搜档网
当前位置:搜档网 › 路由表

路由表

路由表
路由表

学习目标

(一)了解路由器的相关概念和基本知识

一、子网寻径及路由

标准的路由表表目是一个二维组(目的网络地址,下一站地址),其中不携带子网信息,不能满足子网寻径。引入子网编址以后,路由表的每一表目中加入子网掩码,于是路由表表目变为三维组:子网掩码、目的网络地址、下一站地址。

表1 路由表结构及使用

二、路由算法、路由协议、寻径

路由器依据路由表来为报文寻径,路由表由路由协议建立和维护。路由协议的设计则是依据某种路由算法。

1.什么是路由

路由器提供了将异构网互联的机制,实现将一个数据包从一个网络发送到另一个网络。路由就是指导IP数据包发送的路径信息。

2.通过路由表进行选路

图2 查看路由表

路由器转发数据包的关键是路由表。每个路由器中都保存着一张

路由表,表中每条路由项都指明数据包到某子网或某主机应通过路由器的哪个物理端口发送,然后就可到达该路径的下一个路由器,或者不再经过别的路由器而传送到直接相连的网络中的目的主机。

路由表中包含了下列关键项:

目的地址(Destination):用来标识IP包的目的地址或目的网络。

网络掩码(Mask)、输出接口(Interface)、下一跳IP地址(Nexthop)。

3.路由表中路由的来源

在路由表中有一个Protocol字段,指明了路由的来源,即路由是如何生成的。路由的来源主要有3 种:

(1)链路层协议发现的路由(Direct)

它的特点是开销小,配置简单,无需人工维护,只能发现本接口所属网段拓扑的路由。

(2)手工配置的静态路由(Static)

静态路由是一种特殊的路由,它由管理员手工配置而成。通过静态路由的配置可建立一个互通的网络,但这种配置问题在于:当一个网络故障发生后,静态路由不会自动修正,必须有管理员的介入。静态路由无开销,配置简单,适合简单拓扑结构的网络。

3)动态路由协议发现的路由(RIP、OSPF等)

当网络拓扑结构十分复杂时,手工配置静态路由工作量大而且容

易出现错误,这时就可用动态路由协议,让其自动发现和修改路由,无需人工维护,但动态路由协议开销大,配置复杂。

4.路由优先级

到相同的目的地,不同的路由协议(包括静态路由)可能会发现不同的路由,但并非这些路由都是最优的。事实上,在某一时刻,到某一目的地的当前路由仅能由唯一的路由协议来决定。这样,各路由协议(包括静态路由)都被赋予了一个优先级,当存在多个路由信息源时,具有较高优先级(数值越小表明优先级越高)的路由协议发现的路由将成为最优路由,并被加入路由表中。

5.路由权

路由权(Cost)表示到达这条路由所指的目的地址的代价,通常路由权值会受到线路延迟、带宽、线路占有率、线路可信度、跳数、最大传输单元等因素的影响,不同的动态路由协议会选择其中的一种或几种因素来计算权值(如RIP只用跳数来计算权值)。该路由权值只在同一种路由协议内有比较意义,不同的路由协议之间的路由权值没有可比性,也不存在换算关系。

路由表学习笔记

---------------------

作者:wangpeihuixyz

来源:CSDN

原文:https://https://www.sodocs.net/doc/ef7621230.html,/wangpeihuixyz/article/details/39481361?utm_source=copy

版权声明:本文为博主原创文章,转载请附上博文链接!

路由子系统的核心是转发信息库(Forwarding Information Base,FIB),即路由表。路由表是用来存储这样一些信息的:一是用以确定输入数据是应该上传给本机的上层协议还是继续转发的信息;二是如果需要转发,为转发数据报提供所需要信息;三是输出数据报应该从哪个具体的网络设备输出的信息

路由表项的维护以及查找涉及以下文件:

include/net/ip_fib.h 定义路由表等结构、宏和函数原型

net/ipv4/fib_lookup.h 定义路由查找的相关函数原型

net/ipv4/fib_hash.c 实现路由表的查找和维护

net/ipv4/fib_frontend.c 实现操作路由表的接口函数和通知

net/ipv4/route.c 实现路由缓存项的操作函数

路由要素:

(1)路由表

路由表是一个由路由表项组成的数据库,并为诸如IPv4等其他子系统提供了多种接口,其中最重要的接口就是路由查找

(2)作用范围

IP地址和路由都有作用范围,用于说明它们在哪些情况下是有意义并可以被使用的。IP地址的作用范围表示该IP地址距离本地主机由多远,而路由的作用范围表示到目的网络的距离。

IP地址的作用范围描述

Host 当一个地址只用于主机自身内部通信时,作用范围为Host,该地址在主机以外不可知并且不能被使用。例如环回地址127.0.0.1

Link 当一个地址只在一个局域网(即每台计算机通过链路层互联的一个网络)内有意义且只在局域网内使用时,该地址的作用范围为Link。例如子网的广播地址。子网内一台主机发送到子网广播地址的数据报被送给同一子网内的其他主机

Universe 当一个地址可以在任何地方使用时作用范围为universe,这是大多数地址的默认 scope

路由的作用范围描述

Host 当一条路由使目的地址为本地主机时,作用范围为host

Link 当一条路由使目的地址为本地网络是,作用范围为Link

Universe 当一条路由使目的地址超过一跳时,作用范围为universe

(3)默认网关

默认网关通常是指0.0.0.0/0路由,当到一个目的地址不存在明确的路由项时使用该路由。

(4)特殊路由

当主机收到一个数据报后,路由子系统需要决定将它上传给本地上层协议还是继续转发出去。因此在路由子系统中,有两张特殊的路由表:

一张表用于本地地址,存储了所有的本地地址,如果在该表中能查到匹配表项,则表明数据报是发给本机的

一张表用于所有其他的路由,路由表项由用户手工静态配置或由路由协议动态配置

在路由查找时先扫描本地路由表,只有当查找该表未果的情况下,才会去查找另一路由表,以确定是否可以转发。

路由缓存

一个路由表中的路由项数量,在一般的主机中可能只是几条而已,而在路由器中,这个数目可以达到数十万条。因此很显然,在这种情况下维护一张更小的表来缓存路由查找结果是非常有必要的

路由缓存分为两部分:一部分是与协议(如IPv4等三层协议)相关的缓存,这就是缓存框架部分,每个元素被定义为一个由具体协议字段组成的集合;另一部分是与协议无关的缓存,通常被称为DST,嵌套在缓存框架中,只存储与协议无关的信息

