搜档网
当前位置:搜档网 › 第一章 量子理论基础

第一章 量子理论基础

第一章  量子理论基础
第一章  量子理论基础

第一章 量子理论基础

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解 根据德布罗意波粒二象性的关系,可知

E=hv ,

λh P =

如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么

e

p E μ22

= 如果我们考察的是相对性的光子,那么

E=pc

注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0?,因此利用非相对论性的电子的能量——动量关系式,这样,便有

p

h

=

λ nm

m m E c hc E h e e 71.01071.031051.021024.12296

6

2=?=????=

==--μμ

在这里,利用了

m eV hc ??=-61024.1

以及

eV c e 621051.0?=μ

最后,对

E

c hc e 2

2μλ=

作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,

因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

1.3 氦原子的动能是kT E 2

3

=(k 为玻耳兹曼常数),求T=1K 时,氦原子的德

布罗意波长。

解 根据

eV K k 3101-=?,

知本题的氦原子的动能为

,105.12

3

233eV K k kT E -?=?==

显然远远小于2c 核μ这样,便有

E

c hc 2

2核μλ=

nm

m m 37.01037.0105.1107.321024.193

9

6

=?=?????=

---

这里,利用了

eV eV c 962107.3109314?=??=核μ

最后,再对德布罗意波长与温度的关系作一点讨论,由某种粒子构成的温度为T 的体系,其中粒子的平均动能的数量级为kT ,这样,其相庆的德布罗意波长就为

T

kc hc E

c hc 2

2

22μμλ=

=

据此可知,当体系的温度越低,相应的德布罗意波长就越长,这时这种粒子的波动性就越明显,特别是当波长长到比粒子间的平均距离还长时,粒子间的相干性就尤为明显,因此这时就能用经典的描述粒子统计分布的玻耳兹曼分布,而必须用量子的描述粒子的统计分布——玻色分布或费米公布。

1.5 两个光子在一定条件下可以转化为正负电子对,如果两光子的能量相等,问要实现实种转化,光子的波长最大是多少?

解 关于两个光子转化为正负电子对的动力学过程,如两个光子以怎样的概率转化为正负电子对的问题,严格来说,需要用到相对性量子场论的知识去计算,修正当涉及到这个过程的运动学方面,如能量守恒,动量守恒等,我们不需要用那么高深的知识去计算,具休到本题,两个光子能量相等,因此当对心碰撞时,

转化为正风电子对反需的能量最小,因而所对应的波长也就最长,而且,有

2c hv E e μ==

此外,还有

λ

hc

pc E =

=

于是,有

2

c hc

e μλ

=

?

2c hc e μλ=

nm

m m 3126

6104.2104.21051.01024.1---?=?=??= 尽管这是光子转化为电子的最大波长,但从数值上看,也是相当小的,我们知道,电子是自然界中最轻的有质量的粒子,如果是光子转化为像正反质子对之类的更大质量的粒子,那么所对应的光子的最大波长将会更小,这从某种意义上告诉我们,当涉及到粒子的衰变,产生,转化等问题,一般所需的能量是很大的。能量越大,粒子间的转化等现象就越丰富,这样,也许就能发现新粒子,这便是世界上在造越来越高能的加速器的原因:期待发现新现象,新粒子,新物理。

第二章波 函数和薛定谔方程

2.1证明在定态中,几率流与时间无关。 证:对于定态,可令

)]r ()r ()r ()r ([m

2i ]

e )r (e )r (e )r (e )r ([m

2i )

(m 2i J e

)r ( )

t (f )r ()t r (**Et i

Et i **Et i Et i **Et

i

ψψψψψψψψψψψψψψψ?-?=?-?=?-?===-----)()(,

可见t J 与

无关。

2.3 一粒子在一维势场

??

?

??>∞≤≤<∞=a x a x x x U ,,

,0 00)( 中运动,求粒子的能级和对应的波函数。

解:t x U 与)(无关,是定态问题。其定态S —方程

)()()()(22

2

2x E x x U x dx d m ψψψ=+-

在各区域的具体形式为

Ⅰ: )()()()(2 01112

22x E x x U x dx d m x ψψψ=+-< ① Ⅱ: )()(2 0 2222

2x E x dx d m a x ψψ=-

≤≤ ② Ⅲ: )()()()(2 3332

22x E x x U x dx

d m a x ψψψ=+-> ③ 由于(1)、(3)方程中,由于∞=)(x U ,要等式成立,必须

0)(1=x ψ 0)(2=x ψ 即粒子不能运动到势阱以外的地方去。

方程(2)可变为

0)(2)(22222=+x mE

dx x d ψψ

令2

22 mE

k =

,得 0)()

(222

22=+x k dx

x d ψψ 其解为 kx B kx A x cos sin )(2+=ψ ④ 根据波函数的标准条件确定系数A ,B ,由连续性条件,得

)0()0(12ψψ=⑤

)()(32a a ψψ=⑥

⑤ 0=?B

0sin =?ka A ),3 ,2 ,1( 0

s i n 0

==?=∴≠n n ka ka A π ∴x a

n A x π

ψsin )(2= 由归一化条件 1)(2

=?

dx x ψ

得 1s i n

22

=?

a

x d x a

n A

π

mn a

b

a xdx a n x a m δππ?

=*2

sin sin

x a

n a x a

A πψs i n 2)(22=∴=?

2

22 mE k =

),3,2,1( 222

2

2 ==

?n n ma E n π可见E 是量子化的。

对应于n E 的归一化的定态波函数为

??

?

??><≤≤=-a x a x a x xe a

n a t x t

E i

n n , ,0 0 ,sin 2),( πψ 第三章 量子力学中的力学量

3.2.氢原子处在基态0/30

1

),,(a r e a r -=π?θψ,求:

(1)r 的平均值;

(2)势能r

e 2

-的平均值;

(3)最可几半径; (4)动能的平均值;

(5)动量的几率分布函数。

解:(1)?θθπτ?θψππd rd d r re a d r r r a r sin 1

),,(0

220

/23

2

0???

?∞

-==

?

-=

/2330

04dr a r a a r

?

+-=

1!n ax n a n dx e x

04

030232!34a a a =???

?

??=

22

03020

/23

2

20

/23

2

20

2/23

2

2214 4 s i n s i n 1)()2(000a e a a e dr

r e a e d drd r e a e d drd r e r

a e r e U a r a r a r -=???

? ??-=-=-=-=-=?

???

???

-∞

-∞

-ππππ?

θθπ?θθπ

(3)电子出现在r+dr 球壳内出现的几率为 ?

?

π

?θθ?θψω0

20

22 s i n )],,([)(d drd r r dr r dr r e a a r 2

/230

04-=

2

/230

04)(r e a r a r -=

ω 0/2030

)2

2(4)(a r re r a a dr r d --=ω 令

0321 , ,0 0)

(a r r r dr

r d =∞==?=,ω 当0)( ,0 21=∞==r r r ω时,为几率最小位置

/222

03022)482(4)(a r e r a r a a dr r d -+-=ω

08)

(2

30

2

20

<-

=-=e a dr r d a r ω ∴ 0a r =是最可几半径。

(4)2222?21??-==μ

μ p T ???∞--?-=ππ?θθπμ02002

/2/30

2 s i n )(1200d d r d r e e a T a r a r ???∞---=ππ?θθπμ02002

/22/3

02 sin )]([11200d drd r e dr d r dr

d r

e a a r a r ?

----=0

/0

203

2 )2(1

(240

dr e a r r a a a r μ

2

2

20204022)442(24a a a a μμ =-= (5) τ?θψψd r r p c p ),,()

()(*

?= ???

