搜档网
当前位置:搜档网 › 力学发展史

力学发展史

力学发展史
力学发展史

力学发展史

1.力学的概述

力学知识最早起源于对自然现象的观察和在生产劳动中的经验。人们在建筑、灌溉等劳动中使用杠杆、斜面、汲水器具,逐渐积累起对平衡物体受力情况的认识。古希腊的阿基米德对杠杆平衡、物体重心位置、物体在水中受到的浮力等作了系统研究,确定它们的基本规律,初步奠定了静力学即平衡理论的基础。古代人还从对日、月运行的观察和弓箭、车轮等的使用中了解一些简单的运动规律,如匀速的移动和转动。但是对力和运动之间的关系,只是在欧洲文艺复兴时期以后才逐渐有了正确的认识。

中国古代许多有关力学理论的研究成果,以及西方古代关于力学问题的研究,对经典力学的建立和发展都直接或间接地产生了影响。特别是对阿基米德等人建立的静力学理论的继承和发展,对亚里士多德运动理论的检验和修正,成为经典力学研究的重要起点。牛顿在总结前人,特别是开普勒、斯台文、伽利略等人的工作的基础上,建立了经典力学体系,实现了物理界中第一次理论大综合。

2.力学的发展

公元前3世纪,希腊阿基米德确立静力学和流体静力学的基本原理。

16世纪是静力学的复兴与动力学的创建时期。阿基米德在研究杠杆平衡、平面图形重心位置时,先建立一些公设,而后用数学论证的方法导出一些定理,成果之一是用类似求和数再取极限的方法,求出一个抛物线和它们两平行弦线(与抛物线斜交)所围成平面图形面积的重心位置。阿基米德关于杠杆公设之一是:不等距的等重不能平衡,杠杆将向距离较大一侧倾斜。自阿基米德以后,静力学处于长期的停滞状态,直到斯台文时代才又重新发展起来。斯台文(1548—1620)是比利时的布鲁日人。他是一个在科学上很有深造诣、有独立思想、不迷信权威、重视实验和科学实践的卓越人物。

斯台文对静力学问题有全面的研究。他在1586年用荷兰文写成的《静力学原理》一书中,首先对阿基米德的杠杆原理作了简化的数学证明,并研究了滑轮组的平衡问题。

1589年到1591年,伽利略在比萨大学担任了三年的数学讲座教职。在此期间,他完成了关于落体的实验。伽利略在实验研究和理论分析的基础上,最早阐明自由落体运动的规律,提出加速度的概念。牛顿继承和发展前人的研究成果(特别是J.开普勒的行星运动三定律),提出物体运动三定律。伽利略、牛顿奠定了动力学的基础。伽利略是动力学的创始人。他的基本理论主要收集在《关于两个世界体系的对话》和《关于两门新科学的对话》两本书中。伽利略的研究方法,对后来的物理学的发展起了很大作用。例如,爱因斯坦火车和电梯的思想实验,就是伽利略思想的生动再现。

公元1673年荷兰物理学家惠更斯在《摆钟论》中提出向心力、离心力、转动惯量、复摆的摆动中心等概念。惠更斯对完全弹性碰撞做了仔细的研究。

惠更斯的碰撞理论是以下述三个假设(公理)作为基础的:

(1)“运动起来的物体,在未受到阻碍作用时,将以不变的速度沿直线继续运动。”这就是惯性定律。

(2)“两个具有相同质量(注:惠更斯没有明确的质量概念,他实际上应用的是物体的重量) 的物体,以相同的速度作对心碰撞后,二者都以相同的速度向相反方向运动。

(3)“两物体的运动以及它们的速度,必须看作是相对于另一些我们以为是静止的物体而言的,而不必考虑这些物体是否还参与另外的共同运动。因此,当两个物体相碰撞时,即使它们同时参与另一匀速运动,在同时只有这个共同运动的观察者看来,两个物体相互作用就像好不存在这个共同运动一样。”

这就是相对性原理。惠更斯把这个原理贯穿始终,是他的碰撞理论的重要特色。他在研究斜面上物体的平衡问题时,提出了力的分解与合成原理,以及永动机的不可能性等量期思想。关于落体问题,斯台文和别人合作做了一项实验,来检验亚里士多德的落体理论。在《流体静力学》一书中,斯台文对浸在液体中的物体所受的浮力所遵循的定律作了新的证明。他还进一步得出,浮体的重心和它所排开的液体的重心处在同一垂直线上。

牛顿力学体系的建立及其对物理学的影响

力学通常指以牛顿三大定律为核心的矢量力学,有时也泛指描述低速宏观物体机械运动的经典力学体系。1687写的《自然哲学的数学原理》简称《原理》一书集中反映了牛顿总结建立的力学体系,包括几个基本概念的定义,六条推论(即定理或法则),三条运动定律,万有引力定律及其几何形式和在有阻力介质(气、液体)中的运用,若干天象计算实例,最后讨论了“哲学中的推理方法”。这里值得特别注意的是牛顿对几个基本概念的明确规定和三条运动定律的建立。从亚里士多德和阿基米德的物理学发展到牛顿力学体系经历了约两千年,经历了以哥白尼、开普勒和伽利略为代表的科学革命。牛顿“站在巨人们的肩膀上”,进行了科学史上第一次伟大的综合。牛顿不是简单地把前人的研究成果移植为自己的定律。他把惯性定律提高到第一公理的地位,并在定律叙述和定义惯性时作了几点重要的补充:①把“物体保持其原来的静止状态或者在一直线上等速运动的状态”作为两种等价状态,他在《原理》中解释说,因为“运动与静止其实只有相对的区别。那种通常被看作静止的物体,实际上并不总是真正静止的”。这就彻底改变了人们只把静止看作自然状态唯一形式的直觉观念。②他认为“一个物体只有当别的力加于其上而迫使它改变其原来运动状态时,才显示出这种力”。这就明确地把运动状态和运动状态的改变区分开来并把后者与力联系起来。③既然物体作惯性运动时并无其他外界影响,牛顿就把惯性这种性质认为是“物体所固有的”,而且与物体的其他性质(如热、化学成分)无关,只与物体所含“物质的量”成正比。

牛顿运动定律的建立标志着力学开始成为一门科学。此后力学的进展在于它所考虑的对象由单个的自由质点转向受约束的质点和受约束的质点系;这方面的标志是J.le R.达朗伯提出的达朗伯原理和J.-L.拉格朗日建立的分析力学。L.欧拉又进一步把牛顿运动定律推广用于刚体和理想流体的运动方程。

1736年欧拉发表《力学或运动科学的分析解说》,首先将积分学应用于运动物体力学。1755年欧拉提出理想流体动力学方程组,欧拉建立理想流体的力学方程可看作是连续介质力学的肇端。除了对刚体运动列出运动方程和动力学方程并求得一些解外,他对弹性稳定性作了开创性的研究,并开辟了流体力学的理论分析,奠定了理想流体力学的基础,在这一时期经典力学的创建和下一时期弹性力学、流体力学成长为独立分支之间,他起着承上启下的作用。在此以前,有关固体的弹性、流体的粘性、气体的可压缩性等的物质属性方程已经陆续建立。运动定律和物性定律这两者的结合,促使弹性固体力学基本理论和粘性流体力学基本理论孪生于世,在这方面作出贡献的是纳维、柯西、泊松、斯托克斯等人。弹性力学和流体力学基本方程的建立,使得力学逐渐脱离物理学而成为独立学科。另一方面,从拉格朗日分析力学基础上发展起来的哈密顿体系,继续在物理学中起作用。

