搜档网
当前位置:搜档网 › 荧光蛋白--(整理)

荧光蛋白--(整理)

荧光蛋白--(整理)
荧光蛋白--(整理)

荧光蛋白--(整理)

荧光

一、定义

荧光(fluorescence )又作“萤光”,是指一种光致发光的冷发光现象。当某种常温物质经某种波长的入射光(通常是紫外线或X射线)照射,吸收光能后进入激发态,并且立即退激发并发出比入射光的的波长长的出射光(通常波长在可见光波段);而且一旦停止入射光,发光现象也随之立即消失。具有这种性质的出射光就被称之为荧光。

二、原理

光照射到某些原子时,光的能量使原子核周围的一些电子由原来的轨道跃迁到了能量更高的轨道,即从基态跃迁到第一激发单线态或第二激发单线态等。第一激发单线态或第二激发单线态等是不稳定的,所以会恢复基态,当电子由第一激发单线态恢复到基态时,能量会以光的形式释放,所以产生荧光。

荧光是物质吸收光照或者其他电磁辐射后发出的光。大多数情况下,发光波长比吸收波长较长,能量更低。但是,当吸收强度较大时,可能发生双光子吸收现象,导致辐射波长短于吸收波长的情况发射。当辐射波长与吸收波长相等时,既是共振荧光。

荧光强度:荧光强度与该种物质的荧光量子产率、消光系数以及含量等因素有关。荧光量子产率Q:量子产率表示物质将吸收的光能转化为荧光的本领,是荧光物质发出光子数与吸收光子数的比值。荧光蛋白分子的亮度由其量子产率与消

光系数的乘积决定,与成像检测灵敏度密切相关。

三、荧光蛋白

1、绿色荧光蛋白(green fluorescent protein,GFP)

在光谱的绿光区(500nm-525nm)已经发现了多种荧光蛋白,而且来源广泛,包括不同种属的Aequorea 、桡足类动物、文昌鱼以及珊瑚。然而多数有齐聚反应,即使最好的荧光蛋白与EGFP相比,也没有明显的优点。或许目前活细胞成像最好的选择是GFP衍生的Emerald(祖母绿),它与EGFP的特性相似。Emerald包含F64L和S65T突变,另外还有四个点突变从而改进了折叠、37℃时的突变率以及亮度。虽然Emerald比EGFP更有效,但含有快速光漂白成分,可能在某些环境下其定量成像会受到影响。

下面主要介绍GFP及其衍生型荧光蛋白:

(1)来源

绿色荧光蛋白最早由美籍日裔科学家下村修于1962年在水母中发现。这种蛋白质在蓝色波长范围的光照激发下发出绿色荧光,其发光过程需要冷光蛋白质Aequorin的帮助,而且,这个冷光蛋白质可与钙离子(Ca2+)相互作用。在水母中发现的野生型绿色荧光蛋白的分子量较小,仅为27~30kDa,而编码GFP的基因序列也很短,为2.6kb。

(2)性质

GFP由238个氨基酸残基组成。GFP序列中的65-67位残基(Ser65-Tyr66-Gly67)可自发形成荧光发色基团——对羟基苯咪唑啉酮GFP的激发光谱在400nm附近有一个主激发峰,在470nm附近有一个次激发峰。发射光谱在505nm附近有一尖锐的主发射峰,在540nm附近有一肩峰GFP的化学性质相当稳定,无光漂白现象(Photobleaching),用甲醛固定和石蜡包埋亦不影响其荧光性质。在细胞生物学与分子生物学领域中,绿色荧光蛋白基因常被用作报告基因。

(3)野生型

野生型GFP(wild type GFP, wtGFP)从一开始就引起了人们极大的兴趣,而且被用作新型的简单报告基因及体内标记,但GFP在异源生物体中的表达并非那么简单。例如,研究人员很早就发现需要在较高的温度下孵育才能在细胞或生物体中表达GFP,并且wtGFP在37℃的热稳定性差。这些都阻碍了它在转基因中的应用。这些难题促使人们进一步筛选分离wtGFP的变体。现在,人们已经找到了荧光强度更强且更耐热的变体。这些变体多数为经突变的脱辅基蛋白,它们可防止高温导致的错误折叠。近年来出现的新型wtGFP基因突变体的激发和发射谱发生了改变,热稳定性和荧光强度得到了提高,GFP报告基因在小鼠中的应用就是以这些变体作为基础的。

(4)增强型绿色荧光蛋白(EGFP)

现在,应用最为广泛的是红移变体增强型GFP(EGFP)。诸如EGFP这些红移变体的最大激发峰发生红向移动,大约为490nm,这一波长也恰好是多数分光设备、

流式细胞仪及共聚焦显微镜的常用波长。EGFP有两个氨基酸突变,当被蓝光激发时,它发出的荧光要比wtGFP亮30-40倍。wtGFP和包括EGFP在内的多数变体半衰期长,所以不适合精确追踪表达的减少或损耗。

(5)不稳定增强型绿色荧光蛋白(dEGFP)

为克服这一问题,人们在1998年构建了不稳定增强型绿色荧光蛋白(dEGFP)。原理就是将EGFP的cDNA融合到小鼠鸟氨酸脱羧酶(Ornithine decarboxylase, ODC)基因的C-末端。ODC含有一个PEST序列,这个序列可促进该蛋白在细胞内的降解。虽然,目前这些不稳定变体还没有在小鼠中应用,但这些变体有利于实时追踪基因表达动力学的研究。

(6)增强型黄色荧光蛋白(EYFP)

另一种红移变体是增强型黄色荧光蛋白(EYFP),该变体有四个氨基酸突变。在527nm时,EYFP的发射光从绿色变为黄绿色。EYFP荧光的亮度水平与EGFP相当。EYFP 抗酸性差、对卤化物敏感,使它的应用受到限制。在EYFP 基础上改进的突变体mCitrine[21]和mVenus[22]是目前应用最多的黄色荧光蛋白。

(7)增强型蓝色荧光蛋白(EBFP)

在光谱的另一端是蓝色/蓝绿色变体,包括增强型蓝色荧光蛋白(EBFP)变体。它有四个氨基酸突变,激发波长和发射波长分别为380nm和440nm。由于这些突变改进了蛋白折叠和发色团形成的效率,所以也增强了所发出荧光的亮度(与蓝色变体相比)和蛋白溶解性。但唯一的不足之处,就是EBFP产生的荧光信号大致与wtGFP相当。蓝色荧光蛋白发光较弱,抗光漂白和抗酸性较差,用于细胞成像时背景信号高。针对EBFP开发的3个更亮的突变体:Azurite (亮度是EBFP的1.6 倍)、EBFP2(亮度是EBFP的2倍,mTagBFP(亮度是EBFP的3.7倍)。最亮的蓝色荧光蛋白。mTagBFP 是由红色荧光蛋白TagRFP突变而来。

(8)增强型蓝绿色(青色)荧光蛋白(ECFP)

增强型蓝绿色荧光蛋白(ECFP)是发出蓝色/蓝绿色荧光的另一种变体,产生的荧光信号要比wtGFP强。ECFP有六个氨基酸突变(表3),发射光谱从绿色迁移到蓝绿色,最大激波长在433nm(主峰)和453nm(次峰),最大发射在475nm,于510nm处有一肩峰(图11)。ECFP另一特点是比其它蓝色/蓝绿色变体光漂白效应弱,而且比EBFP的亮度强。值得一提的是,wtGFP的主要绿色荧光变体,如EGFP等已经在ES细胞、基因打靶和转基因小鼠研究中得到充分应用。

