炉壁,将使炉热量分散,炉心反应区温度低,炉壁腐蚀严重,炉况也会恶化。

炉膛径可按下面经验公式计算:

D n=rd=5.8×1050=6090mm

式中r为炉膛径倍数,r=5.8-6.0,这里取5.8。

炉膛径这次设计中取为6200mm。

4、炉膛深度计算

在选择炉膛深度时,要保证电极端部与炉底之间有一定的距离、电极有效插入的深度和料层有一定的厚度。炉膛深度若过深,电极与炉底距离远,电极不能深插,高温区上移,炉底温度低,炉底SiC会沉积,炉底上抬,堵塞出硅口,炉况变差。炉膛深度若太浅,料层厚度将很薄,炉口温度升高,硅挥发损失增加,容易露弧操作,能耗增大。

合适的炉膛深度可按下面经验公式计算:

h=βd=2.5×1050=2625mm

式中β为炉膛深度倍数,β=2.5-2.8,这里取2.5。

炉膛深度这次设计中取为2700mm。

5、炉衬与炉底的结构、尺寸及材料选择

一般而言,炉衬、炉底结构包含了工作层、保温层、隔热层、绝热层、钢板层5个主要层次,但是每个层次的具体尺寸却是很有技术含量的,因为这涉及到筑炉成本、炉子性能、炉子寿命等许多经济因素。

炉衬厚度过厚,引起筑炉成本上升,占地面积扩大,炉衬表面积增加,散热面积也增大;炉衬厚度过薄,抑或炉衬强度不够,抑或无法保温。炉底厚度亦是如此。

国外对炉衬、炉底散热强度计算表明,保持炉衬与炉底热损失为2-4%是合理的围[84],或者保持炉衬表面温度在70-120℃是允许的。因此按照这个条件以

选择都是需要仔细斟酌的。位置布置不当,出硅口部位温度低,出硅不畅或者是操作不方便;结构形状尺寸不当,也会导致出硅不畅或者封堵困难或者出硅时间延长;材料选择不当,容易氧化腐蚀,维修频繁。

在这次设计中,出硅口设计二个,每个出硅口水平位置与炉底齐平并比炉底水平线下倾斜3℃,角度位置它处于炉心与电极中心两点的延长线与炉壁的焦点上。出硅口应当设计成圆形,便于烧穿与封堵,尺寸根据出硅时间要求计算并结合实际操作需要来决定大小为直径100-120mm,材料选择上容易氧化的外侧使用石英材料与碳糊。

7、炉门结构、尺寸与材料选择

大容量炉最大的问题是炉缘距离炉心远,上料困难,特别是国强调以人工精细加料来取得好质量与低能耗产品的观点下,普遍认为在大容量炉子在国不如6300KV A炉子的性能,因此一次又一次的阻碍了投资方建造大容量炉子的热情。我们在这次设计中仅设计了3个捣料炉门,上料操作通过采用前述第三章开发设计的自动上料系统来完成,克服了大容量炉存在的最大恼人的问题。自动上料装置将料布放在料面各处,捣炉功能通过窥视孔根据需要打开捣料炉门进行捣炉操作。捣炉炉门门槛下部与炉沿等高,门槛长1200mm,高1500mm,使用单独水冷结构。不需要捣炉时,炉门关上,密闭冶炼。

8、烟罩结构、尺寸与材料选择

大容量矿热炉炉膛尺寸跨度大,烟罩设计较困难,同时从烟罩通过的电流大,处理不好涡流损失大。为了解决烟罩结构强度与防止涡流损失,我们采取用水冷钢管(防磁)做骨架并起吊,上下盖采用石板与水泥构筑,用细钢筋做支撑,既减轻了烟罩整体重量又防止了筑砌或制作上的不便。烟罩高度离炉沿2300mm,直径与炉壳直径等同,厚度160mm,上下盖间通水冷却。

5.2.3技术指标

设计完成以后有关该炉的技术参数与性能如下:

电极直径:1050mm;

极心圆直径:2500mm;

炉膛直径:6200mm;

炉膛深度:2700mm;

炉壳直径:8000mm;

炉壳高度:4618mm;

烟罩高度:2300mm;

理论日产量:20吨;

理论电单耗量:13000KV Ah/吨。

5.3余热利用化研究

5.3.1余热利用思路

余能是在一定经济技术条件下,在能源利用设备中没有被利用的能源,也就是多余、废弃的能源。它包括高温废气余热、冷却介质余热、废汽废水余热、高温产品和炉渣余热、化学反应余热、可燃废气废液和废料余热以及高压流体余压等七种。其中最主要的是余热。根据调查,各行业的余热总资源约占其燃料消耗总量的17%~67%,可回收利用的余热资源约为余热总资源的60%[85]。余热的回收利用途径很多。一般说来,综合利用余热最好;其次是直接利用;第三是间接利用(产生蒸汽、热水和热空气)。余热蒸汽的合理利用顺序是:1)动力供热联合使用;2)发电供热联合使用;3)生产工艺使用;4)生活使用;5)冷凝发电用。余热热水的合理利用顺序是:1)供生产工艺常年使用;2)返回锅炉使用;3)生活用。余热空气的合理利用顺序是:1)生产用;2)暖通空调用;3)动力用;4)发电用。但是这不是绝对的,需要每个工厂根据自己实际生产条件和需要而定。

5.3.2工业硅冶炼中不同种类余热的利用

在工业硅冶炼中所有能源供入项为电能和化学反应能,能源支出项为氧化物还原、金属硅潜热、逸出气体、炉面、炉体、短网、冷却水带走热。由于国外在电能节约方面研究得比较多和透切,目前工业硅冶炼电效率基本都在92%以上。但是,电能最终要转变为热能才是反应所需的,而从表5-1可知,矿热炉冶炼系统的热效率一般仅有60-70%,因此,整个冶炼系统能源利用效率都低于70%,这样大量的热被逸出气体、炉面、炉体、短网、冷却水、金属硅所带走和散失。

从表5-1可知,金属硅带走的热占热量总供入量的5.98%,即269456千卡/h。这部分热是以金属硅潜热形式存在,硅液1600-1800℃,硅锭为常温20-30℃,

其热具有间断性(出硅前后)、释放缓慢性,存在能量密度低、不便于接触、不便于引出等特点。在目前经济技术条件下,金属硅的潜热只能以热辐射与对流的方式将这部分热引导出来,其可能的利用方式为烘干物料、预热物料、加热洗澡用水(该余热每小时能使2.7吨水从0℃升到100℃)、加热生活用水。

炉面损失的热占总热量的5.97%,即26933千卡/h,与金属硅带走的热相当。这部分热总量大、能流持续平稳、密度小,主要以热辐射与对流形式损失,但是由于在炉口损失,受制于场地无法加以再利用,只能想办法减少其损失。节约办法是炉型密闭化、控制料面温度、料面燃烧状况、厚料操作与防止刺火大量、多次发生。

炉体损失的热占总热量的3.69%,即166448千卡/h。这部分热与料面损失的热性质相同,它以热传导形式损失,利用也很困难,也只能想办法减少其损失。减少办法是加强炉体隔热性能。

短网损失的热占总热量的7.47%,即336738千卡/h。这部分热主要损失在电缆、铜瓦、电极对外热辐射上,数量很大,但是受制于场地、能流密度小等限制,也是无法利用的热损,只能想办法减少。减少办法就是缩短短网,使用适当电流冶炼,选用制造后导电性能好的短网。注意不能使用保温材料包裹的办法,这样会适得其反。

冷却水带走的热占总热量的16.46%,即750000千卡/h。这部分热产生于变压器、电缆母线、铜瓦,是种功能用水,一般要求入口20-30℃,出口30-40℃,水在循环池中来回循环使用,所以冷却水带走的热量虽然很大,但是不能够被利用。这部分热可以想办法减少,具体措施为:1)变压器方面要求硅钢片性能好,材料、制造都要选技术好的厂家来做。减少短网闪变,避免过大电流操作。2)电缆母线方面要求选用材料热阻小并要求制造水平高的厂家来生产,尽量减少电缆布置长度,避免过大电流操作。3)铜瓦基本要求也如此,要求使用锻造工艺制造。

逸出气体(烟气)带走的热量占总热量的18.35%,即826633千卡/h。烟气从炉部产生,透过料面以后,温度在400-600℃,6300KVA的矿热炉烟气流量为

4-8万NM3/h,烟气成分为N

2、O

2

、CO

2

、H

2

O及少量其他气体。以往国企业大多数

直接排放,不仅污染了环境,而且造成能源损失。近年来在环保部门要求下,各

企业相继安装了布袋除尘器。烟气在进入布袋除尘器之前温度必须降到120℃以下,降温措施为混风冷却、空冷、水冷,部分企业的水冷方式产生的热水被用于生产(洗原料、解冻)或生活(洗澡、洗碗),但是混风方式占多数,空冷也有少量,它们吸收或交换的热都被再次损失掉。从当前烟气处理来看,烟气余热都没有得到利用或很好的利用(利用价值不高)。

5.3.3工业硅冶炼中烟气余热的利用

烟气余热利用是余热种类当中最便于利用的一种形式,一般烟气具有较高的温度,流量较大,携带的热量较多,回收利用方便(用对流换热即可回收),不受场地限制,转换容易(转换为蒸汽)。因此,对烟气的余热回收应好好的珍惜与做文章。烟气余热回收得到的能量利用方向为生产用与生活用或者是二者联合使用。生产用一是为本工艺流程服务如预热物料、解冻,二是为其他工艺服务如余热发电、烘干其他物料、加热其他产品或是二者的复合。生活用一是洗澡洗碗,二是供暖制冷或是二者的复合。