-∞

-=

π

π

θ?θθππ20

cos 0

2

/30

2

/3 sin 1

)2(1

)(0

d d e

dr r e

a

p c pr i

a r

??

-=

-∞

θθπππ0

c o s 0

/2

30

2

/3)c o s ( )

2(20

d e

dr e

r a

pr i

a r

?

--=

c o s

/23

2/30)2(2π

θπππ

pr i

a r e

ipr dr e r a ?∞---=

/30

2

/3)()2(20dr e e re ip a pr i

pr

i

a r

πππ ?

+-=

1

!n ax n a n dx e x ])1(1)1(1[)2(2202030

2

/3p i a p i a ip a

+--=

πππ 22

22

00330)1(421

p a a ip

ip a +=

π ????????+????+????=?22222

sin 1)(sin sin 1)(1?θθθθθr r r r

2

222

044003

30

)

(24

+=

p a a a a π

2

22202/30)

()2(

+=

p a a π

动量几率分布函数

4

22025302

)

(8)()(

+==p a a p c p πω 3.6 设t=0时,粒子的状态为

]c o s [s i n )(212kx kx A x +=ψ 求此时粒子的平均动量和平均动能。

解:]

cos )2cos 1([]cos [sin )(21

21212kx kx A kx kx A x +-=+=ψ ]c o s 2c o s 1[2

kx kx A

+-=

)]()(1[2

212221ikx ikx kx i kx i e e e e A --++--=

ππ21

][2221212212210?

++--=

--i k x i k x kx i kx i x i e e e e e A 可见,动量n p 的可能值为 k k k k -- 2 2

0 动能μ22

n p 的可能值为μ

μμμ2

2 2 2 02

2222222 k k k k 对应的几率

n

ω应为

π2)16

16 16 16 4(2

2222?A A A A A π2)8

1 81 81 81 21(A ? 上述的A 为归一化常数,可由归一化条件,得

ππω222)1644(12

22?=??+==∑A A A n n

∴ π/1=A

∴ 动量p 的平均值为 0

216

2162162216202

222=??-??+??-??+==∑ ππππωA k A k A k A k p p n

n

n

∑==n n n p p T ωμ

μ222

2

281

2281202222??+??+=μμ k k

μ852

2 k =

3.9.设氢原子处于状态 ),()(2

3),()(21),,(11211021?θ?θ?θψ--=

Y r R Y r R r 求氢原子能量、角动量平方及角动量Z 分量的可能值,这些可能值出现的几率

和这些力学量的平均值。

解:在此能量中,氢原子能量有确定值 2

2

2

2

2

282 s s e n

e E μμ-

=-

= )2(=n

角动量平方有确定值为

2222)1( =+=L )1(= 角动量Z 分量的可能值为 01=Z L -=2Z L 其相应的几率分别为 41, 4

3

其平均值为 4

343041-=?-?=

Z L 3.13利用测不准关系估计氢原子的基态能量。

解:设氢原子基态的最概然半径为R ,则原子半径的不确定范围可近似取为

R r ≈?

由测不准关系

4

)()(2

2

2

≥???p r

得 2

2

2

4)(R

p ≥? 对于氢原子,基态波函数为偶宇称,而动量算符p

为奇宇称,所以

0=p

又有 22

2)(p p p -=?

所以 2

2

2

2

4)(R

p p ≥?= 可近似取 22

2

R

p ≈

能量平均值为 r

e P E s 2

22-=μ

作为数量级估算可近似取 R

e r e s s 2

2≈

则有 R e R E s 22

2

2-≈μ 基态能量应取E 的极小值,由

02232

=+-=??R

e R R E s μ 得 22

s e R μ =

代入E ,得到基态能量为 2

4

m i n 2 s e E μ-

=

11、求一维谐振子处在第一激发态时几率最大的位置。

解:2

22

1122)(x

xe x ααπ

α

ψ-?=

2

22

3

2

112)()(x e

x x x απ

αψω-=

=

22)(4323

1x e x x dx d ααπ

αω--=

2

2)1(4223

x

xe x α

απ

α--=

2

2)251(4442232

12x e x x dx d αααπαω-+-= 令

01

=dx

d ω,得 01=x ,00

221x x ±=±=±

=μω

00

2

1

21>=x dx d ω, ∴ 01=x 为几率最小处。

02

12

1

22<±

=x dx d ω, ∴ 0221

x x ±=±

=为几率最大处。 6.设氢原子处在0

30

1

),,(a r e

a

r -=πφθψ的态(0a 为第一玻尔轨道半径),

①r 的平均值;

②势能r

e 2

-的平均值。

解:①???

-=ππφθθπ2000

2330

sin 10

d d dr

e r a r a r ππ4)2()2(12310303

??????=

a a a 02

3

a =

②?∞-??-=-

0230

2

2041dr re a e r e a r

s ππ

)2()2(400302a

a a e s ???-=

2

a e s -=

第四章 态和力学量的表象

4.5 设已知在Z L L ??2和的共同表象中,算符y x L L ??和的矩阵分别为 ????? ??=010******* x L ?????

??--=0000022i i i i L y

求它们的本征值和归一化的本征函数。最后将矩阵y x L L 和对角化。 解:x L 的久期方程为

002

220223=+-?=---λλλ

λλ

-===?3210λλλ,,

∴x L ?的本征值为 -,,0 x

L ?的本征方程 ????

? ??=?????

??????? ??3213210101010102a a a a a a λ

其中???

?

? ??=321a a a ψ设为x

L ?的本征函数Z L L ??2和共同表象中的矩阵 当01=λ时,有

????

?

??=????? ???????

??0000101010102321a a a 0 00022132312=-=?????? ??=????? ??+a a a a a a a ,

∴ ???

?

?

??-=1100a a ψ

由归一化条件

2111*1*100

20),0,(1a a a a a =????

? ??--==+

ψψ 取 2

11=

a

?

????

??? ??-=210210ψ对应于x

L ?的本征值0 。 当 =2λ时,有

????

? ??=?????

???????

??3213210101010102a a a a a a

??

??

???===?????? ??=???????

??

?

?

+1

3321

23212312

2221

)(2121

a a a a a a a a a a a a a ∴ ????

?

?

??=1112a a a ψ

由归一化条件

21111*

1*1*142),2,(1a a a a a a a =?????? ??=

取 2

1

1=

a ∴归一化的?????

???

? ??=212121 ψ对应于x

L ?的本征值 当 -=2λ时,有

????

? ??-=?????

??????? ??3213210101010102a a a a a a

????

???=-=-=??????

??---=?

???????

??

??

+13

321

23212

311

2221

)(21

21a

a a a a a a a a a a a a ∴ ????

?

?

??-=-1112a a a ψ

由归一化条件

21111*

1*1*142),2,(1a a a a a a a =?????

? ??--=

取 2

1

1=

a ∴归一化的????????

? ??-=-212121 ψ对应于x

L ?的本征值 - 由以上结果可知,从Z L L ??2和的共同表象变到x

L ?表象的变换矩阵为

?????????

?

?--=212

12121

210

2121

21S

∴对角化的矩阵为S L S L x x +

='

????????? ?

?--?????

?????

??????

?

?

--

='212

121

21

21021212

1010101010212

12

1212121210212 x L

?????????

??-

-?????????

??--=212

12

121

210

21212

1

2112121121

0002

???

?

? ??-=?????