从牛顿到哈密顿的理论体系组成物理学中的经典力学或牛顿力学。在弹性和流体基本方程建立后,所给出的方程一时难于求解,工程技术中许多应用力学问题还须依靠经验或半经验的方法解决。这使得19世纪后半叶在材料力学、结构力学同弹性力学之间,水力学和水动力学之间一直存在着风格上的显著差别。1905年6月30日,德国《物理学年鉴》接受了爱因斯坦的论文《论动体的电动力学》,在同年9月的该刊上发表。这篇论文是关于狭义相对论的第一篇文章,它包含了狭义相对论的基本思想和基本内容。

19世纪中固体方面的力学的发展,除材料力学更趋完善并逐渐发展为杆件系统的结构力学外,主要是数学弹性力学的建立。材料力学、结构力学与当时土木建筑技术、机械制造、交通运输等密切相关,而弹性力学在当时很少有直接的应用背景,主要是为探索自然规律而作的基础研究。

1807年T.杨提出弹性模量的概念,指出剪切和伸缩一样,也是一种弹性变形。虽然杨氏模量的形式与现代定义不一样,杨也并不清楚剪切和伸缩应有不同的模量,但杨的工作成为弹性理论建立的前奏。

纳维在1827年发表了他1821年的研究结果《关于弹性平衡和运动规律的研究报告》,此报告从分子结构理论(1763年博斯科维奇模型假定物质是由以中心力相互作用的许多离散分子组成的)出发,建立了各向同性弹性

固体方程,其中只有一个弹性常量。

到20世纪初,在流体力学和固体力学中,实际应用同数学理论的上述两个方面开始结合,此后力学便蓬勃发展起来,创立了许多新的理论,同时也解决了工程技术中大量的关键性问题,如航空工程中的声障问题和航天工程中的热障问题。这种理论和实际密切结合的力学的先导者是L.普朗特和T.von卡门。他们在力学研究工作中善于从复杂的现象中洞察事物本质,又能寻找合适的解决问题的数学途径,逐渐形成一套特有的方法。

20世纪上半叶,物理学发生巨大变化。狭义相对论、广义相对论以及量子力学的相继建立,冲击了经典物理学。前两个世纪中以力学模型来解释一切物理现象的观点(即唯力学论,旧译机械论)不得不退出历史舞台。经典力学的适用范围被明确为宏观物体的远低于光速的机械运动,力学进一步从物理学分离出来成为独立的学科。

从60年代起,电子计算机应用日广,力学无论在应用上或理论上都有了新的进展。力学继承它过去同航空和航天工程技术结合的传统,在同其他各种工程技术以及同自然科学的其他学科的结合中,开拓自己新的应用领域。

3.我对力学发展的思考

力学知识源于对自然现象的观察和在生产劳动中的经验,在经过阿基米德等人的研究,经典力学得以继承和发展。自阿基米德后,开普勒,惠文台,伽利略,惠更斯等人的研究下,力学得到进一步的发展。到后来牛顿在总结前人,特别是开普勒、斯台文、伽利略等人的工作的基础上,建立了经典力学体系,实现了物理界中第一次理论大综合,实现了力学史上的飞跃。

力学的发展对我们的生活有着潜移默化的影响,在我们生活中力学无处不存在,自古到今都深深的影响我们的生活过程和方式。力学时时刻刻在改变着我们的生活。现代科技的发展与力学有很大的关系,力学为科技的发展做出巨大的贡献有了力学,现代科技得以快速的发展。

力学集聚着古代科学家们的智慧,在力学发展的长河中,我们从中学到了要追求真理,就像伽利略,在错误面前能勇于反对,即使在权威的压迫下,他依然能坚守真理。从中我们还可以学习到要用科学的眼光来看待事情,不能人云亦云,对待错误要勇于指出并且改正。

力学的发展离不开古代科学家哲学家的刻苦研究,即使在艰难地条件下他们依然能够坚持完成自己的成就,为人类的文明发展和科技发展做出巨大的贡献。因此古代科学家们刻苦研究的精神也是我们值得学习的。我相信力学并不会停滞不前,它一定会继续不断发展,为人类的进步做出更大的贡献。

参考文献

清华大学自然辩证法教研组编:《科学技术史讲义》,清华大学出版社,北京,1982 钱学森:现代力学,《力学与实践》,第1期,第4~9页,1979。

武际可:《力学史》,上海辞书出版社,2010。

“力学”简介、含义、起源、历史与发展

力学 力学是研究物质机械运动规律的科学。自然界物质有多种层次,从宇观的宇宙体系,宏观的天体和常规物体,细观的颗粒、纤维、晶体,到微观的分子、原子、基本粒子。通常理解的力学以研究天然的或人工的宏观对象为主。但由于学科的互相渗透,有时也涉及宇观或细观甚至微观各层次中的对象以及有关的规律。机械运动亦即力学运动是物质在时间、空间中的位置变化,包括移动、转动、流动、变形、振动、波动、扩散等,而平衡或静止,则是其中的一种特殊情况。机械运动是物质运动的最基本的形式。物质运动的其他形式还有热运动、电磁运动、原子及其内部的运动和化学运动等。机械运动并不能脱离其他运动形式独立存在,只是在研究力学问题时突出地考虑机械运动这种形式罢了;如果其他运动形式对机械运动有较大影响,或者需要考虑它们之间的相互作用,便会在力学同其他学科之间形成交叉学科或边缘学科。力是物质间的一种相互作用,机械运动状态的变化是由这种相互作用引起的。静止和运动状态不变,都意味着各作用力在某种意义上的平衡。力学,可以说是力和(机械)运动的科学。 力学在汉语中的意思是力的科学。汉语“力”字最初表示的是手臂使劲,后来虽又含有他义,但都同机械或运动没有直接联系。“力学”一词译自英语mechanics(源于希腊语μηχανη──机械)。在英语中,mechanics是一个多义词,既可释作“力学”,也可释作“机械学”、“结构”等。在欧洲其他语种中,此词的语源和语义都与英语相同。汉语中没有同它对等的多义词。mechanics在19世纪50年代作为研究力的作用的学科名词传入中国时,译作“重学”,后来改译作“力学”,一直使用至今。“力学的”和“机械的” 在英语中同为mechanical,而现代汉语中“机械的”又可理解为“刻板的”。这种不同语种中词义包容范围的差异,有时引起国际学术交流中的周折。例如机械的(mechanical)自然观,其实指用力学解释自然的观点,而英语mechanist是指机械师,不是指力学家。 发展简史 力学知识最早起源于对自然现象的观察和在生产劳动中的 经验。人们在建筑、灌溉等劳动中使用杠杆、斜面、汲水器具,逐渐积累起对平衡物体受力情况的认识。古希腊的阿基米德对杠杆平衡、物体重心位置、物体在水中受到的浮力等作了系统研究,确定它们的基本规律,初步奠定了静力学即平衡理论的基础。古