在这里,我提出二种工业硅冶炼系统烟气余热利用方案:一是余热发电综合利用方案,二是余热加热配套产品综合利用方案。

5.3.3.1烟气余热发电综合利用方案

从一台6300KV A工业硅矿热炉中逸出的烟气流量为4-8万NM3/h,烟气温度为400-600℃,400℃烟气比热为1.12 kJ/kg℃,密度1.295 kg/Nm3,烟气相对于300℃时含热量=C p×ρ×ΔT=1.12×4×1.295×100=580.16万KJ/h=1381333千卡/h,此热量能使13.8吨水从0℃升到100℃,能使得5.5吨水从40℃升到290℃(此为蒸汽发电要求过热温度)。根据4308厂提供的BN型汽轮机技术参数:进汽压力0.35-0.7Mpa,进汽温度250-290℃,排汽压力0.15Mpa,抽汽压力0.5Mpa,则发电量可达1000KW。由此计算,设电价0.5元/度,则一年(7000小时)发电可创造经济效益350万元。

为实现烟气余热发电,需要投资余热锅炉2台30万、汽轮机1台20万、发电机组1台20万、变压器2台40万、控制柜若干100万左右,总投资210万左右,承上述计算7个月即可收回投资。

对于上规模企业,如有2台以上6300KV A工业硅矿热炉或者多台12500KV A 工业硅矿热炉,则上马烟气余热发电项目更有价值与必要。因此,国投资者应尽

快打消烟气余热利用是微不足道且费事的念头,重视余热利用与投身国家能源节

约行动当中。

按照上述烟气余热发电规划,已经被利用过的烟气从余热锅炉出来后,温

度仍然有300℃,由于温度较低,其热能品位降低,利用难度加大。为充分利用

好能源,提高能源利用效率,根据烟气余热梯级利用原理,其热量可以被用来产

生余热锅炉补汽。但是从补汽锅炉出来的烟气温度仍然有200℃左右,这部分烟

气仍包含热量,对此,这部分热量可以用来产生热水用于预热物料、解冻(北方

地区)、洗澡、洗碗用,然后被冷却到120℃以下的烟气可以符合标准的进入布

袋除尘器进行处理。整个烟气余热发电综合利用方案系统示意图如图5-5。

1、400℃烟气

2、余热锅炉

3、300℃烟气

4、补汽锅炉

5、200℃烟气

6、换热器

7、100℃烟气

8、布袋除尘器

9、可排放烟气 10、循环水

11、80℃热水 12、预热解冻 13、洗澡洗碗 14、20℃补水 15、150℃补汽 16、290℃蒸汽 17、汽轮机 18、变压器1 19、变压器2 20、用户

图5-5 烟气余热发电综合利用方案系统示意图

该方案从能源利用与工艺角度来讲,它能源利用比较充分,能源利用率高,

出口烟气温度能立即达到布袋尘除尘器的要求,不需要另外投资降温装置,工艺配合性好。但是从经济性角度来考虑,也许还有更好的方案。

5.3.3.1烟气余热加热配套产品综合利用方案

工业硅矿热炉烟气寓含的大量热量可以实现多种用途,除了发电之外,实际上,电还只是一种低附加值产品(3600KJ热量换成电为1度,产值为0.5元,而由于目前蒸汽发电效率为30-45%左右,所以要10000KJ热量才换回0.5元)。大家往往局限于原有的思维,一想到余热利用就是发电、预热产品、制冷供暖、烧水洗澡,对于开拓创新利用余热研究不够。

我的看法是要用热来转换为另外一种产品,转换形式并非一定是从一种能源产品到另外一种能源产品,可以是一种能源产品到另外一种物质产品,只要该物质产品能与热存在一定的联系。对于烟气余热而言,就是要寻找到一种与这种中温、低温热能想适应的物质产品。这种产品在化工、轻纺等领域广泛存在,例如塑料生产、造纸、纺织、有色金属蒸汽浸出等。另外要解放的一个思想是我本来是生产工业硅的,如果我为了利用余热而去生产另外一个物质产品造成投资过大或不应有的多元化生产造成的精力分散问题。其实,生产该种产品如果叫投资过大,则可以贷款融资解决(因为你本业已经立下基础,当地贷款应该不会再成问题,也可通过股东融资比例分配来解决),如果生产该种产品带来精力分散(主要是市场开拓上的分散),这可以通过挂靠形式来解决(比如自己主动挂靠到该种产品行业中一个大型或中型厂家,由它解决市场问题,自己只管生产)。现在这个时代是合作时代,要把合作(其实是资源合理组配)放在观念更新的第一位。当投资者到某地去投资时,该地已经存在一定工业基础,则可以把厂建造在该厂附近,为其提供烟气余热以生产该产品。或者结合当地政府招商行为,与被招进来的企业联合投资,本厂产生的烟气余热成为合作伙伴的供热基础。或者先联系某类投资者(比如塑料厂投资者),跟他协商好,共同投资于某地,共享烟气余热去生产一种新产品。总之,作为投资者应当在烟气余热问题上要全盘考虑,怕麻烦的可以请研究所、行业专家、投资顾问、行业分析师代为考虑要结合产品的具体类型。

5.4隔热技术研究

在工业生产中节能渠道基本分为三大类。第一类是先进的技术工艺流程,第二类是先进精良生产设备,第三类是优良的节能材料。在这里我将重点研究节能材料在工业硅冶炼领域的应用,这是在工业硅冶炼领域近年较少涉及与更新的方面,已经与新材料、新技术不断更新的今天不相适应。

节能材料主要体现在材料的隔热(绝热)性能上,对于工业硅冶炼系统而言,材料隔热性能好坏直接影响到矿热炉的热效率。从表5-1可见,从矿热炉炉体散发的热损失为166448千卡/h,占总热量收入项的3.69%(这还是较低的,国大部分为6-8%),与国外相比存在1-2倍的差距。这主要是因为我国工业硅矿热炉炉体结构与材料通常是工作层用碳砖(上部用耐火砖),保温层用耐火砖,绝热层用石棉板或硅酸铝纤维毯,保护层(炉壳)用钢板的原因。这种结构和材料构成在今天看来已经不合理(但许多单位缺乏设计能力,仍在使用),原因一方面是我国矿热炉使用的材料导热系数大,隔热性能差,另一方面由于在筑炉时没有对材料结构进行合理设置,在同样大小导热系数材料条件下隔热效果也不理想。因此,为提高矿热炉热效率而对矿热炉炉体的结构和用材进行改革在目前相当必要。

改革开放以前,我国筑炉材料的品种非常单一,基本以天然矿物质加工制品为主,工业硅矿热炉筑炉时工作层主要是碳砖,保温层主要是粘土砖,绝热层主要是硅藻土、石棉板,而且各材料的适用性能也比较落后。随着节能、降低成本、新技术的应用、其他领域对材料的特定要求,我国科研人员在吸收消化国外材料制造技术与经验的基础上,积极自主创新,发展研究了一大批筑炉材料如瓷纤维、纳米微孔隔热材料、多层复合反射绝热板、漂珠高强隔热砖等。无论从高科技的航天器、小到手中的保暖杯,人们都对材料的导热性能、强度要求等方面进行了广泛的研究和改进,直至今日,筑炉材料品种已大大得到丰富、产品的性能已得到大大提高,生产工艺不断进步、品种不断更新,材料发展逐渐走上科学精细发展的道路。在工业硅矿热炉筑炉中,我们应当积极应用当代科技成果,与时俱进地革新改进矿热炉的工作性能。

表5-2、表5-3、表5-4分别列出了当今工业硅矿热炉筑炉时可供选用的工作层、保温层、隔热层与绝热层用材。

表5-2 当今工业硅矿热炉筑炉时可供选用的工作层用材

于工业硅矿热炉。

表5-2、表5-3、表5-4中,有许多是上世纪80年代后开发制造出来的材料,材料品种与性能与其80年代前有很大的改变,例如高铝砖是德国奥托焦炭公司1956年前后开发出来的,其强度与导热系数与今天高铝砖的性能相距较远,当时其高铝砖作为炼焦炉枪其强度较松散,承受压力大约为100-200 kgf/cm2,导热系数为3.47 w/m?℃。硅酸铝纤维毯作为广泛应用的炉体保温材料,我国1971研制成功,到1990年代前,其品种单一,性能也不好,但是现在生产企业200家左右,总生产能力超过4万吨/年,品种繁多,包括普通硅酸铝纤维、高纯硅酸铝纤维、高铝纤维、多晶莫来石纤维、多晶氧化铝纤维和多晶氧化锆纤维等。空心微珠保温材料是另一种最近开发出来的保温材料,它是一种以电厂粉煤灰微珠和膨胀珍珠岩为基料,配以专用粘结剂,经高温烧结后制成的轻质成型料。据近年来国外文献报道,粉煤灰中的一种空心微珠是在粉煤燃烧时,在炉温超过1350 1500℃的高暖区域产生的一种中空球形圆珠,其部包含有氮和二氧化碳等气体,其表面耐磨性好,压强高,并有很好的耐酸性,是一种新兴的多功能材料。经试验研究表明,空心微珠具有颗粒小、质轻、中空、隔音、隔热、耐高温、绝缘、耐低温、耐磨、强度高等优异的多功能特性。另外现代筑炉与建筑还广泛使用薄层隔热保温材料——反射绝热涂料。上世纪90年代,美国国家航空航天局的科技人员为解决航天飞行器的传热控制问题开发了一种太空绝热瓷层(Therma-Cover),我国于2001年也开发成功,在现代筑炉中已经开始广泛使用。这种材料由一些悬浮于惰性乳胶中的微小瓷颗粒构成,具有高反射率、高辐射率、低导热系数、低蓄热系数等热工性能,只要在表面喷涂0.3-0.5毫米涂层,就能有效抑制露天常温物体受太阳辐射热和红外辐射热,抑制效率达90%左右。