2、蓝色及蓝绿色荧光蛋白

虽然EBFP是Aequorea GFP来源的最早的光谱变体之一,但其亮度低、光稳定性差,使其很久以来没有引起多数研究者的注意。最近,有三个研究小组报道指出,改进的蓝色Aequorea 荧光蛋白变体与EBFP相比,亮度和光敏感性有明显增强。这些新的变体被命名为Azurite(石青或蓝铜矿)、强力增强型蓝色荧光蛋白2(strongly enhanced blue fluorescent protein 2, SBFP2)及EBFP2,它们第一次使得活细胞在蓝色光谱区域成功地长时间成像成为可能。即使这三种荧光蛋白在高浓度的微环境中表现出很弱的二聚体特性,但是它们能够在与亚细胞定位的靶蛋白融合中有效地发挥作用,并且它们能够很容易地通过滤光片设备与标准的BFP及4', 6-二脒基-2-苯基吲哚(4',6-diamidino-2-phenylindole, DAPI)一起成像。所有这些BFP变体都可以通过A206K突变改造成真正的单体,而且这种突变不会影响它们的特性。更

重要的是,亮度最强、光稳定性最强的蓝色荧光蛋白EBFP2,是EGFP在活细胞中FRET的很好的供体。

3、黄色荧光蛋白

荧光蛋白的改造遵循这样一个宗旨,那就是越红越好.普遍认为,长波长光子的激发对细胞和组织的光毒性小,且自体荧光和动物组织的光吸收都是最小。这些因素意味着红色的荧光基团对比度提高(因为背景应该降低),且更适合于体内成像。于是,荧光蛋白的改造慢慢向红色偏移。

黄色荧光蛋白最早的变体EYFP(表6)虽然仍被广泛应用,但由于其pK a值高、对卤化物敏感,导致EYFP的应用还很不理想。单体形式的变体柠檬黄(mCitrine)和维纳斯(mVenus)是目前应用最多的黄色荧光蛋白探针,但二者都还没有商业化。然而与之相似的,来源于Aequorea 被命名为诞生石Topaz(黄玉)的变体可从Invitrogen公司买到。

另一种很有应用潜力的黄色荧光蛋白是能量转移黄色荧光蛋白(yellow fluorescent protein for energy transfer, YPet),它经合成的DNA重排获得,与荧光激活的细胞分选术结合能够增强FRET中蓝绿色荧光蛋白和黄色荧光蛋白的配对。YPet是已经开发的亮度最强的黄色荧光蛋白,并且有很好的光稳定性。YPet对酸性环境的耐受性要比mVenus及其它黄色荧光蛋白变体强。

4、橙色荧光蛋白

在橙色和红色波长(约560nm到650nm)光谱区仅仅开发了几种探针。尽管如此,现有的这几种光谱型的蛋白都是从珊瑚中分离得到的,并且在多种成像情景中显现出应用潜力,但在对橙色区域荧光蛋白的命名中存在混乱。通常被命名为红色荧光蛋白RFP的探针如DsRed、TagRFP及tdTomato,实际上具有明显的橙色多于红色的发射谱。不考虑颜色的指示,用标准的四甲基罗丹明异硫氰酸脂(tetramethyl-rhodamine isothiocyanate, TRITC)滤光片设备,橙色光谱型的蛋白在多种颜色,如蓝绿色、绿色和红色情景中更易于成像。

5、红色荧光蛋白

红色荧光蛋白(drFP583 )是人们从珊瑚虫Discosoma gen。中克隆的一种与绿色荧光蛋白(GFP)同源的荧光蛋白,在紫外光的照射下可发射红色荧光,有着广泛的应用前景;但它自身的缺点如寡聚化、成熟缓慢等限制了它的进一步应用。因此,人们对它进行了一系列修饰和改进,得到了寡聚化程度低(甚至单体)和成熟速率快的突变体,Clontech公司已将一种突变体商业化,命名为DsRed。与GFP 相比,DsRed的激发和发射波长较长,其发射峰位于培养基、组织培养器材及细胞成分等产生的荧光背景范围之外,具有较高的信噪比;而且在细胞内荧光转换效率高,更易检测。较早报道的红色荧光蛋白(DsRed) 的突变体有mBanana、mOrange、dTomato、mTangerine、mStrawberry 和mCherry。

在活细胞及动物全身成像中需要表现较好的红色荧光蛋白,主要是由于在多种颜色成像实验中需要红色探针,另外基于较长的激发波长产生的光毒性较小,可以用来探测较深的生物组织。最新研究进展是,通过mRFP1(表6)发色团残基的直接突变产生的新的荧光蛋白,得到的单体荧光蛋白发射峰在560nm~610nm,并以相应的水果名字来命名。这其中mStrawberry和mCherry,发射峰分别为596nm和610nm(表6,图22k),亮度分别为EGFP的75%和50%左右。mCherry

的光稳定性要远强于mStrawberry,所以长期成为成像实验中mRFP1最好的替代品。这些以水果命名的荧光蛋白单体与mKO和TagRFP共同填补了水母红移荧光蛋白(如YPet)与大量低聚红色珊瑚荧光蛋白间的空白,并且目前已经商业化。虽然,某些荧光蛋白缺乏许多成像实验所需要的亮度和光稳定性,但是它们的存在提示我们,最终可以找到跨越整个可见光谱的亮度高、稳定性强的单体探针。

6、荧光蛋白突变体

四、荧光素和荧光素酶

1、萤火虫荧光素酶

目前常用的萤火虫荧光素酶来源于北美萤火虫(Photinuspyralis),是一个61kDa的单体酶,无需表达后修饰,直接具有完全酶活,反应需要底物荧光素以及ATP、O2、Mg2+等的参与。

2、海肾荧光素酶

海肾荧光素酶来源于海肾(Renillareniformis),是一个36kDa的单体酶,表达后无需修饰,即可具有完全酶活。反应只需要腔肠素(Coelenterazine)和O2参与。

3、Gussia荧光素酶

Gussia荧光素酶来源于海洋桡脚类动物Gaussiaprinceps,是一个19.9kDa的单体酶,只有185个氨基酸,具有一个16aa的分泌性信号肽,可以被细胞分泌到细胞外,反应只需要腔肠素(Coelenterazine)和O2参与。