断裂力学发展史

断裂力学研究的内容几乎完全是断裂为主的破坏。1920年格里菲斯(Griffith)研究玻璃中裂纹的脆性扩展,成功地提出了以含裂纹体的应变能释放率为参量的裂纹失稳扩展准则,其内容是:结构体系内裂纹扩展,体系内总能量降低,降低的能量用于裂纹增加新自由表面的表面能,裂纹扩展的临界条件是裂纹扩展力(即应变能释放率)等于扩展阻力(裂纹扩展,要增加自由表面能而引起的阻力)。很好地解释了玻璃的低应力脆断现象。Griffith理论可用于估算脆性固体的理论强度,并给出了断裂强度与缺陷尺寸之间的正确关系。 1944年泽纳(Zener)和霍洛蒙(Hollmon)又首先把Griffith理论用于金属材料的脆性断裂。不久欧文(1rwin)指出,Griffith的能量平衡应该是体系内储存的应变能与表面能、塑性变形所做的功之间的能量平衡,并且还指出,对于延性大的材料,表面能与塑性功相比一般是很小的。同时把G定义为“能量释放率”或“裂纹驱动力”,即裂纹扩展过程中增加单位长度时系统所提供的能量,或裂纹扩展单位面积系统能量的下降率。 20世纪50年代,Irwin又提出表征外力作用下,弹性物体裂纹尖端附近应力强度的一个参量一应力强度因子,建立以应力强度因子为参量的裂纹扩展准则一应力强度因子准则(亦称K准则)。其内容为:裂纹扩展的临界条件为K1:=K1c,其中尺K1为应力强度因子,可由弹性力学方法求得,K1c为材料的临界应力强度因子或平面应变断裂韧度,可由试验测定。Irwin的另一贡献是,他还指出,能量方法相当于应力强度方法。 1963年韦尔斯(Wells)发表有关裂纹张开位移(COD)的著名著作,提出以裂纹张开位移作为断裂参量判别裂纹失稳扩展的一个近似工程方法。其内容是:不管含裂纹体的形状、尺寸、受力大小和方式如何,当裂纹张开位移δ达到临界值δc时,裂纹开始扩展。δc是表征材料性能的常数,由试验得到。对于韧性材料,短裂纹平面应力断裂问题,特别是裂纹体内出现大范围屈服和全面屈服情况可采用此法。 1968年赖斯(Rice)提出围绕含裂纹体裂纹尖端的一个与路径无关的回路积分,定义为二维含裂纹体的J积分。J积分可用来描述裂纹尖端附近在非线性弹性情况下的应力应变场,建立J l=J1c的断裂准则。J1c为表征材料断裂韧性的临界J积分值,可由试验确定。 由于研究的观点和出发点不同,断裂力学分为微观断裂力学和宏观断裂力学。微观断裂力学是研究原子位错等晶体尺度内的断裂过程,宏观断裂力学是在不涉及材料内部断裂机理的条件下,通过连续介质力学分析和试样的实验作出断裂强度的估算与控制。宏观断裂力学通常又分为线弹性断裂力学和弹塑性断裂力学。 线弹性断裂力学是应用线性弹性理论研究物体裂纹扩展规律和断裂准则。线弹性断裂力学可用来解决材料的平面应变断裂问题,适用于大型构件(如发电机转子,较大的接头,车轴等)和脆性材料的断裂分析。线弹性断裂力学还主要用于宇航工业,因为在宇航工业里减轻重量是非常重要的,所以必须采用高强度低韧性的金属材料。实际上对金属材料裂纹尖端附近总存在着塑性区,若塑性区很小(如远小于裂纹长度),经过适当的修正,则仍可以采用线弹性断裂力学进行断裂分析。目前,线弹性断裂力学已发展的比较成熟,但也还存在一些问题(如表面裂纹分析,复合型断裂准则,裂纹动力扩展等)有待进一步研究。 弹塑性断裂力学是应用弹性力学、塑性力学研究物体裂纹扩展规律和断裂准则,适用于裂纹尖端附近有较大范围塑性区的情况。由于直接求裂纹尖端附近塑性区断裂问题的解析解十分

力学发展简史

力学发展简史 力学是物理学中发展最早的一个分枝,它和人类的生活与生产联系最为密切。早在遥远的古代,人们就在生产劳动中应用了杠杆、螺旋、滑轮、斜面等简单机械,从而促进了静力学的发展。古希腊时代,就已形成比重和重心的概念,出现杠杆原理;阿基米德(Archimedes,约公元前287~212)的浮力原理提出于公元前二百多年。虽然这些知识尚属力学科学的萌芽,但在力学发展史中应有一定的地位。16世纪以后,由于航海、战争和工业生产的需要,力学的研究得到了真正的发展。钟表业促进了匀速运动的理论;水磨机械促进了摩擦和齿轮传动的研究;火炮的运用推动了拋射体的研究。天体运行的规律提供了机械运动最单纯、最直接、最精确的数据资料,使得人们有可能排除摩擦和空气阻力的干扰,得到规律运动的认识。天文学的发展为力学找到了一个最理想的"实验室"-天体。但是,天文学的发展又和航海事业分不开,只有等到16、17世纪,这时资本主义生产方式开始兴起,海外贸易和对外扩张刺激了航海的发展,这才提出对天文作系统观测的迫切要求。第谷(Tycho Brahe,1546~1601)顺应了这一要求,以毕生精力收集了大量观测数据,为克卜勒 (Johannes Kepler,1571~1630)的研究作了准备。克卜勒于1609年和1619年先后提出了行星运动的三条规律,即克卜勒三大行星运动定律。与此同时,以伽利略 (Galileo Galilei,1564~1642)为代表的物理学家对力学开展了广泛研究,得到了自由落体定律。伽利略的两部著作:《关于托勒密和哥白尼两大世界体系的对话》(1632年)和《关于力学和运动两种新科学的

材料的韧性及断裂力学简介

第二节材料的韧性及断裂力学简介 一、低应力脆断及材料的韧性 人们在对船舶的脆断、无缝输气钢管的脆断裂缝、铁桥的脆断倒塌、飞机因脆断而失事、石油、电站设备因脆断而发生重大事故的分析中,发现了一些它们的共同特点: 1.通常发生脆断时的宏观应力很低,按强度设计是安全的; 2.脆断事故通常发生在比较低的工作温度环境下; 3.脆断从应力集中处开始,裂纹源通常在结构或材料的缺陷处,如缺口、裂纹、夹杂等; 4.厚截面、高应变速率促进脆断。 由此,人们发现了传统设计思想和材料的性能指标在强度设计上的不足,试图提出新的性能指标和安全判据,找到防止脆断的新的设计方法。 传统的强度设计所依据的性能指标主要为弹性模量E、屈服极限σs、抗拉强度σb,而塑性指标延伸率δ和面收缩率φ在设计中只是参考数据,通常还会考虑应力集中现象,即使如此,设计的安全判据仍不足以防止脆断的发生,这说明材料的强度、塑性、弹性这些性能指标还不能完全反映材料抵抗脆断的发生。经过对众多脆断事故的分析和研究,人们提出了一个便于反映材料抗脆断能力的新的性能指标——韧性,从使脆性材料和韧性材料断裂所消耗的能量不同,归纳出韧性的定义为:所谓韧性是材料从变形到断裂过程中吸收能量的太小,它是材料强度和塑性的综合反映。 例如图l-2为球墨铸铁和低碳钢的拉伸曲线,可以用拉伸曲线下的面积来表示材料的韧性,即 图中可见,虽然球墨铸铁的抗拉强度σb比低碳钢高,但其断裂时的塑性应变εp确远较低碳钢小,综合起来看,低碳钢的韧性高。 图1-2 球铁和低碳钢拉伸曲线表示的韧性 材料的韧性可用实验的方法测试和判定。应用较早和较广泛的是缺口冲击试验,这种方法已经规范化。具体方法是将图1-3所示的缺口试样用专用冲击试验机施加冲击载荷,使试 样断裂,用冲击过程中吸收的功除以断口面积,所得即为材料的冲击韧性,以αk表示,单位为J/cm^2。目前国际上多用夏氏V型缺口试样,我国多用U型缺口试样。由于缺口冲击