科技进步为我们提供了更好的、更多的筑炉材料,我们必须切合顺应当前条件,

更好的利用这些条件为能源节约服务。

在利用这些筑炉材料时,除了节能方面的考虑之外,还必须考虑它在炉衬中的用途所带来的强度、使用温度、膨胀特性、耐腐蚀性、价格等因素。

对工业硅矿热炉的工作层来说,它要求:

1、耐火度高。因工业硅冶炼温度在1800-2200℃之间,工作层炉壁与炉底温度1800℃左右,材料应该有足够高的软化、熔化温度。

2、耐热强度高。在高温下,材料应该还能够承受炉子载荷、操作中产生的机械力、热膨胀力的作用而不变形、开裂。

3、导热系数低。从工作层开始就应该具备优良的隔热性能,才能有利于节能。

4、抗渣性能优良。工作层直接与炉料接触,选用的材料应该能承受炉料的侵蚀和冲刷。

5、价格适当。投资者总喜欢低成本建造矿热炉。

根据工业硅矿热炉工作层的上述要求,工作层用材目前只能选择碳砖。它使用温度高、强度好、抗渣性好,尽管导热系数和价格还比较高。

工业硅矿热炉的保温层要求:

1、耐火度高。对于工业硅矿热炉保温层同样也要求耐火度高,因为工作层隔热性能一般较差,同时保温层也有部分与炉料直接接触,所以也要求保温层能耐受高温而不软化变形。

2、耐热强度高。在高温下,保温层材料也应该还能够承受炉子载荷、操作中产生的机械力、热膨胀力的作用而不变形、开裂。

3、导热系数低。从节能角度出发,保温层也应该具备优良的隔热性能,才能有利于节能。

4、抗渣性能优良。保温层也有部分地方直接与炉料接触,所以要求其也应具备一定的抗渣性能。

5、价格适当。保温层用料量较大,价格上应当追求较低材料。

从保温层上述要求出发,工业硅矿热炉保温层材料可以用粘土砖、轻质隔热砖、高铝质隔热耐火砖,这三种材料性能上差不多,主要是比较价格。粘土砖是广泛应用且价格相对而言比较低的一种耐火材料,A12O3含量一般在30%-50%

之间,导热与承重性能都比较好,是炉衬主要用材。

工业硅矿热炉减少热损失起关键作用的地方是隔热层和绝热层,因此,选择好隔热材料与绝热材料非常重要。工业硅矿热炉隔热层和绝热层对材料的要:

1、导热系数小。减少热量损失,保证炉膛温度是隔热层和绝热层的主要用途,只有导热系数小,才能实现上述目的。

2、弹性小。隔热材料与绝热材料一般是轻质、疏松、多孔的纤维状材料,膨胀收缩系数大,容易引起炉体松动,因此要求隔热材料与绝热材料收缩性小,以保证保温层与炉壳之间的严密性与整体性。

3、能耐高温。由于保温层主要担负骨架承受负荷用,它主要作用不是节能,所以其外泄热量相当大,其冷面温度也相当高,对紧贴其冷面的隔热材料和绝热材料来说,应当能够耐受其高温。

4、价格便宜。

根据工业硅矿热炉隔热层和绝热层对材料的上述要求,可以选定纳米微孔隔热材料作为隔热层和绝热层的用材。纳米微孔隔热材料是2000年以后我国相关单位从美国引进并消化吸收后逐渐推广应用起来的优良隔热、绝热材料,它能耐受较高的温度,且导热系数比通常用的隔热材料、绝热材料低1-4倍,节能效果突出。如果为了强化保温,还可以在纳米微孔隔热材料热面喷涂某种反射涂料。如果要求继续使用硅酸铝纤维毯,则应当使用硅酸铝纤维毯+泡沫石棉或泡沫玻璃或空心微珠结构,保温效果将更好。

选用低热导率的材料来增强保温,是保温方法的一种,砌筑时材料结构的合理设计也是一种重要的保温方法。它包括材料厚度设计、材料间合理搭配使用、材料使用位置三个方面的容。好的结构设计在同样材料使用情况下,隔热效果与经济性更好。

在材料厚度设计上,既要能保温承重,同时使用量还要适当,才能保证经济性。材料过薄,起不到保温承重效果,易折、易松动;材料过厚,虽然承重和整体性增强,但是超过临界厚度,保温效果反而下降,同时造价也上去了。

在材料间合理搭配使用上,要注意材料使用温度限制、材料导热系数、材料价格上的差异。使用温度高的材料应当靠近高温区,在温度一致情况下,导热系数低的应当在高温区一侧。材料合理搭配还能适当降低造价成本。

在材料使用位置上,在炉墙不同位置应该使用不同材料,在温度许可围,尽量选用导热系数低、强度高、造价低的材料,在需要加强保温措施部位应当考虑追加绝热材料的使用;对于容易腐蚀的出硅口位置,应当使用耐腐蚀的材料如碳砖、碳化硅砖,而不是常规思路来安排材料使用;对于炉底基础部位,在温度许可围,应当选用强度高、导热系数低、整体性好、造价低的材料。

有了上述研究基础,用来指导矿热炉炉体结构的设计将才能真正的把隔热技术的作用发挥出来,制造出在国际上具有先进节能水平的矿热炉。表5-5比较了传统炉体结构[61]与按照上述思路设计的炉体结构的隔热性能。

表5-5 传统矿热炉炉体结构与新设计的炉体结构隔热性能的比较

2注:炉壁散热面积、炉底散热面积取该文中56.58m2、23.40 m2。

3注:计算方法同该文一致。

从表5-5和图5-7可以看出,新式炉衬结构不仅厚度少,而且炉体热损失减少37%,说明研究总结出来的隔热技术起到了明显的作用。

图5-6 传统矿热炉炉体结构

矿热炉基本知识 (2)

????矿热炉设备共分三层布置 第一层为炉体(包括炉底支撑、炉壳、炉衬),出铁系统(包括包或锅及包车等),烧穿器等组成。 第二层 (1)烟罩。矿热炉目前大多数采用密闭式、或半密闭式矮烟罩结构,具有环保和便于维修,改善操作环境的特点。采用密闭式结构还可把生产中产生的废气(主要成分是一氧化碳)收集起来综合利用,并可减少电路的热损失,降低电极上部的温度,改善操作条件。 (2)电极把持器。大多数矿热炉都由三相供电,电极按正三角形或倒三角形,对称位置布置在炉膛中间。大型矿热炉一般采用无烟煤,焦碳和煤沥青拌合成的电极料,在电炉冶炼过程中自己培烧成的电极。 (3)短网 (4)铜瓦 (5)电极壳 (6)下料系统 (7)倒炉机 (8)排烟系统 (9)水冷系统 (10)矿热炉变压器 (11)操作系统 第三层 (1)液压系统 (2)电极压放装置 (3)电极升降系统 (4)钢平台 (5)料斗及环行布料车 其他附属;斜桥上料系统,电子配料系统等

砌筑而成,侧壁上设有三个操作门,在炉内大面上,开启方向是横向旋转式,上部有二个排烟口,与其相联的是二个立冷弯管烟道,直通烟囱或除尘装置。 1.3短网 短网包括变压器端的水冷补偿器、水冷铜管、水冷电缆、导电铜管、铜瓦及其吊挂、固定联接等装置。其布置型式可分为正三角或倒三角。不论那种布置,均要求在满足操作空间的前提下,尽可能地缩短短网的距离降低短网阻抗,以保正获得最大的有功功率。 水冷铜管、导电铜管均采用厚壁铜管,各相均采用同向逆并联,使短网往返电流双线制布置,互感补偿磁感抵消。中间铜管用水冷电缆相连,冷却水直接从水冷铜管经水冷电缆、导电铜管流入铜瓦,冷却铜瓦后经返回的导电铜管、水冷电缆、水冷铜管流出炉外。运行温度低,减少短网导电时产生的热量损失,能有效提高短网的有功功率,同时铜管重量轻,易加工安装,大大减少短网的投资。 1.4电极系统: 电极系统由把持器筒体、铜瓦吊挂、压力环、水冷大套、电极升降装置、电极压放装置等。在电极系统上我们采用了国际先进的德马克,南非PYROMET等技术,如采用悬挂油缸式的电极升降装置,能灵活、可靠、准确地调节电极的上、下位置。上下抱闸和压放油缸组成电极带电自动压放装置。 ???? 电极系统共三套,每套包括电极筒1个、把持筒1个、保护套1个、压力环1个、铜瓦6~8块。把持器的作用把持住自焙电极,保护大套、压力环、铜瓦依顺序都吊挂固定在其上面,每根电极上设6~8块铜瓦,是通过压力环上的油缸和顶紧装置,形成一对一顶紧铜瓦,压力均匀,可保证铜瓦对电极的抱紧力均衡,铜瓦与电极的接触导电良好。 ???? 把持器上部由台架与二个升降油缸联接,油缸的支座是固定在三层平台的钢平台上,在钢平台上一定的范围内根据需要可调整极心圆。 ???? 每根电极上设有单独电极自动压放装置,由气囊抱闸(或液压抱闸)抱紧电极,充气气囊抱紧电极,放气气囊松开电极;上、下气囊抱闸由导向柱和压放油缸相联接,

