搜档网
当前位置:搜档网 › 几种馈线自动化方式

几种馈线自动化方式

几种馈线自动化方式
几种馈线自动化方式

1.集中控制式

集中控制式的故障处理方案是基于主站、通信系统、终端设备均已建成并运行完好的情况下的一种方案,它是由主站通过通信系统来收集所有终端设备的信息,并通过网络拓扑分析,确定故障位置,最后下发命令遥控各开关,实现故障区域的隔离和恢复非故障区域的供电。

优点:非故障区域的转供有着更大的优势,准确率高,负荷调配合理。

缺点:终端数量众多易拥堵,任一环节出错即失败。

案例:

假设F2处发生永久性故障,则

变电站1处断路器CB1因检测到故障电流而分闸,重合不成功然后分闸闭锁。定位:位于变电站内的子站或配电监控中间单元因检测到线路上各个FTU的状态及信息,发现只有FTU1流过故障电流而FTU2~FTU5没有。子站或配电监控中间单元判断出故障发生在FTU1~FTU2之间。

隔离:子站或配电监控中间单元发出命令让FTU1与FTU2跳闸,实现故障隔离。恢复:子站或配电监控中间单元发出命令让FTU3合闸,实现部分被甩掉的负荷的供电。子站或配电监控中间单元将故障信息上传配调中心,请求合变电站1处断路器CB1,实现部分被甩掉的负荷的供电。配调中心启动故障处理软件,产生恢复供电方案,自动或由调度员确认。配调中心下发遥控命令,合变电站1处断路器CB1,实现部分被甩掉的负荷的供电。等故障线路修复后,由人工操作,遥控恢复原来的供电方式。

2.就地自动控制

2.1负荷开关(分段器)

主要依靠自具一定功能的开关本身来完成简单的自动化,它与电源侧前级开关配合,在线路具备其本身特有的功能特性时,在失压或无流的情况下自动分闸,达到隔离故障恢复部分供电的目的。

这种开关一般或者有“电压-时间”特性,或者有“过流脉冲计数”特性。前者是凭借加压、失压的时间长短来控制其动作的,失压后分闸,加压后合闸或闭锁。后者是在一段时间内,记忆前级开关开断故障电流动作次数,当达到其预先设定的记录次数后,在前级开关跳开又重合的间隙分闸,从而达到隔离故障区域的目的。

在“电压-时间”方案中,开关动作次数多,隔离故障的时间长,变电站出口开关需重合两次,转供时容易有再次故障冲击,但它的优点是控制简单。

(1)基于重合器与电压-时间分段器方式的馈线自动化

基于电压延时方式,对于分段点位置的开关,在正常运行时开关为合闸状态,当线路因停电或故障失压时,所有的开关失压分闸。在第一次重合后,线路分段一级一级地投入,投到故障段后线路再次跳闸,故障区段两侧的开关因感受到故障电压而闭锁,当站内断路器再次合闸后,正常区间恢复供电,故障区间通过闭锁而隔离。

而对于联络点位置的开关,在正常时感受到两侧有电压时为常开状态,当一侧电源失压时,该联络开关开始延时进行故障确认,在延时时间完成后,联络开关投入,后备电源向故障线路的故障后端正常区间恢复供电。两侧同时失压时,开关为闭锁状态。

特点:造价低,动作可靠。该系统适合于辐射状、“手拉手”环状和多分段多连接的简单网格状配电网,一般不宜用于更复杂的网架结构。应用该系统的关键在于重合器和电压–时间型分段器参数的恰当整定,若整定不当,不仅会扩大故障隔离范围,也会延长健全区域恢复供电的时间。

(2)基于重合器与过流脉冲计数分段器方式的馈线自动化

当发生故障时重合器跳闸,分段器维持在合闸位置,但是经历了故障电流的分段器的过流脉冲计数器加一,若计数值达到规定值,则该分段器在无电流间隙分断,当重合器再次重合时,即达到隔离故障区段和恢复健全区段供电的目的。

案例:

在处理如图2所示配电网结构,A为重合器,B、C、D为过电流脉冲计数分段器,其计数次数均整定为2次。

正常运行时,重合器A,分段器B、C、D均为合,当C之后的区段发生故障时,重合器A跳闸,分段器C计过电流一次,由于没有达到事先整定的2次,因此分段器保持合闸,经过一段时间后,重合器进行第一次重合。若为瞬时性故障,重合成功,恢复系统正常供电,再经过一段确定的时间(与整定有关)后,分段器C的过电流计数值清零,又恢复至其初始状态,为下一次做好准备;若为永久性故障,再次重合到故障点,重合器A再次跳闸,分段器第二次过电流而达到整定值,于是,分段器在重合器跳闸后无电流时期分闸;再经过一段时间,重合器A进行第二次重合,由于此时分段器C处于分闸状态,从而将故障区段隔离开,恢复对健全区段的供电。

(3)电压-电流型

通信方式和通信协议:

选用GPRS+VPN(虚拟专用网)的通信传输通道,优点为:数据传输速率高;永久在线,空间网络数据传输透明;运行费用低廉,运行经济;安全性高,采用加密技术实现数据的安全传输。在传输过程中(见图1),FTU与GPRS通信模块之间采用RS-232接口,数据通过GPRS通信网络传输后,再通过移动通信网关、VPN专线传输到GPRS通信服务器,最后再传输到配电网主站。FTU传输协议采用IEC60870-5-101通信协议,由于是准实时数据传输,因此,协议数据召唤频度可以适当放慢。

FTU电压—电流型特点:

开关本体虽采用电压型自动负荷开关,但FTU具有电压—电流型特点。电压型特点是指FTU具有电压型开关控制器功能:在馈线全线停电的情况下,当FTU检测到开关一侧带电时,在开关没有被闭锁分闸的情况下,经过Δt延时,自动将开关合闸,而不需要主站发遥控命令;如果开关被闭锁分闸,则开关保持在分闸位置。电流型特点是指FTU故障检测依据电流检测判据,而不是依据电压和时延判据。当线路发生故障时,FTU根据流过的故障电流大小,记录故障标志,并通过GPRS向主站系统发送。在电压型馈线自动化方案中,由于是利用电压和时限配合进行故障检测,Δt一般设置不小于5s;而电压—电流型馈线自动化方案中,由于利用电流信号检测故障,为尽快缩短停电时间恢复供电,Δt 可设置为0。FTU需要配置一定容量的蓄电池,确保失电情况下FTU和通信的正常工作,并采用浮充技术提高电池寿命。由于开关操作采用交流电源,因此,蓄电池容量可以很小。

实现策略:

电压—电流型馈线自动化实现策略是指故障的检测、定位、隔离等功能的实现采用电流检测判据,而开关的操作采用交流操作电源。当线路发生故障时,由配电网主站通过GPRS方式收集线路上相关FTU的故障信息,同时,根据线路拓扑关系,进行故障分析,定位故障。由于电压型自动负荷开关具有“失压脱钩”的特点,此时,处于失电的开关位于分闸位置,远方主站只需发出开关闭锁分闸命令,把故障点两侧开关闭锁在分闸,就可以实现故障区域的隔离。对于馈线上

健全区段的恢复供电,由主站提出最佳重构方案,通过遥控变电站出线开关和解除联络开关闭锁分闸状态,并结合电压型自动负荷开关“来电自举”的特点,逐级恢复,完成网络重构。这种电压—电流型混合配电网自动化方案兼顾了电压型、电流型配电网自动化方案的优点,一方面具有电流型快速、可靠故障定位和故障隔离的优点,避免了电压型方案中因“残压闭锁”不绝对可靠而造成对侧全线停电的缺点,同时具有电压型开关采用交流操作电源的特点,开关操作可靠性大大提高。同时,变电站出线开关保护也不需要改造,保留一次重合闸即可。

案例演示:

变电站出口断路器设置一次重合功能,延时时间为0.5s,ΔT(ΔT一般取1min~5min)后返回,分段开关和联络开关Δt=0,另外,考虑到电压型开关的机械合闸特性,开关的固有机械合闸时间Δτ=0.3s。

假如c区发生瞬时性故障,CB1因速断保护动作而分闸,随后B、C、D因失压而分闸。CB1经过0.5s后重合使a区恢复供电,经过Δτ后B合闸将电送至b区,又经过Δτ后C合闸将电送至c区,再经过Δτ后D合闸将电送至d区。从发现瞬时性故障,到恢复供电,前后经过的时间约为1.4s。此后,FTU通过GPRS 向主站汇报各自检测的瞬时故障信息,以便主站了解瞬时故障的发生过程和位置。