浅谈对力学发展史给我的启示

浅谈对力学发展史给我的启示 ——张自宣 201002007003 物理学是一门基础学科,是研究物质世界最基本的结构、最普遍的相互作用、最一般的运动规律及所使用的实验手段和思维方法的自然科学,探索物质世界及其运动规律。物理学史研究人类对自然界各种物理现象的认识史,研究物理学发生和发展的基本规律,研究物理足额概念和思想发生和变革的过程,研究物理学是怎样成为一门独立学科,怎样不断开拓新领域,怎样产生新的飞跃。只有了解了物理学发展的历史,才能更加深入地认识物理学的宏伟壮观。通过对物理学史的学习,我不仅增长见识,加深对物理学的理解,更重要的是从中受益,开阔眼界,从前人的经验中得到启示。其中,力学的发展史更是让我感受颇深。 力学是物理学中发展最早的一个分支,它和人类的生活与生产联系最为紧密。公元前两百多年前阿基米德的杠杆原理和浮力原理以及中国古代的春秋战国时期,以《墨经》为代表的墨家总结了大量的力学知识开始,这些都是力学科学的萌芽,为以后力学的发展起到了十分积极推动的作用。进入到16世纪,航海、战争和工业生产的需要,力学研究得到了真正的发展。16—17世纪,以伽利略为代表的物理学家对力学开展了广泛的研究,得到了落体定律。随后,牛顿建立了牛顿运动三定律和万有引力定律。D.伯努利、拉格朗日和达朗贝尔等人对牛顿建立的力学体系进行推广和完善,形成了系统的理论体系,取得了广泛的应用并发展出了流体力学、弹性力学和分析力学等分支。到了18世纪,经典力学已经相当成熟,成为自然科学中的主导和领先学科。在力学发展的历史进程中,一批又一批的科学家为坚持真理、发现真知而不懈奋斗,艰苦探索,坚守物理学家的操守和内心对于真理的渴望与信仰,为人类社会的发展和进步起到了极大的作用物理学的发展是一个漫长艰辛的过程,需要物理学家们不断地探索,一直的坚持。第谷观测天体运动整整二十年,直到他临终前把自己多年积累的天文观测资料留给开普勒,嘱托他把这些观测结果整理发表出来。开普勒遵照第谷的遗嘱,克服了种种困难,经过艰苦繁杂的计算和编制,最终发表了《鲁道夫星表》。同时,开普勒敏锐的直觉告诉他,第谷所记录的数据中应该包含着天体运动的规律。他开始运用数学方法对第谷的数据资料进行系统的分析整理。要在浩瀚的数据资料中找到普遍适用的数学公式就好像时要在大海里捞针,需要进行无休止的繁琐的计算。这是一件艰巨而又几乎是毫无希望的事情,可以想象得到,靠谱了要有何等的毅力才能把这件工作坚持做到底。经过十七年的努力奋斗,开普勒三定律终于都能够横空出世。开普勒三定律系统总结了行星运动规律,这是第谷和开普勒合作的成果,是精确的科学预测与严密的数学推算相结合的典范,更是不断坚持探索精神的产物,这是在每一位物理学家身上所闪耀着的耀眼的光辉。 物理学发展的过程需要我们不断怀疑,敢于质疑权威,确实做到不唯书、不唯上、只为实。从最初的哥白尼提出日心说,就推翻了自古希腊占统治地位的地心说,地心说认为地球是不动的宇宙中心。由于亚里士多德-托勒密的地心说理论成为中世纪神学世界观的重要精神支柱,而天文学的发展却越来越多地解释了这个理论的荒谬,于是天文学就成为冲破神学束缚的一个突破口。文艺复兴的思想解放运动为打破地心说理论提供了思想动力和精神基础,而这个理论体系的打破又给予宗教神学以沉重的打击,使文艺复兴运动更具有实际内容,天文学也就因此首先进入近代科学的大门。这是一场斗争,只有通过对陈旧思想进行批判才

经典力学发展简史

经典力学发展简史 姓名:周玉全班级:物理学151班学号:5502115018 力学是物理学中最早发展的分支,它和人类的生活与生产关系最为密切。经典力学是力学的一个分支。经典力学是以牛顿运动定律为基础,研究宏观、低速状态下物体运动的一门学科。 力学的发展可谓与人类生活与生产息息相关。早在遥远的古代,人们就在劳动生产中应用杠杆、螺旋、滑轮、斜面等简单机械,促进了静力学的发展。公元前二百多年,古希腊的阿基米德提出了杠杆原理以及浮力定律。而我国古代的春秋战国时期,以《墨经》为代表作的墨家,总结了大量力学知识。虽然这些知识尚属于力学的萌芽,但不妨它在力学发展史中占有一席之地。 在古代,由于人们缺乏经验以及生产水平低下,没有适当科学仪器,导致力学的发展受到抑制。古希腊时代的亚里士多德主张物体速度与外力成正比、重物下落比轻物快、自然界惧怕真空等,看起来的确与经验没有明显矛盾,因此这些理论长期没人怀疑。当然力学长期得不到较大发展还与西方教会利用所谓“科学”奴役人们思想有关。这点最为人所熟知便属“地心说”了。托勒密的“地心说”因与《圣经》内容相符,再加上按地心说预报的行星位置在当时目测精度下与实际位置相差不多,故被人广泛接受。 首先揭开科学革命序幕、反对一直被奉若圭臬的“地心说”的是天文学领域。公元1543年,哥白尼发表了《天体运行理论》来具体论述日心体系。但这一新思想一开始并未能得到世人的广泛认识,因为当时教会仍然占有统治地位,而日心说与《圣经》内容相悖。科学发展越快,教会越趋极端,凡是不符合教会思想而另有主张的人,都会遭到迫害。意大利思想家布鲁诺就是一位信仰和宣扬哥白尼体系而英勇献身的科学殉道士。他认为宇宙是无限的,在太阳系之外还有无数的世界,这比日心说更为有力的冲击了教会的教义,因此被处以火刑。但科学并不会因惧怕火刑而驻足不前。德国天文学家开普勒在基于天文学家第谷毕生积累的天文观测资料的基础上,经过计算,得出了开普勒第一和第二定律,并在1609年出版的《新天文学》一书中,公布了这两条行星运动定律。开普勒的这两条定律打破了两千年来认为天体只能作匀速圆周运动的观念,使日心说与观测结果更为符合。开普勒继续利用第谷的观测数据进行深入研究,并于九年后找到了二分之三次方定律,即开普勒第三定律。开普勒三定律对推动天文学和力学有重要作用。伽利略是又一位献身于哥白尼学说的伟人。他是第一个将望远镜对准天体的科学家。1610年出版的《星界信使》一书,是对哥白尼学说的一极大支持。

