搜档网
当前位置:搜档网 › 压力容器焊接新技术及应用论文

压力容器焊接新技术及应用论文

压力容器焊接新技术及应用论文
压力容器焊接新技术及应用论文

探究压力容器焊接新技术及其应用

【摘要】随着我国经济的发展和科技的进步,不同类型的压力容器应用到了社会各个领域当中,而且应用的范围仍在不断扩大。但是,随着压力容器应用范围的扩大,行业内对压力容器的制造要求也不断提高,同时对压力容器制造过程中的焊接技术以及各种工作参数的要求也不断提高。在压力容器的制造过程中,焊接处理是一个非常重要的环节,焊接质量的好坏直接影响到了压力容器的质量、造价以及生产效率等诸多方面。因此,不断的探索压力容器焊接新技术,不断提高焊接水平是如今各个压力容器制造商的共同目标。在这里,本文针对当下压力容器的焊接新技术以及新技术的应用进行一下全面的论述。

压力容器是指可以盛装液体或气体的,能承载一定压力的密闭设备,它主要分为反应容器、换热容器、贮运容器和分离容器。现如今,压力容器已被广泛应用到了化工、机械、石油加工、航空航天等多个行业中。压力容器的制造工艺非常复杂,其中焊接处理是其中非常重要的一个环节,它是利用加热、加压或两者并用方式,将同种或异种的材质进行永久性结合的操作,在这个过程中有诸多的细节问题需要被考虑。焊接质量的好坏在一定程度上影响着压力容器自身的品质和使用性能,而且对整个生产过程的生产效率以及造价产生了重大的影响。只有保证焊接的质量,才能保证压力容器可以安全的使用,避免各种事故发生,进而保证操作人员的安全。因此,近年来如何提高焊接技术的水平,发展新型的焊接技术已成为整个压力容器制造业备受

关注的问题。经过不断的努力研究,我国在压力容器焊接技术上已取得了一定的发展和进步,探索出了许多压力容器焊接新技术,在这里,我就围绕压力容器焊接新技术及应用做一些研究论述。

一、窄间隙埋弧焊接技术

当制造的压力容器壁厚超过100mm时,如果我们仍然采用常规的U型坡口或V型坡口焊接方法,根本无法制造出优质的容器,因为壁厚的焊接质量直接影响着压力容器的稳定性,如果采用以往的焊接方法,极易造成焊接缺欠,而且间隙的焊缝难以修复,甚至因无法处理而必须采用切断操作,这样的话就必须重新对坡口进行加工,大大降低了效率。另外,传统的U型坡口或V型坡口焊接方法对于材料、劳力以及能源来说也是一种浪费。所以,这时就需要采用一种新的焊接技术:窄间隙埋弧焊接技术。

1.窄间隙埋弧焊接技术的优势和劣势。窄间隙埋弧焊接技术是在传统的焊接方法上经过进一步发展得到的,加上最先进的焊缝跟踪技术和导入技术,可以很好的处理壁厚超过100mm压力容器的情况。该新技术除了具备以往焊接方法的基本功能外,还具有其他的一些优点:首先,该技术具有很高的熔敷效率,极大的提高了压力容器的生产效率,而且不会对母材造成较大的热输入而损害母材性能;其次,采用该技术进行焊接操作后产生的焊道薄而且宽,上一焊道产生的热影响可以有效地对后一焊道的操作进行预热,同时后一焊道的操作又可以对前一焊道进行回火,极大地改善了热粗晶区的性能,从而提高了焊接接头的机械性能;最后,该技术的实施有利于压力容器的自动

化生产。虽然窄间隙埋弧焊接技术有如此多的优点,但它仍有不足之处,比如采用该技术进行焊接操作后,压力容器的后期修补很困难,而且装配时间长,同时采用该技术焊接对焊接操作的工作人员要求也更高。

2.窄间隙埋弧焊接技术的应用要点。第一,每条焊道要保证均匀与坡口侧壁熔合,同时要保证熔入的母材金属含量要适当;第二,焊接后的焊道一定要保证宽和薄,以便可以改善热粗晶区性能;第三,要具有双侧横向,同时要具有很强的自动跟踪功能。

二、接管自动焊接技术

在压力容器的制造过程中,接管的焊接主要有两种情况:接管和封头的焊接以及接管和筒体的焊接。当处理这两种情况时,就可以采取新型的焊接技术:接管自动焊接技术。

1.接管和封头的自动焊接。接管与封头有两种焊接形式,一种是向心接管焊接,另一种是非向心接管焊接。采用该技术的设备是封头接管埋弧自动焊机。在进行焊接处理前,首先要对设备进行自动定心,一般是通过焊枪对接管的外壁进行自动寻位,将焊枪的旋转中心定位在接管的中心线上。相比于人工定位,该技术的工作效率大大提高,而且精确性更高;其次是通过焊材自动寻位坡口,记录焊缝的高度变化,进而实现了高度方向上的自动跟踪,从而完成非向心接管焊接。因为设备带有跟踪传感器,所以,在进行自动焊接的过程中,始终可以跟踪到接管的外壁,保证了焊材与坡口侧壁距离的一致性。

2.接管和筒体的自动焊接。在传统的焊接过程中,经常会用到马

鞍形状埋弧焊接设备,但这种技术依然无法应对如今的压力容器制造工艺。因为面对压力容器厚度较大,存在窄间隙坡口的情况时,传统的马鞍形状埋弧焊接技术就无法操作,这时就可以采取新型的自动化马鞍形埋弧焊接技术和设备进行自动化处理。相对于传统的技术,该设备具有很强的适应能力。该设备利用四连杆夹紧的方式实现自动定心的目的。该设备利用筒体和接管直径等焊接参数使焊接数学模型可以自动化焊接,并且人机交互性能变得更好,工作人员只要控制焊接参数就可以进行焊接处理。

三、弯管内壁堆焊技术

压力容器在实际的使用过程中,经过长期的使用在压力容器的接管内壁肯定会出现腐蚀现象。这就要求我们在制造压力容器时,在接管内壁堆焊不锈钢耐磨层防止这种现象的发生。但是,堆焊耐磨层在压力容器制造过程中,如果沿用传统的焊接技术来操作的话显得非常困难。因为30°弯管内壁堆焊无法满足90°弯管堆焊,所以就必须将90°的弯管部分先分为三部分,然后对这三部分分别进行焊接,最后组合在一起才算完成90°弯管的焊接工作。显然,面对这种情况,采用传统的焊接技术非常麻烦,而且效果也不好,这就需要一种新的焊接技术的出现,这就是弯管内壁自动堆焊技术。

1.30°弯管内壁堆焊。该技术以弯管的曲率半径和内径作为参考参数,沿容器的圆周环自动堆焊,它利用5轴协同运动,按照既定的数学模型进行自动焊道焊接。期间要保持匀变速旋转;每焊一圈,要对摆角变位,另外,还要进行平移变位,焊枪要一直保持变摆幅运动。

该技术不仅可以保证焊接的速度恒定,焊缝和焊枪始终在意垂直平面内,同时还可以使堆焊层厚度保持均匀性、一致性,不断地提高了压力容器的品质。

2.90°弯管内壁堆焊。该技术沿弯管母线纵向自动堆焊,它的具体内容是:将工件安装在二维变位机上,以工件的旋转来带动焊接,同时工件的翻转可以保证每一焊道都保持平焊;另外,90°弯管内壁堆焊使用的焊枪安装在三维导轨上,有效地保证了焊枪的自动变位,进而提高了焊接质量。

结语:

压力容器作为一个涉及多行业、多学科的综合性产品广泛地应用到了众多的行业中,并为各个行业创造了不可估量的效益。但在压力容器的制造过程中,焊接处理非常麻烦也非常重要,同时它的应用效果对压力容器的品质产生了极其重要的影响。所以,在实际的压力容器制造过程中,我们要不断的探索各种焊接新技术,并将其积极地应用到压力容器制造过程中。只有这样,压力容器的焊接水平才能不断的提高,焊接技术才能得到进一步的发展,压力容器的质量也会随着提高,在各个行业中长久地创造效益和价值。

参考文献:

[1] 穆守仑.飞速发展的焊接新技术[J].机械工人,2002(01).