假如c区发生永久性故障,如图2(a)所示,则CB1因速断保护动作而分闸,CB1经过一次重合,虽依次合闸送电至c区,由于c区是永久性故障,CB1再次因速断保护动作而闭锁分闸,同时,分段开关B、C、D因失压而分闸。主站通过GPRS轮询相关FTU的故障标志信息,由于开关B、C有故障电流标志而开关D、E无故障电流,因此,判断永久性故障发生在c区,向分段开关C、D处的FTU发开关闭锁分闸命令,使开关C、D闭锁在分闸位置(见图2(c))。主站然后将出线开关CB1合上,恢复a区供电,经Δτ延时,B合闸,恢复b区供电。由于开关C闭锁在分闸位置,从电源侧确保了故障区域c的安全隔离(见图2(d))。为了恢复失电区域d的供电,解除联络开关E的闭锁合闸命令,E检测到开关一侧有电、一侧无电,经延时Δτ后合闸,恢复失电区域d的供电。由于开关D 闭锁在分闸位置,从备用电源侧确保了故障区域c的安全隔离。

(4)智能式分布

智能分布式的就地式馈线自动化是在重合器方式的就地式馈线自动化的基础上,增加局部光纤通信,使得环网内的各FTU互相交互信息,在故障后ms

级的时间内直接跳开离故障点最近的两侧开关,变电站出线开关不需要跳闸,使得停电区域最小,同时联络开关自动合闸转供。可实现多开关串联无级差保护配合,快速准确地实现故障隔离和转移供电,达到停电范围最小、停电时间最短的目的。在保护通道故障时,可自动转为重合器方式的就地式馈线自动化工作模式,可靠性高,可应用于供电可靠性要求高的骨干网络。配电主站和子站可不参与处理过程。

新型智能分布式控制方式则利用了电压和电流两个信号作为故障段的判据,故又称为U-I-T(电压-电流-时间)型。

此方案具有如下优点:利用了电压和电流两个信号作为故障段的判据,充分考虑了故障后线路失压和过流次序的规律,制订全面的网络重构方案,方案的参数配置不受线路分段数目和联络开关位置的影响。

当利用智能负荷开关组网时,线路上各个开关按预先整定的功能相互配合自动隔离故障自动进行故障后网络重构;当采用重合器或断路器组网时,能够发挥重合器或断路器的开断和重合能力,迅速切除并隔离故障,恢复非故障线路供电。采用“残压检测”功能使故障点负荷侧的开关提前分闸闭锁,避免另一侧电源向故障线路转移供电时受到短路冲击和不必要的停电。在有局部光纤通信的条件下,可以自动升级为“协作模式”,从而进一步加快网络重构速度,减少线路受到的短路冲击。

分布式智能控制有两种实现方式:

1)基于终端的方式。终端通过对等通信(IP)网络获取相关站点终端数据,自行决策。不需要安装专门的装置,具有很高的实时性(最快达到200ms以内),但对终端处理能力要求高,且仅能用于IP通信网。

2)采用分布式智能控制器(DistributedIntelligentController,DIC)的方式。DIC安装在变电站、开关站或者其他选定的站点内,其作用类似于传统的配电子站,收集并处理附近小区内相关站点的终端信息,完成一些实时性要求较高的现场控制功能,能够有力提高配电自动化系统的处理速度,减轻SCADA系统的处理数据能力,使得配电系统进一步智能化。通过通信网集中收集处理相关站点终端的数据,做出综合决策,将控制命令送回终端。该方式可用于串行点对点通信,具有很好的适用性。

快速自愈:

1)对于经历了故障电流并且跳闸的开关(包括变电站出线开关)在其一侧带电的条件下,开放其一次快速重合功能(即跳闸后,在经过一般为0.5~1s的短暂延时后进行重合);若重合失败导致该开关再次跳闸,则自动闭锁于分闸状态,并向其相邻开关发送“重合失败”信息;若重合成功,则向其相邻开关发送“重合成功”信息,重合成功的馈线开关在一段时间(一般为5~10s)内闭锁保护。

2)对于未经历故障电流已跳闸的开关,不具备重合功能,跳闸后在一段时间内(如1~2s),若收到其相邻开关发来的“重合失败”信息或没有收到任何信息,则闭锁于分闸状态;若收到其相邻开关发来的“重合成功”信息,则驱动开关合闸。

3)未跳闸的开关以及重合成功的开关收到其相邻开关发来的“重合成功”信息,则置之不理。

4)闭锁在分闸状态的开关只有通过人工就地或远程控制才可复归。

5)对于联络开关,只是为了配合瞬时性故障和永久性故障的判别,其联络开关的时限需要设置得稍微长一些,如5~15s。

(4)重合器(断路器)

这种馈线自动化方案主要是FTU终端设备通过采集线路电流电压信息,再根据事先整定好的功能与逻辑来确定动作与否,在线路不同位置的终端通过整定不同的功能与逻辑实现上下级之间的相互配合。

在这种方案中,与之配套的FTU通常都有保护功能,通过保护时限来实现上下

级的配合,与负荷开关不同的是,它对系统冲击大大减少,隔离故障的时间缩短,除了变电站出口保护时间要改动之外,对变电站出口开关无特殊要求。但转移供电时,有时会有冲击。

分层分布:

最优控制模式是以单条馈线为控制对象的分层分布控制模式,具体包括将馈线的故障识别、故障隔离完全下放到配电终端实现。配电子站、配电主站在功能上保留集中式馈线自动化控制方式(即通过遥控来隔离故障),但是将该项功能作为配电终端的后备,只有在配电终端处理故障失败的情况下,才由配电子站处理故障;只有在配电终端及配电子站都失败的情况下,才由配电主站来处理。

转移非故障区域的负荷问题,可由配电主站通过预想事故分析在线生成故障恢复的策略表作为负荷转移方案。该方案分两种情况处理:如果需要操作多处开关,则由主站统一执行;如果只需操作联络负荷即可实现故障负荷的转移,则由主站在线下载到配电子站及终端中。

配电终端在处理故障时,可根据预先得到的策略表确定如何自动进行恢复供电。配电终端也可以在正常运行时实时交换潮流信息,当故障发生后,联络开关后的FTU开关可以根据自身及故障区域内的配电终端的功率情况确定能否转移负荷。

3.各馈线方式比较

针对架空馈线以自然延伸辐射型为主,主干线上带有多条分支线,分支线再延伸出多条小分支线,线路结构复杂的情况,而且分支线上的每一次永久或瞬时故障均会引起全条馈线停电,影响范围较大,

馈线自动化保护配置方案(断路器+负荷开关+智能控制器)

本方案涉及的主要设备为馈线出线断路器、主干线分段断路器、主干线分段负荷开关、分支线分界断路器、分支线分界负荷开关、分支线用户分界负荷开关。本馈线自动化解决方案的主要思路是用断路器或负荷开关将馈线分成若干区段,实现对馈线的分段监测、控制,同时应用线路分段故障隔离技术,使线路设备保护与变电站保护进行有效地配合。

本文论述的馈线自动化为避免传统型的缺点,要遵循以下原则:一是对馈线进行快速地故障定位、故障隔离、非故障区域供电恢复,最大限度地减少故障引起的停电范围、缩短故障恢复时间;二是对配电网正常运行状态进行监控。要减少故障引起的停电范围,就必须使线路合理分段,故障时只跳开靠近故障区域的下游开关,使开关动作引起的停电范围最小。另外,在进行故障隔离和供电恢复的过程中,尽量使开关不做不必要的动作,以减少开关动作次数,延长开关的使用寿命。

南方电网

图1中:CB为带时限保护(过流:0.30s,零序1.0s)和二次重合闸功能的馈线出线断路器;FB为带时限保护(过流:0.15s,零序0.6s)和二次重合闸功能的主干线分段断路器;FSW1~FSW2为主干线分段负荷开关;ZSW1为分支线分界负荷开关;ZB1为带时限保护(过流0.15s,零序0.6s)和二次重合闸功能的分支线分界断路器;YSW1~YSW3为分支线用户分界负荷开关;LSW为联络开关;方框表示断路器,圆圈表示负荷开关。开关填充黑色表示闭合。

故障隔离过程

1)主干线分段断路器电源侧发生故障(隔离故障恢复供电所需要时间:70s)FSW1和FB之间发生永久故障,CB保护动作跳闸,FSW1、FSW2、ZSW1,YSW1~YSW3在失压后跳闸,CB在5s后重合闸,FSW1一侧有压,延时5s合闸,由于是永久故障CB再次跳闸,FSW1失压分闸,并闭锁合闸。CB在60s 后第二次重合闸,FSW1成功隔离故障,隔离故障耗时约70s。