断裂力学的发展与研究现状 - glearningtjueducn

万方数据

万方数据

万方数据

万方数据

断裂力学的发展与研究现状 作者:康颖安, KANG Ying-an 作者单位:湖南工程学院,机械工程系,湖南,湘潭,411101 刊名: 湖南工程学院学报(自然科学版) 英文刊名:JOURNAL OF HUNAN INSTITUTE OF ENGINEERING(NATURAL SCIENCE EDITION) 年,卷(期):2006,16(1) 被引用次数:1次 参考文献(10条) 1.范天佑断裂理论基础 2003 2.陈会军;李永东;唐立强多孔材料中裂纹尖端的渐近场[期刊论文]-哈尔滨工程大学学报 2000(03) 3.张淳源粘弹性断裂力学 1994 4.张俊彦;张淳源裂纹扩展条件及其温度场研究 1996(01) 5.Rice J R;Rosengren G F Plane strain deformation near a crack tip in a powerlaw hardening material 1968 6.Hutchinson J W Singular behavior at the end of a tensile crack in a hardening material 1968 7.黄克智弹塑性断裂力学的一个重要进展 1993(01) 8.Wells A A Applications of fracture mechanics at/and beyond general yielding 1963 9.Irwin G R Analysis of stress and strains near the end of a crack traversing a plate 1957 10.沈成康断裂力学 1996 引证文献(1条) 1.单丙娟浅谈断裂力学的发展与研究现状[期刊论文]-内蒙古石油化工 2007(7) 本文链接:https://www.sodocs.net/doc/eb3654028.html,/Periodical_hngcxyxb-zr200601011.aspx

岩石力学发展史

岩石力学是伴随着采矿、土木、水利、交通等岩石工程的建设和数学、力学等学科的进步而逐步发展形成的一门新兴学科,按其发展进程可划分四个阶段: (1)初始阶段(19世纪末~20世纪初) 这是岩石力学的萌芽时期,产生了初步理论以解决岩体开挖的力学计算问题。例如,1912年海姆(A.Heim)提出了静水压力的理论。他认为地下岩石处于一种静水压力状态,作用在地下岩石工程上的垂直压力和水平压力相等,均等于单位面积上覆岩层的重量,即γH。朗金(W.J.M.Rankine)和金尼克也提出了相似的理论,但他们认为只有垂直压力等于γH,而水平压力应为γH乘一个侧压系数,即λγH。朗金根据松散理论认为;而金尼克根据弹性理论的泊松效应认为。其中,λ、υ、φ分别为上覆岩层容重,泊松比和内摩擦角,H为地下岩石工程所在深度。由于当时地下岩石工程埋藏深度不大,因而曾一度认为这些理论是正确的。但随着开挖深度的增加,越来越多的人认识到上述理论是不准确的。 (2)经验理论阶段(20世纪初~20世纪30年代) (3)该阶段出现了根据生产经验提出的地压理论,并开始用材料力学和结构力学的方法分析地下工程的支护问题。最有代表性的理论就是普罗托吉雅柯诺夫提出的自然平衡拱学说,即普氏理论。该理论认为,围岩开挖后自然塌落成抛物线拱形,作用在支架上的压力等于冒落拱内岩石的重量,仅是上覆岩石重量的一部分。于是,确定支护结构上的荷载大小和分布方式成了地下岩石工程支护设计的前提条件。普氏理论是相应于当时的支护型式和施工水平发展起来的。由于当时的掘进和支护所需的时间较长,支护和围岩不能及时紧密相贴,致使围岩最终往往有一部分破坏、塌落。但事实上,围岩的塌落并不是形成围岩压力的惟一来源,也不是所有的地下空间都存在塌落拱。进一步地说,围岩和支护之间并不完全是荷载和结构的关系问题,在很多情况下围岩和支护形成一个共同承载系统,而且维持岩石工程的稳定最根本的还是要发挥围岩的作用。因此,靠假定的松散地层压力来进行支护设计是不合

断裂力学答案

( ( = K I + K I(2) 1.简述断裂力学的发展历程(含3-5 个关键人物和主要贡献)。 答:1)断裂力学的思想是由Griffith 在1920 年提出的。他首先提出将强度与裂纹长度定量 地联系在一起。他对玻璃平板进行了大量的实验研究工作,提出了能量理论思想。(2)断裂 力学作为一门科学,是从1948 年开始的。这一年Irwin 发表了他的第一篇经典文章“Fracture Dynamic(断裂动力学)”,研究了金属的断裂问题。这篇文章标志着断裂力学的诞生。(3) 关于脆性断裂理论的重大突破仍归功于Irwin。他于1957 年提出了应力强度因子的概念,在 此基础上形成了断裂韧性的概念,并建立起测量材料断裂韧性的实验技术。这样,作为断裂 力学的最初分支——线弹性断裂力学就开始建立起来了。(4)1963 年,Wells 提出了裂纹张 开位移(COD)的概念,并用于大范围屈服的情况。研究表明,在小范围屈服情况下COD 法与LEFM 是等效的。(5)1968 年,Rice 等人根据与路径无关的回路积分,提出了J 积分 的概念。J 积分是一个定义明确、理论严密的应力应变参量,它的实验测定也比较简单可靠。 J 积分的提出,标志着弹塑性断裂力学基本框架形成。 2.断裂力学的定义,研究对象和主要任务。 答:1)断裂力学的定义:断裂力学是一门工程学科,它定量地研究承载结构由于所含有的 一条主裂纹发生扩展而产生失效的条件。 (2)研究对象:断裂力学的研究对象是带有裂纹的承载结构。 (3)主要任务:研究裂纹尖端附近应力应变分布,掌握裂纹在载荷作用下的扩展规律;了 解带裂纹构件的承载能力,进而提出抗断设计的方法,保证构件安全工作。 3.什么是平面应力和平面应变状态,二者有什么特点?请举例说明之。 答:(1)平面应力:薄板问题,只有xoy 平面内的三个应力分量σ x、σ y、τ xy; ε z ≠ 0, 属三向应变状态。 (2)平面应变:长坝问题,与oz 轴垂直的各横截面相同,载荷垂直于z 轴且沿z 轴方向无 变化; ε z = 0, σ z ≠ 0,属三向应力状态;材料不易发生塑性变形,更具危险。 4.什么是应力强度因子的叠加原理,并证明之。掌握工程应用的方法。 答:(1)应力强度因子的叠加原理:复杂载荷下的应力强度因子等于各单个载荷的应力强 度因子之和。 (1) 在外载荷T2作用下,裂纹前端应力场为 σ2,则相应的应力强度因子为K I(2) = σ 2 π a 如果外载荷T1和T2联合作用,则裂纹前端应力场为 σ1+ σ2,则相应的应力强度因子为 K I = (σ 1 + σ 2 ) π a = σ 1 π a + σ 2 π a (1) 6.为什么裂纹尖端会发生应力松弛?如何对应力强度因子进行修正? 答:裂纹尖端附近存在着小范围的塑性区(设塑性区是以裂纹尖端为圆心,半径为r0 的圆 π a 形区域),材料屈服后,多出来的应力将要松驰(即传递给r>r0 的区域),使r0 前方局部地 区的应力升高,又导致这些地方发生屈服。即屈服导致应力松弛。 Irwin 提出了有效裂纹尺寸的概念a eff = a + r y对应力强度因子进行修正,在小范围条件下,