[2] 任桂华.焊接新技术在汽车制造业中的应用及发展趋势[J].现代机械,2005(03).

[3] 易绛弘.1995年美国国际焊接与制造博览会展示了国际焊接

新技术[J].电焊机,1996(01).

压力容器的焊接(毕业设计)

压力容器的焊接 摘要 众所周知,压力容器是在石油化学工业、能源工业、科研和军工等国民经济的各个部门都起着重要作用的设备。而由于密封、承压及介质等原因,容易发生爆炸、燃烧起火而危及人员、设备和财产的安全及污染环境的事故,因此世界各国均将其列为重要的监检产品,由国家指定的专门机构,按照国家规定的法规和标准实施监督检查和技术检验。同样的,对于它的生产要求也不能放松。焊接作为压力容器生产的主要环节,可谓是重中之重。 本文从压力容器焊接接头设计、压力容器焊接材料的选择及常用的焊接方法等方面简单地介绍了压力容器焊接方面的基础知识。基于手工电弧焊设备简单、工艺灵活及对各种刚适应性强等特点,手工电弧焊成为压力容器最主要的焊接方法,本文详细的介绍了手工电弧焊在压力容器焊接中的应用及常见的焊接缺陷和预防方法。 关键词:压力容器,手工电弧焊,石油化工,焊接方法

PRESSURE VESSEL OF WELDING ABSTRACT With the high-speed development of national economy, oil chemical industry and products by the extensive use of air, large capacity pressure container storage tank of low temperature low pressure liquid is regarded as the priority development of production important products. The use of pressure vessel is very extensive. It is in the oil industry, the energy industry, scientific research and military industry and so on the economy in each department plays an important role in the equipment. According to the pressure of pressure vessels are rated: low pressure containers, medium voltage containers, high pressure vessel and ultrahigh pressure container. I do this topic discussion is medium voltage containers (code M 1.6 MPa than p < 10.0 MPa) welding process design. Based on manual arc welding equipment simple, flexible and to all sorts of technology just strong adaptability and other characteristics, this paper I used manual electric arc welding and Choose model ZGX-300 rotary dc machines. The welding structure, from bottles of welding joint structure design, welding materials selection principle of all-round expounded on medium voltage vessel welding process design and introduces mainly the manual arc welding range of knowledge KEY WORDS: Medium pressure vessure,Manual arc welding,Pressure vessel,Bongding technolgy

压力容器的焊接、热处理、制造过程等基础知识

一、单选题【本题型共42道题】 1.下述关于管壳式换热器管箱热处理的描述,哪一项是正确的?() A.所有管箱都应该进行焊后热处理 B.只要制造厂能保证质量,管箱不必进行焊后热处理 C.带分程隔板的碳钢管箱都应当进行焊后热处理 D.带分程隔板的管箱都应当进行焊后热处理 正确答案:[C] 用户答案:[D] 得分:0.00 2.压力容器制造过程中的设计变更可能涉及材料代用、无损检测方法改变、加工尺寸结构变更等,这一说法是否正确?() A.正确 B.错误 C.不确定 正确答案:[A] 用户答案:[A] 得分:2.40 3.下述哪一项不是压力容器竣工章上必须反映的信息?() A.完工日期 B.制造单位名称 C.制造许可证编号 D.审核人的签字 正确答案:[A] 用户答案:[A] 得分:2.40 4.下述关于压力容器筒体表面质量检查的描述,哪一项是正确的?()

A.只要压力容器用钢板的质量证明书载明钢板表面质量合格,完工的筒体不必重新检查表面质量 B.只要压力容器用钢板的供应商保证钢板的表面质量,制造厂不必重新检查 C.压力容器用钢板的表面质量在材料验收时已经检验合格,完工的筒体不必重新检查表面质量 D.压力容器完工的筒体应当检查表面质量 正确答案:[D] 用户答案:[D] 得分:2.40 5.下述关于管壳式换热器结构的描述,哪一项是正确的?() A.换热器都应设计成卧式容器 B.换热器至少包括一个壳程和一个管程 C.换热管都应该采用直管 D.管程压力都应该比壳程高 正确答案:[B] 用户答案:[B] 得分:2.40 6.下述哪一项不是压力容器用锻件必须有的标志?() A.锻件制造厂名或代号 B.批号 C.合同号 D.锻件级别 正确答案:[C] 用户答案:[C] 得分:2.40 7.下述关于压力容器法兰加工后检查的描述,哪一项是正确的?() A.应当检查表面质量

压力容器的焊接技术(20210201134024)

压力容器的焊接技术 随着工程焊接技术的迅速发展,现代压力容器也已发展成典型的全焊结构。压力容器的焊接成为压力容器制造过程中最重要最关键的一个环节,焊接质量直接影响压力容器的质量。 第一节碳钢、低合金高强钢压力容器的焊接 一、压力容器用碳钢的焊接 碳钢以铁为基础,以碳为合金元素,含量一般不超过 1.0%。此外,含锰量不超过 1.2%,含 硅量不超过0.5%,Si、Mn 皆不作为合金元素。而其他元素,如Ni 、Cr、Cu 等,控制在残余量限度内,更不是合金元素。S、P、O、N 等作为杂质元素,根据钢材品种和等级,也都有严格限制。 碳钢根据含碳量的不同,分为低碳钢(C W0.30%)、中碳钢(C=0.30% ~ 0.60%)、高碳钢(C> 0.60%)。压力容器主要受压元件用碳钢,主要限于低碳钢。在《容规》中规定:“用于焊接结构压力容器主要受压元件的碳素钢和低合金钢,其含碳量不应大于0.25%。在特殊条件下,如选用含碳量超过0.25%的钢材,应限定碳当量不大于0.45%,由制造单位征得用户同意,并经制造单位压力容器技术总负责人批准,并按相关规定办理批准手续” 。 常用的压力容器用碳钢牌号有Q235-B、Q235-C、10、20、20R 等。 (一)低碳钢焊接特点低碳钢含碳量低,锰、硅含量少,在通常情况下不会因焊接而引起严重组织硬化或出现淬火组织。这种钢的塑性和冲击韧性优良,其焊接接头的塑性、韧性也极其良好。焊接时一般不需预热和后热,不需采取特殊的工艺措施,即可获得质量满意的焊接接头,故低碳钢钢具有优良的焊接性能,是所有钢材中焊接性能最好的钢种。 (二)低碳钢焊接要点 (1)埋弧焊时若焊接线能量过大,会使热影响区粗晶区的晶粒过于粗大,甚至会产生魏氏组 织,从而使该区的冲击韧性和弯曲性能降低,导致冲击韧性和弯曲性能不合格。故在使用埋弧焊焊接,尤其是焊接厚板时,应严格按经焊接工艺评定合格的焊接线能量施焊。 (2)在现场低温条件下焊接、焊接厚度或刚性较大的焊缝时,由于焊接接头冷却速度较快,冷裂纹的倾向增大。为避免焊接裂纹,应采取焊前预热等措施。 二、压力容器用低合金高强钢及其焊接特点在钢中除碳外少量加入一种或多种合金元素(合金元素总量在5%以下),以提高钢的力学性能,使其屈服强度在275 MPa以上,并具有良好的综合性能,这类钢称之为低合金高强钢,其主要特点是强度高、塑性和韧性也较好。按钢的屈服强度级别及热处理状态,压力容器用低合金高强钢可分为二类。 ①热轧、正火钢屈服强度在294Mpa ~ 490MPa之间,其使用状态为热轧、正火或控轧状态,属于非热处理强化钢,这类钢应用最为广泛。 ②低碳调质钢屈服强度在490Mpa ~980Mpa之间,在调质状态下使用,属于热处理强化钢。其特点是既有高的强度,且塑性和韧性也较好,可以直接在调质状态下焊接。近年来,这类低碳调质钢应用日益广泛。 目前应用于压力容器的低合金高强钢。钢板牌号有:16MnR、15MnVR、13MnNiMoNbR 、 18MnMoNbR 等。锻件牌号有16Mn、15MnV、20MnMo 、20MnMoNb 等。 低合金高强钢的含碳量一般不超过0.20%,合金元素总量一般不超过5%。正是由于低合金高强钢含有一定量的合金元素,使其焊接性能与碳钢有一定差别,其焊接特点表现在:(一)焊接接头的焊接裂纹 (1)冷裂纹低合金高强钢由于含使钢材强化的C、Mn、V、Nb 等元素,在焊接时易淬硬,这些硬化组织很敏感,因此,在刚性较大或拘束应力高的情况下,若焊接工艺不当,很容易产生冷裂纹。而且这类裂纹有一定的延迟性,其危害极大。 (2)再热(SR)裂纹再热裂纹是焊接接头在焊后消除应力热处理过程或长期处于高温运行中发生在