2)主干线分段断路器负荷侧发生永久故障(隔离故障恢复供电所需要时间:70s)FSW2和ZSW1之间发生永久故障,FB保护动作跳闸,FSW2、ZSW1、YSW3在失压后快速跳闸,FB在5s后重合闸,FSW2一侧有压,延时5s合闸,由于是永久故障FB再次跳闸,FSW2失压分闸,并闭锁合闸,FB在60s后第二次重合闸,FSW2成功隔离故障,隔离故障耗时约70s。

3)分支线分界负荷开关负荷侧发生永久故障(隔离故障恢复供电所需要时间:

75s)

ZSW1和YSW3之间发生永久故障,FB保护动作跳闸,FSW2、ZSW1、YSW3在失压后快速跳闸,FB在5s后重合闸,FSW2 一侧有压,延时5s合闸,FSW2在3s后闭锁分闸,ZSW1一侧有压,在延时5s合闸,由于是永久故障FB再次跳闸,ZSW1分闸并闭锁合闸,FSW2保持合闸,FB在60s后第二次重合闸,ZSW1成功隔离,隔离故障耗时约75s。

4)分支线分界断路器负荷侧发生永久故障(隔离故障恢复供电所需时间:5s)ZB1与YSW1/YSW2之间发生永久故障,ZB1保护动作跳闸,ZB1在5s后重合闸,由于是永久故障,ZB1再次跳闸并闭锁合闸,ZB1成功隔离故障,隔离故障耗时约5s。

5)分支线用户分界负荷开关用户侧发生永久故障(隔离故障恢复供电所需时间:80s)

用户YSW3发生永久故障,若是相间短路故障,FB保护动作跳闸,FSW2、ZSW1、YSW3在失压后快速分闸。(若是单相接地故障,YSW3跳闸隔离故障,其余开关不动作)。FB在5s后重合闸,FSW2一侧有压,延时5s合闸,FSW2在3s后闭锁分闸,ZSW1一侧有压,在延时5s合闸,ZSW1在3s闭锁分闸,YSW3一侧有压,在延时5s后合闸,由于是永久故障,FB保护动作跳闸,YSW3分闸并闭锁合闸,FSW2、ZSW1保持合闸,FB在60s后第二次重合闸,YSW3成功隔离故障,隔离故障耗时约80s。

从群体上看,中专毕业生的劣势是阅历较少、知识层次相对不高;优势是学校专业设置大多贴近市场实际、贴近一线需要,且中专毕业生年青、肯吃苦、可塑性强。从个体来说,每位毕业生的优势与长项又各不相同,如有相当一部分毕业生动手操作能力较好;有些学生非常上进,上学期间还同时参加了职业资格考试或自学考试。所以,在实事求是,不弄虚作假的前提下,要特别注意扬长避短,从而在竞争中取得优势,打动聘任者。没有重点和章法的写作易使文章显得头绪不清、条理紊乱。

非常热爱市场销售

工作,有着十分饱满的创业激情。在××××两年从事现磨现煮的咖啡市场销售工作中积累了大量的实践经验和客户资源。与省内主要的二百多家咖啡店铺经销商建立了十分密切的联系,并在行业中拥有广泛的业务关系。在去年某省的咖啡博览会上为公司首次签定了海外的定单。能团结自己的同事一起取得优异的销售业绩。

合理分配自我介绍的时间前文说过,自我介绍一般也就持续1—3分钟,所以应聘者得合理分配时间。常规安排是:第一段用于表述个人基本情况,中段重点谈自己的工作经历或社会实践经验,最后展望下自己的职位理想。但如果自我介绍被要求在1分钟完成,应聘者就要有所侧重,突出最有料的一点。在实践中,有些应聘者试图在短短的时间内吐露自己的全部经历,而有些应聘者则是三言两语就完成了自我介绍,这些都是不明智的做法。

突出和应聘职位相关的信息自我介绍的内容不宜太多的停留在诸如姓名、教育经历等部分上,因为面试官可以在应聘者的简历上一目了然地看到这些内容。应聘者应该在自我介绍时选择一至两项跟自己所应聘的职位相关的经历和成绩作简述,以证明自己确实有能力胜任所应聘的工作职位。一个让人更有机会在面试中出彩的方法是在做一段自我介绍后适当停顿。比如在“我曾在大学期间组织过有2000人参与的大型校园活动”之后的停顿可能会引导面试官去问“那是什么样的活动呢?”,这样做的目的是为面试的深入打下基础。

一切以事实说话在证明自己确实有能力胜任所应聘的工作职位时,应聘者可以使用一些小技巧,如介绍自己做过的项目或参与过的活动来验证某种能力,也可以适当地引用老师、同学、同事等第三方的言论来支持自己的描述。而这一切的前提是以事实为基础,因为自吹自擂一般是很难逃过面试官的眼睛的,一旦被发现掺假,基本预示着应聘者将被无

情“秒杀”。2×××年5月—至今:担任某咖啡茶品配送服务部的市场部业务员。主要负责

与经销商签定经销合同、办理产品的包装、运输、保险、货款结算、售后产品跟踪、市场反馈以及开拓新的销售渠道等。负责公司新业务员的培训,在实际工作中具体指导和协调业务员的销售工作,并多次受到公司的表扬。

几种馈线自动化方式

1.集中控制式 集中控制式的故障处理方案是基于主站、通信系统、终端设备均已建成并运行完好的情况下的一种方案,它是由主站通过通信系统来收集所有终端设备的信息,并通过网络拓扑分析,确定故障位置,最后下发命令遥控各开关,实现故障区域的隔离和恢复非故障区域的供电。 优点:非故障区域的转供有着更大的优势,准确率高,负荷调配合理。 缺点:终端数量众多易拥堵,任一环节出错即失败。 案例: 假设F2处发生永久性故障,则 变电站1处断路器CB1因检测到故障电流而分闸,重合不成功然后分闸闭锁。定位:位于变电站内的子站或配电监控中间单元因检测到线路上各个FTU的状态及信息,发现只有FTU1流过故障电流而FTU2~FTU5没有。子站或配电监控中间单元判断出故障发生在FTU1~FTU2之间。 隔离:子站或配电监控中间单元发出命令让FTU1与FTU2跳闸,实现故障隔离。恢复:子站或配电监控中间单元发出命令让FTU3合闸,实现部分被甩掉的负荷的供电。子站或配电监控中间单元将故障信息上传配调中心,请求合变电站1处断路器CB1,实现部分被甩掉的负荷的供电。配调中心启动故障处理软件,产生恢复供电方案,自动或由调度员确认。配调中心下发遥控命令,合变电站1处断路器CB1,实现部分被甩掉的负荷的供电。等故障线路修复后,由人工操作,遥控恢复原来的供电方式。

2.就地自动控制 2.1负荷开关(分段器) 主要依靠自具一定功能的开关本身来完成简单的自动化,它与电源侧前级开关配合,在线路具备其本身特有的功能特性时,在失压或无流的情况下自动分闸,达到隔离故障恢复部分供电的目的。 这种开关一般或者有“电压-时间”特性,或者有“过流脉冲计数”特性。前者是凭借加压、失压的时间长短来控制其动作的,失压后分闸,加压后合闸或闭锁。后者是在一段时间内,记忆前级开关开断故障电流动作次数,当达到其预先设定的记录次数后,在前级开关跳开又重合的间隙分闸,从而达到隔离故障区域的目的。 在“电压-时间”方案中,开关动作次数多,隔离故障的时间长,变电站出口开关需重合两次,转供时容易有再次故障冲击,但它的优点是控制简单。 (1)基于重合器与电压-时间分段器方式的馈线自动化 基于电压延时方式,对于分段点位置的开关,在正常运行时开关为合闸状态,当线路因停电或故障失压时,所有的开关失压分闸。在第一次重合后,线路分段一级一级地投入,投到故障段后线路再次跳闸,故障区段两侧的开关因感受到故障电压而闭锁,当站内断路器再次合闸后,正常区间恢复供电,故障区间通过闭锁而隔离。 而对于联络点位置的开关,在正常时感受到两侧有电压时为常开状态,当一侧电源失压时,该联络开关开始延时进行故障确认,在延时时间完成后,联络开关投入,后备电源向故障线路的故障后端正常区间恢复供电。两侧同时失压时,开关为闭锁状态。 特点:造价低,动作可靠。该系统适合于辐射状、“手拉手”环状和多分段多连接的简单网格状配电网,一般不宜用于更复杂的网架结构。应用该系统的关键在于重合器和电压–时间型分段器参数的恰当整定,若整定不当,不仅会扩大故障隔离范围,也会延长健全区域恢复供电的时间。 (2)基于重合器与过流脉冲计数分段器方式的馈线自动化