??-= 0000000200

020

00

2

按照与上同样的方法可得

y L ?的本征值为 -,,0 y

L ?的归一化的本征函数为 ???????? ??=210210ψ ????????? ??-=21221i ψ ????????

?

??--=-21221i ψ 从Z L L ??2和的共同表象变到y

L ?表象的变换矩阵为

????????

? ??---=??????????

?

?---=+

212

21212

2

121021212

12

1220212121i i S i

i S 利用S 可使y

L ?对角化 ????

?

??-=='+

0000000S L S L y

y 第五章 微扰理论

5.3 设一体系未受微扰作用时有两个能级:0201E E 及,现在受到微扰H

'?的作用,微扰矩阵元为b H H a H H ='='='='22112112

,;b a 、都是实数。用微扰公式求能量至二级修正值。

解:由微扰公式得

nn

n H E '=)

1( ∑-'=m

m

n mn

n

E E H E )

0()0(2

')

2(

得 b H E b H E ='=='=22

)

1(0211)1(01 02012

0012

1'

)

2(01

E E a E E H E

m

m

m

-=-'=∑

01

022

0022

1'

)2(02

E E a E E H E

m

m

m

-=-'=∑

∴ 能量的二级修正值为

02012

011E E a b E E -++=

01022

022E E a b E E -++=

第1章 量子力学基础-习题与答案

一、是非题 1. “波函数平方有物理意义, 但波函数本身是没有物理意义的”。对否 解:不对 2. 有人认为,中子是相距为10-13 cm 的质子和电子依靠库仑力结合而成的。试用测不准关系判断该模型是否合理。 解:库仑吸引势能大大地小于电子的动能, 这意味着仅靠库仑力是无法将电子与质子结合成为中子的,这个模型是不正确的。 二、选择题 1. 一组正交、归一的波函数123,,,ψψψ。正交性的数学表达式为 a ,归一性的 表达式为 b 。 () 0,() 1i i i i a d i j b ψψτψψ** =≠=?? 2. 列哪些算符是线性算符------------------------------------------------------ (A, B, C, E ) (A) dx d (B) ?2 (C) 用常数乘 (D) (E) 积分 3. 下列算符哪些可以对易-------------------------------------------- (A, B, D ) (A) x ? 和 y ? (B) x ?? 和y ?? (C) ?x p 和x ? (D) ?x p 和y ? 4. 下列函数中 (A) cos kx (B) e -bx (C) e -ikx (D) 2 e kx - (1) 哪些是 dx d 的本征函数;-------------------------------- (B, C ) (2) 哪些是的22 dx d 本征函数;-------------------------------------- (A, B, C ) (3) 哪些是22dx d 和dx d 的共同本征函数。------------------------------ (B, C ) 5. 关于光电效应,下列叙述正确的是:(可多选) ------------------(C,D ) (A)光电流大小与入射光子能量成正比 (B)光电流大小与入射光子频率成正比 (C)光电流大小与入射光强度成正比 (D)入射光子能量越大,则光电子的动能越大 6. 提出实物粒子也有波粒二象性的科学家是:------------------------------( A )

量子论基础

第一章 量子论基础 §1.1经典物理学的困难 19世纪末20世纪初,经典物理学,主要是经典力学、热力学和 经典统计物理学、经典电动力学,已经发展得相当完善。比方说,速度 远小于光速的物体的机械运动遵从牛顿力学规律;电磁现象满足 麦克斯韦方程组;光的现象满足光的波动理论;特别是当时已认识到热 辐射和光辐射都是电磁波,还提出了热辐射满足的基尔霍夫(Kirchhoff) 定律和斯式藩(Stefan)定律-玻耳兹曼(Boltzmann ),证实黑体辐射场的 能量密度与温度的四次方成正比。对于热现象,除了已经有了非常系 统的热力学理论外,还有玻耳兹曼、吉布斯(Gibbs )等人提出的统计物理学。经典物理学的大厦已经建立得相当完美了。 但是,在和实验进一步对比的过程中,也出现了一些困难,而 且这些困难,在经典物理的范畴内是无法解释的。这主要表现在: 1. 黑体辐射. 任何物体总在吸收投射在它身上的辐射。物体吸收的辐射能量与投射到物体上的辐射能之比称为该物体的吸收系数。一般地,物体只吸收投射到它表面上的部分能量,吸收系数小于1。如果一个物体,能吸收投射到它表面上的全部辐射,即其吸收系数为1时,则称这个物体为绝对黑休,简称黑体。一个开有一个小孔的空腔可近似视为黑体。因为一旦光线通过小孔射入空腔后,就很难再通过小孔反射出来。 另一方面,由于腔壁具有一定温度,它还会发出热辐射。当空腔和内部的热辐射达到平衡后,实验发现,在频率υυυd +→之间的辐射能量密度只与频率和热力学温度T 有关,在不同度下,ρν随ν的变化曲线如图1.1.1所示。实验曲线存在维恩(Wien)位移:辐射能量密度按波长分布的最大值m λ与T 的乘积为常数: K m T m ??=-2102898.0λ (1.1.1) 而且满足 ?∞ == 4aT d E υρυ (1.1.2) 其中a 是常数。 1983年,维恩利用经典热力学和电动力学给出了辐射能量密度的经验公式是 υυυρυυd e C d T C 231-= (1.1.3)

第一章-量子论基础

第五章 近似方法 一、概念与名词解释 1. 斯塔克效应 2. 跃迁概率 3. 费米黄金规则 4. 选择定则 二、计算 1. 如果类氢原子的核不是点电荷,而是半径为r 0,电荷均匀分布的小球,计算这种效应对类氢原子基态能量的一级修正. 2. 转动惯量为I ,电矩为D 的空间转子处在均匀电场E 中,如果电场较小,用微扰理论求转子基态能量的二级修正. 3. 转动惯量为I ,电矩为D 的平面转子处在均匀弱电场E 中,电场处在转子运动的平面上,用微扰法求转子的能量的二级修正. 4. 设哈密顿量在能量表象中的矩阵是 ,a E b b a E 0201???? ??++a 、b 是实数. (1) 用微扰公式求能量至二级修正; (2) 直接用求解能量本征方程的方法求能量的准确解,并与(1)的结果比较. 5. 设哈密顿量在能量表象中的矩阵是)E (E E E 0 0 E 010202* b * a b 01a 01>?????? ? ?λλλλ, (1) 用简并微扰方法求能量至二级修正; (2) 求能量的准确值,并与(1)的结果比较. 6. 在简并情况下,求简并微扰论的波函数的一级修正和能量的二级

修正. 7. 线谐振子受到微扰aexp(-βx 2)的作用,计算基态能量的一级修正,其中常数β>0. 8. 设线谐振子哈密顿算符用升算符a +与降算符a 表示为 , 1/2)a (a H ?0 ω+=+ 此体系受到微扰ω+λ=+ a)(a 'H ?的作用,求体系的能级到二级近似. 已知升与降算符对0 H ?的本征态|n>的作用为.1n n n a ;1n 1n n a -=++=+ 9. 一个电荷为q 的线谐振子受到恒定弱电场i E ε=的作用,利用微扰 论求其能量至二级近似,并与其精确结果比较. 10. 一维非简谐振子的哈密顿量为H=p 2/2m+m ω2x 2/2+βx 3. β是常数,若将3x H'β=看成是微扰,用微扰论求能量至二级修正,求能量本征函数至一级修正. 11. 二维耦合谐振子的哈密顿量为H=(p x 2+p y 2)/2μ+μω2(x 2+y 2)/2+λxy. 若λ<<1,试用微扰论求其第一激发态的能级与本征函数. 12. 在各向同性三维谐振子上加一微扰 , bz ax y H'2+=求第一激发态的一级能量修正. 13. 一维无限深势阱(0