绿色荧光蛋白作为分子标记物在微生物学中的应用

绿色荧光蛋白作为分子标记物在微生物学中的应用 田 涛,王 琦3 (中国农业大学农学与生物技术学院,北京 100094) 摘 要 荧光染料在微生物学中的应用受到广泛的关注。近年来,来源于发光性生物的荧光蛋白进一步丰富了微生物学的研究手段。其中绿色荧光蛋白(Green fluorescent protein,GFP,来源于水母)具有独特的应用价值。在活体研究中,GFP相对于其它报告蛋白(如β2半乳糖苷酶)在原位、实时的微生物生理生化研究中有很多优越性。对GFP作为分子标记物在微生物学中的应用进行回顾,对GFP在微生物与宿主相互作用、生物膜(biofilm)、生物降解、细菌与原生动物相互作用、基因转导、基因表达、蛋白质定位以及生物传感器等领域的应用进行讨论,并扼要介绍了一些应用于荧光观察和定量分析的方法。 关键词 绿色荧光蛋白;标记;微生物;表达 中图分类号 Q93-31 文献标识码 A 文章编号 1005-7021(2005)01-0068-06 The Application of G reen Fluorescent Protein(GFP)as Molecular Marker in Microbiology TIAN Tao,WAN G Qi (Coll.of A gron.&Biotech.Chi na A gric.U niv.Beiji ng100094) Abstract The application of fluorescent dyes in microbiology has been paid close extensive attention.Recently,flu2 orescent proteins originated from bioluminescent organisms have enriched research means in microbiology,among them green fluorescent protein(GFP)stemmed from jellyfish possesses unique application values.Study in vivo, GFP has many superiorities over other reported proteins,sayβ2galactosidase,in microbio2physiological and biochemi2 cal studies in situ and real time.In this paper,the applications of GFP as molecular marker in microbiology were re2 viewed,the applications of it on interactions between microbes and hosts,bio2membrane,biodegradation,interac2 tions between bacteria and protozoa,gene transfer,gene expression,protein location,as well as biosensors were also discussed.S ome observation and quantitative analysis methods applied on fluorescence were also briefly introduced. K eyw ords green fluorescent protein(GFP);marker;microbe;expression 自然界中的许多生物都具有发光的能力,如细菌、真菌、萤火虫、深海鱼类和腔肠动物等。它们的发光能力是由一类称为“荧光蛋白”的蛋白质赋予的。这些蛋白质由不同基因编码,不具有同源性,其发光机制在进化上也不相同。GFP标记系统是首次发现的不需要其他辅助条件的生物发光标记系统。GFP的激发光谱和发射光谱在活体和离体条件下完全相同,而虫荧光酶素的发射光谱在离体和活体条件下并不相同[1]。 天然的GFP是一种多肽,由238个氨基酸组成,分子量27ku。能够将蓝光转化成绿色荧光[2,3]。Inonye和Tsuji证实GFP的活性发色团是一个三肽,其成熟过程需要有氧的参与[4,5]。野生型的GFP无论是在发光生物中,还是在提纯后的溶液中都具有395nm的最大吸收峰和510nm的最大发射峰[6]。Cormack等用定点突变的技术将包围Ser2Tyr2G ly生色团的20个氨基酸进行突变,得到一系列吸收峰红移的突变体。  收稿日期:2004-03-20  作者简介:田涛 男,硕士。现从事植病生防与植物微生态学方向研究工作。 3 通讯作者 86微生物学杂志 2005年1月第25卷第1期 JOURNAL OF MICROBIOLO GY Jan.2004Vol.25No.1

绿色荧光蛋白的应用及发展前景汇总

学士学位论文文献综述题目绿色荧光蛋白的应用及发展前景 姓名周紫嫣学 号014010110349 专业生物工程 指导教师周小萍职 称教师 中国·武汉二○一二年四月

目录 摘要······················································································ II 关键词 ···················································································· II Abstract ··················································································· II Key words ················································································ II 1 GPF的发现 (1) 2 GFP的结构及发光原理 (1) 2.1 GFP的结构 (1) 2.2 GFP的发光原理 (2) 3 GFP在生物技术中的应用 (2) 3.1 GFP作为报告基因 (2) 3.2 GFP用于研究病毒与宿主的关系 (3) 3.3 GFP用于药物筛选 (3) 3.4 GFP作为生物传感器 (3) 3.5 GFP用于融合抗体 (4) 3.6 GFP用于计算细胞生长速度 (4) 3.7 GFP用于基因表达调控 (4) 4 GFP存在问题及发展前景 (4) 参考文献 (5) 致谢 (5)

绿色荧光蛋白GFP

绿色荧光蛋白GFP综述 生命科学学院 2010级李积锋 1241410007 【摘要】绿色荧光蛋白(GFP) 是一种最先来源于水母的蛋白质,现已成为在生物化学和细胞生物学中研究和开发应用得最广泛的蛋白质之一。其内源荧光基团在受到紫外光或蓝光激发时小峰可高效发射清晰可见的绿光。它已成为一个监测在完整细胞和组织内基因表达和蛋白质定位的理想标记。在生理指示剂、生物传感器、光化学领域以及生产发光纤维等方面展示了广阔前景。 【关键词】水母绿色荧光蛋白生色团变种 1绿色荧光蛋白简介 绿色荧光蛋白是一类存在于包括水母、水螅和珊瑚等腔肠动物体内的生物发光蛋白,当受到紫外或蓝光激发时,发射绿色荧光。其独特之处在于:它产生荧光无需底物或辅因子,发色团是其蛋白质一级序列固有的来源于水母的氨基酸残基组成。 水母的绿色荧光蛋白很稳定,无种属限制,已在多种动植物细胞中表达成功并产生荧光。GFP的荧光受外界的影响较小,另外GFP的检测十分方便,而对细胞的伤害极小。由于这些优点,GFP已经成为检测体内基因表达及细胞内蛋白质原位定位的极为重要的报告分子。 2绿色荧光蛋白的表达和成熟 GFP的表达水平受多种因素的影响。在植物细胞中表达GFP时,改变一些原GFP 基因的密码子为该植物使用的偏爱密码子,并消除潜在的剪接位点。目前适用于哺乳动物的表达系统不受影响。GFP还可以顺利的在无细胞的体外翻译系统中表达并自发折叠。 用一些小体积的氨基酸残基取代大体积残基可以提高GFP在高温下正确折叠的速度。这些突变位点分布于成熟蛋白质三维结构的各个部位,几乎不能提供如

何帮助GFP折叠和成熟的线索。另外,分子伴侣的存在也有助于GFP的折叠,反过来,这个发现也使GFP成为检测分子伴侣功能的一个好底物,因为GFP可以提供一个连续的、无破坏性的检测蛋白折叠成功的分析方法。 3绿色荧光蛋白的应用 3.1报告基因和细胞标记 GFP作为报告分子和细胞标记最明显的优势是无需底物或辅因子参与;无论在活细胞还是在完整的转基因胚胎和动物中,都能有效地监测基因转移的效率。但在这方面的应用中,最大的缺点就是没有放大作用,它不能象酶一样能通过加工无数的底物分子而将信号放大所以一般都需强启动子以驱动GFP基因在细胞内足量的表达也可用亚细胞分辨率的显微成像系统检测基因产物,靶入的基因被限制于一个细胞器内,GFP的浓度则相对提高了许多倍。 3.2融合标记 应用得最多和最成功的是GFP同宿主蛋白构成融合子来监测宿主蛋白的定位 和最后归宿既有荧光又有宿主蛋白原有的正常功能和定位的融合蛋白效果最佳GFP可融合于宿主蛋白的C端或N端,也可插入其内部迄今为止,GFP已成功地靶入了大部分细胞器中,如质膜、细胞核、内质网、高尔基体、分泌小体、线粒体、液泡和吞噬体等。 3.3 其它 GFP分子生色团的坚固外层保护荧光不被熄灭,但同时也降低了GFP分子的荧光对环境的敏感性通过随机重组和基因定向突变得到了多种对环境敏感的GFP,它们可用作环境指示剂如:对PH敏感GFP的可以测定细胞器内的PH值;通过基因工程,可GFP在中插入磷酸化位点以便用磷酸化控制GFP的荧光。另外,最近报道的利用靶入了水母GFP基因的丝蛋白昆虫病毒,感染蚕的幼虫,用改造的基因取代了蚕的正常基因,当蚕吐丝时这种丝是一种能在黑暗中发绿色荧光的纤维。 4应用特点 GFP这一新型报告基因,在短短几年时间内就得到了众多研究者的青睐,其原因就在于它具有以下优点:

荧光蛋白(整理)