智能分布式馈线自动化的现状及发展趋势

暨南大学 本科生课程论文 论文题目:智能分布式馈线自动化 的现状及发展趋势 学院:电气信息学院 学系: 专业:自动化 课程名称:配电自动化 学生姓名: 学号: 指导教师:李伟华 2013年12 月23 日

0引言 (2) 1智能分布式馈线自动化及其故障处理概述 (3) 2分布式馈线自动化的发展概况及其局限 (3) 2.1现阶段馈线自动化系统技术分析 (2) 2.2馈线自动化技术故障处理的局限性 (2) 3智能分布式馈线自动化亟待解决的问题 (2) 3.1无电源端故障判别问题 (2) 3.2三相故障加速问题 (3) 3.3线路空载加速问题 (3) 4未来配网自动化的发展趋势 (3) 结论 (4)

智能分布式馈线自动化的现状及发展趋势何伶珍暨南大学电气信息学院广东珠海519000 摘要:智能分布式FA 的引进运用于配电网中, 大大减少无故障线路的连带性事故停电、缩小故障停电范围、缩短用户停电时间,从而提高用户的供电可靠性, 对电网的安全运行具有重要意义。本文以智能分布式FA 技术为基础, 讨论了智能馈线自动化的发展情况,重点论述了智能分布式馈线自动化故障处理的现状并就智能化馈线自动化系统组成进行了探讨,分析了其研究方向和亟待需要解决的问题。 关键词:智能配电网;分布式;馈线自动化;发展趋势 Abstract:The introduction of intelligent distributed FA used in the distribution network, greatly reducing trouble of route accidents blackout, power failure narrow range, shorten outage time users, so to improve the reliability of power supply for users, is of great significance to the safe operation of power grid.This paper is based on intelligent distributed FA technology, discusses the development of intelligent feeder automation, discusses the status of intelligent distributed feeder automation and intelligent feeder automation system are discussed, analyzed research direction and problems to solve. Keywords: intelligent distribution network;distributed;Feeder automation; the development trend 0 引言 馈线自动化( Feeder Automation,FA) ,又称配电线路自动化,是配电自动化的重要组成部分,是配电自动化的基础,是实现配电自动化的主要监控系统之一。馈线自动化是指在正常情况下,远方实时监视馈线分段开关与联络开关的状态和馈线电流、电压情况,并实现线路开关的远方合闸和分闸操作,在故障时获取故障记录,并自动判别和隔离馈线故障区段以及恢复对非故障区域供电。馈线自动化是提高配电网可靠性的关键技术之一。配电网的可靠、经济运行在很大程度上取决于配电网结构的合理性、可靠性、灵活性和经济性,这些又与配网的自动化程度紧密相关。通过实施馈线自动化技术,可以使馈线在运行中发生故障时,能自动进行故障定位,实施故障隔离和恢复对健全区域的供电,提高供电可靠性。 随着社会对电力需求的不断增长及对电能质量要求的不断提高,现有的配网故障处理及运营方式越来越难以满足用户对电能安全性及和可靠性的要求,配电自动化系统正是一种可以提高供电可靠性的重要技术手段,而它的核心就是馈线自动化功能。在配电自动化系统中,馈线自动化对于提高供电可靠性、减少停电面积和缩短停电时间具有深远的远的意义。它可以使停电时间大幅减少,并将线路故障范围从整条缩短到故障节点所在的分段之内,其最终效果使得停电故障对用户(或社会)

馈线自动化两种实现模式的对比研究

龙源期刊网 https://www.sodocs.net/doc/f08599615.html, 馈线自动化两种实现模式的对比研究 作者:吴慧 来源:《中国新技术新产品》2015年第02期 摘要:本文主要结合孝感城区配网馈线自动化建设探索实践经验,针对馈线自动化的两 种实现模式,分别从选点原则、动作原理、实践效果方面进行对比分析,提出建议。 关键词:配网自动化;馈线自动化;实例分析 中图分类号:TM76 文献标识码:A 馈线自动化实现故障处理的模式主要分为集中式和就地式两类。下文就孝感供电公司馈线自动化建设探索进程,对馈线自动化两种模式分别进行对比分析。 一、集中式模式实例分析 孝感城区配网自动化系统于2009年7月开始建设,11月底投入运行。系统采用双层体系结构,主要由主站层和终端设备层组成,二者之间通过光纤网络进行数据通信。 1选点原则:联络点优先、就近接入 对城区10KV配网128组开关进行了改造,加装电操机构和测控元件,并全部配备智能终端。系统监控设备总数约占当时配网设备总数的40%。 2动作原理:配网常采用手拉手环网常开运行方式:正常运行情况下,开关1、2、3、4 合闸位置,联络1开关分闸位置,如图1所示。 若开关3至开关4之间发生短路故障,则可能存在开关3、2、1三级跳闸的情况,此时必须这三级开关中至少有一组保护信号变位+开关动作触发DA计算启动,主站同时接收到多个开关保护信号变位后,按照电流方向和设备连接的拓扑关系,从馈线段的首端向末端查找,找到最后一个发送保护信号的开关3后,主站判定实际故障区域为开关3——开关4。 (1)开关3保护信号变位+开关3跳闸,隔离方案:开关4分闸;恢复方案:联络1合闸。 (2)开关3保护信号变位+开关2跳闸,隔离方案:开关3分闸、开关4分闸;恢复方案:开关2合闸、联络1合闸。 (3)开关3保护信号变位+开关1跳闸,隔离方案:开关3分闸、开关4分闸;恢复方案:开关1合闸、联络1合闸。

多联络馈线的集中型馈线自动化典型案例模拟分析

多联络馈线的集中型馈线自动化典型案例模拟分析 摘要:本文结合电网正常运行方式及实际工作情况,利用新一代配电自动化系 统FA仿真功能,采用集中型馈线自动化交互方式模拟了一例馈线段故障典型案例,分析比较了各种负荷转供策略的优劣,给出了启用负荷拆分功能的多电源参 与负荷转供的优化策略。 关键词:集中型;馈线自动化;负荷拆分;策略 引言 随着智能电网的发展,实现配电网的可观、可测、可控显得尤为迫切,智能 配电自动化系统在各地区如火如荼建设和发展。馈线自动化是智能配电自动化系 统的重要功能,可有效实现故障自动定位、自动隔离以及快速恢复非故障区域供电,从而减少停电时间、缩小停电范围,极大提高供电可靠性。 由于各地区经济发展、配电网网架结构、设备现状、负荷水平以及供电可靠 性实际需求不同,馈线自动化根据功能实现的不同可分为集中型和就地型(包括 智能分布式和重合式)。集中型馈线自动化通过配电自动化主站系统收集配电终 端上送的故障信息,综合分析后定位故障区域,再采用遥控方式进行故障隔离和 非故障区域恢复供电[1]。本文结合实际情况,采用集中型馈线自动化模拟一例可 实现负荷拆分典型案例,并分析比较了各种策略的优劣,给出了优化策略。 1 系统架构及模拟环境 实现集中型馈线自动化功能的系统架构主要由主站、通信网与终端单元组成[2]。主站层,负责整个配电自动化系统内状态信息的监控和管理,馈线自动化动 作策略的制定[3];通信层,负责信息传输;终端单元层,一般包括站所终端(DTU)、馈线终端(FTU)、故障指示器等,负责一次设备状态信息的采集并执行主站命令。 本文故障模拟基于新一代配电自动化主站系统功能模块,采用以太网光纤通 信方式,结合DTU/FTU上传的遥测、遥信信息,实现集中型交互式FA故障仿真。 2 具备负荷拆分功能集中型FA模拟 图1 测试单线图 测试单线图如上述图1所示:CB1,CB2,CB3为变电站出线开关,其余为配 网开关,开关黑色实心为合位,白色空心为分位。共有测试厂站1、测试厂站2、测试厂站3三个电源点,构成三个电气岛,各个出线负载电流如图1所示,各个 厂站出现断路器故障跳闸额定值设定为600A。 1)FA启动 配置FA启动条件为分闸+保护,运行方式为仿真交互。使用前置模拟器模拟 测试厂站1供电范围内发生故障,启动信号为:断路器CB1开关分闸+断路器 CB1过流动作。 2)故障区域定位 主站收到环网柜上送保护动作信号为:开关s1、s2过流动作,根据动作信号 可判定s2~s3之间区域发生故障,告警窗显示故障启动及故障区域定位信息如图 2所示。 图2 FA过程告警信息 3)故障隔离