路由表和路由缓存除了容量和结构不同之外,对象粒度也不同。路由表使用连续地址的集合,即子网,而缓存项与单个IP地址相关联。因此,路由表和路由缓存使用的查找算法也不同。

路由表结构

fib_table结构

对每个路由表实例创建一个fib_table结构,这个结构主要由一个路由表标识和管理该路由表的一组函数指针组成

struct hlist_node tb_hlist;

用来将各个路由表链接成一个双向链表

u32 tb_id;

路由表标识。在支持策略路由的情况下,系统中最多可以有256个路由表,枚举类型rt_class_t 定义了保留的路由路由表ID

unsigned char tb_data[0];

路由表项的散列表起始地址。在FIB_HASH算法中指向fn_hash结构,而在FIB_TRIE算法中则指向trie结构

fn_zone结构

一个zone是一组有着相同目的地址掩码长度的路由表项的散列表

struct fn_zone*fz_next;

将活动的(路由表项不为空)zone链接在一起的指针,该链表的头部存储在fn_hash数据结构的fn_zone_list字段中。

struct hlist_head *fz_hash;

指向存储该zone中路由项的散列表。

int fz_nent;

在该zone的散列表中fib_node实例的数目,用于检查是否需要改变散列表的容量。

int fz_divisor;

表示散列表fz_hash的容量,以及散列表桶的数目。

u32 fz_hashmask;

其值为fz_divisor - 1,用来计算散列表的关键值

int fz_order;

网络掩码的长度,255.255.255.0的网络掩码长度为24

__be32fz_mask;

网络掩码

fib_node结构

fib_node实例代表每一个唯一的目的网络的路由表项,即同一个子网中所有路由表项所共享的信息。目的网络相同但其他配置参数不同的路由表项共享同一个fib_node实例,因此一个fib_node实例上存在着一个或多个路由表项。

struct list_head fn_alias;

fn_alias指向一个或多个fib_alias结构实例构成的链表

__be32fn_key;

由IP地址和路由项的netmask与操作后得到,被用作查找路由表时的搜索条件

fib_alias结构

fib_alias实例代表一条路由表项,目的地址相同但其他配置参数不同的表项共享fib_node实例

struct list_head fa_list;

将共享同一个fib_node实例的所有fib_alias实例链接在一起

struct fib_info*fa_info;

指针指向一个fib_info实例,该实例存储着如何处理与该路由相匹配数据报的信息

u8 fa_tos;

路由的服务类型比特位字段

u8 fa_type;

路由表项的类型,如RTN_UNICAST、RTN_LOCAL等

u8 fa_scope;

路由表项的作用范围

u8 fa_state;

一些标志的位图

fib_info结构

fib_node结构和fib_alias结构的组合用于标识一条路由表项,同时存储相关信息,更多信息,比如下一跳网关等重要的路由信息则存储在fib_info结构中

顺序查找路由表

青岛农业大学理学与信息科学学院 计算机网络综合实习报告 题目 专业 学号 姓名 指导教师 日期

目录 一、课程设计任务和目的 (1) 二、设计要求 (1) 三、设计内容 (1) 3.1顺序查找路由表的工作原理 (1) 3.2课程设计程序运行结果与分析 (2) 四、改进和建议 (5) 五、总结 (5) 六、主要参考文献 (5) 附录: (6)

一、课程设计任务和目的 1.了解路由器更新的原理。 2.了解表示路由器的结构。 3.掌握路由器转发分组的算法。 二、设计要求 编写计算机程序,用(目的网络,掩码,下一跳)的结构表示路由表,以一个目的地址作为输入,顺序查找路由表,找出正确的下一跳,并输出。 三、设计内容 3.1顺序查找路由表的工作原理 使用子网划分后,路由表必须包含:目的地址,子网掩码,下一跳地址。路由器分组转发的算法如下: (1)从收到的数据包的首部提取目的IP地址D; (2)对路由器直接相连的网络逐个进行检查:用个网络的掩码和D逐位相“与”,看结果是否和相应的网络地址匹配。若匹配,则把分组直接交付,转发任务结束,否则就是间接交付执行(3)。 (3)若路由表中有目的地址为D特定主机路由,则把数据报传送给路由表中所指明的下一跳路由器否则执行(4)。 (4)对路由表的每一行,用其中的子网掩码和D逐位相“与”,其结果为N。若N 与该行的目的网络相匹配,则把数据报送给该行指明的下一跳路由器;否则执行(5)。 (5)若路由表中有一个默认路由,则把数据报传送给路由表中所指明的默认路由器;否则执行(6)。 (6)报告转发分组出错,没有查找到路由。 简单来说,就是当来一个数据报时,抓

分析RIP协议如何更新路由表

分析RIP协议如何更新路由表 RIP为每个目的地只记录一条路由的事实要求RIP积极地维护路由表的完整性。通过要求所有活跃的RIP路由器在固定时间间隔广播其路由表内容至相邻的RIP路由器来做到这一点,所有收到的更新自动代替已经存储在路由表中的信息。 RIP依赖3个计时器来维护路由表: ·更新计时器 ·路由超时计时器 ·路由刷新计时器 更新计时器用于在节点一级初始化路由表更新。每个RIP节点只使用一个更新计时器。相反的,路由超时计时器和路由刷新计时器为每一个路由维护一个。 如此看来,不同的超时和路由刷新计时器可以在每个路由表项中结合在一起。这些计时器一起能使RIP节点维护路由的完整性并且通过基于时间的触发行为使网络从故障中得到恢复。 1. 初始化表更新 RIP路由器每隔3 0秒触发一次表更新。更新计时器用于记录时间量。一旦时间到,RIP 节点就会产生一系列包含自身全部路由表的报文。 这些报文广播到每一个相邻节点。因此,每一个RIP路由器大约每隔3 0秒钟应收到从每个相邻RIP节点发来的更新。 注意在更大的基于RIP的自治系统中,这些周期性的更新会产生不能接受的流量。因此,一个节点一个节点地交错进行更新更理想一些。RIP自动完成更新,每一次更新计时器会被复位,一个小的、任意的时间值加到时钟上。 如果更新并没有如所希望的一样出现,说明互联网络中的某个地方发生了故障或错误。故障可能是简单的如把包含更新内容的报文丢掉了。故障也可能是严重的如路由器故障,或者是介于这两个极端之间的情况。显然,采取合适的措施会因不同的故障而有很大区别。由 于更新报文丢失而作废一系列路由是不明智的(记住,RIP更新报文使用不可靠的传输协议以最小化开销)。因此,当一个更新丢失时,不采取更正行为是合理的。为了帮助区别故障和错误的重要程度,RIP使用多个计时器来标识无效路由。 2. 标识无效路由 有两种方式使路由变为无效:

Windows操作系统路由表完全解析

Windows操作系统路由表完全解析 时间能够以这样的方式过去令人感到惊异。人们倾向于认为计算机技术属于高科技,但是,TCP/IP协议在过去的三十年里以各种形式出现,无所不在。因此,TCP/IP协议有时间变得真正成熟起来,并且更稳定和更可靠。然而,当涉及到计算机的时候,事情就没有那样简单了。当路由包通过网络的时候,有时候会出现错误。在这种情况下,熟悉Windows路由表是很有帮助的。路由表能够决定来自有问题的机器的数据包的去向。在本文中,我将向你介绍如何查看Windows路由表以及如何让Windows路由表中包含的数据有意义。 查看Windows路由表 路由表是Windows的TCP/IP协议栈的一个重要的部分。但是,路由表不是Windows 操作系统向普通用户显示的东西。如果你要看到这个路由表,你必须要打开一个命令提示符对话框,然后输入“ROUTE PRINT”命令。然后,你将看到一个类似于图A中显示的图形。 图A:这是Windows路由表的外观 在我深入讨论这个路由表之前,我建议你在命令提示符对话框中输入另一个命令。这个命令是:IPCONFIG /ALL 我建议你使用IPCONFIG /ALL命令的理由是因为这个命令能够显示TCP/IP协议在机器中实际上是如何设置的。的确,你可以在网卡属性页认真查看TCP/IP协议,但是,如果你从IPCONFIG得到这个信息,这个信息会更可靠。在过去的几年里,我曾经遇到过这样一些例子,IPCONFIG报告的信息与机器中的TCP/IP协议设置屏幕中显示的信息完全不一样。这种事情不常见,但是,如果正好出现这种错误,你就会遇到这种不匹配的情况。坦率

查看Windows路由表

时间能够以这样的方式过去令人感到惊异。人们倾向于认为计算机技术属于高科技,但是,TCP/IP协议在过去的三十年里以各种形式出现,无所不在。因此,TCP/IP 协议有时间变得真正成熟起来,并且更稳定和更可靠。然而,当涉及到计算机的时候,事情就没有那样简单了。当路由包通过网络的时候,有时候会出现错误。在这种情况下,熟悉Windows路由表是很有帮助的。路由表能够决定来自有问题的机器的数据包的去向。在本文中,我将向你介绍如何查看Windows路由表以及如何让Windows路由表中包含的数据有意义。 查看Windows路由表 路由表是Windows的TCP/IP协议栈的一个重要的部分。但是,路由表不是Windows操作系统向普通用户显示的东西。如果你要看到这个路由表,你必须要打开一个命令提示符对话框,然后输入“ROUTE PRINT”命令。然后,你将看到一个类似于图A中显示的图形。 图A:这是Windows路由表的外观 在我深入讨论这个路由表之前,我建议你在命令提示符对话框中输入另一个命令。这个命令是:IPCONFIG /ALL 我建议你使用IPCONFIG /ALL命令的理由是因为这个命令能够显示TCP/IP 协议在机器中实际上是如何设置的。的确,你可以在网卡属性页认真查看TCP/IP 协议,但是,如果你从IPCONFIG得到这个信息,这个信息会更可靠。在过去的几年里,我曾经遇到过这样一些例子,IPCONFIG报告的信息与机器中的TCP/IP 协议设置屏幕中显示的信息完全不一样。这种事情不常见,但是,如果正好出现这种错误,你就会遇到这种不匹配的情况。坦率地说,键入到TCP/IP属性页中的信息反映了你想要Windows为选择的网络设置的TCP/IP协议。IPCONFIG提供的信息显示了Windows实际上设置的协议。

静态路由配置实验报告

静态路由配置实验报告 篇一:计算机网络实验报告静态路由配置 实验报告八 班级:姓名:学号: 实验时间:机房:组号:机号:PC_B 一、实验题目 静态路由配置 二、实验设备 CISCO路由器,专用电缆,网线,CONSOLE线,PC机 三、实验内容 ? 了解路由的功能 ? 在CISCO路由器上配置和验证静态路由 ? 配置缺省路由 四、原理 静态路由是指由网络管理员手工配置的路由信息。当网络的拓扑结构或链路的状态发生变化时,需要手工去修改路由表中相关的静态路由信息。静态路由信息在缺省情况下是私有的,不会传递给其他的路由器。静态路由一般适用于比较简单的网络环境,在这样的环境中,易于清楚地了解网络的拓扑结构,便于设置正确的路由信息。 五、实际步骤 1.设置PC_B的IP地址,连接路由器,打开超级终端。

2.路由器B的配置 User Access Verification Password: 5_R2>en Password: 5_R2#conf t Enter configuration commands, one per line. End with CNTL/Z. 5_R2(config)#int s0/1/0 5_R2(config-if)#no shut 5_R2(config-if)#interface s0/1/0 5_R2(config-if)#ip addr % Incomplete command. 3.配置routerB的s0/1/0端口的IP地址 5_R2(config-if)#ip address 172.17.200.6 255.255.255.252 5_R2(config-if)#^Z 4.配置路由器routerB的f0/1端口的IP地址 5_R2#conf t Enter configuration commands, one per line. End with CNTL/Z. 5_R2(config)#int f0/1 5_R2(config-if)#ip address 10.5.2.1 255.255.255.0 5_R2(config-if)#^Z

Windows路由表详解

Windows路由表详解 对于路由器的路由表,大部分网管朋友都很熟悉,但是对于windows的路由表,可能了解的人就相对少一些。今天我们就一起来看看windows路由表。 一、 windows路由表条目解释 1. 使用ipconfig /all查看网卡信息 2. 使用route print命令查看路由表信息,如下图: 3. 路由表信息解释