荧光 一、定义 荧光(fluorescence )又作“萤光”,是指一种光致发光的冷发光现象。当某种常温物质经某种波长的入射光(通常是紫外线或X射线)照射,吸收光能后进入激发态,并且立即退激发并发出比入射光的的波长长的出射光(通常波长在可见光波段);而且一旦停止入射光,发光现象也随之立即消失。具有这种性质的出射光就被称之为荧光。 二、原理 光照射到某些原子时,光的能量使原子核周围的一些电子由原来的轨道跃迁到了能量更高的轨道,即从基态跃迁到第一激发单线态或第二激发单线态等。第一激发单线态或第二激发单线态等是不稳定的,所以会恢复基态,当电子由第一激发单线态恢复到基态时,能量会以光的形式释放,所以产生荧光。 荧光是物质吸收光照或者其他电磁辐射后发出的光。大多数情况下,发光波长比吸收波长较长,能量更低。但是,当吸收强度较大时,可能发生双光子吸收现象,导致辐射波长短于吸收波长的情况发射。当辐射波长与吸收波长相等时,既是共 荧光强度:荧光强度与该种物质的荧光量子产率、消光系数以及含量等因素有关。荧光量子产率Q:量子产率表示物质将吸收的光能转化为荧光的本领,是荧光物质发出光子数与吸收光子数的比值。荧光蛋白分子的亮度由其量子产率与消光系数的乘积决定,与成像检测灵敏度密切相关。 三、荧光蛋白 1、绿色荧光蛋白(green fluorescent protein,GFP )

在光谱的绿光区(500nm-525nm)已经发现了多种荧光蛋白,而且来源广泛,包括不同种属的Aequorea 、桡足类动物、文昌鱼以及珊瑚。然而多数有齐聚反应,即使最好的荧光蛋白与EGFP相比,也没有明显的优点。或许目前活细胞成像最好的选择是GFP 衍生的Emerald(祖母绿),它与EGFP的特性相似。Emerald包含F64L 和S65T突变,另外还有四个点突变从而改进了折叠、37℃时的突变率以及亮度。虽然Emerald比EGFP更有效,但含有快速光漂白成分,可能在某些环境下其定量成像会受到影响。 下面主要介绍GFP及其衍生型荧光蛋白: (1)来源绿色荧光蛋白最早由美籍日裔科学家下村修于1962年在水母中发现。这种蛋白质在蓝色波长范围的光照激发下发出绿色荧光,其发光过程需要冷光蛋白质 Aequorin 的帮助,而且,这个冷光蛋白质可与钙离子(Ca2+)相互作用。在水母中发现的野生型绿色荧光蛋白的分子量较小,仅为27~30kDa,而编码GFP的基因序列也很短,为2.6kb 。 (2)性质 GFP由238个氨基酸残基组成。GFP序列中的65-67 位残基(Ser65-Tyr66-Gly67 )可自发形成荧光发色基团——对羟基苯咪唑啉酮GFP的激发光谱在400nm附近有一个主激发峰,在470nm附近有一个次激发峰。发射光谱在505nm附近有一尖锐的主发射峰,在540nm附近有一肩峰GFP的化学性质相当稳定,无光漂白现象(Photobleaching ),用甲醛固定和石蜡包埋亦不影响其荧光性质。在细胞生物学与分子生物学领域中,绿色荧光蛋白基因常被用作报告基因。 (3)野生型 野生型GFP(wild type GFP, wtGFP )从一开始就引起了人们极大的兴趣,而且被用作新型的简单报告基因及体内标记,但GFP在异源生物体中的表达并非那么简单。例如,研究人员很早就发现需要在较高的温度下孵育才能在细胞或生物体中表达GFP,并且wtGFP在37℃的热稳定性差。这些都阻碍了它在转基因中的应用。这些难题促使人们进一步筛选分离wtGFP的变体。现在,人们已经找到了荧光强度更强且更耐热的变体。 这些变体多数为经突变的脱辅基蛋白,它们可防止高温导致的错误折叠。近年来出现的新型wtGFP基因突变体的激发和发射谱发生了改变,热稳定性和荧光强度得到了提高,GFP报告基因在小鼠中的应用就是以这些变体作为基础的。 (4)增强型绿色荧光蛋白(EGFP)现在,应用最为广泛的是红移变体增强型GFP (EGFP)。诸如EGFP这些红移变体的最大激发峰发生红向移动,大约为490nm,这一波长也恰好是多数分光设备、流式细胞仪及共聚焦显微镜的常用波长。EGFP有两个氨基酸突变,当被蓝光激发时,它发出的荧光要比wtGFP亮30-40 倍。wtGFP和包括EGFP在内的多数变体半衰期长,所以不适合精确追踪表达的减少或损耗。 (5)不稳定增强型绿色荧光蛋白(dEGFP) 为克服这一问题,人们在1998年构建了不稳定增强型绿色荧光蛋白(dEGFP)。原理就是将EGFP的cDNA融合到小鼠鸟氨酸脱羧酶(Ornithine decarboxylase, ODC)基因的C-末端。ODC含有一个PEST序列,这个序列可促进该蛋白在细胞内的降解。虽然,目前这些不稳定变体还没有在小鼠中应用,但这些变体有利于实时追踪基因表达动力学的研究。 (6)增强型黄色荧光蛋白(EYFP)另一种红移变体是增强型黄色荧光蛋白(EYFP),该变体有四个氨基酸突变。在527nm时,EYFP的发射光从绿色变为黄绿色。EYFP荧光的亮度水平与EGFP相当。EYFP 抗酸性差、对卤化物敏感,使它的应用受到限制。在EYFP 基础上改进的突变体mCitrine[21] 和mVenus[22]是目前应用

荧光标记技术在蛋白质定位及功能研究中的应用

荧光标记技术在蛋白质定位及功能研究中的应用 Feb 20, 2010No Comments 随着分子生物学、有机化学以及材料科学等学科的进展,最近我们又获得了好几种新型的荧光蛋白标签,这些标签可以用于细胞生物学成像研究。本文将对荧光标志物在蛋白质研究中的优势及劣势进行一番详细的介绍,文章中将重点介绍如何使用荧光标志物研究活体细胞(而不是固定细胞)中的靶蛋白。使用该方法可以对靶蛋白的表达情况、细胞中的定位情况、活性状态等指标进行研究,还将介绍将荧光显微镜与电子显微镜技术相结合的可行性问题。小分子荧光标志物染料、纳米晶体材料,即所谓的“量子点(quantum dots)”材料、自发荧光蛋白、小分子蛋白质标签等等这些材料都可以作为荧光标志物,而且将这几种材料“混合”起来是一种非常有前途的荧光标志物研究新思路。 我们使用荧光技术来研究细胞生物学已经好多年了,而且在从微小的分子层面到完整的有机体层面等各个层面都可以使用荧光技术进行研究。最开始使用的方法是将小分子有机染料与各种抗体相连接,来研究各种目的蛋白。不过这种使用抗体的方法如果需要对细胞内的蛋白质进行研究时,还需要对细胞进行固定和透化操作。因此后来又发展出可以直接在活体细胞内标记某种细胞器、核酸分子或某些离子的荧光标志物。在最近这10年里,荧光蛋白的出现使得进行非侵入性的活体细胞成像成为了可能。使用这种荧光蛋白标志物,我们可以研究目的基因的表达情况,蛋白质运输情况以及各种细胞内动态的生物化学信号通路。使用经过遗传修饰的小分子有机荧光标志物构建的混合系统,我们还可以对蛋白质的寿命进行研究,如果再结合电镜技术和快速光淬灭技术(rapid photoinactivation)还可以对蛋白质的定位情况进行研究。与此同时,半导体纳米晶体材料技术也得到了高度的发展,现在,这种新型的材料在亮度和光稳定性方面都要比传统的荧光标志物好得多,只不过现在这种材料的靶向性还不是很好。本文中我们将对目前荧光标志物及其相关技术的发展进行介绍,同时还将介绍荧光标志物在蛋白质表达、蛋白质活性以及蛋白质功能研究工作中的作用进行介绍。 ?0?2 荧光标志物 小分子有机染料 小分子有机染料是指分子量小于1KD的小分子物质,这种小分子有机染料可以通过与生物大分子共价连接的方式对其进行标记,我们现在对这种染料的最佳检测波长范围、亮度,即吸光系数、光稳定性和自我淬灭特性都有了比较详尽的了解。利用荧光染料的分子策略包括扩展共轭双键、额外添加环状结构增强其刚性、用氟或磺酸盐这类吸电子性的或带电荷的物质进行修饰等。现在市面上已经有数百种这类荧光染料的商业化产品可供选择,而且还在不断增加之中。不过由于这类染料对蛋白质缺乏特异性,因此多与抗体联用(图1A~C)。?0?2 荧光蛋白 第一批用于细胞生物学的荧光蛋白包括藻胆蛋白(phycobiliproteins)和从蓝藻