简述配网自动化及馈线自动化技术

简述配网自动化及馈线自动化技术 摘要:馈线自动化在配电网自动化系统中发挥着非常重要的作用,可远程实时 监测馈线运行过程中电压和电流参数变化以及各种开关设备和保护装置的状态, 实现远程操作控制保护装置,对开关设备进行分闸和合闸操作,准确记录配电网 线路的故障情况,并且实现故障线段的自动隔离,保障非故障线路的安全可靠供电。因此应仔细研究配电网馈线自动化技术,优化和完善馈线自动化设置,确保 配电网的安全、稳定运行。 关键词:配电网;馈线;自动化技术 一、配网自动化及馈线自动化的内容 配电自动化系统的建设应包括以下五方面:配电网架规划、馈线自动化的实施、配电设备的选择、通信系统建设和配网主站建设。 1.1配电网架规划 合理的配电网架是实施配电自动化的基础,配电网架规划是实施配电自动化 的第一步,配电网架规划应遵循如下原则:遵循相关标准,结合当地电网实际; 主干线路宜采用环网接线、运行、导线和设备应满足负荷转移的要求;主干线路 宜分为段,并装设分段开关,分段主要考虑负荷密度、负荷性质和线路长度;配 电设备自身可靠,有一定的容量裕度,并具有遥控和智能功能。 1.2馈线自动化的实施 配电网馈线自动化是配电网自动化系统的主要功能之一。配网馈线自动化是 配电系统提高供电可靠性最直接、最有效的技术手段,因此目前电力企业考虑配 网自动化系统时,首先投人的是配网馈线自动化(DA)的试点工程。馈线自动化 的主要任务是采用计算机技术、通信技术、电子技术及人工智能技术配合系统主 站或独立完成配电网的故障检测、故障定位、故障隔离和网络重构。目前通过采 用馈线测控终端(FTU)对配电网开关、重合器、环网柜等一次设备进行数据采 集和控制。因此,FTU、通信及配电一次设备成为实现馈线自动化的关键环节。 配网馈线自动化主要功能包括配网馈线运行状态监测,馈线故障检测,故障定位,故障隔离,馈线负荷重新优化配置,供电电源恢复,馈线过负荷时系统切换操作,正常计划调度操作,馈线开关远方控制操作,统计及记录。 配电网馈线自动化系统,与其它自动化系统关系密切,如变电站综合自动化 系统、集控中心站、调度自动化系统(SCADA)、用电管理系统、AM/FM/GIS地 理信息系统、MIS系统等。因此必须采用系统集成技术,实现系统之间信息高度 共享,避免重复投资和系统之间数据不一致。配电网中的停电包括检修停电和故 障停电两部分,提高供电可靠性就是要在正常检修时缩小因检修造成的停电范围;在发生故障时,减小停电范围,缩短停电时间。这就要求对具有双电源或多电源 的配电网络,在进行检修时,只对检修区段进行停电,通过操作给非检修区段进 行供电;故障时快速的对故障进行定位、隔离、恢复非故障区段的供电。配电网 络的构成有电缆和架空线路两种方式。电缆网络多采用具有远方操作功能的环网 开关,对一次设备和通信系统的要求高,适合于经济发达的城区;对于大多数县 级城市,配网改造必须综合考虑资金和效果两个因素,采用以重合器、分段器和 负荷开关为主的架空网络方案比较合适。其中,架空线路电源手拉手供电是最基 本的形式。线路主干线分段的数量取决于对供电可靠性要求的选择。理论上讲, 分段越多,故障停电的范围越小,但同时实现自动化的方案也越复杂。在手拉手 供电方式下,要求系统对各分段的故障能够自动识别并切除,最大限度缩短非故

国家电网公司就地型馈线自动化技术原则(试行)

附件7: 就地型馈线自动化技术原则 1自适应综合型 自适应综合型馈线自动化是通过“无压分闸、来电延时合闸”方式、结合短路/接地故障检测技术与故障路径优先处理控制策略,配合变电站出线开关二次合闸,实现多分支多联络配电网架的故障定位与隔离自适应,一次合闸隔离故障区间,二次合闸恢复非故障段供电。以下实例说明自适应综合型馈线自动化处理故障逻辑。 1.1 主干线短路故障处理 (1)FS2和FS3之间发生永久故障,FS1、FS2检测故障电流并记忆1。 FS1 1CB为带时限保护和二次重合闸功能的10KV馈线出线断路器 FS1~FS6/LSW1、LSW2:UIT型智能负荷分段开关/联络开关 YS1~YS2为用户分界开关

CB CB LSW1 LSW1 FS6 FS6 YS2 YS2 FS1 FS1 FS2 FS2 FS3 FS3 FS4 FS4 FS5 FS5LSW2 LSW2 YS1 YS1 (2)CB 保护跳闸。 CB CB LSW1 LSW1 FS6 FS6 YS3 YS3 YS1 YS1 FS1 FS1 FS2 FS2 FS3 FS3 FS4 FS4 FS5 FS5LSW2 LSW2 (3)CB 在2s 后第一次重合闸。 CB CB LSW1 LSW1 FS6 FS6 YS2 YS2 YS1 YS1 FS1 FS1 FS2 FS2 FS3 FS3 FS4 FS4 FS5 FS5LSW2 LSW2 (4)FS1一侧有压且有故障电流记忆,延时7s 合闸。

CB CB LSW1 LSW1 FS6 FS6 YS2 YS2 YS1 YS1 FS1 FS1 FS2 FS2 FS3 FS3 FS4 FS4 FS5 FS5LSW2 LSW2 (5)FS2一侧有压且有故障电流记忆,延时7s 合闸,FS4一侧有压但无故障电流记忆,启动长延时7+50s (等待故障线路隔离完成,按照最长时间估算,主干线最多四个开关考虑一级转供带四个开关)。 CB CB LSW1 LSW1 FS6 FS6 YS2 YS2 YS1 YS1 FS1 FS1 FS2 FS2 FS3 FS3 FS4 FS4 FS5 FS5LSW2 LSW2 (6)由于是永久故障,CB 再次跳闸,FS2失压分闸并闭锁合闸,FS3因短时来电闭锁合闸。

实验四 馈线自动化功能分析

实验四馈线自动化功能分析 一.实验名称 馈线自动化功能分析 二.实验目的 1.对馈线自动化功能的基本作用有一个感性认识:配电网的安全、可靠运 行是发电、供电和保障人民生产和生活用电的重要任务,馈线的运行方式和负荷信息必须及时准确地送到配网监控中心,以便运行管理人员进行调度控制管理;当故障发生后,能及时准确地确定故障区段,迅速隔离故障区段并恢复健全区域供电。 2.掌握配网SCADA的基本功能、实现原理和操作方法。 3.了解表征馈线当前运行状态的参数类型和特点、获取方式、表现形式。 如馈电点电压、有功功率、无功功率、电流和开关状态等。 4.了解改变馈线当前运行方式的控制命令信息的类型和特点、下发方式。 1.了解非正常状态信息的表现形式。 2.掌握故障判断、隔离和健全区域恢复供电功能的原理和实现。 三.实验要求 1.已对配网教材中有关馈线自动化系统基本结构和功能以及状态信息的处 理章节进行了学习,建立了基本概念。 2.实验前认真阅读实验指导书;实验中,根据实验内容,做好实验记录; 实验后,写出实验报告。 3.认真上机操作,建立感性认识。 4.严格按照教师的指导进行操作。 5.在实验过程中做好记录。

四.系统结构 FTU FTU 图4-1 系统结构

五.系统功能 图4-2 系统功能

六.实验步骤及内容 1.了解馈线自动化的硬件结构。 (1)调度自动化实验系统配置两台实时监控控制台,一台调度专用投影仪; (1)实时监控控制台联接在调度主站计算机网络系统中; (2)在实时监控控制台上运行实时监控软件,既监控输电网又监控配电网的运行情况; (3)本实验将连接在调度主站计算机网络系统中的多台微机控制台安装并运行实时监控软件,以满足更多同学同时上机操作的需要。 2.启动系统 (1)启动厂站一次控制模拟屏和远方采集终端RTU; (2)启动HUB; (3)启动服务器; (4)启动前置通信控制台及其软件; (5)启动实时监控控制台及其软件。 3.了解实时监控控制台的软件配置情况 (1) IP地址 (2)共享目录的映射关系 (3)实时监控软件运行状况,菜单功能,多画面显示 图4-3 主界面