第一章 量子力学基础知识

《结构化学基础》 讲稿 第一章 孟祥军

第一章 量子力学基础知识 (第一讲) 1.1 微观粒子的运动特征 ☆ 经典物理学遇到了难题: 19世纪末,物理学理论(经典物理学)已相当完善: ? Newton 力学 ? Maxwell 电磁场理论 ? Gibbs 热力学 ? Boltzmann 统计物理学 上述理论可解释当时常见物理现象,但也发现了解释不了的新现象。 1.1.1 黑体辐射与能量量子化 黑体:能全部吸收外来电磁波的物体。黑色物体或开一小孔的空心金属球近似于黑体。 黑体辐射:加热时,黑体能辐射出各种波长电磁波的现象。 ★经典理论与实验事实间的矛盾: 经典电磁理论假定:黑体辐射是由黑体中带电粒子的振动发出的。 按经典热力学和统计力学理论,计算所得的黑体辐射能量随波长变化的分布曲线,与实验所得曲线明显不符。 按经典理论只能得出能量随波长单调变化的曲线: Rayleigh-Jeans 把分子物理学中能量按自由度均分原则用到电磁辐射上,按其公式计算所得结果在长波处比较接近实验曲线。 Wien 假定辐射波长的分布与Maxwell 分子速度分布类似,计算结果在短波处与实验较接近。 经典理论无论如何也得不出这种有极大值的曲线。 ? 1900年,Planck (普朗克)假定: 黑体中原子或分子辐射能量时作简谐振动,只能发射或吸收频率为ν, 能量为 ε=h ν 的整数倍的电磁能,即振动频率为 ν 的振子,发射的能量只能是 0h ν,1h ν,2h ν,……,nh ν(n 为整数)。 ? h 称为Planck 常数,h =6.626×10-34J ?S ? 按 Planck 假定,算出的辐射能 E ν 与实验观测到的黑体辐射能非常吻合: ●能量量子化:黑体只能辐射频率为 ν ,数值为 h ν 的整数倍的不连续的能量。 能量波长 黑体辐射能量分布曲线 () 1 /81 3 3 --= kt h c h e E ννπν

第一章量子力学基础和原子轨道报告

第一章 量子力学基础与原子结构 一、单项选择题(每小题1分) 1.一维势箱解的量子化由来( ) ① 人为假定 ② 求解微分方程的结果 ③ 由势能函数决定的 ④ 由微分方程的边界条件决定的。 2.下列算符哪个是线性算符( ) ① exp ② ▽2 ③ sin ④ 3.指出下列哪个是合格的波函数(粒子的运动空间为 0+)( ) ① sinx ② e -x ③ 1/(x-1) ④ f(x) = e x ( 0 x 1); f(x) = 1 ( x 1) 4.基态氢原子径向分布函数D(r) ~ r 图表示( ) ① 几率随r 的变化 ② 几率密度随r 的变化 ③ 单位厚度球壳内电子出现的几率随r 的变化 ④ 表示在给定方向角度上,波函数随r 的变化 5.首先提出微观粒子的运动满足测不准原理的科学家是( ) ①薛定谔 ② 狄拉克 ③ 海森堡 ③波恩 6.立方势箱中22 810m a h E <时有多少种状态( ) ① 11 ② 3 ③ 7 ④ 2 7.立方势箱在22 812m a h E ≤的能量范围内,能级数和状态数为( ) ①5,20 ② 6,6 ③ 5,11 ④ 6,17 8.下列函数哪个是22 dx d 的本征函数( ) ① mx e ② sin 2x ③ x 2+y 2 ④ (a-x)e -x 9.立方势箱中22 87m a h E <时有多少种状态( ) ① 11 ② 3 ③ 4 ④ 2 10.立方势箱中22 89m a h E <时有多少种状态( ) ① 11 ② 3 ③ 4 ④ 2 11.已知x e 2是算符x P ?的本征函数,相应的本征值为( ) ① i h 2 ② i h 4 ③ 4ih ④ πi h

第1章 量子理论基础

第一章 量子理论基础 例题解析 1 金属钠的逸出功是2.3eV, 波长5.890x10-7m 的光能否从金属钠表面打出光电子?在金属钠上发生光电效应的临域频率是多少? 解: (1) 根据Einstein 光电方程0 2 21w mv h += ν可知,只有当入射光的能量0 w h >ν时,才可能使电子克服逸出功而产生动能为22 1 mv 的光电子。 J J eV w 19 19 010 685.310 602.13.23.2--?=??== 由于18103-?==ms c c ,λν,波长5.890x10-7m 的光的能量为: J c h h 19 7 834 10 375.310 890.510 310 626.6---?=??? ?==λ ν 可见,0w h <ν,波长5.890x10-7m 的光不能从金属钠表面打出光电子。 (2) 通过逸出功和临域频率之间的关系,即00νh w =,可获得金属钠的临域频率。 1 14 34 190010 561.510 626.610685.3---?=??= = s h w ν 2 对任意实物粒子,物质波波长为λ,欲求其动能可用下面哪个公式? (1) λ hc (2) 2 22λ m h (3) eV 解: 因为光速C 、频率ν和波长λ有如下关系: λ νC = 故光子能量为)(λνεc h h ==。所以(1) 式只适用于光。不适用于实物粒子。 (3) 式为一个电子通过电势差V 所获得的能量,仅对电子适用。 对任意实物粒子,动量p=mv 。故mT mv m mv P 2212)(222=?==,T 为粒子动能。根据德布罗依关系式mT h P h 2= =λ有2 22λ m h T = 所以(2) 式对任意实物粒子 都适用。

第一章 量子力学基础和原子结构

第一章 量子力学基础和原子结构 一、填空题 1、若用波函数ψ来定义电子云,则电子云即为_________________。 2、氢原子s ψ1在 r =a 0和 r =2a 0处的比值为_____________。 3、有两个氢原子,第一个氢原子的电子处于主量子数 n =1 的轨道, 第二个氢原子的电子处于n =4 的轨道。 (1)原子势能较低的是______, (2) 原子的电离能较高的是____。 4、设氢原子中电子处在激发态 2s 轨道时能量为E 1, 氦原子处在第一激发态 1s 12s 1时的2s电子能量为E 2,氦离子He + 激发态一个电子处于 2s 轨道时能量为E 3, 请写出E 1,E 2,E 3的从大到小顺序。_____________。 5、对氢原子 1s 态: (1) 2ψ在 r 为_______________处有最高值 (2) 径向分布函数 224ψr π在 r 为____________处有极大值; (3) 电子由 1s 态跃迁至 3d 态所需能量为_____________。 6、H 原子(气态)的电离能为 13.6 eV, He +(气态)的电离能为 _______ eV。 二、选择题 1、波长为662.6pm 的光子和自由电子,光子的能量与自由电子的动能比为何值? (A )106:3663 (B )273:1 (C )1:C (D )546:1 2、一电子被1000V 的电场所加速.打在靶上,若电子的动能可转化