绿色荧光蛋白GFP的研究进展及应用_吴沛桥

■通信作者 E mail :baxiaoge1957@yahoo .com .cn 绿色荧光蛋白GFP 的研究进展及应用 吴沛桥1 ,巴晓革 2■ ,胡海1,赵静 1 (1.南京农业大学生命科学学院,南京210095;2.山东药品食品职业学院,威海264210) 摘要:源于多管水母属等海洋无脊椎动物的绿色荧光蛋白(GFP ),是一种极具应用潜力的标记物,有着 极其广泛的应用前景。我们就GFP 的理化性质、荧光特性、改进和应用研究进行了综述。 关键词:绿色荧光蛋白(GFP );标记物;荧光特性;进展;改进;应用 中图分类号:Q51,503;R318 文献标识码:A 文章编号:1672-6278(2009)01-0083-04 Research Progress and Application of Green Fluorescent Protein WU Peiqiao 1 ,BA Xiaoge 2 ,HU Hai 1 ,ZHAO Jing 1 (1.Nanjing Agricultu ral University ,College of Life Science ,Nanj ing 210095,China ; 2.Shandong Drug and Food V ocatio nal College ,W eihai 264210,China ) A bstract :The green fluorescent protein (GFP )from the jellyfish Aequorea vietoria is a great potential for application of the marker ,has a wide range of applications .The article on the physical and chemical properties ,the fluorescence characteristics ,improvement and application of GFP are reviewed . Key words :Green fluorescent protein ;Marker ;Fluorescence characteristics ;Progress ;Improvement ;Application 1 引 言 发光是海洋无脊椎动物中普遍存在的现象,一些腔肠动物包括水母、水螅和珊瑚等受到机械性干扰时都可发射绿色荧光,而栉水母类发射蓝色荧光。绿色荧光蛋白(Green fluorescent pr otein ,GFP )是一类存在于这些腔肠动物体内的生物发光蛋白。1962年Shimomura 等 [1] 首先从多管水母(Ae quoria victoria ) 中分离出一种分子量为20kD 的称为A equorin 的蛋白。由于水母整体荧光及提取的蛋白质颗粒荧光都呈绿色,因此,人们将这种蛋白命名为绿色荧光蛋白。随后,人们从不同动物体内提取出了各种不同的GFP ,其中研究较为深入的是来自多管水母科(Aequorleidae )和海紫罗兰科(Renillidae )的GFP ,即 Ae quoria GFP 和Renilla GFP 。 2 GFP 的理化性质,荧光特性及其改进 2.1 GFP 的理化性质 从水母体内分离到的GFP 基因,长达2.6kD ,由 3个外显子组成,分别编码69、98和71个氨基酸。GFP 本身是一种酸性,球状,可溶性天然荧光蛋白。A equoria GFP 分子量约27×103 ,一级结构为一个由238个氨基酸残基组成的单链多肽;而Renilla GFP 是分子量为54kD 的同型二聚体。两种GFP 有不同的激发光谱,A equoria GFP 在395nm 具有最高光吸收峰,肩峰为473nm ;Renilla GFP 在498nm 具有强烈的光吸收,肩峰为470nm 。两种GFP 含有相同的 生色团,发射光谱基本相同(λmax =508~509nm )。 GFP 性质极其稳定,易耐受高温处理,甲醛固定和石蜡包埋不影响其荧光性质。其变性需在90℃或pH <4.0或pH >12.0的条件下用6mol L 盐酸胍处理,一旦恢复中性环境,或去除变性剂,虽然变性的蛋白质并不能完全复性,但是复性蛋白质同天然蛋白质对温度、pH 变化的耐受性、抗胰蛋白酶消解的能力是相同的。更重要的是,它们在很大的pH 范围内(pH7~12.2)的吸收、发射光谱也是相同的。Renilla GFP 的稳定性就更为显著。它在上述一系列的变性条件下都很稳定,不易变性。根据Sheen 生物医学工程研究 J ournal of Biomedical Engineering Res earch 2009,28(1):83~86

绿色荧光蛋白

绿色荧光蛋白(GFP)的转化表达及免疫印迹检测 王媛0811142 南开大学生命科学学院生物技术08级 一、摘要: 本实验利用酶切方法检测载体中所含GFP片段后,通过转化的方法把绿色荧光蛋白(GFP)外源基因转入大肠杆菌进行表达,通过免疫印记杂交方法(western blotting)分析GFP在大肠杆菌中的表达,在分离检测的全过程中(转化平板,细胞裂解,电泳,电转移),均可通过紫外灯清晰地检测到颜色亮丽的绿色荧光蛋白。 关键词:绿色荧光蛋白免疫印记杂交 二、引言: 绿色荧光蛋白是一种源于水母(Aequorea Victoria)等海洋无脊椎动物的蛋白,分子量为26.9KD。GFP的开放阅读框架长度约为740bp,编码238个氨基酸残基。GFP表达后折叠环化,在氧存在下,由65~67位的氨基酸残基环化,形成发色基团,无需添加任何酶和底物,在长紫外或蓝光激发下就能发荧光,荧光性质稳定,可保持10分钟。GFP能在不同的细胞内稳定表达,无种属、组织和位置特异性,对细胞无毒性且检测方法简单,将其作为报告基因已广泛应用于细胞生物学和分子生物学领域。 免疫印记又称蛋白质印记,是在凝胶电泳技术和固相免疫测定技术基础上发展起来的一种免疫检测技术。其原理是将膜与胶放在中间,上下加滤纸数层,做成“Sandwich”样的转移单位,并且保证带负电的蛋白质向阳极转移,即膜侧连接阳极或面向阳极,从而将电泳分离的蛋白从凝胶转移至固相载体上。 三、实验材料、仪器及方法: 3.1 实验材料 3.1.1 菌种 E.coli DH5α(pETH)菌株 E.coli DH5α(pETH-GFP)菌株 E.coli BL21菌株 E.coli BL21 (pETH)菌株E.coli BL21 (pETH-GFP))菌株 3.1.2 试剂与材料 LB培养基(自己配置灭菌)Amp(100mg/ml)IPTG(10mg/ml) CaCl2(1M) 50*TAE Acry/Bis 贮存液分离胶缓冲液浓缩胶缓冲液泳动缓冲液(5*)上扬缓冲液(5*)转移缓冲液PBS 1.5% A.P.S 质粒小量提取试剂盒Eco RI限制性内切酶DNA Maker Protein Maker pH试纸 3.1.3 仪器 紫外检测仪、超声波细胞粉碎机、垂直板式电泳系统、半干式蛋白质印迹电转移系统等。3.2 实验方法 1、配置LB培养基,包括液体、固体培养基后灭菌;分别接种pETH-GFP/DH 5α(LA 4ml)一支,pETH/DH 5α(LA 4ml)一支,BL21(LB 4ml)四支 2、按照protocal,利用tiangen质粒提取试剂盒分别提取pETH-GFP/DH 5α、pETH/DH 5α质粒后,按照酶切体系混匀后,至于37℃温箱酶切2h。 3、制备0.8%琼脂糖凝胶,20ml每块,加入适量EB,按照点样顺序点样后,60V恒压电泳,约0.5~1h.后,凝胶自显影拍照(胶图见后面实验结果) 4、取40μlBL21菌液接种于4mlLB,37℃,200rpm,约2.5h,此时OD600=0.3~0.5,利用氯化钙法制备感受态细胞,制备完成至于冰上备用。 5、铺制平板,1块LB,4块LA,冷却凝固后于37℃倒置烘干备用。其中两块LA平板上面涂布IPTG(100μl+100μl水),正置备用。 6、按照阴性对照、空白对照、GFP基因转化表达、GFP基因的转化四组分别进行转化,涂板,37℃倒置过夜培养,紫外灯下观察,呈绿色荧光的单菌落即为转化子。记录各板菌落数