压力容器焊接技术要求.

压力容器焊接技术要求

概述 ?1、焊接是压力容器制造的重要工序,焊接质量在很大程度上决定了压力容器的制造质量; ?2、影响焊接质量包含诸多方面内容:焊接接头尺寸偏差、焊缝外观、焊接缺陷、焊接应力与变形、以及焊接接头的使用性能等; ?3、容器产品的设计是获得性能优良的焊接接头的基础:焊接母材的、焊接坡口形式、焊接位置、焊材、无损检测、焊后热处理等的选择,直接关系到焊接质量。

一、压力容器焊接的基本概念 ?1、焊缝形式与接头形式: 从焊接角度看,容器是由母材和焊接接头组成的;焊缝是焊接接头的组成部分。 焊缝有5种:对接焊缝、角焊缝、端接焊缝、塞焊缝和槽焊缝。 焊接接头有12种:对接接头、T型接头、十字接头、搭接接头、角接接头等。 ?2、焊缝区、熔合区和热影响区

?3、焊接性能、焊接工艺评定和焊接工艺规程--压力容器焊接的三个重要环节 焊接性能是焊接工艺评定的基础,焊接工艺评定是焊接工艺规程的依据,焊接工艺规程是确保压力容器焊接质量的行动准则。 ? 3.1、焊接性能:材料对焊接加工的适应性和使用可靠性。 ? 3.2、焊接工艺因素:重要因素;补加因素;次要因素。 ? 3.3、焊接工艺评定: JB4708《钢制压力容器焊接工艺评定》 JB/T4734《铝制焊接容器》 JB/T4745《钛制焊接容器》 ? 3.4、焊接工艺规程:

二、常用焊接方法及特点 ?1、手工电弧焊(SMAW) ?2、埋弧焊(SAW) ?3、钨极气体保护焊(GTAW)?4、熔化极气体保护焊(GMAW)?5、药芯焊丝电弧焊(FCAW)?6、等离子弧焊(PAW) ?7、电渣焊(ESW)

压力容器A、B、C和D类焊缝的定义

A B 、C 和D 类焊缝的定义。 ① 容器圆筒部分的纵向接头(多层包扎容器层板层纵向接头除外),球形封头与圆筒连 接的环向接头,各类凸形封头中的所有拼焊接头以及嵌入式接管与壳体对接连接的接头, 均属A 类焊接接头。 ② 壳体部分的环向焊缝接头,锥形封头小端与接管连接的接头,长颈法兰与接管连接的 接头,均属B 类焊接接头,但已规定为 A C 、D 类的焊接接头除外。 ③ 平盖、管板与圆筒非对接连接的接头,法兰与壳体、接管连接的接头,内封头与圆筒 的搭接接头以及多层包扎容器层板层纵向接头,均属 C 类焊接接头。 ④ 接管、人孔、凸缘、补强圈等与壳体连接的接头,均属 D 类焊接接头,但已规定为 A 、 B 类的焊接接头除外。 A 类焊缝是压力容器中受力最大的接头,因此一般要求采用双面焊或保证全焊透的单面焊 缝; B 类焊缝的工作应力一般为 A 类的一半。除了可采用双面焊的对接焊缝以外, 也可采用带 衬垫的单面焊; 在中低压焊缝中,C 类接头的受力较小,通常采用角焊缝联接。对于高压容器,盛有剧毒 介质的容器和低温容器应采用全焊透的接头。 D 类焊缝是接管与容器的交叉焊缝。受力条件较差,且存在较高的应力集中。在后壁容器 中这种焊缝的拘束度相当大,残余应力亦较大,易产生裂纹等缺陷。因此在这种容器中 D 类焊缝应采取全焊透的焊接接头。对于低压容器可采用局部焊透的单面或双面角焊。 钢制压力容器焊接接头的基本形式: 有对接接头、T 形(十字形)接头、角接头和搭接接头。 彻HtJk 中力勒殳的应林 对接接头是最基本的一种接头形式,其强度可以达到与材相同,受力均匀,筒体与圭寸头 等重要部件的连接均采用对接接头。厚度小时不开坡口,当厚度超过 8mm 是要有坡口。 对接接头

d锅炉压力容器筒体上管座角焊缝焊接技术的研究

d锅炉压力容器筒体上管座角焊缝焊接技术的研究

黑龙江农业经济职业学院 毕业论文(设计) 论文设计题目暖气管内角焊缝焊接技 术的分析 指导老师闫瑞涛 学生姓名董维思 学生学号 070309114 专业年级焊接技术及自动化焊接091班 系别、班别焊接系1班

摘要:暖气、筒体上管座角焊缝焊接技术的分析:本文针对暖气管管座 角焊缝要求全焊透特点,通过改进焊接坡口设计,优化工艺以及对操作工人技能的培训,使筒座角焊缝的超声波探伤一次合格率明显提高。创新地研制开发了适合暖气管座角焊缝焊接的机械焊设备,进行了大量的试验和产品试生产,其焊接生产率高,质量稳定可靠,大大改善了焊工的操作环境,并在行业中率先使用焊接新工艺,达到国内先进水平 关键词管座角焊缝;超声波探伤;机械焊