工业硅矿热炉的设计

工业硅冶炼能源节约技术的研究 5.1概述 能源安全已构成我国整体战略安全的一个极大隐患,成为经济社会发展的瓶颈。我国人均煤炭、石油、天然气资源量仅为世界平均水平的60%、10%和5%。目前,我国已成为世界第二大能源消费国和第二大石油消费国,能源供应紧张局面日趋严重[81]。 与此同时,我国也存在严重能源利用效率低的问题。近年来的快速增长在很大程度上是靠消耗大量物质资源实现的。我国单位产出的能耗和资源消耗水平明显高于国际先进水平,如火电供煤消耗高达22.5%,吨钢可比能耗高21%,水泥综合能耗高达45%。据测算,我国每创造一美元GDP所消耗的能源是美国的4.3倍,是日本的11.5倍。能源利用率仅为美国的26.9%,日本的11.5%[82]。因此,提高能源使用效率是在能源总量不变条件成为中国发展中的刻不容缓的任务。 工业硅生产是高能耗行业,平均每吨工业硅需要消耗13000KWh电以上,全国年产100万吨工业硅需要13亿KWh以上。而国外先进水平吨硅消耗量为11000KWh,我国工业硅电耗比国外先进水平高10—20%,能源节约潜力仍很大(预计年节约0.2亿KWh,相当0.1亿元)。另外,国外先进水平也不是最理想的能耗水平,我国如能在国外先进水平基础上再配以精工细作,吨硅消耗量应该在10000—11000KWh间。 我国工业硅生产能源消耗高主要是因为设计上不合理、控制水平与管理水平不高。设计上不合理体现在我国普遍使用的是6300KV A左右的小炉型(散热大、产量低)、炉型设计上为隔热措施不严密、电路设计不合理、极心圆尺寸大小不合理等许多细节方面。控制水平不高体现在人工操作范围大、炉况稳定性差、造成因调整炉况波动费时较长而使得非生产性能耗损失大。管理水平不高体现在管理上不严、制度不健全、操作细节缺乏,造成物资或能源上的消耗浪费。 目前工业硅生产中能源节约途径主要有:1)炉型的大型化方向;2)炉型的密闭化方向;3)余热利用化方向;4)提高炉子电效率措施如改进短网结构设计、改善变压器性能、改善电参数、采用低频电源等;5)提高炉子热效率;6)

关于12500KVA工业硅电炉的设计思路及参数

关于12500KVA工业硅电炉的设计思路及参数 2009-12-10 10:44 内蒙古鄂尔多斯市新华结晶硅有限责任公司于2003年5月一12月建设两台12500KVA工业硅电炉。总结部分设计思路及参数,以供大家共同探讨。内蒙古鄂尔多斯市新华结晶硅有限责任公司位于鄂尔多斯市棋盘井镇;公司于2000年建设两台10000KVA电石炉;2001年建设了两台的6300KVA工业硅炉;2002年建设了三台工业硅炉;2003年建设了七台6300KVA和两台12500KVA工业硅炉。受电力短缺的影响,目前只有部分电炉在运行。 2004年新华结晶硅有限责任公司将开工建设2*200MKV自备发电厂,建成后我公司的金属硅生产将不再受电力短缺的影响,全年可以稳定的供给客户工业硅产品。 2003年建设的2 X 12500KVA工业硅电炉,采用的是固定炉体矮烟罩半密闭式矿热炉。设计时针对工业硅生产的特点,本着经济、可靠、适用、先进的原则,力求结构简单、紧凑和实用耐用、电损耗小、绝缘可靠、便于操作和维修以提高设备的作业率。 该电炉的平面布置为: 两台炉中心距30米;变压器跨宽度6米;冶炼跨宽度15米;浇注跨宽度18米;电炉中心距变压器6米;操作平台高度5米;升降平台高度12.7米;电极平台高度16.7米:操作室及水冷装置布置于5米平台;液压系统布置在12.7米平台上。 电极提升天车两台位于 21米平台;硅液浇注天车同度 9米。 加料均为人工加料,由提升架上料,不设加料管。 电炉系统由炉体、矮烟罩、烟气导出管、电极系统、液压系统、水冷系统、短网、变压器、低压电控系统、出炉系统等部分组成。 一、本炉体为固定式炉体,炉底三层碳砖,侧壁碳砖600 X 400 X 400mm,底部用粘土砖,其余部分用高铝砖,炉口采用由河北涞水长城电极有限责任公司生产的出炉口专用石墨碳砖,三个出铁口呈120o 分布,前端一个后端两个,出铁口通水冷却,炉壳钢板用槽钢加固。 二、矮烟罩采用圆形金属水冷结构,不锈钢隔磁,盖板通水冷却并浇注耐热浇注料,立柱上下端均加绝缘,烟罩上设三只烟筒排山烟气,三个呈120”分布的宽大炉门便于揭炉操作,另设六个加料口。矮烟罩固定在5米平台上,重量由5米平台承受。 三、电极采用由河北涞水长城电极有限责任公司生产的碳素电极,把持筒下部使用不锈钢制造,由锻造导电夹导电,下部锥型斜而抱紧,上部双气囊抱紧。每只电极升降由两只布置于12.5米平台的油缸来完成,电极分布直径可在150毫米范围内调节;导电夹与导流管采用锥形连接,检修时更换导电夹极为方便。 四、液压系统由油泵、油箱、气囊式蓄能器、控制电路及油缸、液位计、温度计、电加热器、滤油器、压力表等组成,压力控制由电接点压力表和压力继电器双重自动控制机压力在设定范围,同时设有远程压力表,在操作室可以对压力进行记录。 五、短网采用铜管制作,由于变压器本与带有补偿装置,所以变压器出线侧不设温度补偿器,短网采用完全对称三角形布置,通过水冷电缆短网铜管和锻造导电夹一对一连接。 六、变压器为三相交流矿热炉变压器,一次电压35千伏,十九档有载调压。采

半封闭式工业硅矿热炉主要技术方案

宜兴市中宇电冶设备有限公司 33000KVA半封闭式工业硅矿热炉 技术方案 1电炉设备

1.2 电炉设备设计 1.2.1矿热炉设备设计要求 矿热电炉采用半封闭型式,采用铜瓦压力环式电极把持器,电炉炉底通风冷却,炉体采用旋转炉体,炉体测温,变压器长期具备20%的长期超负荷能力。 短网系统、铜瓦、进线电缆都长期具备20%以上的超负荷能力。 烟道与炉盖之间设置了可靠绝缘。 液压系统采用组合阀,并设置储能器。 电极升降油缸上、下两端均设绝缘加以保护。高压油管两端全部带绝缘。 为防止电极偏斜,设计时在炉盖、平台及电极导向装置,电极导向装置设绝缘。 所有管道均设管道沟,便于检修。闸阀采用不锈钢丝杆,以增加其使用寿命。 每组分水器设3路备用水路,分水器阀门采用不锈钢或铜球阀,分水器给、回水路布局合理。 炉盖采用框架式水冷结构,中心区采用不导磁材料制作。 电炉烟道在二、三楼之间设水冷段,以降低烟气温度。 1.2.2工艺设计要求 电炉厂房柱子跨距按6m、7.5m布置。 电炉车间分设四个跨区,分别是变压器跨(偏跨)7.5m、电炉跨18m、浇注跨24m、成品跨18m。 电炉跨初定为五层平台分别为: a)+0.0m出渣铁轨道平台 包括铁道、出铁车和铁包、出渣车和渣包等。 其中+2.4m平台为局部出铁操作平台:该平台正对出铁口,包括烧穿器、出铁挡板等出炉工具等。 b)+7.0m电炉炉口操作平台

电炉控制室计算机室布置在此平台上,冷却水系统的分水器和回水槽布置在该平台上、炉口操作工具等。 C)+11.8变压器放置平台 电炉设有三台单相变压器,放置在此平台上成三角形布置,为方便变压器安装、检修、更换设有变压器吊装孔。 d)+18.3m电极升降机构平台 平台空间内安装有电极升降、压放装置及电炉料管插板阀。液压站也布置在此平台上。 e)+24.8m电炉电极支承及接长电极壳、加入电极糊及加料平台 炉顶料仓座在此平台上。环形加料机及布料皮带均布置在该平台上,此层平台布置有可储存5~8批混合料的中间过度料仓。 1.3 矿热炉结构 1.3.1矿热炉炉体 组成:炉体旋转机构、炉底、炉壳、出铁口等。 炉体旋转机构严格按图纸要求施工,炉底设计、制作、安装时其平面度误差+10mm。工字钢板下部用钢板连接并焊制一起。炉壳内径9200mm,高度5000mm,炉壳采用焊接形式。侧壁采用20mm钢板焊接,底部采用22mm钢板制作。 炉体设有5个出炉口,出铁口夹角72o 炉壳分瓣制作,组装后炉壳的直径极限偏差为+18mm。 1.3.2铁口出铁排烟系统 组成:由烟罩、烟气管道、电动翻板阀、烟罩及烟道吊挂等组成。在出炉时,用于对出炉口烟气进行收集、输送。排烟罩上喷涂耐火材料及打结需要的锚钩,防止烟气温度高使之变形。 1.3.4 矿热炉电极把持器 组成:组合式把持器由上、下两部分组成。电极把持器上部主要包括:电极升降装置、电极抱紧压放装置,上部把持器桶及导向系统、液压机管路等。电极把持器下部主要包括:下部把持筒、防磁不锈钢水冷保护屏、炉内导电铜管、铜瓦、压力环及绝缘系统等部件。每相电极把持器设10片铜瓦,一个压力环、4