绿色荧光蛋白的研究现状与应用

绿色荧光蛋白的研究现状与应用 【摘要】绿色荧光蛋白(GFP)最早发现于水母体中,是一种十分重要的蛋白质。由于其众多的优点,现已在分子生物和细胞生物的研究中应用十分广泛。随着技术的进步和研究的进一步深入,GFP基因也在许多其他方面将发挥着越来越重要的作用。 【关键词】绿色荧光蛋白;生色团;报告基因 2008年10月8日,瑞典皇家科学院诺贝尔奖委员会授予三位科学家:日裔美国科学家下村修(Osamu Shimomura)、美国科学家马丁?查尔非(Martin Chalfie)和美国华裔科学家钱永健(Roger Y.Tsien)诺贝尔化学奖,以表彰他们在绿色荧光蛋白(GFP)研究方面做出的突出贡献。 1 绿色荧光蛋白的理论研究 1.1绿色荧光蛋白的发现 绿色荧光蛋白最早于1962年在维多利亚多管发光水母体内被发现,同时它也存在于水螅和珊瑚等腔肠动物体内。它的内源基团可以在蓝光或紫外光激发下发射绿光,属于生物发光蛋白。绿色荧光蛋白在水母体内之所以能发光,主要依靠水母素的辅助。水母素和GFP之间能发生了能量转移,在钙的刺激下,其能量可转移到GFP,刺激GFP发光。 1.2绿色荧光蛋白的结构和发光原理 1992年Prasher等克隆了GFP基因的cDNA并分析了其一级结构。野生型GFP基因组全长2600bp,由3个外显子和2个内含子组成,编码238个氨基酸,分子量约28kDa。GFP的三维立体结构是由11个β折叠围在四周形成一个中空的圆柱体,1条α折叠贯穿在圆柱体的中间,其中有一段位于65-67位的3个氨基酸残基(Ser-Tyr-Gly)形成的杂环咪唑啉结构组成生色团,位于圆筒中央并附着在α螺旋上。绿色荧光蛋白的发光原理是位于氨基酸第65位的Ser的羧基和67位的Gly的酰基经过亲核反应生成咪唑基,66位的Tyr通过脱氢使芳香团与咪唑基结合,形成对羟基苯甲酸咪唑环酮生色团发出荧光。GFP的最大和次大的激发波长分别是395nm和475nm。溶液中,395nm激发的荧光发射峰在508nm,375nm激发的荧光发射峰在503nm。 1.3绿色荧光蛋白的优点 绿色荧光蛋白的独特之处即它的优点很多,主要有:荧光反应不需要底物和任何其他辅助因子,只需要在蓝光和紫外光下照射,利用荧光显微镜甚至是直接用肉眼就可以观察,易于检测且灵敏度高;荧光性质稳定,对光漂白有较强的耐受性;无毒害,转化后细胞仍可连续传代;通用性好,无种属特异性;分子量小,易于构建载体;不受假阳性干扰,结果真实可靠;可进行活细胞定时定位观察;易于得到突变体。 2 绿色荧光蛋白的应用 1994年Chalfie等首次在大肠杆菌细胞和线虫中表达了GFP,开创了GFP 应用研究的先河。也正是由于绿色荧光蛋白的许多优点,使得其应用十分广泛。 2.1作为报告基因 GFP通常用作报告基因,可用来检测转基因效率,把GFP基因连接到目的基因的启动子之后,通过测定GFP的荧光强度就可以对该基因的表达水平进行检测。GFP最显著的优势是荧光反应不需要底物和其他辅助因子。有利必有弊,