为光能,则相应的光波应落在什么区域? (A) X光区(约10-10m) (B)紫外区(约10-7m) (C)可见光区(约10-6m)(D)红外区(约10-5m 3、普通阴极管管径为10-2m数量级.所加电压可使电子获得105ms-1速度,此时电子速度的不确定量为十万分之一,可用经典力学处理.若以上其它条件保持不变则阴极管的管径在哪个数量级时必须用量子力学处理? (A)约10-7m (B)约10-5m (C)约10-4m (D)约10-2m 4、下列条件不是品优函数的必备条件的是 (A)连续(B)单值(C)归一(D)有限或平方可积 5、己知一维谐振子的势能表达式为V=kx2/2,则该体系的定态薛定谔方程应当为 6、粒子处于定态意味着 (A)粒子处于概率最大的状态 (B)粒子处于势能为0的状态 (C)粒子的力学量平均值及概率密度分布都与时间无关的状态

量子力学基础

《大学物理》作业 No .8量子力学基础 班级 ________ 学号 ________ 姓名 _________ 成绩 _______ 一、选择题:(注意:题目中可能有一个或几个答案正确。) 1. 静止质量不为零的微观粒子作高速运动,这时粒子物质波的波长λ与速度v 有如下关系: [ C ] (A) v ∝λ (B) v 1 ∝λ (C) 2211c v -∝ λ (D) 22v c -∝λ 解:由德布罗意公式和相对论质 — 速公式 2 201 1c v m mv h p -= == λ 得2 20 1 1c v m h - =λ,即2211c v -∝λ 2. 不确定关系式 ≥???x p x 表示在x 方向上 [ D ] (A) 粒子位置不能确定 (B) 粒子动量不能确定 (C) 粒子位置和动量都不能确定 (D) 粒子位置和动量不能同时确定 3. 将波函数在空间各点的振幅同时增大D 倍,则粒子在空间的分布概率将 [ D ] (A) 增大2 D 倍。 (B) 增大2D 倍。 (C) 增大D 倍。 (D) 不变。 4. 已知粒子在一维矩形无限深势阱中运动,其波函数为: )(23cos 1)(a x a a x a x ≤≤-= πψ 那么粒子在6 5a x =处出现的概率密度为 [ A ] a 21(A ) a 1 (B) a 21(C) a 1(D) 解:概率密度 )23(cos 1)(22 a x a x πψ=

将65a x =代入上式,得 a a a a x 21)6523(cos 1)(22=?=πψ 5. 波长 λ = 5000 ?的光沿x 轴正方向传播,若光的波长的不确定量?λ=103-?,则利用不确定关系h p x x ≥???可得光子的x 坐标的不确定量至少为: [ C ] (A) 25cm (B )50cm (C) 250cm (D) 500cm 解:由公式p = λh 知: △322105000 -?-=?-=h h p λλ 利用不确定关系h p x x ≥???,可得光子的x 坐标满足 91025?=?≥ ?x p h x ?=250cm 二、填空题 1. 低速运动的质子和α粒子,若它们的德布罗意波长相同,则它们的动量之比=αP :p p 1:1 ;动能之比=αP :E E 4:1 。 解:由p = λ h 知,动量只与λ有关,所以1:1:αP =p p ; 由非相对论动能公式m p E 22 k =,且αp p p =,所以1:4:αP ==p m m E E α 2. 在B = 1.25×10 2 -T 的匀强磁场中沿半径为R =1.66cm 的圆轨道运动的α粒子的德布罗 意波长是 0.1 ? 。(普朗克常量h = 6.63×10-34J·s ,基本电荷e = 1.6×10-19 C) 解:由牛顿第二定律= evB 2R mv 2得eBR mv p 2==,又由λ h p =得 1.0(m)10998.010 66.11025.1106.121063.62112 21934 ≈?=???????===-----eBR h p h λ? 3. 若令c m h e c = λ (称为电子的康普顿波长,其中m e 为电子静止质量,c 为光速,h 为普

量子力学基础

量子力学基础 部门: xxx 时间: xxx 整理范文,仅供参考,可下载自行编辑

第一章量子力学基础 一、教案目的: 通过本章学习,掌握微观粒子运动的特征、量子力学的基本假设,并初步学习运用薛定谔方程去分析和计算势箱中粒子运动的有关问题:b5E2RGbCAP 二、教案内容: 1、微观粒子的运动特征 黑体辐射和能量量子化;光电效应和光子学说;实物粒子的波粒二相性;不确定关系; 2、量子力学基本假设 波函数和微观粒子的状态;物理量和算符;本征态、本征值和薛定谔方程;态叠加原理;泡利原理; 3、箱中粒子的薛定谔方程及其解 三、教案重点 微观粒子运动的特征、量子力学的基本假设 四、教案难点: 量子力学的基本假设 五、教案方法及手段 课堂教案 六、课时分配: 微观粒子的运动特征 2学时 量子力学基本假设 4学时

箱中粒子的薛定谔方程及其解 2学时 七、课外作业 课本p20~21 八、自学内容 1-1微观粒子的运动特征 1900年以前,物理学的发展处于经典物理学阶段<由Newton的经典力学,Maxwell的的电磁场理论,Gibbs的热力学和Boltzmann的统计物理学),这些理论构成一个相当完善的体系,对当时常见的物理现象都可以从中得到说明。p1EanqFDPw 在经典物理学取得上述成就的同时,通过实验又发现了一些新现象,它们是经典物理学无法解释的。如黑体辐射、光电效应、电子波性等实验现象,说明微观粒子具有其不同于宏观物体的运动特征。DXDiTa9E3d 电子、原子、分子和光子等微观粒子,它们表现的行为在一些场合显示粒性,在另一些场合又显示波性,即具有波粒二象性的运动特征。人们对这种波粒二象性的认识是和本世纪物理学的发展密切联系的,是二十世纪初期二十多年自然科学发展的集中体现。RTCrpUDGiT 1.1.1黑体辐射和能量量子化——普朗克< planck)的量子假 说:量子说的起源 黑体是一种能全部吸收照射到它上面的各种波长的光,同时也能在同样条件下发射最大量各种波长光的物体。 带有一个微孔的空心金属球,非常接近于黑体,进入金属球小孔的辐射,经过多次吸收、反射,使射入的辐射全部被吸收。当空腔受热时,空腔壁会发出辐射,极小部分通过小孔逸出。5PCzVD7HxA

量子理论基础

班级___________学号______姓名___________ 第12-1 光的量子性 1. 下列各物体哪个是绝对黑体?( ) (A)不辐射任何光线的物体 (B)不能反射任何光线的物体 (C)不能反射可见光的物体 (D)不辐射可见光的物体 2. 金属的光电效应的红限依赖于:( ) (A)入射光的频率 (B)入射光的强度 (C)金属的逸出功 (D)入射光的频率和金属的逸出功 3. 关于光电效应有下列说法: (1)任何波长的可见光照射到任何金属表面都能产生光电效应; (2)若入射光的频率均大于一给定金属红限,则该金属分别受到不同频率,强度相等的光照射时,释出的光电子的最大初动能也不同; (3)若入射光的频率均大于一给定金属红限,则该金属分别受到不同频率,强度相等的光照射时,单位时间释出的光电子数一定相等; (4)若入射光的频率均大于一给定金属的红限,则当入射光频率不变而强度增大一倍时,该金属的饱和光电流也增大一倍. 其中正确的是:( ) (A) (1),(2),(3) (B) (2),(3),(4) (C) (2),(3) (D) (2),(4) 4. 一个光子的能量等于一个电子的静能量,则该光子的波长λ=_____________,动量p= ____________,质量m=____________ . 5. 已知钾的逸出功为2.0eV,如果用波长为3.60 ×10-7m的光照射在钾上,则光电效应的遏止电压的绝对值U a=__________________,从钾表面发射出电子的最大速度v max=_____________. (h= 6.63×10-34Js,1eV=1.6×10-19J,m e=9.11×10-31kg) 6. 某一波长的X光经物质散射后,其散射光中包含波长________和波长_______的两种成份,其中__________的散射成份称为康普顿散射. 7. 康普顿散射中,当出射光子与入射光子方向成夹角θ=_________时,光的频率