馈线自动化系统

馈线自动化系统 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

馈线自动化系统

1.概述 配电自动化系统简称配电自动化(DA-Di stri-bution Automa t ion),是对配电网上的设备进行远方实时监视、协调及控制的一个集成系统,它是近几年来发展起来的新兴技术领域,是现代计算机及通信技术在配电网监视与控制上的应用。目前,西方发达工业国家正大力推广该技术,我国有的供电部门也已经采用或正在积极地调研考察,准备采用这项技术。按照系统的纵向结构,配电自动化可分为配电管理系统(DMS主站)、变电站自动化、馈电线路自动化、用户自动化(需方管理DSM)等四个层次的内容。其中,馈电线路自动化系统,简称馈线自动化(FA-Feeder Automation),难度大,涉及的新技术比较多,是提供供电可靠性的关键。本文将介绍馈线自动化的基本概念、系统结构及其各个组成部分的功能、作用及技术要求,供有关工作者参考。

2馈线自动化简介 2.1馈线自动化的定义 在工业发达国家的配电网中,广泛采用安装在户外馈电线路上的柱上开关、分段器、重合器、无功补偿电容器等设备,以减少占地面积与投资,提高供电的质量、可靠性及灵活性。现在在我国各供电部门占也愈来愈多地采用线路上的设备。这些线路上的早期设备自动化程度低,一般都是人工操作控制。随着现代电子技术的进步,人们开始研究如何应用计算机及通信技术对这些线路上的设备实现远方实时监视、协调及控制,这样就产生了馈线自动化技术。馈线自动化,又称线路自动化或配电网自动化,按照国际电气电子工程师协会(IEEE)对配电自动化的定义,馈线自动化系统(FAS-Feeder Automa-tio n System)是对配电线路上的设备进行远方实时监视、协调及控制的一个集成系统。 2.2馈线自动化的功能 馈线自动化主要有以下几项功能: (1)数据采集与监控(SCADA) 就是通常所说的远动,即四遥(遥信、遥测、遥控、遥调)功能。 (2)故障定位、隔离及自动恢复供电 指线路故障区段(包括小电流接地故障)的定位与隔离及无故障区段供电的自动恢复。 (3)无功控制 指线路上无功补偿电容器组的自动投切控制。

馈线自动化模式选型与配置技术原则(征求意见稿)

馈线自动化模式选型与配置技术原则 (征求意见稿) 2017年12月

目录 1概述 (1) 1.1范围 (1) 1.2规范性引用文件 (1) 1.2.1设计依据性文件 (1) 1.2.2主要涉及标准、规程规范 (2) 2馈线自动化模式概述与应用选型 (3) 2.1集中型馈线自动化概述 (3) 2.2就地型馈线自动化概述 (3) 2.2.1重合器式馈线自动化 (3) 2.2.2分布式馈线自动化 (4) 2.3模式对比与应用选型 (5) 2.3.1模式对比 (5) 2.3.2应用选型 (8) 3集中型馈线自动化应用模式 (9) 3.1适用范围 (9) 3.2布点原则 (9) 3.3动作逻辑 (10) 3.3.1技术原理 (10) 3.3.2动作逻辑原理 (11) 3.3.3短路故障处理 (12) 3.3.4接地故障处理 (13)

3.4性能指标 (13) 3.5配套要求 (14) 3.5.1配套开关选用 (14) 3.5.2配套终端选用 (14) 3.5.3配套通信选用 (15) 3.5.4保护配置选用 (15) 3.6现场实施 (17) 3.6.1参数配置 (17) 3.6.2安装要求 (18) 3.6.3注意事项 (18) 3.7运行维护 (18) 3.7.1操作指导 (19) 3.7.2检修指导 (19) 3.7.3运维分析指导................ 错误!未定义书签。 3.8典型应用场景 (19) 4重合器式馈线自动化应用模式 (22) 4.1电压时间型 (22) 4.1.1适用范围 (22) 4.1.2布点原则 (22) 4.1.3动作逻辑 (22) 4.1.4性能指标 (24) 4.1.5配套要求 (24)

馈线自动化系统

馈线自动化系统 This model paper was revised by the Standardization Office on December 10, 2020

馈线自动化系统

1.概述 配电自动化系统简称配电自动化(DA-Di stri-bution Automa t ion),是对配电网上的设备进行远方实时监视、协调及控制的一个集成系统,它是近几年来发展起来的新兴技术领域,是现代计算机及通信技术在配电网监视与控制上的应用。目前,西方发达工业国家正大力推广该技术,我国有的供电部门也已经采用或正在积极地调研考察,准备采用这项技术。按照系统的纵向结构,配电自动化可分为配电管理系统(DMS主站)、变电站自动化、馈电线路自动化、用户自动化(需方管理DSM)等四个层次的内容。其中,馈电线路自动化系统,简称馈线自动化(FA-Feeder Automation),难度大,涉及的新技术比较多,是提供供电可靠性的关键。本文将介绍馈线自动化的基本概念、系统结构及其各个组成部分的功能、作用及技术要求,供有关工作者参考。

2馈线自动化简介 2.1馈线自动化的定义 在工业发达国家的配电网中,广泛采用安装在户外馈电线路上的柱上开关、分段器、重合器、无功补偿电容器等设备,以减少占地面积与投资,提高供电的质量、可靠性及灵活性。现在在我国各供电部门占也愈来愈多地采用线路上的设备。这些线路上的早期设备自动化程度低,一般都是人工操作控制。随着现代电子技术的进步,人们开始研究如何应用计算机及通信技术对这些线路上的设备实现远方实时监视、协调及控制,这样就产生了馈线自动化技术。馈线自动化,又称线路自动化或配电网自动化,按照国际电气电子工程师协会(IEEE)对配电自动化的定义,馈线自动化系统(FAS-Feeder Automa-tio n System)是对配电线路上的设备进行远方实时监视、协调及控制的一个集成系统。 2.2馈线自动化的功能 馈线自动化主要有以下几项功能: (1)数据采集与监控(SCADA) 就是通常所说的远动,即四遥(遥信、遥测、遥控、遥调)功能。 (2)故障定位、隔离及自动恢复供电 指线路故障区段(包括小电流接地故障)的定位与隔离及无故障区段供电的自动恢复。 (3)无功控制