1)名词解释: Active Routes:活动的路由 Network destination :目的网段 Netmask:子网掩码 Gateway:网关,又称下一跳路由器。在发送IP数据包时,网关定义了针对特定的网络目的地址,数据包发送到的下一跳服务器。如果是本地计算机直接连接到的网络,网关通常是本地计算机对应的网络接口,但是此时接口必须和网关一致;如果是远程网络或默认路由,网关通常是本地计算机所连接到的网络上的某个服务器或路由器。 Interface:接口,接口定义了针对特定的网络目的地址,本地计算机用于发送数据包的网络接口。网关必须位于和接口相同的子网(默认网关除外),否则造成在使用此路由项时需调用其他路由项,从而可能会导致路由死锁。 Metric:跳数,跳数用于指出路由的成本,通常情况下代表到达目标地址所需要经过的跳跃数量,一个跳数代表经过一个路由器。跳数越低,代表路由成本越低,优先级越高。 Persistent Routes:手动配置的静态固化路由 2)第一条路由信息:缺省路由 当系统接收到一个目的地址不在路由表中的数据包时,系统会将该数据包通过 192.168.99.8这个接口发送到缺省网关192.168.99.1。 3)第二条路由信息:本地环路 当系统接收到一个发往目标网段127.0.0.0的数据包时,系统将接收发送给该网段的所有数据包。 4)第三条路由信息:直连网段的路由记录

路由表

路由表 在计算机网络中,路由表(routing table)或称路由择域信息库(RIB, Routing Information Base),是一个存储在路由器或者联网计算机中的电子表格(文件)或类数据库。路由表存储着指向特定网络地址的路径(在有些情况下,还记录有路径的路由度量值)。路由表中含有网络周边的拓扑信息。路由表建立的主要目标是为了实现路由协议和静态路由选择。 主要工作 路由器的主要工作就是为经过路由器的每个数据包寻找一条最佳的传输路径,并将该数据有效地传送到目的站点。由此可见,选择最佳路径的策略即路由算法是路由器的关键所在。为了完成这项工作,在路由器中保存着各种传输路径的相关数据——路由表(Routing Table),供路由选择时使用,表中包含的信息决定了数据转发的策略。打个比方,路由表就像我们平时使用的地图一样,标识着各种路线,路由表中保存着子网的标志信息、网上路由器的个数和下一个路由器的名字等内容。路由表可以是由系统管理员固定设置好的,也可以由系统动态修改,可以由路由器自动调整,也可以由主机控制。 路由表项 路由表中的表项内容包括:

destination:目的地址,用来标识IP包的目的地址或者目的网络。mask:网络掩码,与目的地址一起标识目的主机或者路由器所在的网段的地址。 pre:标识路由加入IP路由表的优先级。可能到达一个目的地有多条路由,但是优先级的存在让他们先选择优先级高的路由进行利用。cost:路由开销,当到达一个目的地的多个路由优先级相同时,路由开销最小的将成为最优路由。 interface:输出接口,说明IP包将从该路由器哪个接口转发。nexthop:下一跳IP地址,说明IP包所经过的下一个路由器。 分类

静态路由设置实例解析

静态路由设置实例解析 随着宽带接入的普及,很多家庭和小企业都组建了局域网来共享宽带接入。而且随着局域 网规模的扩大,很多地方都涉及到2台或以上路由器的应用。当一个局域网内存在2台以 上的路由器时,由于其下主机互访的需求,往往需要设置路由。由于网络规模较小且不经 常变动,所以静态路由是最合适的选择。 本文作为一篇初级入门类文章,会以几个简单实例讲解静态路由,并在最后讲解一点 关于路由汇总(归纳)的知识。由于这类家庭和小型办公局域网所采用的一般都是中低档 宽带路由器,所以这篇文章就以最简单的宽带路由器为例。(其实无论在什么档次的路由 器上,除了配置方式和命令不同,其配置静态路由的原理是不会有差别的。)常见的 1WAN口、4LAN口宽带路由器可以看作是一个最简单的双以太口路由器+一个4口小交换机,其WAN口接外网,LAN口接内网以做区分。 路由就是把信息从源传输到目的地的行为。形象一点来说,信息包好比是一个要去某 地点的人,路由就是这个人选择路径的过程。而路由表就像一张地图,标记着各种路线, 信息包就依靠路由表中的路线指引来到达目的地,路由条目就好像是路标。在大多数宽带 路由器中,未配置静态路由的情况下,内部就存在一条默认路由,这条路由将LAN口下所 有目的地不在自己局域网之内的信息包转发到WAN口的网关去。宽带路由器只需要进行 简单的WAN口参数的配置,内网的主机就能访问外网,就是这条路由在起作用。本文将 分两个部分,第一部分讲解静态路由的设置应用,第二部分讲解关于路由归纳的方法和作用。 下面就以地瓜这个网络初学者遇到的几个典型应用为例,让高手大虾来说明一下什么 情况需要设置静态路由,静态路由条目的组成,以及静态路由的具体作用。 例一:最简单的串连式双路由器型环境 这种情况多出现于中小企业在原有的路由器共享Internet的网络中,由于扩展的需要,再接入一台路由器以连接另一个新加入的网段。而家庭中也很可能出现这种情况,如用一 台宽带路由器共享宽带后,又加入了一台无线路由器满足无线客户端的接入。 地瓜:公司里原有一个局域网LAN 1,靠一台路由器共享Internet,现在又在其中添加 了一台路由器,下挂另一个网段LAN 2的主机。经过简单设置后,发现所有主机共享Internet没有问题,但是LAN 1的主机无法与LAN 2的主机通信,而LAN 2的主机却能Ping通LAN 1下的主机。这是怎么回事? 大虾:这是因为路由器隔绝广播,划分了广播域,此时LAN 1和LAN 2的主机位于两 个不同的网段中,中间被新加入的路由器隔离了。所以此时LAN 1下的主机不能“看”到LAN 1里的主机,只能将信息包先发送到默认网关,而此时的网关没有设置到LAN 2的路