目录

前言 管座是暖气产品中一个非常重要的部件,暖气的焊接质量历来是各暖气厂家最为关心的,但以往大家一般主要将注意力集中在暖气的纵缝、环缝及集中下降管、给水管上,对于Φ133mm及Φ159mm引出管管座的焊接一直没有引起足够重视,但随着用户对管座焊接要求的不断提高,暖气管座的焊接已成为暖气行业关注的焦点。 以往在220t/h、420t/h筒的Φ133×12引出管管座焊接时,选用全焊透的结构型式,焊接采用内孔氩弧焊封底、手工电弧焊盖面,焊后仅进行表面磁粉探伤,然而在采用超声波探伤检查后,连续两台产品的暖气管座角焊缝一次合格率低得实在确实令人难以接受,也立即引起了大家的高度重视,经过实物解剖的分析,发现暖气管座焊接缺陷主要分布在内孔氩弧封底焊根部和手工焊焊缝底部,大部分呈整圈分布,缺陷的性质为未焊透、夹渣和气孔。 从目前生产情况来看,现有的设备,管座加工精度,焊接坡口的具体尺寸,焊工的操作技能等均不能满足要求,因而焊接质量难以达到超声波探伤合格标准。根据暖气管座焊接的实际情况分析,我们发现由于管座的壁厚、椭圆度公差及管座的加工精度使得管座的钝边尺寸过大或不均匀,管座装配时,由于没

压力容器用焊接材料的复验要求

压力容器用焊接材料的复验要求 中国化工装备协会朱海鹰辛忠智辛忠仁 (北京100011) 摘要:压力容器安全技术规范提出了压力容器用焊接材料的复验要求。哪些压力容器用焊接材料需要复验,复验要求,依据标准和复验的目的,本文对此进行了讨论。 关键词;压力容器焊接材料复验要求 1、压力容器用焊接材料的复验 在2009版《固定式压力容器安全技术监察规程》(以下简称新《容规》)第2.12(3)条和1999版《压力容器安全技术监察规程》(以下简称旧《容规》)第26条中都对焊接材料的复验提出了要求,其中2009版《固定式压力容器安全技术监察规程》第2.12(3)条要求:“用于制造压力容器受压元件的焊接材料,应当满足相应标准。焊接材料应当附有质量证明书和清晰、牢固的标志。” “压力容器制造单位应建立并严格执

和回收制度。” 但新《容规》和旧《容规》都没有具体指出用于哪些压力容器的焊接材料需要复验、复验项目和依据标准。总结相关压力容器产品标准认为:下列情况下制造的压力容器用焊接材料需要按照新《容规》第2.12(3)条要求进行复验: ①按照GB150附录C制造的低温压力容器,需按GB150附录C的C2.2.3条要求对焊条按批进行药皮含水量或熔敷金属扩散氢的复验,其检验方法按相应的焊条标准或技术条件要求。 ②按照GB12337-1998《钢制球形储罐》标准制造的钢制球形储罐,需按GB12337的4.6.1.2条要求对焊条按批号进行扩散氢复验。 ③按照GB50094-98《球形储罐施工及验收规范》标准制造的钢制球形储罐,需按GB50094的4.3.1.3条要求对焊条和药芯焊丝按批号进行扩散氢复验。 ④按照JB/T4780-2002《液化天然气罐

压力容器焊接技术研究

压力容器焊接技术研究 发表时间:2016-06-06T14:42:37.653Z 来源:《电力设备》2016年第4期作者:张璐刘鹏 [导读] 但随着工业的发展,对压力容器的要求也在逐渐的增加,这就要求在不断的实践过程中来对压力容器的焊接技术进行完善。 (上海宝冶集团有限公司上海市 200941) 摘要:随着社会的进步与可以的发展,焊接技术已经逐渐趋于成熟,焊接技术已经从传统的热加工技术发展到现在的结构、冶金、力学、基材料以及电子等多门科学进行结合的学问,其在压力容器的制作中得到了广泛的应用。但随着工业的发展,对压力容器的要求也在逐渐的增加,这就要求在不断的实践过程中来对压力容器的焊接技术进行完善。本文分析了压力容器焊接技术的相关内容。 关键词:压力容器;焊接技术; 压力容器是典型的焊接结构,由于其工作条件苛刻,同时受到压力、温度(高温或低温)和各种腐蚀性或易燃、易爆介质的作用,从而对其制造质量提出了严格要求。焊接质量是压力容器制造质量的重要组成部分,直接影响着压力容器的使用安全及企业的经济效益。 一、压力容器的焊接特点 从常规的低压储罐到高压、超高压的化工设备加氢反应器、合成塔,大型核电站反应堆、蒸发器、稳压器,火电站锅炉集箱和汽包等,压力容器的服役条件从低温到高温、从负压到超高压、从强腐蚀强辐射到无腐蚀无辐射,其对使用材料及板材厚度的要求不尽相同。从而压力容器焊接具有不同的焊接特点,具体表现如下: 1.低合金高强钢由于含有一定量的使钢材强化的C、Mn、V、Nb等元素在焊接时易淬硬,在刚性较大或拘束应力高的情况下,很容易产生冷裂纹,这种裂纹还具有一定的延迟性,危害极大。再者,由于焊接高温使HAZ 附近的C、Nb、Cr、Mo 等碳化物固溶于奥氏体中,焊后冷却时来不及析出,而在PWHT 时呈弥散析出,从而强化了晶内,使应力松弛时的蠕变变形集中于晶界,从而使焊接接头在靠近熔合线粗晶区产生沿晶开裂。另外,焊接时线能量过小,HAZ会出现马氏体引起裂纹;线能量过大,WM 和HAZ 的晶粒粗大会造成接头脆化。同时,焊接接头HAZ 由于焊接热作用而导致的软化如果处理不当也会严重影响压力容器的使用安全性及寿命。 2.压力容器的高压大型化使得其壁厚大幅增加,焊接厚壁容器所带来的焊件预热、金相组织控制、焊缝跟踪控制等,使现代压力容器焊接技术对焊接机械化、自动化、智能化的要求愈加的迫切。 二、压力容器焊接技术 1.厚壁压力容器焊接技术。目前,压力容器的生产制作逐步向大型化发展,大型压力容器直径可达几米、甚至十几米,壁厚超过200mm,对其焊接接头质量要求很高,常规的焊接方法很难满足质量要求。因过热会使组织成分不均匀,晶粒组织粗大、热影响区韧性低和堆焊层强度降低;开U型或V型坡口的焊接方法,不仅浪费了材料、能源、人力物力和时间,更重的是难于得到合格的接头;焊接过程中高空作业,如大型塔器的空中合拢焊缝组焊、大直径容器接管与壳体的焊接;密闭空间焊接,如高压小直径厚壁容器内部焊接、极度危害介质容器的内部返修,常给焊接作业者带来安全隐患,因此急需安全、自动化程度高且高效率的焊接技术。厚壁压力容器传统的焊接技术为单丝埋弧焊和电渣焊,采用窄间隙焊接技术,减小坡口横截面积,从而实现降低焊接热输入。为提高厚壁压力容器的生产效率,在双丝埋弧焊的基础上,近年发展起来的窄间隙多丝埋弧焊采用新型计算机控制的埋弧焊电源可实现3丝、4丝、5丝或6丝串列电弧高速埋弧焊。多丝埋弧焊分为多电源串列多丝埋弧焊和单电源多丝埋弧焊。前者是每一根焊丝均有一个独立电源供电,可避免电弧相互干扰和产生磁吹偏;后者是用多根较细的焊丝代替一根较粗的焊丝,以相同的速度通过同一导电嘴向外输出,在焊剂覆盖下熔化,熔敷效率高增加焊接速度。提高大壁厚容器的生产效率,由预热电源将填充焊丝加热到接近熔化状态后,送入埋弧自动焊形成的熔池为热丝埋弧焊,该方法能量消耗小,焊材损失少等优点也具有广泛的应用前景。 2.不锈钢复合板压力容器焊接技术。不锈钢复合板是由碳钢或低合金钢为基层,不锈钢为复层,一般采用爆炸法、冷轧法或爆炸冷轧法制成的双金属复合板,它既有不锈钢的耐蚀性能,有具有碳钢和低合金钢低成本的优点,广泛应用于炼 油、化工等领域的塔和罐设备材料。复合板的焊接不同于单一金属的焊接,它是将两种物理性能、化学成分和组织存在较大差异的材料进行焊接。由于两种金属的膨胀系数不同,因此在焊缝附近引起焊接热应力;另外,焊接基层与复层之间的过渡层,会发生碳的迁移,碳由低铬的基层向富铬的不锈钢熔敷金属迁移,不锈钢金属被稀释,形成高硬度的增碳区和低硬度的脱碳区。我国不锈钢复合板的基层焊接工艺较简单,可选用手工电弧焊、埋弧焊、CO2气保护焊;焊接难点是过渡层和复层的焊接,通常选用手工电弧焊、氩弧焊、药芯焊丝气保护焊和带极埋弧焊。复层多为耐蚀性较好的奥氏体不锈钢,但因其导热系数小,线膨胀系数大,易发生HAZ敏化区的晶间腐蚀和焊接变形。晶间腐蚀是由“晶界贫铬”理论造成的,而铬的碳化物形成是扩散过程,需要一定的时间,因此应减少HAZ敏化区高温停留时间,过渡层采用小电流、快速焊、窄焊道、反极性、多层多道焊接,层间温度控制60℃以下。过渡层和复层焊接以往均采用手工电弧焊,生产效率低,工人劳动强度大,焊接质量受操作者影响大。不锈钢药芯焊丝CO2焊是一种高效率的焊接方法,热量集中,熔池小,电弧稳定,焊接飞溅小,工艺性好,质量高,易操作,能实现全位置焊接,综合成本小等优点,且药芯焊丝的熔渣有良好的冶金处理作用,可净化焊缝,提高耐腐蚀性能。通过研究表明,CO2气体对药芯焊丝形成的焊缝没有明显增碳性。我国从美国引进了球罐药芯焊丝全位置自动焊接技术,焊接熔敷效率高,速度快,改善了焊接条件。TIG焊接技术多作为打底焊道,主要用于焊缝密封性能和力学性能要求高的压力容器。脉冲TIG焊电流调节范围较宽,可调节脉冲参数,精确控制电弧能量的分布,能精确控制熔深体积和形状。 3.承装腐蚀介质的压力容器焊接技术。压力容器服役条件有高温和低温,承受内压和外压,内盛入介质有强腐蚀、强辐射,因此对焊接技术有不同的要求。容器全部采用耐腐蚀材料,会加成本,达不到节约材料的环保新要求,因此只需在接触腐蚀介质的一面堆焊一层耐蚀材料。目前新的堆焊方法为带极电渣堆焊,与早期使用的带极埋弧堆焊相比具有如下优点熔敷效率高,比埋弧堆焊大约高50%;熔深浅而均匀,稀释率比埋弧堆焊小,单层堆焊即可满足性能要求,同时减少了工作量;堆焊层成形良好,不易有夹渣等缺陷,表面质量优良,平整度好;焊剂只需在焊接方向前面覆盖,而埋弧堆在整个焊接区必须覆盖焊剂,单侧加入节省焊剂,且敞开式熔池利于杂质和气体排出,不产生焊接电弧和紫外线。用带极埋弧堆焊与带电渣堆焊两种方法在Q235母材上堆焊不锈钢耐蚀层,研究结果表明:在9.8%H2SO4溶液中,堆焊层金属的自腐蚀电位为-433mV,母材金属的自腐蚀电位为-480mV,带极电渣堆焊层金属的自腐蚀电流接近0.17m