绿色荧光蛋白GFP研究进展

万方数据

2004年6月绿色荧光蛋白(GFP)研究进展71 随着生命科学和医学研究的不断深入,研究者们迫切需要一种能够在活体中表达且易于检测的报告基因,现有的报告基因主要有:分泌型胎盘磷酸酯酶(s秘P)、B一半乳糖苷酶(互丑cz)、8一葡糖苷酸酶(GUS)、萤火虫荧光素酶(LUc)等,但这些基因的检测方法并不理想,它们都需要底物和辅助因子,因而在活体中的应用受到限制。最近,一种全新的非酶性报告基因——绿色荧光蛋白(GFP)引起了人们的关注,该蛋白能够自身催化形成发色结构并在蓝光激发下发出绿色荧光。作为报告基因,GFP是目前唯一能在活细胞中表达的发光蛋白;作为荧光标记分子,GFP既具有敏感的标记检测率,又没有放射性的危害。最近又发现G即还是一个良好的细胞间信号传递的动态标记分子,可以跟踪观测第二信使。近来关于GFP方面的研究和综述越来越多,但多是针对某一方面的特点或应用,作者将cFP基础理论和应用研究进展作一简要综述。 lGFP基础理论研究进展 1.1发展历史 1962年蹦n舢u飓等…首先从多管水母属(枷ria、ricto. ria)中分离出了cFP;1992年Prasller等u3克隆了GFP基因的cDNA,并分析了GFP的一级结构;1994年ch址e等b3首次在大肠杆菌细胞和线虫中表达了GFP,开创了GFP应用研究的先河,之后很快发现GFP能在多种异源细胞中表达,GFP在细胞学、分子生物学和医学、病毒学等领域中迅速掀起了一股热潮;199r7年10月18—22日在美国New—J嘲y专门召开了一次关于GFP的国际会议。 1.2GFP结构、生化特性、发光机制、光谱特性 1.2.1结构 由正常野生型cFP(wtG即)的cDNA序列推出的蛋白质一级结构,由238个氨基酸残基组成,sD卜PAGE凝胶电泳测定 其分子量为27—30l【D。晶体学证据H’表明,GFP中央是一个B罐(p一锄)结构。GFP的生色团位于“一69的六肽内。生色团在翻译后2—4h内自动催化形成,并且GFP在合成后需经过一定的折叠过程形成正确的构象后才有功能。GFP生色团的形成需要Q,使66位氨基酸残基的a、8键间脱氢,这就意味着GfP在严格厌氧条件下不能形成荧光。 1.2.2生化特性 GFP在450—490姗蓝光下最稳定,在340—390衄或395一‰的范围内,会发生光漂白现象;强还原剂如5n蝴N啦s04或2n蹦f韬q能使GFP转变为非荧光形式,但一旦重新暴露在空气或氧气中,GFP荧光便会立即恢复;弱还原剂和中度氧化剂(如生物材料的固定脱水剂戊二酸或甲醛等)对cFP荧光影响不大,但GFP对某些封片指甲油特别敏感;在离体状态下,G即对高温(70℃)、碱性、除垢剂、盐、有机溶剂和大多数普通酶(链霉蛋白酶hDI塘∞除外)有较强抗性,GFP荧光在pm.O一12.O时稳定,在pIl5.5—7.0时开始受到影响,在高温(>70℃)、极端pH或胍基氯化物条件下,GFP会变性,荧光消失,一旦外界条件恢复正常,荧光将部分恢复【5】。 1.2.3发光机制 目前对GFP的荧光发光机制还不清楚,M(Hi∞等人曾提出一个能量传递模式图来解释水母的发光机制,但并未获得认同。cII砒嘶等怕。对GFP进行了光谱分析,结合前人工作提出,GFP有两个明显的吸收带,对应于GFP的两种不同构象的基态A和B。基态A对应于395姗的吸收峰,基态B对应于475姗的吸收峰,基态A占优势,基态B的分子数量约是基态A的1,6,两种基态间能缓慢地转换,但激发态(*)之间的转换很快且发生了质子转移,A。快速高效地衰变至另一激发态,应该存在一个中间过度态I,质子转移使A。转变成I。,I’回迁到基态I时产生发射峰504姗的荧光,构象改变使I’转变成B。,由B。到B发射荧光而不发生质子转移。目前,对于GFP的作用机理较为认同的仅仅是:GFP是生物发光过程中的能量受体,并且是最终的发光体,不同的生物发光机制各不相同,不同的突变体发光机制也有很大差异。 收稿日期:2003—09—25:修回日期:2003一12二15 基金项目:生活垃圾及农业废气物处理技术与示范工程项目(2002从601012—02) 作者简介:汪恒英(1979一),女,硕士生,专业方向为环境工程,ErIl8il:wh∞舀rIg@yah∞.Ⅻ;。通讯联系人(AutIl∞h∞Te叩‘xIdeIlce)。 1.2.4光谱特性 w蚓FP的光谱是所有GFP中最复杂的,其荧光激发主峰在395nm,在475砌处有一个峰高仅为主峰1,3的小峰。溶液 中,395咖激发的荧光发射峰在508锄。475砌激发的在503姗,这类GFP的生色团至少由两种不同的化学组分组成,即中性酚和阴离子酚。475姗峰随GFP分子生色团的去质子化或阴离子生色团的增加而增加,395砌则随着GFP分子生色团的质子化或中性生色团的增加而增加。野生型GFP在室温或低于室温下表达时,G即几乎都能正确而快速地折叠,但高于室温时,折叠速度却剧烈下降,这种温度的敏感性无碍于水母。因为在它们的生活环境中是不可能遇到温水的,但GFP折叠受温度影响却限制了GFP的应用;另外,栅具有两个激 发峰的光谱,在应用中也是弊大于利。因此,为拓宽GFP的应用,有必要根据不同的用途,对wtGFP进行适当的改造。 1.3G卯的改进 目前主要通过以下几个途径得到突变体GFP【引:更换GFP生色团氨基酸;改变碱基组成;除去GFP基因中隐蔽剪接位点;插入植物内含子;更换强启动子等。突变体GFP增加了荧光强度和热稳定性,促进了生色团的折叠,其荧光特性也得到了改善,甚至出现红色、黄绿色、蓝色等多种颜色的荧光蛋白,大大拓宽了GFP研究的领域。以下是GFP突变体的部分典型代表。(1)增强型c即:Gl】ohon等将Ser65用m替代,PI蒯用IJeu替代,使cFP的荧光强度提高了35倍,而且激发后16—24h后仍可稳定地测定荧光;(2)人工GFP:刻咖kllin等哺1改变了栅基因编码区中88个密码子中的92个碱基而用人类 基因组中常用的密码子代替,将GFP的荧光强度提高22倍,适合在哺乳动物细胞中高效表达;(3)红移荧光蛋白(RSFP):HeiIIl等旧1将wtGFP中的ser65用7nlr替代,得到突变体.S65T—GFP,激发谱中只有一个峰,且红移至490姗,用蓝光即可激发RSFP,使之更适于普通荧光显微镜(订rc)观察;(4)蓝色荧光蛋白(BFP):双突变体Y66H,Y145一划能在381呦光的激发下产生445砌的蓝光,这种蓝光还能进一步激发GFP产生绿光,即发生荧光共振能量转移(耶回)现象,为不同蛋白质之间及细胞器之间的相互作用研究开辟了更为广阔的视野。 除以上类型的GFP突变体以外,人们还通过定点突变得到了一些可用作指示剂的GFP突变型如:pH敏感GFP,可被用来测量细胞器或更小颗粒的pH值,并记录其变化,最近又有报道利用靶人了水母GFP基因的丝蛋白昆虫病毒,感染蚕的幼虫,用改造的基因取代了蚕的正常基因,当蚕吐丝时,这种 丝是一种能在黑暗中发绿色荧光的纤维。 2卿应用研究进展 2.1应用特点 GFP这一新型报告基因,在短短几年时间内就得到了众多研究者的青睐,其原因就在于它具有以下优点: (1)检测方便:因为GFP荧光反应不需要外加底物和辅助因子,也就不存在这些物质可能难于进入细胞的问题,只需紫外光或蓝光激发,即可发出绿色荧光,用荧光显微镜甚至肉眼就可以观察到,且灵敏度高,对于单细胞水平的表达也可识别。 (2)荧光稳定:GFP对光漂白有较强的耐受性,能耐受长时间的光照;GFP在pm一12范围内也能正常发光;对高温(70℃)、碱性、除垢剂、盐、有机溶剂和大多数普通酶(链霉蛋白酶Pb驯雠除外)都有较强抗性。 (3)无毒害:从目前的研究结果来看,GfP对生活的细胞基本无毒害,对目的基因的功能也没有影响,转化后细胞仍可连续传代。 (4)共用性和通用性:首先表现在GFP的表达几乎不受种属范围的限制,在微生物、植物、动物中都获得了成功的表达;其次是cFP没有细胞种类和位置上的限制,在各个部位都可以表达发出荧光。 (5)易于构建载体:由于GFP分子量较小,仅为27—30如,编码GFP的基因序列也很短,为2.6l【b,所以很方便地同其它序列一起构建多种质粒,而不至于使质粒过大影响转化频率。 (6)可进行活细胞定时定位观察:对活细胞中蛋白的功能研究,更能接近自然真实的状态。通过GFP可实时观察到外界信号刺激下,目的蛋白的变化过程,借助于近来广泛使用的 万方数据

绿色荧光蛋白的研究

绿色荧光蛋白的分子生物学 及其应用 吴琦 四川农业大学 二○○九年十二月

2008年诺贝尔化学奖获得者及其贡献下村修,日本人,名古屋大学理学博士毕业后赴美,先后在美国普林斯顿大学、波士顿大学和伍兹霍尔海洋生物实验所工作。1962 年从一种水母中发现了荧光蛋白,被誉为生物发光研究第一人。钱永健,美籍华裔,现为美国加州大学圣迭戈分校生物化学及化学系教授、美国国家科学院院士、国家医学院院士,2004年沃尔夫医学奖得主。其主要贡献在于利用水母发出绿光的化学物来追查实验室内进行的生物反应,他被认为是这方面公认的先驱。马丁·沙尔菲,美国哥伦比亚大学生物学教授,他获奖的主要贡献在于向人们展示了绿色荧光蛋白作为发光的遗传标签的作用,这一技术被广泛运用于生理学和医学等领域 。

1962年Shimomure 等首先从维多利亚水母(Aequorea Victoria )中分离出了GFP (Green-Fluorescent Protein) 。绿色荧光蛋白的研究史 维多利亚水母 (Aequorea Victoria)

A test tube containing a sample of a cyan (greenish-blue) fluorescent protein from a sea anemone illuminated by ultra-violet light from below.