路由器选型重要参数

路由器选型重要参数 全双工线速转发能力 路由器最基本且最重要的功能是数据包转发。在同样端口速率下转发小包是对路由器包转发能力最大的考验。全双工线速转发能力是指以最小包长(以太网64字节、POS口40字节)和最小包间隔(20字节)在路由器端口上双向传输同时不引起丢包。该指标是路由器性能重要指标。125,000,000/(64+20)=1,488,095 设备吞吐量 指设备整机包转发能力,是设备性能的重要指标。路由器的工作在于根据IP包头或者MPLS标记选路,所以性能指标是转发包数量每秒。设备吞吐量通常小于路由器所有端口吞吐量之和。 端口吞吐量 端口吞吐量是指端口包转发能力,通常使用pps:包每秒来衡量,它是路由器在某端口上的包转发能力。通常采用两个相同速率接口测试。但是测试接口可能与接口位置及关系相关。例如同一插卡上端口间测试的吞吐量可能与不同插卡上端口间吞吐量值不同。 路由表能力 路由器通常依靠所建立及维护的路由表来决定如何转发。路由表能力是指路由表内所容纳路由表项数量的极限。由于Internet上执行BGP协议的路由器通常拥有数十万条路由表项,所以该项目也是路由器能力的重要体现。 背板能力 背板能力是路由器的内部实现。背板能力能够体现在路由器吞吐量上:背板能力通常大于依据吞吐量和测试包场所计算的值。但是背板能力只能在设计中体现,一般无法测试。QoS分类方式 指路由器可以区分QoS所依据的信息。最简单的QoS分类可以基于端口。同样路由器也可以依据链路层优先级(802.1Q中规定)、上层内容(TOS字段、源地址、目的地址、源端口、目的端口等信息)来区分包优先级。 分组语音支持方式 在企业中,路由器分组语音承载能力非常重要。在远程办公室与总部间,支持分组语音的路由器可以使电话通信和数据通信一体化,有效地节省长途话费。当前技术环境下,分组语音可以分为3种:使用IP承载分组语音、使用A TM承载语音以及使用帧中继承载语音。使用ATM承载语音时可以分AAL1和AAL2两种。AAL1即电路仿真,技术非常成熟但是相对成本较高,AAL2技术较先进,但是当前ATM接口通常不支持。帧中继承载语音也比较成熟,相对成本较低。IP承载语音当前较流行。在上述技术中成本最低,但是当前IP网络QoS保证困难,通话质量较难保证。 语音压缩能力 语音压缩是IP电话节约成本的关键之一。通常可以使用G.723和G.729。G.723在ITU -T建议G.723.1(1996),语音编码器在5.3和6.3Kbps多媒体通信传输双率语音编码器中规定。相对压缩比较高,压缩时延较大。G.729在ITU-T 建议G.729 (1996),8Kbps共扼结构代数码激励线形预测(CS-ACELP)语音编码中规定。压缩比较低,通话质量较好。 信令支持 路由器E1端口上可能支持多种信令:ISUP、TUP、中国1号信令以及DSS1。支持ISUP、TUP或者DSS1信令的路由器可以有效地减少接续时间。在电信级的IP电话网络设备中通常要求支持7号信令。但是作为中低端路由器,通常只支持DSS1和中国1号信令。

距离向量算法更新路由表3

计算机网络实习报告 论文题目距离向量算法更新路由表 学生专业班级通信07级2班 学生姓名(学号) 指导教师 完成时间 2010年05月22日 实习(设计)地点信息楼139(112)机房 2010 年 05 月 22 日

距离向量算法更新路由表 一.实验目的 1.认识并掌握路由器结构组成及路由建立与更新的原理 2.理解、掌握和利用距离向量算法的应用。 3. 能够用距离向量算法建立一个路由表并根据相邻路由器发来的数据进行更新。 5.所实现的路由器模拟Internet上的IP路由器,它能确定网络的最短路由,并在其上传输分组 二.原理概述 距离向量路由算法被距离向量协议作为一个算法,它告诉在网络中每个节点的最远和最近距离。在距离表中的这个信息是根据临近接点信息的改变而时时更新的。表中数据的量和在网络中的所有的接点是等同的。每个数据包括传送数据包到每个在网上的目的地的路径和距离/或时间在那个路径上来传输。 这个表中的列代表直接和它相连的“邻居”路由器相连,行代表在网络中的所有目的地。在距离向量路由算法中,相邻路由器之间周期性(一般为3分钟)地相互交换各自的路由表。当网络拓扑结构发生变化时,路由器之间也将及时地相互通知有关变更信息。它是一种动态路由选择算法。每个路由器都定期与其相邻的所有路由器交换路由表,据此更新它们自己的路由表。 所有路由器只与其相邻路由器交换信息,在发来为RIP报文情况下更新其路由表的具体步骤为: 1.对地址为X的相邻路由器发来的RIP报文,先修改报文中的所有项目,把“下跳”字段中地址均改为X,把所有“距离”字段的值加1.每一个项目都有三项数据,即:到目的网络N,距离是d,下一条路由器是X 2.对修改后的RIP报文中每个项目,进行以下步骤: 若原来路由表中没有目的网络N,则把该项目添加到路由表中。 否则若吓一跳地址是X,把收到的项目替还原路由表中的项目 否则若收到的项目中的距离d小于路由表中的距离,则进行更新。 否则什么也不做。 3.若三分钟还没有收到相邻路由器的更新路由表,则把此相邻路由器记为不可达的路由器,即把距离置为16.(本实验将其定义为6) 4.返回。 三.设计方案 路由表的建立和更新 假设建立七个路由器,其中三个A,B和C。路由器A的两个网络接口E0和S0 分别连接在 10.1.0.0和10.2.0.0网段上;路由器B的两个网络接口S0和S1 分别连接在 10.2.0.0和10.3.0.0网段上;路由器C的两个网络接口S0和E0 分别连接在 10.3.0.0和10.4.0.0网段上; 如上面各路由表的前两行所示,通过路由表的网络接口到与之直接相连的网 络的网络连接,其向量距离设置为0。这即是最初的路由表。

路由表相关的概念及路由匹配原则

1、查看路由表信息的命令为ZXR10#show ip route,显示实例如下: ZXR10#show ip route IPv4 Routing Table: Dest Mask Gw Interface Owner pri metric 10.26.32.0 255.255.255.0 10.26.245.5 fei_1/1 bgp 200 0 10.26.33.253 255.255.255.255 10.26.245.5 fei_1/1 ospf 110 14 10.26.33.254 255.255.255.255 10.26.245.5 fei_1/1 ospf 110 13 10.26.36.0 255.255.255.248 10.26.36.2 gei_5/2.1 direct 0 0 10.26.36.2 255.255.255.255 10.26.36.2 gei_5/2.1 address 0 0 10.26.36.24 255.255.255.248 10.26.36.26 gei_5/2.4 direct 0 0 10.26.245.4 55.255.255.252 10.26.245.6 fei_1/1 direct 0 0 10.26.245.6 255.255.255.255 10.26.245.6 fei_1/1 address 0 0 路由表中通常包含以下信息: ● Dest:目的逻辑网络或子网地址。 ● Mask:目的逻辑网络或子网的掩码。 ● Gw:与之相邻的路由器的端口地址,即该路由的下一跳IP地址。 ● Interface:学习到该路由条目的接口,也是数据包离开路由器去往目的地将经过的接口。 ● Owner:路由来源,表示该路由信息是怎样学习到的。 ● Pri:路由的管理距离,即优先级,决定了来自不同路由来源的路由信息的优先权。 ● Metric:度量值,表示每条可能路由的代价,度量值最小的路由就是最佳路由。Metric 只有当同一种动态路由协议,发现多条到达同一目的网段路由的时候,才有比较性。不同路由协议的Metric不具有可比性。 例如,实例中加粗显示的一行是路由表中的一条路由信息,其中:

静态路由的配置命令

1、静态路由的配置命令: 例如: ip route 129.1.0.0 16 10.0.0.2 ip route 129.1.0.0 255.255.0.0 10.0.0.2 ip route 129.1.0.0 16 Serial0/0/0 注意:只有下一跳所属的的接口是点对点(PPP、HDLC)的接口时,才可以填写,否则必须填写。 2、在路由器Router A上配置: RouterA(config)# Interface FastEthernet0/0 RouterA(config-if)#Ip add 192.168.1.1 255.255.255.0 RouterA(config-if)#Interface s0/0/0 RouterA(config-if)#Ip add 221.237.46.2 255.255.255.0 RouterA(config-if)#encapsulation ppp RouterA(config-if)#exit RouterA(config)#Ip route 61.139.2.0 255.255.255.0 221.237.46.1 3、在路由器Router B上配置: RouterB(config)# Interface FastEthernet0/0 RouterB(config-if)#Ip add 61.139.2.68 255.255.255.0 RouterB(config-if)#Interface s0/0 RouterB(config-if)#Ip add 221.237.46.1 255.255.255.0 RouterB(config-if)#encapsulation ppp RouterB(config-if)#clock rate 64000

IP路由表管理

IP路由表管理 1、路由表的显示和维护 通过查看路由表,有助于了解网络拓扑结构和定位路由问题。 查看路由表的信息是定位路由问题的基本手段,下面列举了通用的路由表信息显示及维护命令。 display命令可以在所有视图下使用。reset命令在用户视图下使用。 交换机引入较多的路由会占用较多的系统资源,在系统业务繁忙时,这就有可能影响设备的正常运行。为提高系统的安全性和可靠性,可以配置公网路由前缀限制,这样当路由前缀数超过预先设定的值时,系统会输出告警信息,从而提醒用户检查公网路由前缀的有效性。 操作步骤 1、查看IPv4路由表中当前激活路由的摘要信息。 display ip routing-table 2、查看IPv4路由表详细信息 display ip routing-table verbose 3、查看指定目的IPv4地址的路由信息。 display ip routing-table ip-address [ mask | mask-length ] [ longer-match ] [ verbose ] 4、查看指定目的IPv4地址范围内的路由信息。 display ip routing-table ip-address1 { mask1 | mask-length1 } ip-address2 { mask2 | mask-length2 } [ verbose ] 5、查看通过指定基本访问控制列表过滤的IPv4路由信息。 display ip routing-table acl { acl-number | acl-name } [ verbose ] 6、查看通过指定前缀列表过滤的IPv4路由信息。 display ip routing-table ip-prefix ip-prefix-name [ verbose ] 7、查看指定协议发现的IPv4路由信息。 display ip routing-table protocol protocol [ inactive | verbose ] 8、查看IPv4路由表的综合路由统计信息。 display ip routing-table statistics 9、查看IPv6路由表中当前激活路由的摘要信息 display ipv6 routing-table 10、查看IPv6路由表详细信息。 display ipv6 routing-table verbose 11、查看指定协议发现的IPv6路由信息。 display ipv6 routing-table protocol [ inactive | verbose ] 12、查看指定协议发现的IPv6路由信息。 13、查看IPv6路由表的综合信息。

添加路由表

添加路由,这里按照自己的网络情况设置,下面是我的路由设置:Persistent Routes: Network Address Netmask Gateway Address Metric 135.190.35.0 255.255.255.0 135.190.35.254 135.190.0.0 255.255.0.0 135.190.35.254 132.0.0.0 255.0.0.0 135.190.35.254 我的内网是135.190.35.0段的IP,网关是135.190.35.254,外网是135.175.35.0段的IP,网关是135.175.35.254,因为我们设置的网络是外网的(可以正常使用的,用IE上个百度或者别的网站试试),所以不用增加外网路由,只需要增加内网的路由,我增加如下有路由就可以: Route add 135.190.0.0 mask 255.255.0.0 135.190.35.254 -p Route add 132.0.0.0 mask 255.0.0.0 135.190.35.254 –p route add 135.190.35.0 mask 255.255.255.0 135.190.35.254 -p 如果网络不稳定,再增加一条外网的路由: route add 135.175.35.0 mask 255.255.255.0 135.175.35.254 上面的命令直接粘贴在cmd下运行就可以:

三、即指向0.0.0.0的有两个网关,这样就会出现路由冲突,两个网络都不能访问。如何实现同时问两个网络?那要用到route命令第一步:route delete 0.0.0.0 "删除所有0.0.0.0的路由" 第二步:route add 0.0.0.0 mask 0.0.0.0 172.23.1.1 "添加0.0.0.0网络路由"这个是主要的,意思就是你可以上外网。第三步:route add 10.0.0.0 mask 255.0.0.0 192.168.0.2 "添加以10开头的网段指向内网路由",注意mask为255.0.0.0 ,而不是255.255.255.0 ,这样内部的多网段才可用。到这儿如果能正常访问内外网了的话,那么我么就要永久写入了(因为刚刚设置的路由表会在重启后丢失),用到以下命令:route add -p 添加静态路由,即重启后,路由不会丢失。注意使用前要在tcp/ip设置里去掉接在企业内部网的网卡的网关。以下是 WinArpAttacker 这是一个arp攻击软件。你可以用它来查看网络上所有的ip和MAC地址! 我用它追查过ARP攻击者。还可以用~~~