力学的发展历程

力学的发展历程 古代力学的发展 古代最早的物理学体系是亚里士多德系,物理学者这门学科的名称就是由亚里士多德创立的。在亚里士多德的《物理学》中,主要讨论运动(及产生和消灭)、空间和时间以及事物变化的原因等物理世界的根本原理,应该说,亚里士多德是比较系统和深入研究运动及有关的时间、空间的第一人。 关于运动,亚里士多德认为,物体永远在运动变化,“运动是永恒的,不能在一个时候曾经存在,在另一个时候不存在”,这种运动永恒的观点具有唯物主义思想,包含辩证法的因素,至今仍是积极而有价值的。 对物理学的发展来说,亚里士多德初步提出以物质运动及其与时间、空间、周围物体的关系为研究对象,以形成一门独立的自然学科,重视对近身事物的具体观察,强调思维逻辑的作用,首先引用数学方法来考虑具体物理定律,从而引起众多的讨论与研究等。 阿基米德是古希腊继亚里士多德之后又一科学巨匠,他从生产实践出发,运用数学的方法建立起静力学,被誉为“力学之父”。阿基米德在力学上的贡献主要是严格地证明了杠杆定理和浮力定律。这是从经验知识走向定律建立的重大飞跃。 阿基米德不仅是个理论家,也是个实践家,他一生热衷于将其科学发现应用于实践,一生创造发明了许多机构和机器。 经典力学的发展 伽利略对亚里士多德的运动理论进行检验和批判,成为经典力学的先驱,是近代实验物理学的奠基人,被推崇为“近代科学之父”。 伽利略在力学研究中做出的重要贡献 1.关于运动的描述 伽利略抛弃了亚里士多把运动分为自然运动和强迫运动的观点,采用数学方法来定量地分析运动,对位移、距离和时间的概念给予确切的数学表达形式,运用笛卡儿创立的坐标系来定量的描述运动,认为应该依据运动的基本特征量速度对运动进行分类,由此,把运动分为匀速运动和变速运动两种,并引入加速度的概念。 2.自由落体运动 伽利略首先运用从一个理想实验得出的佯缪入手,对亚里士多德落体学说提出了反驳。根据亚里士多德的论断,一块大石头的下落速度要比一块小石头的下落速度大。假定大石头的下落速度为8,小石头的下落速度为4,当我们把两块石头拴在一起时,下落快的会被下落慢的拖着而减慢,下落慢的会被下落快的拖着而加快,结果整个系统的下落速度应该小于8。但是两块石头拴在一起,加起来比大石头还要重,因此重物体比轻物体都小。这样,就从重物体比轻物体下落得快的假设,推出了重物体比轻物体下落得慢的结论,从而在逻辑上证明了亚里士多德的学说是错误的。再通过著名的斜面实验检验自由落体运动符合他所提出的匀加速运动的定义。自由落体下落的时间太短,当时用实验直接验证自由落体是匀加速运动仍有困难,伽利略采用了间接验证的方法,他让一个铜球从阻力很小的斜面上滚下,做了上百次的实验,小球在斜面上运动的加速度要比它竖直下落时的加速度小得多,所以时间容易测量些。实验结果表明,光滑斜面的倾角保

力学发展史

力学的发展史 力学总体介绍 通常理解的力学,是指一切研究对象的受力和受力效应的规律及其应用的学科的总称。人类早期的生产实践活动是力学最初的起源。 物理学的建立是从力学开始的,当物理学摆脱了这种机械(力学)的自然观而获得健康发展时,力学则在工程技术的推动下按自身逻辑进一步演化。最终,力学和物理学各自发展成为自然学科中两个相互独立的、自成体系的学科分类。在力学与物理学之间不存在隶属关系。 按研究对象的物态进行区分,力学可以分为固体力学和流体力学。根据研究对象具体的形态、研究方法、研究目的的不同,固体力学可以分为理论力学、材料力学、结构力学、弹性力学、板壳力学、塑性力学、断裂力学、机械振动、声学、计算力学、有限元分析等等,流体力学包含流体力学、流体动力学等等。根据针对对象所建立的模型不同,力学也可以分为质点力学、刚体力学和连续介质力学。连续介质通常分为固体和流体,固体包括弹性体和塑性体,而流体则包括液体和气体。 理论力学是研究物体的机械运动规律及其应用的科学,理论力学是力学的学科基础 它可分为静力学、运动学和动力学三部分:①静力学:研究物体在平衡状态下的受力规律;②运动学:研究物体机械运动的描述,如速度、切向加速度、法向加速度等等,但不涉及受力;③动力学:讨论质点或者质点系受力和运动状态的变化之间的关系。 力学的起源 力学知识最早起源于对自然现象的观察和在生产劳动中的经验。人们在建筑、灌溉等劳动中使用杠杆、斜面、汲水器具,逐渐积累其对平衡物体受力情况的认识。 亚里士多德对力学的影响 亚里士多德(前384—前322年),古希腊斯吉塔拉人,世界古代史上最伟大的哲学家、科学家和教育家之一。 亚里士多德认为,各物体只有在一个不断作用着的推动者直接接触下,才能保持运动,否则物体就会停止。任何运动,都是通过接触而产生的。真空也是不能存在的,因为空间必须装满物质,这样才能通过直接接触传递物理作用。因此亚里士多德反对原子论的“世界是由真空和原子组成”的观点。他认为,空间必须是一个物质的连续体。 《物理学》是亚氏的重要著作之一,其中运动学说又是其核心内容 1. 运动的本性 1运动的连续性(1时间的连续2量的连续) 2运动的过程性亚氏把每一类事物分为现实的和潜能的 .他认为从潜能到现实的过程,

力学发展简史

经典力学发展简史 姓名:周玉全 力学是物理学中最早发展的分支,它和人类的生活与生产关系最为密切。经典力学是力学的一个分支。经典力学是以牛顿运动定律为基础,研究宏观、低速状态下物体运动的一门学科。 力学的发展可谓与人类生活与生产息息相关。早在遥远的古代,人们就在劳动生产中应用杠杆、螺旋、滑轮、斜面等简单机械,促进了静力学的发展。公元前二百多年,古希腊的阿基米德提出了杠杆原理以及浮力定律。而我国古代的春秋战国时期,以《墨经》为代表作的墨家,总结了大量力学知识。虽然这些知识尚属于力学的萌芽,但不妨它在力学发展史中占有一席之地。 在古代,由于人们缺乏经验以及生产水平低下,没有适当科学仪器,导致力学的发展受到抑制。古希腊时代的亚里士多德主张物体速度与外力成正比、重物下落比轻物快、自然界惧怕真空等,看起来的确与经验没有明显矛盾,因此这些理论长期没人怀疑。当然力学长期得不到较大发展还与西方教会利用所谓“科学”奴役人们思想有关。这点最为人所熟知便属“地心说”了。托勒密的“地心说”因与《圣经》内容相符,再加上按地心说预报的行星位置在当时目测精度下与实际位置相差不多,故被人广泛接受。 首先揭开科学革命序幕、反对一直被奉若圭臬的“地心说”的是天文学领域。公元1543年,哥白尼发表了《天体运行理论》来具体论述日心体系。但这一新思想一开始并未能得到世人的广泛认识,因为当时教会仍然占有统治地位,而日心说与《圣经》内容相悖。科学发展越快,教会越趋极端,凡是不符合教会思想而另有主张的人,都会遭到迫害。意大利思想家布鲁诺就是一位信仰和宣扬哥白尼体系而英勇献身的科学殉道士。他认为宇宙是无限的,在太阳系之外还有无数的世界,这比日心说更为有力的冲击了教会的教义,因此被处以火刑。但科学并不会因惧怕火刑而驻足不前。德国天文学家开普勒在基于天文学家第谷毕生积累的天文观测资料的基础上,经过计算,得出了开普勒第一和第二定律,并在1609年出版的《新天文学》一书中,公布了这两条行星运动定律。开普勒的这两条定律打破了两千年来认为天体只能作匀速圆周运动的观念,使日心说与观测结果更为符合。开普勒继续利用第谷的观测数据进行深入研究,并于九年后找到了二分之三次方定律,即开普勒第三定律。开普勒三定律对推动天文学和力学有重要作用。伽利略是又一位献身于哥白尼学说的伟人。他是第一个将望远镜对准天体的科学家。1610年出版的《星界信使》一书,是对哥白尼学说的一极大支持。