绿色荧光蛋白的研究史 1992年Prasher等克隆了GFP基因的cDNA,并分析了GFP 的一级结构。

绿色荧光蛋白的研究史 1994年Chalfie等首次在大肠杆菌细胞和线虫中表达了GFP,开创了GFP应用研究的先河。

绿色荧光蛋白及其应用

DOI:CNKI:50-1068/S.20120208.1744.051 网络出版时间:2012-02-08 17:44 网络出版地址:https://www.sodocs.net/doc/ee12913273.html,/kcms/detail/50.1068.S.20120208.1744.051.html 绿色荧光蛋白及其应用 四川攀枝花学院生物与化学工程学院韩洪波 摘要:作为一种报告基因,由于其自身独特的发光机制,GFP在分子生物学的研 究中得到越来越广泛深入的应用,如用于特定蛋白的标记定位,活体内的肿瘤检 测、药物筛选等等。GFP的运用,为传统生物学研究提供了新思路和新方法。 关键词:绿色荧光蛋白;性质;应用 1962年,Shimomura 等从维多利亚多管水母(Aequorea victoria)中分离纯化生物发光蛋白质——水母蛋白(aequorin),并观察到一个在紫外光下发出非常 明亮,浅绿色荧光的副产物。[1]1974年,Shimomura等纯化得到了这种自发荧光 的蛋白。1985年Prasher 等构建维多利亚多管水母的cDNA文库,用于克隆水 母蛋白的编码基因,并得到含有GFP片段的蛋白。[2]1992年Prasher 等克隆到 编码全长GFP 的cDNA但直到此时人们对GFP的应用前景还不甚了解。1994 年,Chalfie 等首次在原核的大肠杆菌和真核的秀丽隐杆线虫(Caenorhabditis elegans)中表达了具有荧光性GFP,证明GFP 的荧光产生不需要水母中特异组 分的参与,钱永健及其同事提出GFP中Ser65-Tyr66-Gly67 氨基酸残基形成4- 对羟基苯甲基-5-咪唑啉酮生色团发光的机制,并表明生色团的形成不需要任何 酶或辅助因子的参与,而只需分子氧的存在此后对GFP的研究进入了高潮,并 在1996 年解析了其晶体结构基于已有知识和晶体结构,人们通过突变的方法得 到许多不同荧光性质的GFP同时,受GFP启发,人们开始在其它生物中寻找类 似的荧光蛋白,并相继在珊瑚、海葵、水螅甲壳类动物甚至低等脊索动物中发现 了GFP样蛋白荧光谱覆盖蓝色到远红光,使得荧光蛋白的使用范围不断扩大, 极大地促进了生命科学和医药科学的发展。2008年,诺贝尔化学奖授予Osamu Shimomura,MartinChalfie 和Roger Tsien以表彰他们因发现和发展了绿色荧光 蛋白所做的巨大贡献。[3] 一、GFP的分子结构和发光机制

绿色荧光蛋白研究进展

动物医学进展,2008,29(1):56259 Progress in Veterinary Medicine 绿色荧光蛋白研究进展 王晓丽1,邵卫星2,单 虎13 (1.青岛农业大学动物科技学院,山东青岛266109;2.中国动物卫生与流行病学中心,山东青岛266071) 摘 要:来源于海洋多管水母属的绿色荧光蛋白(GFP)基因是目前惟一在细胞内稳定表达,在蓝光或长紫外光的激发下,不需要任何反应底物及其他辅助因子就能发出绿色荧光的新型报告基因,无种属、组织和位置特异性,且能监测基因表达、信号转导、共转染、蛋白运输与定位,以及细胞系谱分类等。GFP对细胞无毒性,且检测方法简单,结果真实可靠,目前在多种原核和真核生物研究中得到广泛的应用。文章就GFP 的生化特性、GFP的改进及其在分子生物学研究中的应用潜力进行简要阐述。 关键词:绿色荧光蛋白;选择标记基因;应用 中图分类号:Q516文献标识码:A文章编号:100725038(2008)0120056204 随着生命科学和医学研究的不断深入,研究者们迫切需要一种能够在活体中表达且易于检测的报告基因,目前常用的报告基因主要有分泌型胎盘磷酸酯酶(secreted embryo alkaline p ho sp hatase, SEA P)基因、β2半乳糖苷酶(galactosidase)基因、β2葡糖苷酸酶(glucosidase,GU S)基因、萤火虫荧光素酶(luciferase,L UC)基因等[1],但这些基因的检测方法并不理想,它们都需要底物和辅助因子,因而在活体中的应用受到限制。一种全新的非酶性报告基因———绿色荧光蛋白(green fluorescent p rotein, GFP)引起了人们的关注[2],该蛋白能够自身催化形成发色结构并在蓝光激发下发出绿色荧光。作为报告基因,GFP是能在活细胞中表达的发光蛋白;作为荧光标记分子,GFP既具有敏感的标记检测率, 收稿日期:2007210218 作者简介:王晓丽(1981-),女,山东威海人,硕士研究生,主要从事预防兽医学研究。3通讯作者 [19] Mammina C,Pontello M,Dal Vecchio A,et al.Identigica2 tion of Shigella sonnei biotype g isolates carrying class2inte2 grons in Italy(200122003)[J].J Clin Mirobiol,2005,43: 246722470.[20] Mammina C,Aloe A,Romani C,et al.Shigella sonnei bio2 type G carrying class2integrons in sout hern Italy:a retro2 spective typing study by pulsed gield gel electrophoresis[J]. BMC Infect Dis,2006,(6):117. Advance in G ene C assett2Integron System of B acteria WEI Shu2yong1,WU Deng2hong1,L IU Shi2dong2 (1.V eterinary Depart ment,S out hwestern Uni versit y Rongchang Cam pus,Chongqing,402460,China; 2.Forest Enterp rise of L inyi,L inyi,S handong,276000,Chi na) Abstract:Gene cassette is a minor2movable deoxyribonucleic acid(DNA)molecule,and usually is t ran2 scribed wit h a integro n.Integron is a conservative and movable transposon2like DNA element,which can make a horizontal transmission of drug resistance gene and has a great cont ribution on t he diff usion of drug resistance gene among bacteria and t he production of multidrug resistance.Since t he concept of gene cas2 sette and integro was p roduced,new types of integron was detected continuously.At p resent,t hree types of integron were generally accepted and named typeⅠ,typeⅡand typeⅢ.TypeⅠintegron has a more de2 tection and deep research.This article summarizesd t he origin,st ruct ure,categorization,expression,bio2 logical detection and t he relationship between bacterial drug resistance and t he recent advance in gene cas2 sett2integron system of bacteria. K ey w ords:gene cassette;integro;drug resistance

相关主题