压力容器焊接的质量控制研究通用版

安全管理编号:YTO-FS-PD261 压力容器焊接的质量控制研究通用版 In The Production, The Safety And Health Of Workers, The Production And Labor Process And The Various Measures T aken And All Activities Engaged In The Management, So That The Normal Production Activities. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

压力容器焊接的质量控制研究通用 版 使用提示:本安全管理文件可用于在生产中,对保障劳动者的安全健康和生产、劳动过程的正常进行而采取的各种措施和从事的一切活动实施管理,包含对生产、财物、环境的保护,最终使生产活动正常进行。文件下载后可定制修改,请根据实际需要进行调整和使用。 压力容器这种工业产品,优良的工序和加工质量是保证产品质量的重要条件。焊接是保证压力容器致密性和强度的关键,是压力容器制造中最重要的一个环节,是保证压力容器质量的关键,是保证压力容器寿命和安全运行的重要条件。焊接质量的控制从某种程度上说,锅炉、压力容器的质量就是其焊接质量。通过焊接对压力容器质量控制的因素分析,从操作人员控制,焊接工艺控制,焊接材料选择控制,焊接检验控制与焊接环境控制等五个方面来论述压力容器焊接的质量控制。 1. 焊接工作人员控制 焊条电弧焊和气体保护焊等手工操作占支配地位的焊接,操作者的个人技能和谨慎态度对焊接质量至关重要。即使自动化程度高的埋弧自动化,其工艺参数的调节和施焊也离不开人的操作;各种半自动焊中电弧沿焊接方向的移动也是靠人掌握。操作者质量意识差、操作时粗心大意、不遵守焊接工艺规程、操作技能低或操作技术不熟练

压力容器焊接技术要求

压力容器焊接技术要求 1.安装高压油开关、自动空气开关等有返回弹簧的开关设备时,应将开关置于断开位置; 2.搬运配电柜时,应有专人指挥,步调一致,配电箱必须牢固、完整、严密,使用中的配电箱内禁止放杂物; 3.剔凿、打洞时,必须戴防护眼镜,锤子柄不得松动,錾子不得卷边、裂纹,打过墙、楼板透眼时,墙体后面不得有人靠近; 4.脚手架上作业,脚手板必须满铺,不得有空隙和探头板; 5.管子穿带线时,不得对管口呼唤、吹气,防止带线弹出,二人穿线,应配合协调,一呼一应,高处穿线,不得用力过猛; 6.使用套管机、电砂轮、台钻、手电钻时,应保证绝缘良好,并有可靠的接零接地,漏电保护装置灵敏有效; 7.进行耐压试验装置的金属外壳,必须接地,被调试设备或电缆两端如不在同一地点,另一端应有人看守或加锁,并悬挂警示牌,待仪表、接地检查无误,人员撤离后方可升压; 8.电力传动装置系统及高低压各型开关调试时,应将有关的开关手柄取下或锁上,悬挂标志牌,严禁合闸; 9.用摇表测定绝缘电阻,严禁有人触及正在测定中的线路或设备,测定容性或感性设备材料后,必须放电,遇到雷天气,停止摇测线路绝缘; 10.电流互感器禁止开路,电压互感器禁止

短路和以升压方式进行,电气材料或设备需放电时,应穿戴绝缘防护用品,用绝缘棒安全放电; 11.现场变配电高压设备,无论带电与否,单人值班严禁从事修理工作,高压带电区内部分停电工作时,人体与带电部分必须保持安全距离,并应有人监护; 12.在变配电室内,外高压部分及线路工作时,应按顺序进行,停电、验电悬挂地线,操作手柄应上锁或挂标示牌; 13.验电时必须戴绝缘手套,按电压等级使用验电器,在设备两侧各相或线路各相分别验电,验明设备或线路确实无电后,即将检修设备或线路做短路接地; 14.装设接地线,应由两人进行,先接接地端,后接导体端,拆除时顺序相反,拆接时均应穿戴绝缘防护用品,设备或线路检修完毕,必须全面检查无误后,方可拆除接地线; 15.接地线使用截面不小于25mm2的多股软裸铜线和专用线夹,严禁使用缠绕的方法进行接地和短路; 16.电气设备的金属外壳必须接地或接零。同一设备可做接地或接零,同一供电系统不允许一部分设备采用接零,另一部分采用接地保护; 17.电气设备使用的保险丝(片)的额定电流应与其负荷量相适应,严禁用其他金属线代替保险丝(片)。