量子力学基础简答题(经典)【精选】

量子力学基础简答题 1、简述波函数的统计解释; 2、对“轨道”和“电子云”的概念,量子力学的解释是什么? 3、力学量G ?在自身表象中的矩阵表示有何特点? 4、简述能量的测不准关系; 5、电子在位置和自旋z S ?表象下,波函数??? ? ??=ψ),,(),,(21z y x z y x ψψ如何归一化?解释各项的几率意义。 6、何为束缚态? 7、当体系处于归一化波函数ψ(,) r t 所描述的状态时,简述在 ψ(,) r t 状态中测量力学量F 的可能值及其几率的方法。 8、设粒子在位置表象中处于态),(t r ψ,采用Dirac 符号时,若将ψ(,) r t 改写为ψ(,) r t 有何 不妥?采用Dirac 符号时,位置表象中的波函数应如何表示? 9、简述定态微扰理论。 10、Stern —Gerlach 实验证实了什么? 11、一个物理体系存在束缚态的条件是什么? 12、两个对易的力学量是否一定同时确定?为什么? 13、测不准关系是否与表象有关? 14、在简并定态微扰论中,如 () H 0的某一能级) 0(n E ,对应f 个正交归一本征函数i φ(i =1,2,…, f ),为什么一般地i φ不能直接作为()H H H '+=???0的零级近似波函数? 15、在自旋态χ1 2 ()s z 中, S x 和 S y 的测不准关系( )( )??S S x y 22?是多少? 16、在定态问题中,不同能量所对应的态的迭加是否为定态Schrodinger 方程的解?同一能量 对应的各简并态的迭加是否仍为定态Schrodinger 方程的解? 17、两个不对易的算符所表示的力学量是否一定不能同时确定?举例说明。 18说明厄米矩阵的对角元素是实的,关于对角线对称的元素互相共轭。 19何谓选择定则。 20、能否由Schrodinger 方程直接导出自旋? 21、叙述量子力学的态迭加原理。 22、厄米算符是如何定义的? 23、据[a ?,+ a ?]=1,a a N ???+=,n n n N =?,证明:1 ?-=n n n a 。 24、非简并定态微扰论的计算公式是什么?写出其适用条件。

量子力学导论第12章答案

第十二章 散射 12-1)对低能粒子散射,设只考虑s 波和p 波,写出散射截面的一般形式。 解: ()()()2 2 c o s s i n 121∑∞ =+= l l l i P e l k l θδθσδ 只考虑s 波和p 波,则只取1,0=l ,于是 ()()()2 11002 cos sin 3cos sin 11 θ δθδθσδδP e P e k i i += ()1cos 0=θP , (),c o s c o s 1θθ=P 代入上式,得 ()2 102 cos sin 3sin 11 θ δδθσδδi i e e k += ()2 2 12 101002 2cos sin 9cos cos cos sin 6sin 1θ δθδδδδδ+-+=k 2 2 2102 cos cos 1θ θA A A k ++= 其中 020sin δ=A ,()10101cos cos sin 6δδδδ-=A ,122sin 9δ=A 。 12-2)用波恩近似法计算如下势散射的微分截面: (a ) ()?? ?><-=. , 0;,0a r a r V r V (b ) ()2 0r e V r V α-= (c ) ()r e r V αγ κ-= (d ) ()().r r V γδ= 解:本题的势场皆为中心势场,故有 ()() ? ∞ - =0 ' '' ' 2 sin 2dr qr r V r q u f θ ,2 sin 2θ k q = (1) ()() () 2 ' ' ' ' 2 4 22sin 4? ∞ = =dr qr r V r q u f θθσ (1) (a )()()qa qa qa q V dr qr V r a cos sin sin 2 00 ' ' 0' -- =-? ()()2 6 4 2 02cos sin 4 qa qa qa q V u -= ∴ θσ (b )()? ? ∞ --∞ --= ??? ??0 ' '00 ''0' ' ' 2 '2'2sin dr e e e r i V dr qr e V r iqr iqr r r αα

第13章 量子力学基础..

第13章 量子力学基础 13.1 绝对黑体和平常所说的黑色物体有什么区别? 答:绝对黑体是对照射其上的任意辐射全部吸收而不发生反射和透射的物体,而平常所说的黑色物体是只反射黑颜色的物体。 13.2 普朗克量子假设的内容是什么? 答:普朗克量子假设的内容是物体发射和吸收电磁辐射能量总是以νεh =为单位进行。 13.3 光电效应有哪些实验规律?用光的波动理论解释光电效应遇到了哪些困难? 答:光电效应的实验规律为:1)阴极K 在单位时间内所发射的光子数与照射光的强度成正比;2)存在截止频0ν;3)光电子的初动能与照射光的强度无关,而与频率成线性关系; 4)光电效应是瞬时的。 用光的波动理论解释光电效应遇到的困难在于:1)按照波动理论,光波的能量由光强决定,因而逸出光电子的初动能应由光强决定,但光电效应中光电子的初动能却与光强无关;2)若光波供给金属中“自由电子”逸出表面所需的足够能量,光电效应对各种频率的光都能发生,不应存在红限;3)光电子从光波中吸收能量应有一个积累过程,光强越弱,发射光子所需时间就越长。这都与光电效应的实验事实相矛盾。 13.4 波长λ为0.1nm 的X 射线,其光子的能量ε= J 151099.1-?;质量m = kg 321021.2-?;动量p = 1241063.6--???s m kg . 13.5 怎样理解光的波粒二象性? 答:光即具有波动性,又具有粒子性,光是粒子和波的统一,波动和粒子是光的不同侧面的反映。 13.6 氢原子光谱有哪些实验规律? 答:氢原子光谱的实验规律在于氢原子光谱都由分立的谱线组成,并且谱线分布符合组合规律 )11()()(~2 2n k R n T k T kn -=-=ν k 取 ,3,2,1,分别对应于赖曼线系,巴耳米线系,帕形线系,. 13.7 原子的核型结构模型与经典理论存在哪些矛盾? 答:原子的核型结构与经典理论存在如下矛盾:1)按经典电磁辐射理论,原子光谱应是连续的带状光谱;2)不存在稳定的原子。这些结论都与实验事实矛盾。 13.8 如果枪口的直径为5mm,子弹质量为0.01kg,用不确定关系估算子弹射出枪口时的横

量子力学基础简答题(经典)