中国移动路由表

移动路由表 1.51.64.0/18 1.88.0.0/14 36.128.0.0/10 36.192.0.0/21 36.193.40.0/21 36.193.48.0/20 39.128.0.0/10 58.30.0.0/17 58.31.0.0/16 58.253.94.0/24 61.232.0.0/20 61.233.0.0/19 61.234.96.0/19 61.234.160.0/20 61.235.64.0/18 61.237.224.0/20 101.240.0.0/14 103.29.132.0/22 103.37.72.0/22 106.3.32.0/21 106.3.40.0/22 110.96.0.0/16 110.120.0.0/16 110.208.0.0/14 111.0.0.0/10 111.1.59.0/24 111.11.31.0/24 111.26.136.0/24 111.132.0.0/16 111.148.0.0/14 112.0.0.0/10 114.213.128.0/17 114.214.128.0/17 115.106.0.0/15 117.128.0.0/10 118.187.40.0/21 118.191.248.0/21 118.192.8.0/21 118.192.16.0/20 118.192.32.0/21 118.192.48.0/20 118.192.64.0/18

118.192.240.0/20 119.90.32.0/21 119.90.48.0/20 119.161.248.0/21 120.192.0.0/10 120.192.88.0/24 120.198.244.0/24 121.52.208.0/21 121.251.0.0/17 121.255.0.0/16 122.70.0.0/15 122.72.3.0/24 122.72.12.0/23 122.72.16.0/24 122.72.38.0/24 122.72.90.0/24 122.72.92.0/23 122.72.112.0/24 122.72.124.0/23 123.64.0.0/15 123.66.128.0/17 123.88.0.0/15 124.164.8.0/24 124.192.128.0/18 124.196.0.0/18 124.196.192.0/18 161.207.17.0/24 161.207.18.0/23 180.77.0.0/18 180.77.128.0/17 180.78.0.0/15 180.186.38.0/23 180.186.40.0/22 180.186.44.0/24 182.50.112.0/20 183.192.0.0/10 202.38.64.0/19 202.141.176.0/20 202.165.191.0/24 210.45.0.0/16 211.70.40.0/21 211.70.48.0/20 211.70.128.0/18

路由更新

路由器工作在网络层,是网管员朋友工作必须打交道的设备之一。路由协议可分为静态路由协议和动态路由协议,而动态路由协议众多。从本期开始,我们将分五期为大家介绍常见的路由协议,包括距离矢量路由协议原理、RIP、IGP、EIGRP、OSPF、IS-IS、BGP、MPLS等。本期为您介绍距离矢量路由协议。 路由算法 在所有的动态路由协议中,最简单的就是距离矢量路由协议(D-V)。它使用的是最简单的距离矢量(Distance-Vector,简称D-V)路由算法。算法模型如图1所示。 图1 距离矢量路由协议算法模型 设任意两点x和y之间的开销记为M(x,y),图1中F到A的开销为 M(F,A)=min(M(F,C)+M(C,A),M(F,E)+M(E,A),M(F,G)+M(G,A)) 注意:其中的C、E、G都是F相邻的路由器。D-V算法的实现思想就是这样,计算任何一个路由器到某特定目的网络的路由,都是取其到相邻路由器的开销与相邻路由器到特定目的网络开销和的最优值。 距离矢量算法通过上述方法累加网络距离,并维护网络拓扑信息数据库。距离矢量协议定期直接传送各自路由表的所有信息给邻居(RIP协议默认是30秒)。网络中的路由器从自己的邻居路由器得到路由信息,并将这些路由信息连同自己的本地路由信息发送给其他邻居,这样一级一级地传递下去以达到全网同步。每个路由器都不了解整个网络拓扑,它们只知道与自己直接相连的网络情况,并根据从邻居得到的路由信息更新自己的路由表。它所有的信息都靠道听途说,它相信所有邻居告诉它的所有信息,只在这些邻居中选择最优的来采用,类似于“传话”这个游戏。 路由发现 在图2中,左上为R1的初始路由表,右上为R2的初始路由表,R1和R2相邻。在交换完路由信息后,发现R1多了一条路由:到N4网络的路由,下一跳为R2(从R2那学习到的);而R2从R1那学习到3条路由,其下一跳都为R1,因为都从R1那里学习到的,所以下一跳都是R1。

从ROUTE命令学路由表配置

从R O U T E命令学路由表 配置 This model paper was revised by the Standardization Office on December 10, 2020

时间能够以这样的方式过去令人感到惊异。人们倾向于认为计算机技术属于高科技,但是,TCP/IP协议在过去的三十年里以各种形式出现,无所不在。因此,TCP/IP协议有时间变得真正成熟起来,并且更稳定和更可靠。然而,当涉及到计算机的时候,事情就没有那样简单了。当路由包通过网络的时候,有时候会出现错误。在这种情况下,熟悉Windows 路由表是很有帮助的。路由表能够决定来自有问题的机器的数据包的去向。在本文中,我将向你介绍如何查看Windows路由表以及如何让Windows路由表中包含的数据有意义。 查看Windows路由表 路由表是Windows的TCP/IP协议栈的一个重要的部分。但是,路由表不是Windows 操作系统向普通用户显示的东西。如果你要看到这个路由表,你必须要打开一个命令提示符对话框,然后输入“ROUTE PRINT”命令。然后,你将看到一个类似于图A中显示的图形。 图A:这是Windows路由表的外观 在我深入讨论这个路由表之前,我建议你在命令提示符对话框中输入另一个命令。这个命令是:IPCONFIG /ALL 我建议你使用IPCONFIG /ALL命令的理由是因为这个命令能够显示TCP/IP协议在机器中实际上是如何设置的。的确,你可以在网卡属性页认真查看TCP/IP协议,但是,如果你从IPCONFIG得到这个信息,这个信息会更可靠。在过去的几年里,我曾经遇到过这样一些例子,IPCONFIG报告的信息与机器中的TCP/IP协议设置屏幕中显示的信息完全不一样。这种事情不常见,但是,如果正好出现这种错误,你就会遇到这种不匹配的情况。

dos命令下查看路由表

tracert dos命令下查看路由表 2010-03-28 16:44 很多玩游戏的都用过网络加速器吧。尤其是教育网的,估计大家对类似于统一加速器这样的解决网络互联互通的软件。我们怎么知道加速器是否真正起作用了。出来查看游戏的延迟,打开网页的快慢外当然还有个方法——查看路由表。很多加速器只说了提供多少多少的带宽。其实提供路由线路的多少也是一个影响加速自量的因素。 转帖了方法如下: 在dos下面输入 route print 就可以查看路由表如何读懂路由表 如何读懂路由表 源 码:-------------------------------------------------------------------------------- Active Routes: Network Destination Netmask Gateway Interface Metric 0.0.0.0 0.0.0.0 192.168.123.254 192.168.123 .88 1 0.0.0.0 0.0.0.0 192.168.123.254 192.168.123 .68 1 127.0.0.0 255.0.0.0 127.0.0.1 127.0.0.1 1 192.168.123.0 255.255.255.0 192.168.123.68 192.168. 123.68 1 192.168.123.0 255.255.255.0 192.168.123.88 192.168. 123.88 1 192.168.123.68 255.255.255.255 127.0.0.1 127.0.0.1 1 192.168.123.88 255.255.255.255 127.0.0.1 127.0.0.1 1 192.168.123.255 255.255.255.255 192.168.123.68 192.168.12 3.68 1 192.168.123.255 255.255.255.255 192.168.123.88 192.168.12 3.88 1 224.0.0.0 224.0.0.0 192.168.123.68 192.168.12 3.68 1 224.0.0.0 224.0.0.0 192.168.123.88 192.168. 123.88 1 255.255.255.255 255.255.255.255 192.168.123.68 192.16 8.123.68 1