压力容器焊接新技术及其应用分析

163中国 设备 工程Engineer ing hina C P l ant 中国设备工程 2019.10 (上)压力容器在工业生产中的应用表现出了较高的质量和安全 性能要求,如果其质量得不到有效保障,必然会导致压力容器 的应用可靠性降低,容易出现安全隐患。基于此,在压力容器 制造的焊接过程中,同样也需要严格把关,力求选择更为适用 的焊接工艺、焊接方法和焊接手段,保证和提高焊接质量,从 而降低或避免压力容器在焊接区域安全隐患的存在。 1?压力容器焊接概述 当前工业生产中压力容器的应用比较普遍,尤其是在炼 油厂以及冶金、化工等行业生产中,压力容器的应用更是表 现出了极强的作用价值。从压力容器的具体应用来看,其作 为一种应用广泛的特种设备,主要应用于储存、反应、运输 液体或者气体,需要承载一定的压力,通常密闭性要求较高。 一般而言,压力容器的工作压力在0.1MPa 以上,在长期使 用运行条件中往往面临着较高的温度和不同的腐蚀介质,以 及环境条件的差异,所以对压力容器的运行性能必然也就有 较高的要求。结合以往压力容器在长期运行中出现的质量缺 陷和问题进行分析,焊接区域出现泄漏或者是破损的概率相 对于其他部位更高,威胁性也更为突出,这也就必然需要重 点围绕着压力容器的焊接工艺和焊接技术予以高度关注,确 保焊接技术成熟,焊接工艺更为规范可靠,就能有效提升焊 接质量,避免在高温高压下出现异常问题。 由于压力容器的后续应用环节相对恶劣,不仅仅涉及超 高温或者是超低温环境,还承受着较高的压力,相关介质也 存在着明显的腐蚀性或者易燃易爆特点,容易导致容器在长 期应用下受损,如此也就增加了压力容器出现安全事故的几 率。因此,压力容器的焊接必然需要确保相应材料的结合度 更为理想,可以表现出较强的整体密实度,进而也就能够较 好提升压力容器的后续稳定运行效果,满足当前越来越苛刻 的压力容器性能要求。基于此,在压力容器的生产制造中重 点关注于焊接环节成为关键任务,相关技术人员需要选择适 宜的焊接技术手段,确保压力容器的相关部位的强度、密封 性等指标能够满足国家相关规范要求。 随着当前我国压力容器焊接工艺的不断创新发展,相关 技术手段越来越先进,众多新型处理工艺的应用确实表现出 了理想的优势,不仅仅解决了以往压力容器焊接中容易出现 的各类技术问题,还有助于提升压力容器焊接的效率和可靠 性,操作便捷性同样也越来越突出,值得进行深入探讨,加压力容器焊接新技术及其应用分析 王丹阳? (新疆同益炼化工程有限责任公司,新疆?克拉玛依?834003) 摘要:压力容器是我国工业生产中比较常见的一类设备,为了更好地保证压力容器安全有效运用,在压力容器制造过程中重点抓好压力容器的焊接控制工作至关重要。容器制造中应尽量避免在焊接区域出现严重的泄露威胁,所以,相关焊接技术手段的选用尤为关键。文章重点围绕当前压力容器焊接中所采用的一些焊接新技术进行了分析论述。 关键词:压力容器;焊接新技术;应用 中图分类号:TG457.5 文献标识码:A 文章编号:1671-0711(2019)10(上)-0163-02 大对各类压力容器焊接新技术的研究力度,确保其能够在压力容器焊接中表现出更强的积极作用。2?压力容器焊接新技术的应用2.1?窄间隙埋弧焊接技术在压力容器的制造中,为了更好地提升其压力承受能力,往往需要设计较厚的筒体壁,而当壁厚度达到了100mm 以上时,如果焊接操作依然采取传统的焊接模式,焊接工作量大,还容易产生未焊透、夹渣、气孔等焊接缺陷问题,且返修处理工作难度大,在后续长期应用中伴随着较高的安全风险。基于此,窄间隙埋弧焊接技术的应用可以较好作用于该类压力容器的焊接,应用优势较为明显。窄间隙埋弧焊接技术的适用于壁厚度较大的压力容器,在焊接过程中表现出了较高的熔敷效率,进而也就能够有效保障压力容器焊接后的质量性能,避免出现焊接缺陷;另外,在窄间隙埋弧焊接技术的应用中还可以针对热粗晶区进行改善,促使其性能更为优越,在焊接过程中形成更为理想的焊缝,相邻焊道的处理能够形成有序过度,预热作用更为突出;随着当前自动化技术的不断推广,这种窄间隙埋弧焊接技术的应用同样也可以较好形成自动化处理效果,借助更新技术手段提升焊接效率。当然,在窄间隙埋弧焊接技术的应用中同样也存在着一些缺陷和不足,比如,该技术焊接后的压力容器一旦在后续长期运行中出现了故障问题,很难进行有效修补,具体技术操作中对于技术人员也提出了高要求,任何细微偏差都可能影响焊接质量。基于此,在未来压力容器焊接中,应用窄间隙埋弧焊接技术需要重点把握好各个技术操作要点,提升技术人员的施工能力,最终确保压力容器的焊接更为可靠适宜。比如,对于焊接中的自动跟踪功能需要加 大关注度,确保其可以针对焊接过程形成有效监控和优化。2.2?接管自动焊接技术在当前压力容器焊接处理中,引入和应用自动化技术手段成为重要发展趋势,该类技术的应用同样也应该加大研究力度,其中接管自动焊接技术的应用就表现出明显优势,自动化效果更强,可以更好地提升压力容器焊接的便捷性和高效性。比如,接管马鞍形埋弧焊接设备的应用就表现出了明显优势,其实现自动化定心控制,促使压力容器的焊接更为连续高效,降低技术人员在焊接过程中的高压力和高要求。基于这种接管自动焊接技术的具体应用来看,首先应该重点

耐热钢压力容器焊接技术研究

耐热钢压力容器焊接技术研究 摘要:随着科学技术的不断进步,压力容器的工作参数也在大幅度的提升,使得压力容器的应用领域越来越广阔,在市场经济的竞争下,压力容器对焊接技术的要求也越来越高,近年来,我国的压力容器焊接技术已经逐渐迈向成熟,取得了显著的成绩。我国的压力容器在焊接技术方面采用的焊接方法、焊接材料、焊接工艺以及焊接所使用的设备都具有高质量、高效率、低耗能、低污染的优点。其中耐热钢压力容器就是压力容器技术的一个先进代表,它的各方面应用技术都体现了压力容器的特点,具有很高的应用价值。 关键词:压力容器;焊接;技术 压力容器已经在石油化工、军事作业、能源工程、科研制造等领域广泛的应用,带动了这些领域的快速发展,焊接工艺是耐热钢压力容器制造过程中一项最重要的工艺,它对耐热钢压力容器的质量、生产成本、生产效率都有着直接的影响[1]。在现代化工业中,一些大型的工业基地使用的压力容器都趋于巨型化和多功能化,这对耐热钢压力容器的焊接技术要求越来越高。本文将对耐热钢压力容器的特点和焊接工艺进行具体的研究,使耐热钢压力容器的焊接技术能够发挥其最大的应用价值。 一、耐热钢压力容器的焊接性能 在普通的压力容器中一般使用普通的碳钢,这种碳钢压力容器焊接性能比较差,焊接的接头处容易被氧化,而且缺乏持久的强度。耐热钢压力容器是在普通的碳钢中加入一定含量的合金元素,这样就会使普通的碳钢的高温强度和持久强度增强,形成了合金耐热钢,压力容器中采用耐热钢材料,在不断地进行研究实验,为了改善耐热钢压力容器的焊接性能,在耐热钢压力容器的制造中一般将碳的含量控制在0.2%以内。 1、耐热钢压力容器焊接接头的要求