10kV配电网馈线自动化自愈控制的分析

10kV配电网馈线自动化自愈控制的分析 发表时间:2017-11-22T16:10:28.883Z 来源:《电力设备》2017年第19期作者:姚淼 [导读] 摘要:本文主要针对10kV配电网馈线自动化的自愈控制展开了分析,对目前的馈线自动化现在作了详细的阐述,并探讨了相应的自愈控制应用,以期能为有关方面的需要提供有益的参考和借鉴。 (深圳供电规划设计院有限公司广东深圳 518000) 摘要:本文主要针对10kV配电网馈线自动化的自愈控制展开了分析,对目前的馈线自动化现在作了详细的阐述,并探讨了相应的自愈控制应用,以期能为有关方面的需要提供有益的参考和借鉴。 关键词:10kV配电网;馈线自动化;自愈控制 所谓的馈线自动化,是指变电站出线到用户用电设备之间的馈电线路自动化。如今,馈线自动化的应用,对10kV配电网的进一步发展起到十分重要的作用。而在馈线自动化的应用过程中,会遇到许多的问题缺陷,需要我们及时做好自愈的控制。基于此,本文就10kV配电网馈线自动化的自愈控制进行了分析,相信对有关方面的需要能有一定的帮助。 1 10kV配网馈线自动化现状 目前我国大多城市10kV配电网的自动化程度相对还较低,在配网上是实现馈线自动化主要有以下两种方式:一是不需要配电主站或配电子站控制的就地模式。二是通过配电终端和配网主站或配网子站配合的集中性模式。两种模式通过实际运行存在有以下缺陷。 1.1 就地型 (1)每次线路发生故障都需要上级变电站出线断路器跳闸。 (2)通过变电站出线断路器的多次重合闸方式,并配合本开关的多次逻辑判断动作,才能完成才能隔离故障。 (3)引起全线短暂停电,且多次短暂停电。 (4)对变电站主变多次短暂冲击,危害较大。 (5)适用于架空线路,不适用于全电缆和混合型线路。 (6)分段越多,保护的级差就越难配合,隔离故障时间也越长。 1.2 集中型 (1)每次线路发生故障都需要上级变电站出线断路器跳闸; (2)引起全线停电,区段恢复需要多次自动操作或人工操作完成; (3)对通信系统的依赖较大,通信一旦出现故障,线路的保护功能将“瘫痪”; (4)必须建立独立的配网自动化系统,建设成本高,后期维护费用高。 同时以现有的运行方案从智能自愈型配电网的角度来看,都不能满足相应要求。目前运行方式下故障保护都是依赖馈线出线断路器的跳闸来实现,这意味着一旦有线路故障出现,全馈线立即跳闸停电;没有实现故障区段的就地自主隔离;所以真正满足智能配电网自愈控制要求的区域快速就地自主控制技术,在国内还是空白。 针对当前的配网存在的不足,本文面对未来智能自愈型电网的需求,提出并研究应用一种全新的基于断路器柜一体化设计的全新10kV 配网分布式自愈系统。 2 10kV配网分布式自愈系统 2.1 馈线自动化、自愈的概述 配电网均有大量的中低压馈线路,由于故障引发部分区域停电时有发生,应用故障定位、隔离故障和自动恢复供电系统,能使受到故障影响而停电的非故障区域自动恢复供电。这一系统称为故障识别和恢复供电系统或故障处理系统,是馈线自动化的主要内容。 配电网的自愈能力指配电系统能够及时检测出系统故障、对系统不安全状态进行预警,并进行相应的操作,使其不影响对用户的正常供电或将其影响降至最小。在无人工干预的情况下实现: (1)系统故障后,自动隔离故障并自动恢复供电; (2)系统出现不安全状态后,通过自动调节使系统恢复到正常状态。 2.2 当前10kV配电网自愈系统方案 2.2.1 当前国内在试验应用的一种方案是集中型配网自愈方案 采用带以及基于FTU的故障处理系统,在10kV配网主干线路上配置重合闸断路器和FTU。重合闸的断路器构成的故障处理系统在10kV 配网上无大量采用,技术相对不成熟;基于FTU的故障处理系统通过光纤将所各FTU以光纤方式构成独立的通信网并归属于变电站的一个专门子站,由监控主机对全系统进行网络差动保护和网络备自投。实现了真正意义的配网“自愈”控制。但是该方案存在以下几个问题:(1)对单项接地故障的处理时,馈线配置的FTU向子站发出冻结命令有延时,因而各FTU冻结的零序电流波形中已含有故障后的波形。 (2)配电网络的保护性能依赖于监控主机,对主站程序的实时性要求高,复杂程度也大。 (3)对通讯光纤网络要求高,且系统局部的通讯故障都可能会影响到整个系统的稳定,进一步导致通讯瘫痪。所以该方案实际应用还有待完善。 2.2.2 重合器与分段器组成的故障定位隔离与自动恢复供电系统 重合器与分段器构成的系统可以不用通信网就能实现故障隔离与自动回复供电,投资少但存在较多缺点: (1)分段器要记录一定次数后才能分闸,重合器有多次分合闸过程,不利于开关本体,且对用户冲击大。 (2)在故障定位、隔离时,会导致相关联的非故障区多次短时通电,要求配网运行方式相对固定。 2.3 全新10kV配电网馈线自愈系统 2.3.1 方案说明 该方案配网系统为2回路手拉手环网开环方式运行。主干线路上环网柜采用具备短路电流分断能力的紧凑型智能断路器开关柜。各柜

基于智能分布式FTU、智能分布式DTU的智能分布式馈线自动化方案实现

基于智能分布式FTU、智能分布式DTU的智能分布式 馈线自动化方案实现 一、架空线路智能分布式馈线自动化(DAF-810馈线自动化终端) 1.现状和问题 传统的架空配电线路发生短路故障时,一般由变电站馈线出口断路器保护动作跳闸,并通过人工切除故障后,恢复供电。这种方式下,人员的维护量大,并且停电时间长,供电可靠性低。 现有的配电网自动化中一般是基于电压时间型的FTU,不依赖于通讯,当故障发生时,依然由变电站馈线出口断路器保护动作跳闸,通过FTU之间时间的配合,不断的通过重合,实现故障的自动恢复。这种方式下,如果发生的永久故障,并且故障发生在末端,会对配电网和用户设备造成多次短路冲击,而且恢复时间较长,供电可靠性依然低。 而智能分布式馈线自动化能够不依赖主站通过馈线自动化终端内部间的数据交换,实现故障点准确定位及跳闸。 图1 DAF-810馈线自动化终端FTU外观图 2.产品特点 广州市智昊电气技术有限公司DAF-810馈线自动化终端(分布式FTU)具有如下特点: 提高故障隔离与恢复的速度:为了保证系统的快速性,由智能FTU装置间就地动态决策,快速实现故障的自动恢复,有效减少馈线出口开关和分段开关的动作次数,极大的缩短停电时间。 加强系统运行的可靠性: 为了提高系统可靠性,主控FTU为动态的,当原主FTU故障时,其他FTU中编号最小的一台可自动取代原主控FTU,实现FTU协调功能。

系统基于无线通讯运行。在通讯正常的情况下,主控FTU能够准确定位故障点,并通过预置的控制策略来进行故障的快速隔离及恢复,避免了电压时间型FTU多次尝试性重合,减少了恢复过程中故障对系统的多次冲击;在通讯异常的情况下,本装置自动按传统的电压时间型FTU逻辑运行。 通过本系统的II段近后备保护,并结合馈线出口断路器的保护、母线保护、变压器保护,实现了电网、变电站和馈线各类保护的协同配合,同时本系统还具备重合闸、解列、重构等功能,完善了智能配电网的自愈体系,提高了配电网的供电质量。 提供强大的分析能力:后台监控系统主要包括系统运行监控功能、系统维护功能、分段开关四遥功能、以及后台辅助分析功能。监控功能指常态下的监控,系统维护功能主要包括馈线拓扑结构维护、控制策略的配置、定值的计算及在线下发等,而后台辅助分析功能包括故障场景再现,系统动作行为分析等。 运行过程中,本系统能将故障处理的过程信息,包括故障类型、故障点、电流、电压、DTU状态、通讯状态、分段开关状态,上传到后台监控系统或配电网自动化系统,实现故障处理的全过程监视及事后分析,便于检修人员的故障排除,缩短事故处理时间。 减少系统的维护量:后台监控系统,能提供配电网馈线拓扑结构的维护工具,能方便实现DTU装置的拓扑在线维护,并实现各类整定值的计算、校核和在线下发,系统维护量小。 本系统不需要配电自动化主站和变电站配网子站系统参与,就可自治实现配网的故障隔离及重合、故障恢复功能,安装实施简单,维护工作量小,便于推广使用。 强化投资的收益比:无线GPRS通讯是架空线型线路的标准配置,本系统要求的无线通讯并不增加投资。在资金充裕时,采用光纤通讯和断路器分段,可获得理想的保护选择性和故障智能处理特性;在资金紧张时,可使用GPRS专网、无线网桥建立通讯网络,使用负荷开关作为分段装置,也能建立就地智能FA,实现故障快速隔离及智能恢复。但是降低了故障隔离的选择性。 增强部署的灵活性:适用于市、县供电公司或大中型工矿企业中对供电可靠性有较高要求的架空线型配电线路。系统支持多种馈线拓扑结构,包括手拉手、单电源和多电源供电线路。 3.智昊电气DAF-810馈线自动化终端系统原理(中性点经小电阻接地系统的电缆网络) (1)电源甲侧首端线路故障检测