锰硅合金矿热炉(电弧炉)烘炉及冶炼操作工艺

锰硅合金矿热炉(电弧炉) 烘炉及冶炼操作工艺 2019年3月4日 烘炉 硅锰炉内衬砌筑好之后的第一步就是进行烘炉,烘炉也是影响整个炉子使用寿命和质量的重要步骤。 (1)准备好木材,大块焦炭。将炉内清扫干净,三相电级下铺一层黏土砖,放长电极,将电极下到炉底松开铜瓦,把持器抬到上线位置再抱紧,焙烧长度大于2500mm,在电极焙烧部位扎上5?6个小孔,间距200mm。下放电极后向壳内添加电极糊,保证电极糊柱高3500mm。 (2)砌筑花墙,烘烤电极。围绕三相电极用黏土砖砌一圈花墙,花墙内矿热炉与电极矿热炉面距350mm,花墙高度以花墙上沿与铜瓦下缘距350mm为好,花墙底部装引火木柴并加少量废油,其上部加大块焦炭,引火,视电极直径大小烘烤35?48h,电极焙烧好,要迅速拆除花墙,尽量掏净花墙黏土砖。 (3)烘电极不松开铜瓦,但要关小铜瓦水。烘烤完毕将电极倒放,铜瓦要夹烘好的电极200mm以上。

(4)送电前必须向操作工提交送电制度矿热炉。 (5) 送电时可以用较正常使用电压高1?2级送电引弧,引弧后1h,改为正常电压级烘炉,开始加料的工作电压不超过满载负荷的一半,电烘炉前期(额定矿热炉三分之一断)应有间歇时间,间歇时间不超过20min,后期连续送电,从电烘炉一加料一第一炉一第二炉,出第二炉前各料管封上,各工作区间电耗和加料批数。 (6)月计划检修后的开炉操作:矿热炉经过小修后,必须立即送电生产,使炉况恢复正常,送电前,与大中修后开炉时要求相同,检查机电设备。送电时必须按正常规则操作,送电后缓给负荷,一般为停电时间的三分之一到二分之一给满负荷,送电前与煤气净化组联系完毕才能送电。 锰硅合金冶炼具体操作 1、熔炼操作 正常的锰硅合金合金炉况,必须有足够大的坩埚,炉料透气性良好,炉口冒火均匀,炉气净化时不冒火,创造足够的世祸空间的条件是:入炉原料杂质少,粒度和水分符合要求,配料准确,原料成分及粒度稳定。炉渣碱度适合,二元碱度Ca0/Si02=0.6?0.85,炉渣中Si02=35%43%,

12500KVA工业硅矿热炉的设计

12500KVA工业硅矿热炉的设计

第五章工业硅冶炼能源节约技术的研究 5.1概述 能源安全已构成我国整体战略安全的一个极大隐患,成为经济社会发展的瓶颈。我国人均煤炭、石油、天然气资源量仅为世界平均水平的60%、10%和5%。目前,我国已成为世界第二大能源消费国和第二大石油消费国,能源供应紧张局面日趋严重[81]。 与此同时,我国也存在严重能源利用效率低的问题。近年来的快速增长在很大程度上是靠消耗大量物质资源实现的。我国单位产出的能耗和资源消耗水平明显高于国际先进水平,如火电供煤消耗高达22.5%,吨钢可比能耗高21%,水泥综合能耗高达45%。据测算,我国每创造一美元GDP所消耗的能源是美国的4.3倍,是日本的11.5倍。能源利用率仅为美国的26.9%,日本的11.5%[82]。因此,提高能源使用效率是在能源总量不变条件成为中国发展中的刻不容缓的任务。 工业硅生产是高能耗行业,平均每吨工业硅需要消耗13000KWh电以上,全国年产100万吨工业硅需要13亿KWh以上。而国外先进水平吨硅消耗量为11000KWh,我国工业硅电耗比国外先进水平高10—20%,能源节约潜力仍很大(预计年节约0.2亿KWh,相当0.1亿元)。另外,国外先进水平也不是最理想的能耗水平,我国如能在国外先进水平基础上再配以精工细作,吨硅消耗量应该在10000—11000KWh间。 我国工业硅生产能源消耗高主要是因为设计上不合理、控制水平与管理水平不高。设计上不合理体现在我国普遍使用的是6300KV A左右的小炉型(散热大、产量低)、炉型设计上为隔热措施不严密、电路设计不合理、极心圆尺寸大小不合理等许多细节方面。控制水平不高体现在人工操作范围大、炉况稳定性差、造成因调整炉况波动费时较长而使得非生产性能耗损失大。管理水平不高体现在管理上不严、制度不健全、操作细节缺乏,造成物资或能源上的消耗浪费。

浅谈矿热炉冶炼镍铁工艺

浅谈矿热炉冶炼镍铁工艺 摘要:本文介绍了从红土镍矿提炼镍铁几种不同的冶炼工艺,并着重分析了矿热炉冶炼镍铁工艺RKEF法,此工艺成为当前我国红土镍矿处理的主要方法。采用高效、流程短、低耗能、环保等镍铁冶炼新工艺已经成为发展的趋势。 关键词:镍铁;矿热炉;RKEF法 1 前言 金属镍具有良好的机械强度、延展性和化学稳定性,耐腐蚀,能磁化等一系列特性,广泛用于不锈钢、高温合金、电镀和化工等行业,在国民经济的发展中具有极其重要的地位。全球约2/3的镍用于生产不锈钢,镍原料的成本占奥氏体不锈钢生产成本的70%左右。 2 镍铁冶炼工艺分类 镍铁冶炼工艺主要有火法理、湿法两种。对于含镍硫化矿目前主要采用火法处理,通过精矿焙烧反射炉(电炉或鼓风炉)冶炼铜镍硫吹炼镍精矿电解得金属镍。对于氧化矿主要是含镍红土矿,其品位低,适于湿法处理;主要方法有氨浸法和硫酸法两种。氧化矿的火法处理是镍铁法。 2.1 高炉法 高炉生产生铁历史悠久,但普遍使用高炉生产镍铁还是中国人发明(刘光火)和研究的结果。 高炉生产镍铁的流程主要是:矿石干燥筛分(大块破碎)——配料——烧结——烧结矿加焦炭块及熔剂入高炉熔炼——镍铁水铸锭和熔渣水淬——产出镍铁锭和水淬渣。 2.2 电炉(矿热炉)法 这里的电炉指被称作矿热炉的电弧炉的一种,矿热炉冶炼镍铁工艺流程是:原矿干燥及大块破碎——配煤及熔剂进回转窑彻底干燥及预还原——矿热炉还原熔炼——镍铁铁水铸锭及熔渣水淬——产出镍铁锭(或水淬成镍铁粒)和水淬渣。 该工艺通常是指回转窑加矿热炉工艺,在国外已有几十年的生产历史,有一套较成熟的技术和理论,国内也有少数厂家有几年的生产历史,但都是小设备生产,技术问题很多,效益也不好,近期有数家企业陆续投产和正在建设上规模的生产线。

矿热炉

一、矿热炉简介 矿热炉又称电弧电炉或电阻电炉,亦称还原电炉或矿热电炉,电极一端埋入料层,在料层内形成电弧并利用料层自身的电阻发热加热物料;常用于冶炼铁合金(见铁合金电炉),熔炼冰镍、冰铜(见镍、铜),以及生产电石(碳化钙)等。它主要用于还原冶炼矿石,碳质还原剂及溶剂等原料。主要生产硅铁,锰铁,铬铁、钨铁、硅锰合金等铁合金,是冶金工业中重要工业原料及电石等化工原料。其工作特点是采用碳质或镁质耐火材料作炉衬,使用自培石墨电极。电极插入炉料进行埋弧操作,利用电弧的能量及电流通过炉料的因炉料的电阻而产生能量来熔炼金属,陆续续加料,间歇式出铁渣,连续作业的一种工业电炉。同时电石炉、黄磷炉等由于使用状况和工作状态相同,也可以归结在矿热炉内,但是由于黄磷炉的。纯阻性负载情况,因此也有将黄磷炉归结到电阻炉的说法。 二、矿热炉主要类别、用途 注:电耗值随原料成分、制成品成分、电炉容量、操作工艺等的不同而有很大差异。这里是一个大概值。 三、结构特点