压力容器焊接技术的新发展

压力容器焊接技术的新发展 发表时间:2019-11-26T14:50:37.777Z 来源:《电力设备》2019年第15期作者:张龙张琴严海霞肖东琴 [导读] 摘要:众所周知,压力容器是现代工业实际生产当中较为常用的设备,压力容器的实际制造中会使用到大量焊接工作。 (南京汽轮电机集团泰兴宁兴机械有限公司江苏泰兴 225442) 摘要:众所周知,压力容器是现代工业实际生产当中较为常用的设备,压力容器的实际制造中会使用到大量焊接工作。因为压力容器对精度的要求非常严格,因此一定要合理应用焊接新技术。下面本文首先分析了压力容器焊接技术,然后对压力容器焊接技术的具体应用进行探析。仅供业内同行参考。 关键词:压力容器;焊接技术; 压力容器主要是用来储存特殊气体或者液体的一个封闭性的容器,由于这类气体或者液体具有腐蚀性的特点,因此其对压力容器有极高要求,从压力容器的生产制造实际来说,焊接工艺的应用效果,直接影响着焊接的质量和容器的性能。焊接技术的高低直接关系到容器的密闭性。因此,随着现阶段我国科技的不断进步,焊接新工工艺的出现,拿得焊接技术越来越完善,同时,诸多问题也开始暴露出来,焊接材料与焊接电流等多种因素皆会影响焊接效果,从而降低压力容器的密闭性。因此,本文主要分析压力容器焊接技术的新发展,为保证压力容器的密闭性做铺垫。 一、分析压力容器焊接技术 实际上,焊接也就是通过外部环境的作用下,使母材通过焊接材料融合在一起的技术,在我国工业生产过程中应用比较广泛,基本上各行各业都有焊接技术的身影。压力容器应用焊接技术能够确保其承压性与密闭性,进而制造大型压力容器。压力容器的生产制造,离不开焊接工艺,而且焊接工作还非常重要,占据整体的百分之四十一左右。现阶段,我国焊接技术类型有很多,对于不同类别的压力容器,需选取对应的焊接技术,确保焊接质量能满足产品制造所需要的要求。 在工业发展中焊接技术占据主体位置,在制造压力容器中,需对焊接质量进行有效控制,如果焊接质量不达标,会致使压力容器不能承受相对应的压力,导致气体爆炸和液体外露,造成恶劣影响,危害公众生命安全,可以说,焊接技术决定压力容器质量。 二、压力容器焊接技术的具体应用 压力容器焊接技术的具体应用主要体现在窄间隙埋弧焊技术、接管自动焊接技术、弯管内壁堆焊技术、激光复合焊接技术这几方面,具体如下: 1.应用窄间隙埋弧焊技术 其主要利用于厚板焊接方案,特别是一些超过100cm的材料,优势特别明显,被广泛应用到压力容器的生产中。窄间隙埋弧焊技术能够提高焊接材料应用率,减少材料应用数量,在很短的时间内完成焊接工作。此技术在焊接中所承受的应力比较小,发生形变的概率较低,同常规的技术相比有很多优势,如质量高、成本小等。我国在焊接工艺方面,我国的窄间隙埋弧焊技术比较成熟,通过实践表明,此项技术可以切实提升压力容器的焊接水平,确保其在生产运用中的安全性。 2.应用接管自动焊接技术 第一,与筒体焊接。新时代背景下,工作生产不断朝着现代化及自动化方向前进,合理应用自动焊接技术不仅可以提升焊接工作质量,还能确保压力容器焊接水平。接管与筒体之间的自动焊接,主要以马鞍形埋弧自动焊机实现,输入参数后,设备依据数据模型运作,实现焊接机械化与自动化。此焊机还可以结合各个焊接位置,展开连续焊接。另外此设备具备断点记忆性能,它也可以在焊接过程中实现自动复位。第二,与封头焊接。在同封头自动焊接前,需自动定心焊接设备,通过数据输入与运作,来明确中心线的具体位置。相比于人工定心来讲,自动定心不但能够保证定心工作质量,还能确保定心的准确程度。此项设备在实际焊接中,能够实现自动监控焊接工作,通过输入有关参数,有计划的进行自动焊接,切实提升压力容器的焊接水平。 3.应用弯管内壁堆焊技术 因为工作环境需求,要求在压力容器内部的防腐蚀层进行焊接操作,对于直管位置,焊接相对来讲更容易,而弯管内部特殊性较强,在内部上存在对应的角度,加大了焊接的工作难度。对于各个角度的弯管,结合其内壁的具体状况,需利用多种焊接技术,现阶段我国弯管内壁堆焊技术已发展成熟。 第一,三十度弯管内壁堆焊。其是利用焊机自身的五轴协调来进行运转的,结合预设的数字模型,焊机三周运动实现自动焊接;在焊接中,焊接摇摆幅度需同工件运作完全协调,确保运行速度平稳。当焊接完成一圈后,需变动摆角位置,在焊机移动后展开自动定位。在内壁堆焊中,要高度重视焊机位置控制,正常状况下,调整摇摆幅度,焊机工作进入收尾阶段时,再次调整摇摆幅度,确保内壁焊接的层次及结构。在堆焊弯管内壁时,需利用数字模型计算所需参数。尽可能应用断点记忆性能及自动追踪性能的焊机,其设备可以自动复位,确保焊接工作有序开展。 第二,九十度弯管内壁堆焊。其施工技术具有较大的难度,在以往技术水平较为滞后的背景下,主要是通过对 30°弯管的施工操作流程进行仿照,来实现焊接的。基于此,在对九十度弯管内壁堆焊前,需把弯管划分为三个部分,依次展开防腐层焊接工作,再把弯管衔接到一起,此种焊接手段不但操作十分繁杂,而且过程也很繁琐,不能保证焊接工作效率。在具体焊接中堆焊的焊接设施,主要利用弯管母线的结构,通过变位机旋转焊接对应的焊接点。此种焊接手段大大的提升了压力容器内壁焊接工作水平。 4.TIG 焊接技术 TIG 焊接技术也叫做非融化极惰性气体保护焊,此工艺技术主要应用于直径比较小的压力容器焊接,这种方式能够让压力容器有非常好的气密性,其能够避免压力容器实际焊接过程中出现气孔,焊接操作过程中使用氩气实施有效的保护。TIG 焊接技术是基于直流电源进行焊接操作的,焊接过程中电压一般为10V 到 95V,电流最大值是 600 A。在实际焊接过程中,一定要确保焊接机的正确连接,使工件和电源正极进行连接,钨极作为负极。这样的焊接操作虽然能够提升其工作成效,可是因为焊接程序较为复杂,因此其工作成效的提升方面并不显著。当前使用比较广泛的就是 TIG 焊接技术,其属于热丝自动焊接技术,在将填充丝放置焊接池之前,使用电压较为恒定交流电电压,当实际温度达到大约 800℃的时候,焊丝实际融化的速度会更加快,封底成效更为良好,确保压力容器的焊接质量。 5.应用激光复合焊接技术 其是一种新型的焊接技术,此种焊接技术渐渐替代了传统的钨极填丝氩弧焊技术。相比来讲,钨极填丝氩弧焊技术有极强的稳定性,