馈线自动化基本应用

馈线自动化基本应用 摘要:馈线自动化是配电自动化主要功能之一。本文针对我国配电自动化实施情况,充分讨论了馈线保护技术现状及发展。提出了建立光纤通信基础上配电网馈线系统保护新原理和新概念。馈线系统保护充分吸取了高压线路纵联保护特点,利用馈线保护装置之间快速通信一次性实现对馈线故障故障隔离、重合闸、恢复供电功能,将馈线自动化实现方式从集中监控模式发展为分布式保护模式,提高配电自动化整体功能。 关键词:配电网馈线自动化系统保护 馈线自动化就是监视馈线的运行方式和负荷。由于目前国内配电网自动化系统尚没有统一的模式,因此,不同设备、不同设计方案组成的配网自动化系统的馈线自动化实施方法就不同。本文以"手拉手"供电网为研究对象,就馈线自动化中故障自动隔离功能的解决方案进行分析探讨。馈线系统保护充分吸取了高压线路纵联保护的特点,利用馈线保护装置之间的快速通信一次性实现对馈线故障的故障隔离、重合闸、恢复供电功能,将馈线自动化的实现方式从集中监控模式发展为分布式保护模式,从而提高配电自动化的整体功能。 1馈线自动化的基本功能 馈线自动化系统应具有如下功能: ①遥测、遥信、遥控功能;②故障处理:故障区域自动判断和自动隔离,故障消除后迅速恢复供电功能;③负荷管理:根据配电网的负荷均衡程度合理改变配电网的运行方式;④重合闸控制:当发生过电流并导致断路器跳闸时启动,并在断路器一侧电压恢复时开始延时计数,从而实现沿线从电源至末端依次重合,若一次重合失败则不再重合;⑤对时功能;⑥过电流记录功能;⑦事件顺序记录(SOE)功能;⑧定值的远方修改和召唤功能;⑨停电后仍维持工作的功能。 2线路故障区段查找的基本原理 2.1馈线故障区段的定位: 对于辐射状网、树状网和处于开环运行的环状网,在判断故障区域时,只须根据馈线沿线各断路器是否流过故障电流就可以判断故障区段。假设馈线上出现单一故障,显然故障区段位于从电源侧到线路末端方向最后一个经历了故障电流的断路器和第一个未经历故障电流的断路器之间。 2.2事故跳闸断路器的定位: 事实上,由于种种原因,线路故障时,未必是第一个经过故障电流的断路器跳闸,极有可能越级跳闸。例如图1中e点故障,分段断路器3没有跳开而是断路器2跳开。根据断路器位置不能判断故障区段,但根据是否流过了故障电流却能够做出正确判断(断路器1、2、3经历了故障电流而断路器4却没有经历,从而得出故障区段在e段的结论)。 图1 手拉手供电线路示意图 为了确定各断路器是否经历了故障电流,需对安装于其上的各台FTU进行整定,由于从原理上不是通过对各台断路器整定值的差别,来隔离故障区段的,因此多台断路器可以采用同一定值。这样即使增加馈线上的分段数目也不会带来任何影响。 而故障区段隔离后,越级跳闸的断路器要复位,对于事故后跳闸断路器的准确定位是非故障区段自动恢复供电的关键。

配电自动化系统馈线保护的配置

配电自动化系统馈线保护的配置 发表时间:2017-12-18T11:23:45.117Z 来源:《电力设备》2017年第24期作者:张建宋恩稼[导读] 摘要:随着国民经济的高速发展,人们的生活水平有了显著的提高,在能源方面的需求也越来越高,能源的紧缺问题开始渐渐地暴露出来。 (国网山东省电力公司乳山市供电公司山东乳山 264500)摘要:随着国民经济的高速发展,人们的生活水平有了显著的提高,在能源方面的需求也越来越高,能源的紧缺问题开始渐渐地暴露出来。目前为止,我国大部分地区电力事业的发展相对落后,为了确保对电力资源的有效控制,就需要采用自动化配电方式来确保用电的合理化,如何确保其安全性就显得越发重要。馈线系统保护充分吸取了高压线路纵联保护的特点,利用馈线保护装置之间的快速通信一次 性实现对馈线故障的隔离、重合闸、恢复供电功能,将馈线自动化的实现方式从集中监控模式发展为分布式保护模式,从而提高配电自动化的整体功能。 关键词:配电自动化;馈线保护;配置引言 配电自动化技术是服务于城乡配电网改造建设的重要技术,配电自动化包括馈线自动化和配电管理系统,通信技术是配电自动化的关键。目前为止,配电自动化进行了较多试点,由配电主站、子站和馈线终端构成的三层结构已经得到了普遍认可。馈线自动化的实现也完全能够建立在光纤通信的基础上,这使得馈线终端能够快速的彼此通信,共同实现具有更高性能的馈线自动化功能。本文通过分析传统的馈线保护方式和馈线自动化的基本功能及原理,阐述了实施了配电自动化系统后,配电网馈线系统保护配置过程中应注意的问题。 1.配电网馈线保护的现状及方式 电力系统由发电、输电和配电三个部分组成。发电环节的保户集中在元件保护,其主要目的是确保发电厂发生电气故障时将设备的损失降至最小。输电网的保护集中在输电线路的保护,其首要目的是维护电网的稳定。配电环节的保护集中在馈线保护上,因为配电网不存在稳定问题,一般认为馈线故障的切除并不严格要求快速。不同的配电网对负荷供电可靠性和供电质量要求不尽相同。许多的配电网仅是考虑线路故障对售电量的影响及配电设备寿命的影响,尚未将配电网故障对用户的负面影响作为配电网保护的目的。配电网馈线保护的主要作用是提高供电可靠性和提高电能质量,具体包括馈线故障切除、故障隔离和恢复用电。具体有以下几种方式: 1.1重合器方式的馈线保护 实现馈线分段、增加电源点是提高供电可靠性的基础。重合器保护是将馈线故障自动限制在一个区段内的有效方式。目前在我国城乡电网改造中仍然有很多的重合器得到应用,这种简单而有效的方式能够提高供电可靠性。其相对于传统的电流保护而言有更大的优势。但是,这种方案的缺点就是故障隔离的时间较长,多次重合对相关的负荷有一定的影响。 1.2传统的电流保护 最基本的继电保护之一就是过电流保护,因为受到经济的限制,配电网馈线保护广泛采用电流保护。配电线路一般情况下很短,由于配电网不存在稳定问题,为了确保电流保护动作的选择性,采用时间配合的方式实现全线路的保护。比较常见的方式有反时限电流保护和三段电流保护。电流保护实现配电网保护的前提是将整条馈线视为一个单元。如果发生馈线故障时,就要将整条线路切掉,并不用考虑对非故障区段的恢复供电,这些都不利于供电可靠性。另一方面,由于依赖时间延时实现保护的选择性,导致某些故障的切除时间偏长,影响设备寿命。 1.3基于馈线自动化的馈线保护 配电自动化包括馈线自动化和配电管理系统,其中馈线自动化实现对馈线信息的采集和控制,同时也实现了馈线保护。这种基于通信的馈线自动化方案以集中控制为核心,综合了电流保护、RTU遥控及重合闸等多种方式,能够快速的切除故障,在几秒到几十秒的时间内实现故障隔离,在几十秒到几分钟内实现恢复用电。这种方案是目前为止配电网自动化的主流方案,能够将馈线保护集成于一体化的配电网监控系统中,从故障切除、故障隔离、恢复用电方面都有效的提高了供电可靠性。 2.馈线自动化基本功能及原理 馈线自动化的主要功能有:在正常的情况下,对馈电网进行监控和数据采集,包括相应馈线柱上开关的状态、馈线电流电压等;在发生故障时进行故障记录,遥控馈线柱上开关的合闸、分闸。在配电自动化系统综合分析故障信息后遥控执行自诊断、隔离、恢复功能。根据负荷均衡情况实现配电网的优化与重构。馈线自动化就是监视馈线的负荷及运行方式。馈线自动化的核心是通信,以通信为基础可以实现配电网全局性的数据采集和控制,从而实现配电SCADA、配电高级应用。同时以地理信息系统(GIS)为平台实现了配电网的设备管理、图资管理,而SCADA、GIS和配电高级应用的一体化则促使配电自动化成为提供配电网保护与监控、配电网管理的全方位自动化运行管理系统。 目前国内的主流通信方式是光纤通信,具体分为光纤环网和光纤以太网。建立在光纤通信基础上的馈线保护的实现由以下三部分组成:第一,电流保护切除故障;第二,集中式的配电主站或子站遥控FTU实现故障隔离;第三,集中式的配电主站或子站遥控FTU实现非故障区域的恢复用电。这种实现方式实质上是在自动装置无选择性动作后的恢复用电。如果能够解决馈线故障时保护动作的选择性,就能够大大的提高馈线保护性能,从而一次性的实现故障切除与故障隔离。这就需要馈线上的多个保护装置利用快速通信协作动作,共同实现有选择性的故障隔离,以上就是馈线保护的基本思想。 3.馈线保护的基本原理 馈线系统保护实现的前提条件是:快速通信;控制对象是断路器;终端是保护装置而非TTU。 在高压线路保护中,高频保护、电流差动保护都是依靠快速通信实现的主保护,馈线系统保护是在多于两个装置之间通信的基础上实现的区域性保护。 系统保护动作速度及其后备保护。为了确保馈线保护的可靠性,在馈线的首端UR1处设限时电流保护,建议整定时间内0.2s,即要求馈线系统保护在200ms内完成故障隔离。在保护动作时间上,系统保护能够在20ms内识别出故障区段信息,并启动通信。光纤通信速度很快,考虑到重发多帧信息,相邻保护单元之间的通信应在30ms内完成。断路器动作时间为40ms~100ms。这样,只要通信环节理想即可实现快速保护。

相关主题