矿热炉是一种耗电量巨大的工业电炉。主要由炉壳,炉盖、炉衬、短网,水冷系统,排烟系统,除尘系统,电极壳,电极压放及升降系统,上下料系统,把持器,烧穿器,液压系统,矿热炉变压器及各种电器设备等组成。 根据矿热炉的结构特点以及工作特点,矿热炉的系统电抗的70%是由短网系统产生的,矿热炉系统损耗如下图所示 由上图可见,短网的损耗占据了系统自身损耗的70%以上,而短网是一个大电流工作的系统,最大电流可以达到上万安培,因此短网的性能在很大程度上决定了矿热炉的性能,由于短网的感抗占整个系统的 70%以上,不论是高烟罩开放式炉、矮烟罩半密闭式炉还是全密闭式炉的短网系统的感抗均较大,基于这个原因,矿热炉的自然功率因数很难达到0.85以上,绝大多数的炉子的自然功率因数都在0.7~0.8 之间,较低的功率因数不仅使变压器的效率下降,消耗大量的无用功,浪费大量电能,且被电力部分加收额外的电力罚款,同时由于电极的人工控制以及堆料的工艺,导致三相间的电力不平衡加大,最高不平衡度可以达到20%以上,这导致冶炼效率的低下,电费增高,因此提高短网的功率因数,降低电网不平衡就成了降低能耗,提高冶炼效率的有效手段。如果采取适当的手段,提高短网功率因数,改善电极不平衡度,那么将可以达到以下的效果: A、降低生产电耗 3%~6%; B、提高产品产量 5%~15%。 从而给企业带来良好的经济效益,而投入的改造费用可以在创造的综合效益中短期内收回。一般情况下为了解决矿热炉自然功率因数低下的问题,我国目前多采用在高压端进行无功补偿的方法来解决,高压补偿仅仅是提高了高压侧的功率因数,但是由于低压端短网系统的巨大的感抗所产生的无功功率依然在短网系统中流动,同时三相不平衡是由于短网的强相(短网较短故感抗较小、所以损耗较小,输出较大故名强相)和弱相造成的,因此高压补偿不能解决三相平衡的问题,也没有达到抵消短网系统无功、提高低压端功率因数的作用,由于短网的感抗占整个系统感抗的70%以上,所以不能降低低压端的损耗,也不能增加变压器的出力,但可以避免罚款,仅仅是对供电部门有意义。 相对高压补偿而言,低压补偿的优势除提高功率因数外,主要体现在以下几个方面: 1)、提高变压器、大电流线路利用率,增加冶炼有效输入功率。 针对电弧冶炼而言,无功的产生主要是由电弧电流引起的,将补偿点前移至短网,就地补偿短网的大量无功消耗,提高电源输入电压、提高变压器的出力、增加冶炼有效输入功率。料的熔化功率是与电极电压和料比电阻成函数关系的,可以简单表示为P=U2/Z料。由于提高了变压器的载荷能力,变压器向炉膛输入的功率增大,实现增产降耗。 2)、不平衡补偿,改善三相的强、弱相状况。

工业硅技术问答

工业硅技术问答 1.什么是硅和工业硅? 元素硅(Si)原来称为矽,工业硅(也称金属硅或结晶硅)是指以含氧化硅的矿物和碳质还原剂等为原料经矿热炉熔炼制得的含Si97%以上的产物。“工业硅”之称是我国于1981年GB2881-81国家标准公布时正式定名,其含意主要是指这种硅之纯度是接近于99%的工业纯度,英文称为金属硅,俄文称为结晶硅。现在人工制得硅的纯度,实际上已达到99999999999%。 2.硅和工业硅有那些特性? ①硅的主要物理性质为:密度(25℃)2.329g/cm3(纯度99.9%),熔点1413℃,沸点3145℃,平均比热(0~100℃)为729J /(kg·K),熔化热为50.66kJ/mol,纯度为99.41%的硅抗压强度极限为9.43kgf/cm2。 ②硅的化学性质:硅在元素周期表中属ⅣA族,原子序数为14,原子量为28.0855,化合价表现为四价或二价(四价化合物为稳定型)。因晶体硅的每个硅原子与另外四个硅原子形成共价键,其Si-Si键长2.35A,成为正四面体型结构,与金刚石结构相近,所以硅的硬度大,熔点、沸点高。 硅不溶于任何浓度的酸中,但能溶于硝酸与氢氟酸的混合液中,与1:l浓度的混合稀酸发生如下反应: Si+4HF+4HNO3=SiF4↑+4NO2↑+4H2O 3Si+12HF+4HNO3=3SiF4↑+4NO2↑+8H2O 这个特性可用于硅的化学分析中,即先将试样硅中的硅以氟化物形式挥发,而分析硅中残留的铁、铝、钙元素。 硅能与碱反应,生成硅酸盐,同时放出氢气,如: Si+2NaOH+H2O=Na2SiO3+2H2↑ 这是野外制氢的好办法。

矿热炉设计方案

矿热炉设计方案 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

(1)电耗值随原料成分,制成品成分,电炉容量等的不同而有很大差异。这里是约值。 二结构特点

矿热炉是一种耗电量巨大的工业电炉。主要由炉壳,烟罩、炉衬、短网,水冷系统,排烟系统,除尘系统,电极壳,电极压放及升降系统,上下料系统,把持器,烧穿器,液压系统,矿热炉变压器及各种电器设备等组成。 矿热炉设备共分三层布置 第一层为炉体(包括炉底支撑、炉壳、炉衬),出铁系统(包括包或锅及包车等),烧穿器等组成。 第二层 (1)烟罩。矿热炉目前大多数采用密闭式、或半密闭式矮烟罩结构,具有环保和便于维修,改善操作环境的特点。采用密闭式结构还可把生产中产生的废气(主要成分是一氧化碳)收集起来综合利用,并可减少电路的热损失,降低电极上部的温度,改善操作条件。 (2)电极把持器。大多数矿热炉都由三相供电,电极按正三角形或倒三角形,对称位置布置在炉膛中间。大型矿热炉一般采用无烟煤,焦碳和煤沥青拌合成的电极料,在电炉冶炼过程中自己培烧成的电极。 (3)短网 (4)铜瓦 (5)电极壳 (6)下料系统 (7)倒炉机

四、矿热炉主要设备 1.主要设备:本设计选用矮烟罩半封闭固定式矿热炉,主要设备选择如下:

炉体 炉体是由炉壳、炉衬、炉底支撐等构成,炉壳采用14~18mm厚钢板焊接而成的圆筒体,外部焊接有加强筋,以保证炉体具有足够的强度。炉底采用18~20㎜厚钢板,炉体采用25~30#工字钢支撑,自然通风冷却炉底,炉壳设有1~2个出料口,炉衬采用高铝耐火砖和自焙碳砖无缝砌筑新工艺,炉墙厚度为460~690㎜,外敷20㎜厚硅酸铝纤维板。炉底碳砖厚度为800~1200㎜。炉口采用碳化硅刚玉砖,流料槽采用水冷结构。根据需要也可增加水冷炉门。矮烟罩 采用全水冷结构或水冷骨架和耐热混凝土的复合结构。其高度以满足设备维修的需要,全水冷结构采用水冷骨架、水冷盖板和水冷壁及水冷围板。水冷骨架采用16~20#槽钢制成,三相电极周围内盖板采用无磁不锈钢板制成,外盖板及围板采用Q-235钢板制作,并设有极心圆调整装置和三相电极水冷保护套和绝缘密封装置。水冷骨架和耐热混凝土复合结构采用烟罩侧壁由金属构件立柱支撑并通水冷却,四周用耐火砖砌筑而成,侧壁上设有三个操作门,在炉内大面上,开启方向是横向旋转式,上部有二个排烟口,与其相联的是二个立冷弯管烟道,直通烟囱或除尘装置。 短网 短网包括变压器端的水冷补偿器、水冷铜管、水冷电缆、导电铜管、铜瓦及其吊挂、固定联接等装置。其布置型式可分为正三角

(冶金行业)半封闭式工业硅矿热炉主要技术方案

(冶金行业)半封闭式工业硅矿热炉主要技术方案

宜兴市中宇电冶设备有限X公司 33000KVA半封闭式工业硅矿热炉 技术方案 1电炉设备 1.133000KVA半封闭式工业硅矿热炉主要技术参数

1.2电炉设备设计 1.2.1矿热炉设备设计要求 矿热电炉采用半封闭型式,采用铜瓦压力环式电极把持器,电炉炉底通风冷却,炉体采用旋转炉体,炉体测温,变压器长期具备20%的长期超负荷能力。 短网系统、铜瓦、进线电缆都长期具备20%之上的超负荷能力。 烟道和炉盖之间设置了可靠绝缘。 液压系统采用组合阀,且设置储能器。

电极升降油缸上、下俩端均设绝缘加以保护。高压油管俩端全部带绝缘。 为防止电极偏斜,设计时在炉盖、平台及电极导向装置,电极导向装置设绝缘。 所有管道均设管道沟,便于检修。闸阀采用不锈钢丝杆,以增加其使用寿命。 每组分水器设3路备用水路,分水器阀门采用不锈钢或铜球阀,分水器给、回水路布局合理。 炉盖采用框架式水冷结构,中心区采用不导磁材料制作。 电炉烟道在二、三楼之间设水冷段,以降低烟气温度。 1.2.2工艺设计要求 电炉厂房柱子跨距按6m、7.5m布置。 电炉车间分设四个跨区,分别是变压器跨(偏跨)7.5m、电炉跨18m、浇注跨24m、成品跨18m。 电炉跨初定为五层平台分别为: a)+0.0m出渣铁轨道平台 包括铁道、出铁车和铁包、出渣车和渣包等。 其中+2.4m平台为局部出铁操作平台:该平台正对出铁口,包括烧穿器、出铁挡板等出炉工具等。 b)+7.0m电炉炉口操作平台 电炉控制室计算机室布置在此平台上,冷却水系统的分水器和回水槽布置在该平台上、炉口操作工具等。 C)+11.8变压器放置平台 电炉设有三台单相变压器,放置在此平台上成三角形布置,为方便变压器安

工业硅项目建设可行性研究报告(优秀建设可行性研究报告)