断裂力学材料

?断裂力学是为解决机械结构断裂问题而发展起来的力学分支,它将力学、物理学、材料学以及数学、工程科学紧密结合,是一门涉及多学科专业的力学专业课程。 ?本课程将简要介绍断裂的工程问题、能量守恒与断裂判据、应力强度因子、线弹性和弹塑性断裂力学基本理论、裂纹扩展、J积分以及断裂问题的有限元方法等内容。 ?当机械结构带有裂纹时,判断机械结构发生断裂的时机,不能用屈服判据,而应该寻求新的断裂判据。 ?现代断裂力学(fracture mechanics)这门学科,就在这种背景下诞生了。从上世纪五十年代中期以来,断裂力学发展很快,目前线性理论部分已比较成熟,在工程方面,已广泛应用于宇航、航空、海洋、兵器、机械、化工和地质等许多领域。断裂力学的关键问题(一) 1.多小的裂纹或缺陷是允许存在的,即此小裂纹或缺陷不会在预定的服役期间发展成断裂时的大裂纹? 2.多大的裂纹就可能发生断裂,即用什么判据判断断裂发生的时机? 3.从允许存在的小裂纹扩展到断裂时的大裂纹需要多长时间,即机械结构的寿命如何估算?以及影响裂纹扩展率的因素。 4.在既能保证安全,又能避免不必要的停产损失,探伤检查周期应如何安排? 5.万一检查时发现了裂纹,该如何处理? 断裂力学的关键问题(二) 1.什么材料比较不容易萌生裂纹? 2.什么材料可以容许比较长的裂纹存在而不发断裂? 3.什么材料抵抗裂纹扩展的性能较好? 4.怎样冶炼、加工和热处理可以得到最佳效果? 前五个问题可以用断裂力学的方法来解决;后面四个问题则属于材料或金属学的领域。因此,断裂是与力学、材料和工程应用有关的问题。应综合力学、材料学和工程应用等方面着手研究。 解决断裂问题的思路 为解决上面所提的工程问题和材料问题,对于含裂纹的受力机械零件或构件,必须先找到一个能表征裂纹端点区应力应变场强度(intensity)的参量,就象应力可以作为裂纹不存在时的表征参量一样。 解决断裂问题的思路—科学假说(续) 因为断裂的发生绝大多数都是由裂纹引起的,而断裂尤其是脆性断裂,一般就是裂纹的失稳扩展。裂纹的失稳扩展,通常由裂纹端点开始。因此,发生断裂的时机必然与裂端区应力应变场的强度有关。 对于不含裂纹的物体,当某处的应力水平超过屈服应力,就要发生塑性变形;而对于含裂纹的物体,当某裂端表征应力应变场强度的参量达到临界值时,就要发生断裂。 这个发生断裂的临界值很可能是材料常数,它既可表征材料抵抗断裂的性能,亦可用来衡量材料质量的优劣。 影响断裂的两大因素 载荷大小和裂纹长度 考虑含有一条宏观裂纹的构件,随着服役时间后使用次数的增加,裂纹总是愈来愈长。在工作载荷较高时,比较短的裂纹就有可能发生断裂;在工作载荷较低时,比较长的裂纹才会带来危险。这表明表征裂端区应力变场强度的参量与载荷大小和裂纹长短有关,甚至可能与构件的几何形状有关。 断裂力学研究内容

断裂力学答案

( ( = K I + K I(2) 1.简述断裂力学的发展历程(含 3-5 个关键人物和主要贡献)。 答: 1)断裂力学的思想是由 Griffith 在 1920 年提出的。他首先提出将强度与裂纹长度定量 地联系在一起。他对玻璃平板进行了大量的实验研究工作,提出了能量理论思想。(2)断裂 力学作为一门科学,是从 1948 年开始的。这一年 Irwin 发表了他的第一篇经典文章“Fracture Dynamic (断裂动力学)”,研究了金属的断裂问题。这篇文章标志着断裂力学的诞生。(3) 关于脆性断裂理论的重大突破仍归功于 Irwin 。他于 1957 年提出了应力强度因子的概念,在 此基础上形成了断裂韧性的概念,并建立起测量材料断裂韧性的实验技术。这样,作为断裂 力学的最初分支——线弹性断裂力学就开始建立起来了。(4)1963 年,Wells 提出了裂纹张 开位移(COD )的概念,并用于大范围屈服的情况。研究表明,在小范围屈服情况下 COD 法与 LEFM 是等效的。(5)1968 年,Rice 等人根据与路径无关的回路积分,提出了 J 积分 的概念。J 积分是一个定义明确、理论严密的应力应变参量,它的实验测定也比较简单可靠。 J 积分的提出,标志着弹塑性断裂力学基本框架形成。 2.断裂力学的定义,研究对象和主要任务。 答: 1)断裂力学的定义:断裂力学是一门工程学科,它定量地研究承载结构由于所含有的 一条主裂纹发生扩展而产生失效的条件。 (2)研究对象:断裂力学的研究对象是带有裂纹的承载结构。 (3)主要任务:研究裂纹尖端附近应力应变分布,掌握裂纹在载荷作用下的扩展规律;了 解带裂纹构件的承载能力,进而提出抗断设计的方法,保证构件安全工作。 3.什么是平面应力和平面应变状态,二者有什么特点?请举例说明之。 答:(1)平面应力:薄板问题,只有 xoy 平面内的三个应力分量σ x 、σ y 、τ xy ; ε z ≠ 0 , 属三向应变状态。 (2)平面应变:长坝问题,与 oz 轴垂直的各横截面相同,载荷垂直于 z 轴且沿 z 轴方向无 变化; ε z = 0 , σ z ≠ 0 ,属三向应力状态;材料不易发生塑性变形,更具危险。 4.什么是应力强度因子的叠加原理,并证明之。掌握工程应用的方法。 答:(1)应力强度因子的叠加原理:复杂载荷下的应力强度因子等于各单个载荷的应力强 度因子之和。 (1) 在外载荷 T 2 作用下,裂纹前端应力场为 σ2,则相应的应力强度因子为 K I(2) = σ 2 π a 如果外载荷 T 1 和 T 2 联合作用,则裂纹前端应力场为 σ1+ σ2 ,则相应的应力强度因子为 K I = (σ 1 + σ 2 ) π a = σ 1 π a + σ 2 π a (1) 6.为什么裂纹尖端会发生应力松弛?如何对应力强度因子进行修正? 答:裂纹尖端附近存在着小范围的塑性区(设塑性区是以裂纹尖端为圆心,半径为 r0 的圆 π a 形区域),材料屈服后,多出来的应力将要松驰(即传递给 r>r0 的区域),使 r0 前方局部地 区的应力升高,又导致这些地方发生屈服。即屈服导致应力松弛。 Irwin 提出了有效裂纹尺寸的概念 a eff = a + r y 对应力强度因子进行修正,在小范围条件下,