量子力学基础简答题 1、简述波函数的统计解释; 2、对“轨道”和“电子云”的概念,量子力学的解释是什么? 3、力学量G ?在自身表象中的矩阵表示有何特点? 4、简述能量的测不准关系; 5、电子在位置和自旋z S ?表象下,波函数??? ? ??=ψ),,(),,(21z y x z y x ψψ如何归一化?解释各项的几率意义。 6、何为束缚态? 7、当体系处于归一化波函数ψ(,)?r t 所描述的状态时,简述在ψ(,)? r t 状态中测量力学量F 的可能值及其几率的方法。 8、设粒子在位置表象中处于态),(t r ? ψ,采用Dirac 符号时,若将ψ(,)? r t 改写为ψ(,) ? r t 有何 不妥?采用Dirac 符号时,位置表象中的波函数应如何表示? 9、简述定态微扰理论。 10、Stern —Gerlach 实验证实了什么? 11、一个物理体系存在束缚态的条件是什么? 12、两个对易的力学量是否一定同时确定?为什么? 13、测不准关系是否与表象有关? 14、在简并定态微扰论中,如?() H 0的某一能级) 0(n E ,对应f 个正交归一本征函数i φ(i =1,2,…, f ),为什么一般地i φ不能直接作为()H H H '+=???0的零级近似波函数? 15、在自旋态χ 1 2 ()s z 中,?S x 和?S y 的测不准关系(?)(?)??S S x y 22?是多少? 16、在定态问题中,不同能量所对应的态的迭加是否为定态Schrodinger &&方程的解?同一能量对应的各简并态的迭加是否仍为定态Schrodinger &&方程的解? 17、两个不对易的算符所表示的力学量是否一定不能同时确定?举例说明。 18说明厄米矩阵的对角元素是实的,关于对角线对称的元素互相共轭。 19何谓选择定则。 20、能否由Schrodinger &&方程直接导出自旋? 21、叙述量子力学的态迭加原理。 22、厄米算符是如何定义的? 23、据[a ?,+ a ?]=1,a a N ???+=,n n n N =?,证明:1?-=n n n a 。 24、非简并定态微扰论的计算公式是什么?写出其适用条件。

第一章 量子力学基础

第一章 量子力学基础知识 一、概念题 1、几率波:空间一点上波的强度和粒子出现的几率成正比,即,微粒波的强度 反映粒子出现几率的大小,故称微观粒子波为几率波。 2、测不准关系:一个粒子不能同时具有确定的坐标和动量 3、若一个力学量A 的算符A ?作用于某一状态函数ψ后,等于某一常数a 乘以ψ,即,ψψa A =?,那么对ψ所描述的这个微观体系的状态,其力学量A 具有确定的数值a ,a 称为力学量算符A ?的本征值,ψ称为A ?的本征态或本征波函数,式ψψa A =?称为A ?的本征方程。 4、态叠加原理:若n ψψψψ,,,,321????为某一微观体系的可能状态,由它们线性组 合所得的ψ也是该体系可能存在的状态。其中: ∑=+??????+++=i i i n n c c c c c ψψψψψψ332211,式中n c c c c ,,,,321???为任意常 数。 5、Pauli 原理:在同一原子轨道或分子轨道上,至多只能容纳两个电子,这两个 电子的自旋状态必须相反。或者说两个自旋相同的电子不能占据相同的轨道。 6、零点能:按经典力学模型,箱中粒子能量最小值为0,但是按照量子力学箱中粒子能量的最小值大于0,最小的能量为228/ml h ,叫做零点能。 二、选择题 1、下列哪一项不是经典物理学的组成部分? ( ) a. 牛顿(Newton)力学 b. 麦克斯韦(Maxwell)的电磁场理论 c. 玻尔兹曼(Boltzmann)的统计物理学 d. 海森堡(Heisenberg)的测不准关系 2、下面哪种判断是错误的?( ) a. 只有当照射光的频率超过某个最小频率时,金属才能发身光电子

福师《结构化学》第一章 量子力学基础和原子结构 课堂笔记

福师《结构化学》第一章量子力学基础和原子结构课堂笔记 ◆主要知识点掌握程度 了解测不准关系,掌握和的物理意义;掌握一维势箱模型Schrodinger方程的求解以及该模型在共轭分子体系中的应用;理解量子数n,l,m的取值及物理意义;掌握波函数和电子云的径向分布图,原子轨道等值线图和原子轨道轮廓图;难点是薛定谔方程的求解。 ◆知识点整理 一、波粒二象性和薛定谔方程 1.物质波的证明 德布罗意假设:光和微观实物粒子(电子、原子、分子、中子、质子等)都具有波动性和微粒性两重性质,即波粒二象性,其基本公式为: 对于低速运动,质量为m的粒子: 其中能量E和动量P反映光和微粒的粒性,而频率ν和波长λ反映光和微粒的波性,它们之间通过Plank 常数h联系起来,普朗克常数焦尔·秒。 实物微粒运动时产生物质波波长λ可由粒子的质量m和运动度ν按如下公式计算。 λ=h/P=h/mν 量子化是指物质运动时,它的某些物理量数值的变化是不连续的,只能为某些特定的数值。如微观体系的能量和角动量等物理量就是量子化的,能量的改变为E=hν的整数倍。 2.测不准关系: 内容:海森保指出:具有波粒二象性的微观离子(如电子、中子、质子等),不能同时具有确定的坐标和动量,它们遵循“测不准关系”: (y、z方向上的分量也有同样关系式) ΔX是物质位置不确定度,ΔPx为动量不确定度。该关系是微观粒子波动性的必然结果,亦是宏观物体和微观物体的判别标准。对于可以把h看作O的体系,表示可同时具有确定的坐标和动量,是可用牛顿力学描述的宏观物体,对于h不能看作O的微观粒子,没有同时确定的坐标和动量,需要用量子力学来处理。 3.波函数的物理意义——几率波 实物微粒具有波动性,其运动状态可用一个坐标和时间的函数来描述,称为波函数或状态函数。 1926年波恩对波函数的物理意义提出了统计解释:由电子衍射实验证明,电子的波动性是和微粒的行为的统计性联系在一起的,波函数正是反映了微粒行为的统计规律。这规律表明:对大量电子而言,在衍射强度大 的地方,电子出现的数目多,强度小的地方电子出现的数目少,即波函数的模的平方与电子在空间分布的密度成正比。

第一章量子论基础

第三章 矩阵力学基础(?)――力学量和算符 一、概念与名词解释 1. 希尔伯特空间 2. 希尔伯特空间中矢量的内积 3. 转置算符、复共轭算符、厄米共轭算符、厄米算符、幺正算符 4. 不确定性定理 5. 维里定理 二、计算 1. 计算对易关系],L ?[νμ ,其中μ、ν =x,y,z. 2. 设λ是一个小量,求算符1)B ?A ?(-λ-按λ的幂展开式. 3. 求在x 表象中的算符???? ??x p 1?.以及在p x 表象中的算符??? ? ??x 1?. 4. 利用不确定性原理估算氢原子基态能量. 5. 一维运动的粒子处在0),()0x (0 )0x (Axe )x (x >λ???<≥=?λ-求<(Δx)2>,<(Δp)2>. 6. 粒子处在Y lm 态,求: (1) L x 和L y 的平均值; (2) <(ΔL x )2>,<(ΔL y )2>. 7. 线谐振子处于基态)x 21exp(-(x)22απ α= φ,计算<(Δx)2>·<(Δp)2>,其中./ μω=α 8. 设体系处于φ=C 1Y 11+C 2Y 10态,且|C 1|2+|C 2|2=1,求: (1) 力学量z L ?的可能值和平均值;

(2) 力学量2L ?的本征值; (3) 力学量L x 和L y 的可能值. 9. 设体系处在某一状态,在该状态中测量力学量L 2得到的值是6?2, 测量力学量L z 得到的值是- ?,求测量L x 和L y 可能得到的值. 10. 设体系的哈密顿算符为,/2I L ?)/2I L ?L ?(H ?2 2z 12y 2x ++=求其能量本征值. 11. 求在H ?的本征态中,对易子]A ?,H ?[的平均值.A ?为任意算符. 12. 在t=0时氢原子的波函数为]32[2,0)r (1-21211210100φ+φ+φ+φ=φ (1) 求体系能量的平均值; (2) 求在t 时刻体系处在l=1,m=1态的概率; (3) 求在t=0时,电子处在d=10-10cm 范围内的概率; (4) 假定做一次测量后发现L 2=2?2,L x = ?,求测量后的瞬间体系的波 函数. 13. 一电子处在一维谐振子的基态,使得m,10]x [x--102=><求激发该 电子到第一激发态所需的能量. 四、证明 1. 若算符B ?A ?、满足1A ?B ?B ?A ?=-,求证: (1) 23322B ?3A ?B ?B ?A ? ,B ?2A ?B ?B ?A ?=-=- (2) 用数学归纳法证明:1n n n B ?n A ?B ?B ?A ?-=- 2. 若算符B ?A ?、满足对易关系式0]]B ?,A ?[,A ?[=,求证: ].B ?,A ?[B ?)A ?exp(B ?)A ?exp(λ+=λ-λ 3. 若算符L ?e 满足?++?+++=)!n /(L ?)2/(L ?L ?1e n 2L ? !,直接通过对易关系证明:?++++=-)!3/(]]]a ?,L ?[,L ?[,L ?[)!2/(]]a ?,L ?[,L ?[]a ?,L ?[a ?ae e L ? L ?