1总论 1.1概述 1.1.1项目概况 项目名称:重庆市黔永硅业有限公司1万t/a工业硅工程。 内容:建设工业硅冶炼生产线及相关辅助生产设施。 拟建规模:工程项目年产1万t工业硅。 建设地点:黔江区正阳镇群力居委。 1.1.2承办单位概况 单位名称:重庆市黔永硅业有限公司 单位地址:重庆市黔江区正阳工业园区 重庆黔永硅业有限公司逐步在渝东南地区培育和发展硅产业,谋 略做大做强硅业、深化硅产业链。公司坚持“立足基地,做大做强硅业;面向全国,深化硅产业链”的发展战略,秉承“精诚合作,共谋 发展”的创业精神,开拓创新,打造全国知名的硅材料基地。公司1 万t/a工业硅冶炼项目建成投产后,将采用无木炭法生产工业硅的新工艺和新技术,既可降低生产成本,同时可保证产品质量,实现公司经济利益和社会效益同步协调发展。 1.1.3建设地点概况 重庆市黔江区位于重庆市的东南边缘,地处武陵山腹地,东临湖 北省的咸丰县,西界彭水县,南连酉阳县,北接湖北利川市,是渝、 鄂、湘、黔四省市的结合部,素有“渝鄂咽喉”之称,是重庆市主要的少数民族

聚居地之一,地理座标在东经108度28分至108度56分,北纬29度4 分至29 度52分之间。东西宽45 分明,南北长90公里。全区幅员面积为2398.7 平方公里。项目选址距离黔江主城区约12 公里,距离冯家镇约5 公里,距离319国道二级路(黔酉公路)约1 公里,距离正阳火车站约4 公里,原辅料及产品可直接通过319 国道转运火车站(渝怀铁路),交通十分便利。 1.2 项目简介 年产1 万吨工业硅(以化学级为主),设计方案为6300kVA 和 12500kVA工业硅矿热炉各一台,12个月内2台电炉点火投产。 1.3 工程建设的必要性和可能性 1、丰富的矿产资源和良好的投资环境。黔江区境内及周边区域(彭水、秀山)硅石储量丰富,品位较好,当地政府给予诸多优惠政策支持当地企业和境外客商投资建设工业硅及硅系列产品深加工项目。投资建设黔江工业硅项目,对开发和利用当地丰富的矿产资源,发展地方民族经济,拓展并深化多元产业结构均具有重要意义。 2、优越的区位和便利的交通条件。黔江是渝、鄂、湘、黔四省(市)武陵山区边贸重镇及交通枢纽,是重庆乃至西南地区进入东南沿海地区重要陆上通道,具有承东启西的重要战略地位。国道319 线高等级公路纵贯全境,正在建设的重庆至长沙高速公路和规划中的国家重点干线包头至茂林高速公路从城区通过,黔江正在成为公路交通枢纽;重庆至怀化国家一级电气化铁路已正式投入运行,2008 年将投入使用的黔江舟白机场正在加紧建设,建成后将成为沟通东西部的重要支线机场。未来几年,黔江将建成包括铁路、机场和公路三位一

12500kvA工业硅炉设计方案

设计方案项目名称:l2500kV A工业硅炉 制作方:----------------------- 2009年7月6日

公司简介 --------------------是专业从事工业电炉、冶金设备、环保设备的开发、设计、销售、安装、调试、技术转让和铁合金工艺服务的高科技企业。是一家专门从事冶金和化学工业电炉设备节能新技术、新产品开发及制造的综合型企业。 公司采用先进的管理模式,是“以科技求发展,以质量求生存,以信誉求效益”宗旨和“团结进取、诚信敬业”的企业精神,为客户提供先进和高质量的产品,不断研究开发新一代冶金电炉和环保产品,全心全意地服务于冶金和化工企业。 公司拥有一批知识层次高、业务精通、经验丰富的工程技术人员和管理人才;尊重科学、尊重人才,注重引进国际先进技术的消化吸收和科技成果的转化以及售前、售后服务;为用户提供高效可靠、节能降耗的设备。 我公司的产品被国内很多家大中型企业采用,同时出口到美国、越南、刚果、哈萨克斯坦等国。以其先进的技术水平、精良的制造质量和完善的售后服务,创造了良好的经济效益和社会效益,受到用户的好评和信赖。 12500kVA工业硅炉是我公司吸收了国外设备的经验,结合我国同类产品厂家的冶炼工艺具体情况推出的新型矿热炉,是我国矿热炉的优化产品,在国内处于领先水平。 我公司的优势:

1、我公司多年来从事矿热炉、短网技术的研制、开发出同相逆并联的短网,修正平面布置短网,倒三角形短网,由于其具有短网阻抗低、三相不平衡系数低、功率因数高、节电效果显著。 2、通过对大电流母线附近钢构感应发热的深入研究,证明了铁合金电耗高,是因为有相当一部份电能转变为钢构的发热,根据这个理论,对旧炉型进行新设计,从而创造出新型矿热炉。 3、我们认真吸取了国外先进矿热炉的经验,将许多适合我国的经验移植在我们的新型矿热炉上,从而使我公司在矿热炉设计、制造、安装、调试上具有相当的优势。 我公司愿以一流的技术,完善的服务,为您提供高质量的产品。

rkef冶炼工艺概述

rkef冶炼工艺概述 RKEF法冶炼工艺概述前言 目前,国内外红土镍矿的处理方法主要有火法和湿法两种冶炼工艺,湿法工艺是使用硫酸、盐酸或者氨水溶液作为浸出剂,浸出红土镍矿中的镍和钴金属离子,常见的湿法处理工艺有高压酸浸工艺(HPAL)、常压酸浸工艺(PAL)和氨浸工艺(Caron)。火法工艺是在高温条件下,以C作还原剂,对氧化镍矿中的NiO及其他氧化物进行还原而得。火法冶炼因具有流程短、三废排放量少、工艺成熟等特点,已成为红土镍矿冶炼的主要工艺。 目前国内外主要有4种火法工艺:烧结—高炉流程(BF法);回转窑—电炉熔炼流程(RKEF法);多米尼加鹰桥竖炉—电炉工艺;日本大江山回转窑直接还原法。其中,RKEF法是当今世界上火法处理红土镍矿的先进及成熟工艺,广泛地应用于各国冶炼厂家。 RKEF(Rotary Kiln-Electric Furnace)法始于上世纪50年代,由Elkem公司在新喀里多尼亚的多尼安博厂开发成功,具有产品质量好、生产效率高、节能环保等优点。 在不锈钢产量大幅增幅的驱动下,RKEF法镍铁的生产能力急剧增加。我国冶炼镍铁电炉炉容在不断地扩大。额定容量25 MVA的炉型已经逐步退出主体炉型,进而33 MVA、36 MVA、48 MVA、51 MVA成为主体炉型。与此同时,我国矿热炉生产镍铁的工艺流程更加合理,矿热电炉的总体装备水平大幅度提高,冶炼工艺技术更加成熟。下面将概括介绍和讨论矿热电炉利用红土镍矿采用RKEF法冶炼镍铁的工艺技术。 1 工艺流程概述 利用红土镍矿生产镍铁的RKEF冶炼工艺流程如图1.1:

图1.1 RKEF工艺流程图 工艺流程主要包含以下几个阶段: (1)在露天料场进行红土矿的晾晒;大块红土矿的破碎、筛分、混匀。 (2)应用干燥窑对红土矿进行干燥;应用回转窑进行红土矿的焙烧预还原。以此获得焙砂。 (3)矿热电炉熔炼焙砂生产含镍生铁。 (4)回转窑与电炉余热的利用。 (5)粉尘的收集与再利用。 对RKEF法工艺的流程,矿石内部的成分尤为重要,其中有至少3个指标,在生产时需要关注: (1)Ni品位,控制在1.5以上,最好2.0以上。 (2)Fe/Ni,在6~10之间,最好接近6,因而矿中Ni品位高;如果Fe/Ni>10,则很难冶炼出含Ni=20%的镍铁,因为原料中Fe过高,很难在回转窑中控制氧化铁的还原度。 (3)MgO/SiO,在0.55~0.65较合适,少量加入熔剂就可以得到低熔点的炉渣结构。 2

9000kva矿热炉工业硅冶炼启炉方案

2*9000kva矿热炉工业硅冶炼启炉方案工业硅启炉方案是指炉子在炉龄到期挖炉以后,在出炉前柴烘,电烘,投料生产的全过程,由于长时间停炉电极、炉膛均处于常温状态,为确保2台炉子启炉顺利,启炉后生产稳定连续,特制定此开炉方案: 1、烘炉前的准备 炉子在挖炉以后,在正式投产前要进行烘炉。通过烘炉去除炉衬内的水分和气体,把电极和炉衬烧结成型,保证在投料前电极和炉衬满足投料要求。 烘炉过程包括柴烘、电烘、投料。 烘炉原则:升温速度由慢到快,火焰由小到大,电流由小到大并成阶梯型上升,缓慢提升电流,缓慢提升炉膛温度,不但要烘干炉衬、而且要使炉内蓄积足热量,使整个炉子具有较好的稳定性。 烘炉前生产营运部要制定详细的开炉方案,要做到万无一失,特别是电气系统要保证安全。 1.1设备检查 全面检查各种设备是否符合烘炉要求,确认各辅助系统有无异常情况,并经调试后由相关负责人签字确认。 1.1.1循环水系统 水冷系统全面通水,炉体循环水系统应在不低0.25Mpa水压的情况下通水24小时以上,做到水流畅通无阻,无泄漏现象。 1.1.2电极升降和压放系统