岩石的损伤力学及断裂力学综述

岩石的断裂力学及损伤力学综述 摘要:论述了国内外断裂力学及损伤力学的学科发展历程,总结了岩体断裂力学损伤力学的研究内容、研究特点以及岩石力学专家们一些年来所取得的主要成果,并简单介绍了断裂力学损伤力学在岩土工程中的实际应用。最后,通过对岩石破坏的断裂-损伤理论的阐述,指出了综合考虑损伤与断裂的破坏理论是能更好地反映岩石实际破坏过程的一种新的理论, 可在以后的理论研究和实际工程中得以更为广泛的应用。 关键词:岩石 断裂力学 损伤力学 应用 1 引 言 岩石的破坏过程总是伴随着损伤(分布缺陷)和裂纹(集中缺陷)的交互扩展, 这种耦合效应使得裂纹尖端附近区域材料必然具有更严重的分布缺陷。岩石的破坏, 如脆性断裂和塑性失稳, 虽然有突然发生的表面现象, 但是, 从材料损伤的发生、发展和演化直到出现宏观的裂纹型缺陷, 伴随着裂纹的稳定扩展或失稳扩展, 是作为过程而展开的。 经典的断裂力学广泛研究的是裂纹及其扩展规律问题。物体中的裂纹被理想化为一光滑的零厚度间断面。在裂纹的前缘存在着应力应变的奇异场,而裂纹尖端附近的材料假定同尖端远处的材料性质并无区别。象裂纹这样的缺陷可称它为奇异缺陷,因此经典断裂力学中物体的缺陷仅仅表现为有奇异缺陷的存在。 而损伤力学所研究的是连续分布的缺陷, 物体中存在着位错、微裂纹与微孔洞等形形色色的缺陷,这些统称为损伤。从宏观来看, 它们遍布于整个物体。这些缺陷的发生与发展表现为材料的变形与破坏。损伤力学就是研究在各种加载条件下, 物体中的损伤随变形而发展并导致破坏的过程和规律。 事实上, 物体中往往同时存在着奇异缺陷和分布缺陷。在裂纹(奇异缺陷)附近区域中的材料必然具有更严重的分布缺陷, 它的力学性质必然不同于距离裂纹尖端远处的材料。因此, 为了更切合实际, 就必须把损伤力学和断裂力学结合起来, 用于研究物体更真实的破坏过程。 2 断裂力学 2.1 断裂力学学科发展 “断裂力学”指的是固体力学的一个重要分支,该学科要在假定裂纹存在的条件下,寻求裂纹长度、材料抗裂纹增长的固有阻力、以及能使裂纹高速扩展从而导致结构失效的应力之间的定量关系[]1。 断裂力学最早是在1920年提出的。当时格里菲斯为了研究玻璃、陶瓷等脆性材料的实际强度比理论强度低的原因,提出了在固体材料中或在材料的运行过程中存在或产生裂纹的设想,计算了当裂纹存在时,板状构件中应变能变化进而得出了一个十分重要的结果:常数≡a c δ。 1949年,奥罗万在分析了金属构件的断裂现象后对格里菲斯的公式提出了修正,他认为产生裂纹所释放的应变能不仅能转化为表面能,也应转化为裂纹前沿

断裂与损伤力学发展与理论

1.断裂与损伤力学的发展过程以及要解决的问题。 2.材料疲劳损伤机理以及断裂力学基本分析方法。 3.新材料复合材料的损伤以及断裂破坏基础理论。 1、 断裂与损伤力学的发展过程以及要解决的问题 1.1 断裂力学的发展简史及要解决的问题 断裂力学理论最早是在1920年提出。当时Griffith 为了研究玻璃、陶瓷等脆性材料的实际强度比理论强度低的原因,提出了在固体材料中或在材料的运行过程中存在或产生裂纹的设想,其内容是:结构体系内裂纹扩展,体系内总能量降低,降低的能量用于裂纹增加新自由表面的表面能,裂纹扩展的临界条件是裂纹扩展力(即应变能释放率)等于扩展阻力(裂纹扩展,要增加自由表面能而引起的阻力)。很好地解释了玻璃的低应力脆断现象。计算了当裂纹存在时,板状构件中应变能的变化进而得出了一个十分重要的结果:=a c δ常数。 其中,c δ是裂纹扩展的临界应力;a 为裂纹半长度。他成功的解释了玻璃等脆性材料的开裂现象但是应用于金属材料时却并不成功。 1944年泽纳(Zener)和霍洛蒙(Hollmon)又首先把Griffith 理论用于金属材料的脆性断裂。不久欧文(Irwin)指出,Griffith 的能量平衡应该是体系内储存的应变能与表面能、塑性变形所做的功之间的能量平衡,并且还指出,对于延性大的材料,表面能与塑性功相比一般是很小的。同时把G 定义为“能量释放率”或“裂纹驱动力”,即裂纹扩展过程中增加单位长度时系统所提供的能量,或裂纹扩展单位面积系统能量的下降率。 1949年Orowam E 在分析了金属构件的断裂现象后对Griffith 的公式提出了修正,他认为产生裂纹所释放的应变能不仅能转化为表面能,也应转化为裂纹前沿的塑性应变功,而且由于塑性应变功比表面能大得多以至于可以不考虑表面能的影响,其提出的公式为 =a c δ=2/1)/2(λEU 常数 该公式虽然有所进步,但仍未超出经典的Griffith 公式范围,而且同表面能

力学发展简史

力学发展简史Newly compiled on November 23, 2020

经典力学发展简史 姓名:周玉全 力学是物理学中最早发展的分支,它和人类的生活与生产关系最为密切。经典力学是力学的一个分支。经典力学是以牛顿运动定律为基础,研究宏观、低速状态下物体运动的一门学科。 力学的发展可谓与人类生活与生产息息相关。早在遥远的古代,人们就在劳动生产中应用杠杆、螺旋、滑轮、斜面等简单机械,促进了静力学的发展。公元前二百多年,古希腊的阿基米德提出了杠杆原理以及浮力定律。而我国古代的春秋战国时期,以《墨经》为代表作的墨家,总结了大量力学知识。虽然这些知识尚属于力学的萌芽,但不妨它在力学发展史中占有一席之地。 在古代,由于人们缺乏经验以及生产水平低下,没有适当科学仪器,导致力学的发展受到抑制。古希腊时代的亚里士多德主张物体速度与外力成正比、重物下落比轻物快、自然界惧怕真空等,看起来的确与经验没有明显矛盾,因此这些理论长期没人怀疑。当然力学长期得不到较大发展还与西方教会利用所谓“科学”奴役人们思想有关。这点最为人所熟知便属“地心说”了。托勒密的“地心说”因与《圣经》内容相符,再加上按地心说预报的行星位置在当时目测精度下与实际位置相差不多,故被人广泛接受。 首先揭开科学革命序幕、反对一直被奉若圭臬的“地心说”的是天文学领域。公元1543年,哥白尼发表了《天体运行理论》来具体论述日心体系。但这一新思想一开始并未能得到世人的广泛认识,因为当时教会仍然占有统治地位,而日心说与《圣经》内容相悖。科学发展越快,教会越趋极端,凡是不符合教会思想而另有主张的人,都会遭到迫害。意大利思想家布鲁诺就是一位信仰和宣扬哥白尼体系而英勇献身的科学殉道士。他认为宇宙是无限的,在太阳系之外还有无数的世界,这比日心说更为有力的冲击了教会的教义,因此被处以火刑。但科学并不会因惧怕火刑而驻足不前。德国天文学家开普勒在基于天文学家第谷毕生积累的天文观测资料的基础上,经过计算,得出了开普勒第一和第二定律,并在1609年出版的《新天文学》一书中,公布了这两条行星运动定律。开普勒的这两条定律打破了两千年来认为天体只能作匀速圆周运动的观念,使日心说与观测结果更为符合。开普勒继续利用第谷的观测数据进行深入研究,并于九年后找到了二分之三次方定律,即开普勒第三定律。开普勒三定律对推动天文学和力学有重要作用。伽利略是又一位献身于哥白尼学说的伟人。他是第一个将望远镜对准天体的科学家。1610年出版的《星界信使》一书,是对哥白尼学说的一极大支持。

相关主题