计算机网络:路由表的生成

7.2 路由表的生成 我们看到,就向交换机的工作全依靠其内部的交换表一样,路由器的工作也完全仰仗其内存中的路由 表。 图7.5列出了路由表的构造。 图 7.5 路由表的构造 路由表主要由六个字段组成,能够前往的网络和如何前往那些网络。路由表的每一行,表示路由器了解的某个网络的信息。网络地址字段列出本路由器了解的网络的网络地址。端口字段标明前往某网络的数据报该从哪个端口转发。下一跳字段是在本路由器无法直接到达的网络,下一跳的中继路由器的IP地址。距离字段表明到达某网络有多远。在RIP路由协议中需要穿越的路由器数量。协议字段表示本行路由记录是如何得到的。本例中,C表示是手工配置,RIP表示本行信息是通过RIP协议从其它路由器学习得到的。定时字段表示动态学习的路由项在路由表中已经多久没有刷新了。如果一个路由项长时间没有被刷新,该 路由项就被认为是失效的,需要从路由表中删除。 我们注意到,前往160.4.1.64、200.12.105.0、178.33.0.0网络,下一跳都指向160.4.1.34路由器。其中178.33.0.0网络最远,需要12跳。路由表不关心下一跳路由器将沿什么路径把数据报转发到目标网络,它只要把数据报转发给下一跳路由器就完成任务了。 路由表是路由器工作的基础。路由表中的表项有两种方法获得: 静态配置 动态学习 路由表中的表项可以用手工静态配置生成。将电脑与路由器的console端口连接,使用电脑上的超级终端软件或路由器提供的配置软件就可以对路由器进行配置。 手工配置路由表需要大量的工作。动态学习路由表是最为行之有效的方法。一般情况下,我们都是手工配置路由表中直接连接的网段的表项,而间接连接的网络的表项使用路由器的动态学习功能来获得。

rip路由算法

思东张宏科 Rip协议的工作原理及仿真分析--中国空间技术研究院西安分院李园利王宇二 三距离向量路由算法(Bellman-Ford Routing Algorithm),也叫做最大流量演算法(Ford-Fulkerson Algorithm),其被距离向量协议作为一个算法,如RIP, BGP, ISO IDRP, NOVELL IPX。使用这个算法的路由器必须掌握这个距离表(它是一个一维排列-“一个向量”),它告诉在网络中每个节点的最远和最近距离。在距离表中的这个信息是根据临近接点信息的改变而时时更新的。表中数据的量和在网络中的所有的接点(除了它自己本身)是等同的。这个表中的列代表直接和它相连的邻居,行代表在网络中的所有目的地。每个数据包括传送数据包到每个在网上的目的地的路径和距离/或时间在那个路径上来传输(我们叫这个为“成本”)。这个在那个算法中的度量公式是跳跃的次数,等待时间,流出数据包的数量,等等。 在距离向量路由算法中,相邻路由器之间周期性地相互交换各自的路由表备份。当网络拓扑结构发生变化时,路由器之间也将及时地相互通知有关变更信息。

相邻路由器B发送请求报文,路由器B的RIP收到请求报文后,响应请求,回发包含本地路由表信息的响应报文。路由器A的RIP收到响应报文后,修改本地路由表的信息,同时以触发修改的形式向相邻路由器B广播本地路由修改信息。路由器B收到触发修改报文后,又向其各自的相邻路由器发送触发修改报文。在一连串触发修改广播后,各路由器的路由都得到修改并保持最新信息。同时,RIP每30秒向相邻路由器广播本地路由表,各相邻路由器的RIP在收到路由报文后,对本地路由进行的维护,在众多路由中选择一条最佳路由并向各自的相邻网广播路由修改信息,使路由达到全局的有效。运行RIP协议的路由器并不是把每一条新的路由信息都添加到自己的路由表中。而是根据Bellman-ford算法的最佳度量的计算公式获得D(i,j),并根据D(i,j)的结果,更新路由条目: (1)如果路由条目是新的,则接受路由器将把该条目加入路由表中; (2)如果此路由已存在于路由表,但新的路由条目具有不同的来源,并且该条目具有更低的跳数,则路由表将用新的条目替换已存在的条目; (3)如果此路由已存在于路由表中,并且两个条目的来源相同,则路由表将用新的条目替换已存在的条目,尽管两者的度量值一样。 五稳定性---RIP 协议每30秒向相邻路由器发送一次路由更新信息,同时监听来自网络中的其它相邻路由器的路由信息,从而实现对本地路由表的动态维护,以确保IP层发送报文时选择正确的路由。 在实际系统中,我们可以将无穷大设置为网络的最大跳数加1。但是当采用时延作为距离的长度时,将很难定义一个合适的时延上界。该时延的上界应足够大,以避免将长时延的路径认为是故障的链路 六公平性---它对好消息的反应迅速,但对坏消息却反应迟钝 1)、协议中规定,一条有效的路由信息的度量(metric)不能超过15,这就使得该协议不能应用于很大型的网络,应该说正是由于设计者考虑到该协议只适合于小型网络所以才进行了这一限制。对于metric为16的目标网络来说,即认为其不可到达。 2)、该路由协议应用到实际中时,很容易出现“计数到无穷大”的现象,这使得路由收敛很慢,在网络拓扑结构变化以后需要很长时间路由信息才能稳定下来。 3)、该协议以跳数,即报文经过的路由器个数为衡量标准,并以此来选择路由,这一措施欠合理性,因为没有考虑网络延时、可靠性、线路负荷等因素对传输质量和速度的影响。

相关主题