压力容器焊接新技术及其应用 高玉晋

压力容器焊接新技术及其应用高玉晋 发表时间:2019-09-21T23:25:25.860Z 来源:《基层建设》2019年第19期作者:高玉晋 [导读] 摘要:现如今,科学技术不断创新和广泛应用,各种类型的压力容器得到了广泛的应用,各个行业对于压力容器的应用与产品质量要求在不断的提高,与此同时,对于制造压力容器,各个环节中的焊接技术以及质量控制也提出了更高的要求,焊接技术作为制造压力容器的重要环节,焊接技术水平的好坏也直接关系着压力容器的质量水平的高低,所以,焊接技术要不断地进行研发改进,可以通过不断提高焊接技术来提升压力容器的质量。 中铁十三局技师学院吉林省长春市 130102 摘要:现如今,科学技术不断创新和广泛应用,各种类型的压力容器得到了广泛的应用,各个行业对于压力容器的应用与产品质量要求在不断的提高,与此同时,对于制造压力容器,各个环节中的焊接技术以及质量控制也提出了更高的要求,焊接技术作为制造压力容器的重要环节,焊接技术水平的好坏也直接关系着压力容器的质量水平的高低,所以,焊接技术要不断地进行研发改进,可以通过不断提高焊接技术来提升压力容器的质量。 关键词:压力容器;焊接新技术;应用 引言 在压力容器制造中,焊接技术对于压力容器质量有直接的影响。随着科技的不断发展,越来越多的焊接新技术得到了广泛应用,对于压力容器制造企业的发展具有重要作用。在压力容器制造中,需要多个环节,其中焊接技术是其中非常重要一部分。通过焊接新技术的应用可以在很大程度上保证压力容器质量。本文主要对压力容器焊接新技术及其应用进行了阐述,希望能够提升大家对压力容器焊接新技术认识。 1压力容器的概念以及背景 压力容器可以承装液体或者气体,同时具有承载一定压力的能力,它是一个密封的设备,主要是分为反应容器、换热容器、存储容器和分离容器。目前,压力容器已经得到了非常广泛的应用,运用在化工领域、机械领域,用于石油的加工,航天航空等各个行业中。而压力容器的制造程序是非常复杂的,其中焊接技术是其制造环节中一个非常重要的环节,它主要是通过加热、加压或者是两种方式共同运用,将相同或者不同的材质永久结合起来的操作,在焊接技术运用环节中,有很多小的细节需要进行考虑。焊接技术水平的高低也会影响着压力容器的使用性能以及质量,并且对于压力容器制造的效率以及制造成本都有很大的影响。所以只能通过保证焊接的质量才能够保证压力容器能否安全可靠的使用,防止各种安全事故的发生,也能保证操作人员的生命安全。所以,如何提升焊接技术水平,不断的发展新型的焊接技术,是近几年来制造压力容器行业最为关注的问题。通过不断的研究,压力容器焊接技术已经得到了很大的进步与发展,也涌出了许多新型的压力容器焊接技术。 2焊接新技术的介绍及具体应用 2.1窄间隙埋弧焊技术及应用 在压力容器制造中,由于压力容器不同,所选择的焊接技术也不同。在压力容器壁厚小于100mm时,可以采用U型焊接技术,从而保证焊接质量。在压力容器壁厚超过100mm时,使用窄间隙埋弧焊技术,可以节约资源。窄间隙埋弧焊技术是利用特殊的焊丝和保护气,另外还需要引用先进的导入技术和焊缝跟踪技术来进行焊接作业。窄间隙埋弧焊技术具有节约资源和速度快的特点,在实际焊接中,前道工序可以为后道工序进行预热,后道工作可以很好地为前道工序回火,从而保证了焊接接头的机械性能,降低残余应力。另外在窄间隙埋弧焊技术应用中,由于对这种技术认识不完善,认为间隙越小越好,但是实际情况是间隙越小,修复越困难,所以在实际应用中,需要正确认识窄间隙埋弧焊技术,从而更好地进行利用。 2.2接管自动焊接技术及应用 在压力容器焊接技术中,接管自动焊接技术是一种先进的焊接技术。在接管自动焊接技术应用中,会遇到两种不同的情况,接管与简体的焊接和接管与封头的焊接,这两种情况都是采用接管插入的形式。接管马鞍形埋弧焊接设备,是一种新技术,主要用于厚度较大和窄间隙坡口的压力容器焊接。接管自动焊接技术是一种自动化技术,可以实现人机共同操控,在马鞍形空间曲线焊缝焊接具有很好的应用。接管自动焊接技术发明以后,在压力容器制造中得到了广泛应用,使得工作人员对接管自动焊接技术越来越熟悉,同时接管自动焊接技术的应用为压力容器的制造做出了贡献,在一定程度上提升了压力容器制造效率。 2.3弯管内壁堆焊技术及应用 弯管内壁堆焊设备分为30°弯管内壁堆焊和90°弯管内壁堆焊。第一种采用的是沿圆周环向方式实施自动堆焊,五轴协调运动,设备能够通过特定的数学模型自动地排列焊道。根据数学模型,参数为弯管的曲率半径和内径,设备配备弧压自动跟踪系统等功能来保证自动堆焊过程的稳定运行。第二种则采用顺着弯管母线纵向的方式自动堆焊,采用融化极气体保护焊的工艺方法。在二维变位机上安装工件,工件进行旋转运动完成焊接;工件进行翻转运动,让焊道处于水平焊道位置上;焊枪则被安装在三维导轨之上,使得焊枪自动变位。弯管内部堆焊技术为弯管内部的焊接提供了更大的发展空间,降低了压力容器制作过程中的成本,使压力容器的价格得以降低,也极有效地降低了施工材料的浪费现象。 2.4激光复合焊接技术及应用 在压力容器焊接工艺中,激光复合焊接技术由于焊接质量高和没有飞溅的特点在压力容器焊接中具有广泛应用,但是在实际应用中,由于熔化极气体保护焊无法用纯氩气为保护气体,电弧在纯氩气中不能很好地进行控制,导致出现各种问题。随着科技的不断发展,激光电弧复合热源焊接技术的出现,可以自电弧熔池中形成小孔使其充满金属蒸汽,可以对电弧生产引导作用,纯氩为保护气体时电弧可稳定燃烧,从而提升压力容器焊接质量。另外随着激光复合焊接技术的出现,使得这种技术在应用中飞溅减少,焊接稳定性高,得到广泛应用。 结语 压力容器广泛的运用在各行各业中,也是一个比较综合性的设备,同时也为各行各业带来了非常显著的效益。虽然压力容器得到了广泛的使用,但是其制造过程中焊接阶段的处理是非常重要的,与此同时焊接技术的应用效果也直接影响着压力容器的质量。因此,在制造压力容器的过程中,我们要不断的去研究与开发焊接新技术,这样才能从根本上保证压力容器的质量。只有焊接技术能够得到不断的研究

相关主题