电极升降正常、压放装置完好、灵活,液压系统无泄漏现象。1.1.3配料系统 皮带无跑偏,滚筒转动正常,皮带减速箱运行是否正常,振动给料机转动正常、弹簧钓钩松紧、长度合适,仪表、指示灯正常,配、加料装置运行可靠,灵活,完全满足冶炼要求。 1.1.4变压器及补偿系统 变压器、补偿及输电系统完好,变压器保护系统测试(过流、轻、重瓦斯报警等)正常,炉变各种测试及高低压电路控制系统运行正常完全满足送电要求。 1.1.5炉体绝缘 系统密封、绝缘完好,三相电极、短网、炉体各绝缘点测试正常。 1.1.6环保系统 环保变频器、主风机、冷却器、旋风和布袋除尘器、环保系统、炉体绝缘、变压器系统等无问题,环保系统联动一次,确保各系统运行正常。 1.1.7辅助设备 料场洗矿设备、油焦磁选设备试运行。车间主行车、精整行车行车的升降是否正常,大车正常行驶,限位正常,抱闸是否正常,电铃是否正常。台包和定模干燥,出铁平车完好,无脱轨。电操台仪表、指示灯正常。 以上各系统检查完成后,进行空载试验(联动试验)2-3次,每次变压器空载运行30分种,检查各系统是否运行正常,矿热炉具备开

矿热炉设计方案.doc

矿热炉简介 一原理用途 矿热炉它主要用于还原冶炼矿石,碳质还原剂及溶剂等原料。 主要生产硅铁,锰铁,铬铁、钨铁、硅锰合金等铁合金,是冶金工业中 重要工业原料及电石等化工原料。其工作特点是采用碳质或镁质耐火 材料作炉衬,使用自培电极。电极插入炉料进行埋弧操作,利用电弧的 能量及电流通过炉料的,因炉料的电阻而产生能量来熔炼金属,陆续加 料,间歇式出铁渣,连续作业的一种工业电炉。 矿热炉主要类别、用途 反映温度电耗类别主要原料制成品 0℃KW*h/t (45%)硅 2100-5500 铁 硅铁炉硅铁、废铁、焦碳硅铁1550-1770 (75%)硅 铁8000-11000 铁 合 锰铁炉锰矿石、废铁、焦碳、石 锰铁1500-1400 2400-4000 灰 金 炉铬铁炉铬矿石、硅石、焦碳铬铁1600-1750 3200-6000 钨铁炉钨晶矿石、焦碳钨铁2400-2900 3000-5000 硅铬炉铬铁、硅石、焦碳硅铬合金 1600-1750 3500-6500 硅锰炉锰矿石、硅石、废铁、焦硅锰合金 1350-1400 3500-4000

碳 炼钢电炉铁矿石、焦碳生铁1500-1600 1800-2500 电石炉石灰石、焦碳电石1900-2000 2900-3200 碳化硼炉氧化硼、焦碳碳化硼1800-2500 约 20000 (1)电耗值随原料成分,制成品成分,电炉容量等的不同而有很 大差异。这里是约值。 二结构特点 矿热炉是一种耗电量巨大的工业电炉。主要由炉壳,烟罩、 炉衬、短网,水冷系统,排烟系统,除尘系统,电极壳,电极压放及 升降系统,上下料系统,把持器,烧穿器,液压系统,矿热炉变压器 及各种电器设备等组成。 矿热炉设备共分三层布置 第一层为炉体(包括炉底支撑、炉壳、炉衬),出铁系统(包括包或 锅及包车等),烧穿器等组成。 第二层 (1)烟罩。矿热炉目前大多数采用密闭式、或半密闭式矮烟罩结构, 具有环保和便于维修,改善操作环境的特点。采用密闭式结构还可把 生产中产生的废气(主要成分是一氧化碳)收集起来综合利用,并可减 少电路的热损失,降低电极上部的温度,改善操作条件。 (2)电极把持器。大多数矿热炉都由三相供电,电极按正三角形或倒 三角形,对称位置布置在炉膛中间。大型矿热炉一般采用无烟煤,

半封闭式工业硅矿热炉主要技术方案

半封闭式工业硅矿热炉主要技术方案

宜兴市中宇电冶设备有限公司 33000KV A半封闭式工业硅矿热炉 技术方案 1电炉设备 1.1 33000KV A 半封闭式工业硅矿热炉主要技术参数

1.2 电炉设备设计 1.2.1矿热炉设备设计要求 矿热电炉采用半封闭型式, 采用铜瓦压力环式电极把持器, 电炉炉底通风冷却, 炉体采用旋转炉体, 炉体测温, 变压器长期具备20%的长期超负荷能力。 短网系统、铜瓦、进线电缆都长期具备20%以上的超负荷能力。 烟道与炉盖之间设置了可靠绝缘。 液压系统采用组合阀, 并设置储能器。 电极升降油缸上、下两端均设绝缘加以保护。高压油管两端全部带绝缘。 为防止电极偏斜, 设计时在炉盖、平台及电极导向装置, 电极导向装置设绝缘。 所有管道均设管道沟, 便于检修。闸阀采用不锈钢丝杆, 以增加其使用寿命。 每组分水器设3路备用水路, 分水器阀门采用不锈钢或铜球阀, 分水器给、回水路布局合理。 炉盖采用框架式水冷结构, 中心区采用不导磁材料制作。 电炉烟道在二、三楼之间设水冷段, 以降低烟气温度。

1.2.2工艺设计要求 电炉厂房柱子跨距按6m、 7.5m布置。 电炉车间分设四个跨区, 分别是变压器跨( 偏跨) 7.5m、电炉跨18m、浇注跨24m、成品跨18m。 电炉跨初定为五层平台分别为: a)+0.0m出渣铁轨道平台 包括铁道、出铁车和铁包、出渣车和渣包等。 其中+2.4m平台为局部出铁操作平台: 该平台正对出铁口, 包括烧穿器、出铁挡板等出炉工具等。 b)+7.0m电炉炉口操作平台 电炉控制室计算机室布置在此平台上, 冷却水系统的分水器和回水槽布置在该平台上、炉口操作工具等。 C)+11.8变压器放置平台 电炉设有三台单相变压器, 放置在此平台上成三角形布置, 为方便变压器安装、检修、更换设有变压器吊装孔。 d)+18.3m电极升降机构平台 平台空间内安装有电极升降、压放装置及电炉料管插板阀。液压站也布置在此平台上。 e)+24.8m电炉电极支承及接长电极壳、加入电极糊及加料平台 炉顶料仓座在此平台上。环形加料机及布料皮带均布置在该平台上, 此层平台布置有可储存5~8批混合料的中间过度料仓。 1.3 矿热炉结构

2×36000KVA矿热炉设计工艺说明

2×36000KV A矿热炉设计工艺说明 一、平均每昼夜吃矿量计算: 按每吨矿耗电(热料温度为50度计)每吨矿耗电50度计算、作业率按95%计算、功率因数为0. 5计;(随着操作技术的熟练和设备的完善作业率可提高到98%以上) 2×300×0.905/450×24=35.6吨,平均每小时每台炉子吃料(焙砂)量为72吨计。 二、电极直径和二次电压的选择 常用二次电压为40V-470V,要求电流密度大于2.8-3.0,便于电极的烧结。根据电流密度电极直径可选用1.35米。极心圆功率可考虑2000-2500左右可满足冶炼工艺要求。根据不同炉料的比电阻,设计时可考虑电极极心圆可调,范围在每项电极150mm左右。极心圆中位取4.6米,可调范围在4.55米到5米之间。实际安装时可考虑极心圆在4.7米。 三、炉壳高度和炉壳直径 炉壳高度取6米到6.5米即可满足冶炼工艺的要求,为了便于假炉墙的形成,炉膛功率取200-250左右即可,炉壳直径选用17.5 米左右为宜。 四、出铁、渣工艺 渣、铁口各为2个,其中南面两个铁口,北面两个渣口,渣口和铁口之间夹角为45度,铁口比渣口低30cm。炉渣经开眼机打开后直接入水碎池水碎,铁口打开后经中间包后直接浇铸成产品。

每昼夜出渣12炉次,每出完2炉渣后马上出铁,这样可保持在出铁过程中尽可能少的带入炉渣,减少块渣的产生和降低工人的劳动强度,减少中间包的周转量。 如按每昼夜出6炉计:每次出铁35-40吨,每天产量为210-240吨/台。 五、水碎 炉渣的水碎采用炉前直接水碎,每台炉子每次(2小时左右)处理炉渣的量为120吨左右,处理过程为15-25分钟。水碎炉渣的水泵可考虑较高的水压,确保水碎的安全性。(选用水泵时要考虑水温的因素) 六、原料 1.氧化镍矿。本工艺均采用印度尼西亚OBI岛的氧化镍矿为原料,其主要成分为: H2O 35%左右,Ni ≥1.8% SiO230-40% CaO1-5% MgO16-35% Fe 10-22% Ai2O3 ≤3.5% P≤0.010% 。 2.焦炭:固定碳≥80% 灰分≤15% 挥发份≤1.7% P≤0.020% S ≤0.6%。 3.无烟煤:从中国进口; 4.褐煤:见设计任务书; 5.回转窑出来的焙砂用料罐提升到炉顶还是采用高架回转窑直接到矿热炉炉顶,请设计院进行投资和运行利弊分析比较。

相关主题