答案 第15章 量子力学基础训练题

第15章 量子力学基础 综合训练题 一、选择题 1. 如果两种不同质量的粒子,其德布罗意波长相同,则这两种粒子的 [ A ] (A) 动量大小相同。 (B) 能量相同。 (C) 速度相同。 (D) 动能相同。 2. 若α粒子在磁感应强度为B 的均匀磁场中沿半径为R 的圆形轨道运动,则粒子的德布罗意波长是 [ A ] (A) eRB h 2 (B) eRB h (C) eRB 21 (D) eRBh 1 3. 设粒子运动的波函数图线分别如图(A)、(B)、(C)、(D)所示,那么其中确定粒子动量的精确度最高的波函数是哪个图? [ A ] 4. 关于不确定关系??? ? ? =≥???π2h p x x 有以下几种理解: (1) 粒子的动量不可能确定。 (2) 粒子的坐标不可能确定。 (3) 粒子的动量和坐标不可能同时确定。 (4) 不确定关系不仅适用于电子和光子,也适用于其它粒子。 其中正确的是: [ C ] (A) (1)、(2) (B) (2)、(4) (C) (3)、(4) (D) (4)、(1) 5. 已知粒子在一维矩形无限深势阱中运动,其波函数为: ()()a x a a x a x ≤≤-?= 23cos 1πψ 那么粒子在6/5a x =处出现的概率密度为 [ A ] (A) a 21 (B) a 1 (C) a 21 (D) a 1 6. 根据玻尔氢原子理论,巴耳末线系中谱线最小波长与最大波长之比为 [ A ] (A) 9 5 (B) 9 4 (C) 9 7 (D) 9 2 7. 若外来单色光把氢原子激发至第三激发态,则当氢原子跃迁回低能态时,可发出的可见光光谱线的 () D x x x () A () B () C

量子力学基础

第22章量子力学基础 一、德布罗意物质波 德布罗意认为不仅光具有波粒二象性,实物粒子也具有波粒二象性。描述实物粒子波函数中的、与实物粒子的能量E和动量p的德布罗意关系: 戴维孙-革末电子衍射实验,约恩孙电子双缝干涉实验都证实了电子具有的波动性。 二、海森伯不确定关系 由于微观粒子具有波粒二象性,我们就无法同时精确地测定微观粒子坐标与动量,海森伯提出了如下的不确定关系: 1、动量-坐标不确定关系 2、时间-能量不确定关系 三、波函数 微观粒子具有波粒二象性,它不同于经典的波也不同于经典的粒子,要描述微观粒子群体随时间的变化,引入波函数。波函数确定后,微观粒子的波粒二象性就能得到准确的描述。波函数是微观粒子的态函数。 1、波函数的物理意义: 某一时刻在空间某一位置粒子出现的几率正比于该时刻该位置波函数的平方,或 ,即 几率密度

2、波函数的归一化条件 3、波函数的标准条件,单值有限连续。 四、薛定谔方程 薛定谔方程是量子力学的基础方程,由它可解出粒子的波函数 1、自由粒子: ,, 2、势场中粒子: *非定态: 式中,为哈密顿算符。 定态: 五、薛定谔方程应用实例 1、一维势箱:金属中电子、原子核中质子势能分布的理想化模型。它的势函数 阱内一维定态薛定谔方程

解得满足边界条件(标准条件)归一化条件的解的波函数 能量 当n=1时为基态能量,也叫零点能。 相应各量子数n的波函数,几率密度和能级分布如图: 2、一维势垒: 半导体中p-n结处电子和空穴势能分布的简化模型。 3、隧道效应:

粒子越过或穿透高于其总能量的势垒。 4、原子、分子运动的量子化特征: 原子振动能量: 分子转动能力: 5、电子角动量: 轨道角动量:, 自旋角动量:, 6、氢原子的定态: 氢原子中电子的定态薛定谔方程 解出来的波函数满足有限单值连续的标准条件可得下表中的四个量子数。 四个量子数表征氢原子中电子状态的特征,如表所列: 名称可取数值主要作用 确定电子能量的主要部分 主量子数n 正整数 1,2,3…… 确定电子的角动量 角量子数在n给定以后,可取n个值, 即0,1,2……(n-1) 相应常用s、p、d、f表示

第10章量子力学基础

第十章 量子力学基础 思 考 题 10-1 什么是绝对黑体?它与平常所说的黑色物体有何区别? 答:(1)在任何温度下都能全部吸收照射到它表面上的各种波长的光,这种物体称为绝对黑体,简称黑体。但黑体自身要向外界辐射能量,黑体并不一定是黑色,它的颜色是由它自身所发射的辐射频率决定的。若温度较低,则它辐射的能量就很少,辐射的峰值波长会远大于可见光波长,会呈现黑色;若温度较高,则它辐射的能量就很大,辐射的峰值波长处于可见光波长范围内,会呈现各种颜色。 (2)平常所说的黑色的物体,用肉眼看起来是黑色的,只表明它对可见光强烈吸收,并不能说它对不可见光(红外线、紫外线)都强烈吸收,所以黑色物体的单色吸收本领并不恒等于1,一般不能称为黑体。 10-2 若一个物体的温度(绝对温度数值)增加一倍,它的总辐射能增加到多少倍? 答:根据斯特藩-玻耳兹曼定律,绝对黑体的总辐出度(总辐射能)为 ()()40 d T T M T M B B σλλ==?∞ 现在,212=T T ,于是 1624 4 1212==??? ? ??=T T M M 即绝对黑体的温度增加一倍,它的总辐射能将增至为原来的16倍。 10-3 假设人体的热辐射是黑体辐射,请用维恩位移定律估算人体的电磁辐射中单色辐出度的最大波长(设人体的温度为310K )。 答:根据维恩位移定律 m T b λ= 可得 (m)1035.9310 10898.263 --?=?==T b m λ 10-4 所有物体都能发射电磁辐射,为什么用肉眼看不见黑暗中的物体? 答:物体要能够被眼睛观察到,必须需要两个条件:(1)物体要发射或者反射出眼睛能感觉到的可见光,其波长范围大约为0.40~0.78μm ;(2)可见光的能量要达到一定的阈值。根据黑体辐射,任何物体在一定温度下都发射出各种波长的电磁辐射,在不同温度下单色辐出度的峰值波长不同。黑暗中周围物体的温度等于环境温度(近似为人体温度),单色辐出度的峰值波长在10μm 附近,在可见光波长范围的电磁辐射能量都比较低,因此不能引起眼睛的视觉响应。

相关主题