搜档网
当前位置:搜档网 › 箱梁分析

箱梁分析

箱梁分析
箱梁分析

第六章箱梁分析

?主要优点:

抗扭刚度大、有效抵抗正负弯矩、施工方便、整体受力、适应性强、铺设管道方便。

?箱梁截面受力特性:

箱梁在偏心荷载作用下的变形与位移,可分成四种基本状态:纵向弯曲、横向弯曲、扭转及扭转变形(即畸变);

箱梁在偏心荷载作用下,因弯扭作用在横截面上将产生纵向正应力和剪应力,因横向弯曲和扭转变形将在箱梁各板中产生横向弯曲应力与剪应力。

?箱梁对称挠曲时的弯曲应力:

箱梁对称挠曲时,产生弯曲正应力、弯曲剪应力。

?箱梁的自由扭转应力:

箱梁在无纵向约束,截面可自由凸凹的扭转称为自由扭转,只产生剪应力,不引起纵向正应力;

单室箱梁的自由扭转应力,多室箱梁的自由扭转应力。

?箱梁的约束扭转应力:

当箱梁端部有强大横隔板,扭转时截面自由凸凹受到约束称为约束扭转,产生约束扭转正应力与约束扭转剪应力;

这里介绍的约束扭转的实用理论建立是一定的假定之上的。

?箱梁的畸变应力:

当箱梁壁较薄时,横隔板较稀时,截面就不能满足周边不变形的假设,则在反对称荷载作用下,截面不但扭转还要畸变,产生畸变翘曲正应力和剪应力,箱壁上也将引起横向弯曲应力;

用弹性地基比拟梁法解析箱梁畸变应力。

?箱梁剪力滞效应:

翼缘剪切扭转变形的存在,而使远离梁肋的翼缘不参予承弯工作,这个现象就是剪力滞效应;

可应用变分法的最小势能原理求解。

第六章 箱梁分析

一、主要优点

箱形截面具有良好的结构性能,因而在现代各种桥梁中得到广泛应用。在中等、大跨预应力混凝土桥梁中,采用的箱梁是指薄壁箱型截面的梁。其主要优点是:

? 截面抗扭刚度大,结构在施工与使用过程中都具有良好的稳定性;

? 顶板和底板都具有较大的混凝土面积,能有效地抵抗正负弯矩,并满足配筋的要求,适应具有正负弯矩的结构,如连续梁、拱桥、刚架桥、斜拉桥等,也更适应于主要承受负弯矩的悬臂梁,T 型刚构等桥型;

? 适应现代化施工方法的要求,如悬臂施工法、顶推法等,这些施工方法要求截面必须具备较厚的底板;

? 承重结构与传力结构相结合,使各部件共同受力,达到经济效果,同时截面效率高,并适合预应力混凝土结构空间布束,更加收到经济效果;

? 对于宽桥,由于抗扭刚度大,跨中无需设置横隔板就能获得满意的荷载横向分布; ? 适合于修建曲线桥,具有较大适应性; ? 能很好适应布置管线等公共设施。

二、箱梁截面受力特性 一)箱梁截面变形的分解

箱梁在偏心荷载作用下的变形与位移,可分成四种基本状态:纵向弯曲、横向弯曲、扭转及扭转变形(即畸变);

因弯扭作用在横截面上将产生纵向正应力和剪应力,因横向弯曲和扭转变形将在箱梁各板中产生横向弯曲应力与剪应力。

1、纵向弯曲:对称荷载作用;产生纵向弯曲正应力

M σ,弯曲剪应力 M τ。

纵向弯曲产生竖向变位 w ,因而在横截面上引起纵向正应力

M σ及剪应力 M τ,见图。图中虚线

所示应力分布乃按初等梁理论计算所得,这对于肋距不大的箱梁无疑是正确的;但对于肋距较大的箱形梁,由于翼板中剪力滞后的影响,其应力分布将是不均匀的,即近肋处翼板中产生应力高峰,而远肋板处则产生应力低谷,如图中实线所示应力图。这种现象称为“剪力滞效应”。对于肋距较大的宽箱梁,这种应力高峰可达到相当大比例,必须引起重视。

2、横向弯曲:局部荷载作用;产生横向正应力

c σ。

箱形梁承受偏心荷载作用,除了按弯扭杆件进行整体分析外,还应考虑局部荷载的影响。车辆荷载作用于顶板,除直接受荷载部分产生横向弯曲外,由于整个截面形成超静定结构,因而引起其它各部分产生横向弯曲,如右图。

箱梁的横向弯曲,可以按下图a )所示计算图式进行计算。图示单箱梁可作为超静定框架解析各板内的横向弯曲应力 c σ,其弯矩图如 下图b )所

示。

3、刚性扭转:反对称荷载的作用下的刚性转动,分为自由扭转与约束扭转;产生自由扭转剪应力

K τ,翘曲正应力 W σ,约束扭转

剪应力

W τ。

箱形梁的扭转(这里指刚性扭转,即受扭时箱形的周边不变形)变形主要特征是扭转角 θ。箱形梁受扭时分自由扭转与约束扭转。所谓自由扭转,即箱形梁受扭时,截

面各纤维的纵向变形是自由的,杆件端面虽出现凹凸,但纵向纤维无伸长缩短,自由翘曲,因而不产生纵向正应力,只产生自由扭转剪应力 K τ。

当箱梁端部有强大横隔板,箱梁受扭时纵向纤维变形不自由,受到拉伸或压缩,截面不能自由翘曲,则为约束扭转。约束扭转在截面上产生翘曲正应力

W σ和约束扭转剪应力 W τ。

产生约束扭转的原因有:

支承条件的约束,如固端支承约束纵向纤维变形;受扭时截面形状及其沿梁纵向的变化,使截面各点纤维变形不协调也将产生约束扭转。如等厚壁的矩形箱梁、变截面梁等,即使不受支承约束,也将产生约束扭转。

4、扭转变形:即畸变,反对称荷载的作用下的扭转变形;产生翘曲正应力

dW σ,畸变剪应力

dW τ,横向弯曲应力 dt σ。

在箱壁较厚或横隔板较密时,可假定箱梁在扭转时截面周边保持不变形,在设计中就不必考虑扭转

变形(即畸变)所引起的应力状态。但在箱壁较薄,横隔板较稀时,截面就不能满足周边不变形的假设,在反对称荷载作用下,截面不但扭转而且要发生畸变。

扭转变形,即畸变(即受扭时截面周边变形),其主要变形特征是畸变角 γ

。薄壁宽箱的矩形截面受扭变形后,无法保持截面的投影仍为矩形。畸变产生翘曲正应力 dW σ和畸变剪应力 dW τ,同时由于

畸变而引起箱形截面各板横向弯曲,在板内产生横向弯曲应力

dt σ(如图所示)。

二)箱梁应力汇总及分析:

纵向正应力,剪应力;横向正应力;

对于混凝土桥梁,恒载占大部分,活载比例较小,因此,对称荷载引起的应力是计算的重点。 箱梁在偏心荷载作用下的变形与位移,可分成四种基本状态:纵向弯曲、横向弯曲、扭转及扭转变形(即畸变)。他们引起的应力状态为:

? 纵向弯曲---纵向弯曲正应力 M σ,弯曲剪应力 M τ

? 横向弯曲---横向正应力 c σ

? 扭转---自由扭转剪应力 K τ,翘曲正应力 W σ,约束扭转剪应力 W τ ? 扭转变形---翘曲正应力

dW σ,畸变剪应力 dW τ,横向弯曲应力 dt σ

因而,综合箱梁在偏心荷载作用下,四种基本变形与位移状态引起的应力状态为: 在横截面上: 纵向正应力 dw

w M Z σσσσ++=)(

剪应力

dw w k M τττττ+++=

在纵截面上: 横向弯曲应力

dt

c S σσσ+=)(

1、弯曲正应力

箱梁在对称挠曲时,仍认为服从平截面假定原则,梁截面上某点的应力与距中性轴的距离成正比。因此,箱梁的弯曲正应力为:

X M I MY =

σ

应指出,如同T 梁或I 梁一样,箱梁顶、底板中的弯曲正应力,是通过顶、底板与腹板相接处的受剪面传递的,因而在顶、底板上的应力分布也是不均匀的,这一不均匀分布现象由剪力滞效应引起。

2、弯曲剪应力

? 1)开口截面:由材料力学中的一般梁理论,可直接得出。

一般梁理论中,开口截面弯曲剪应力计算公式为:

X X y S

X

y X bI S Q ydA bI Q =

=

τ?

式中:b ——计算剪应力处的梁宽;

?=S

X ydA

S 0

是由截面的自由表面(剪应力等于零处)积分至所求剪应力处的面积矩(或静矩)。

? 2)闭口单室截面: 问题---无法确定积分起点;

解决方法---在平面内为超静定结构,必须通过变形协调条件赘余力剪力流q 方可求解。 图a 所示箱梁,在截面的任一点切开。假设一未知剪力流

1q ,对已切开的截面可利用式

X X

y S

X

y X bI S Q ydA bI Q =

=

τ?

计算箱梁截面上各点

的剪力流

0q 。由剪力流 0q 与 1q 的作用,在截面

切开处的相对剪切变形为零,即:

?=γs

ds 0 (a)

此处 ds 是沿截面周边量取的微分长度,符号

?

s

表示沿周边积分一圈,剪应变为:

tG q

G

M

=

=

τγ (b)

而剪力流

10q q q += (c)

将式(b )与式(c )代入式(a ),则得:

01

0=+?s ds t q q

x

x y I S Q q 00=

代入上式得:

01

=+??

s

x

x y s

t ds q ds tI S Q

??-

=

t

ds

t

ds S I Q q s x s x

y 0

1

于是,箱梁的弯曲剪应力为:

xb

x

y M

S tI Q q q t t q =+==)(1

10τ 式中

1

,110=-=x

y x xb I Q q q S S 为

时的超静定剪力流。

可见,单箱梁的弯曲剪应力的计算公式在形式上与开口截面剪应力计算公式相似,唯静矩计算方法不同。实质上, xb S 静矩计算式包含着确定剪应力零点位置的计算,它的物理含义与 0x S 并没有什么区

别。

? 3)闭口多室截面: 每一室设一个切口,每个切口列一个变形协调方程,联合求解可得各室剪力流;

如是单箱多室截面,则应将每个室都切开(如图所示),按每个箱室分别建立变形协调方程,联立解出各室的超静定未知剪力流

i q :

其一般式为:

0][1,1,110=+-+????++--i i i i i i i i i i t ds q t ds q t ds q ds t q

图示的单箱三室截面,可写出如下方程:

???=-+112,121010t ds q t ds q ds t q

]????=+-+222,13,2312020[t ds

q t ds q t ds q ds t q ???=-+333,223030t ds

q t ds q ds t q

从联立方程中解出超静定未知剪力流

1q 、 2q 和 3q ,则最终剪力流为:

3210q q q q q +++=

则:各箱室壁上的弯曲剪应力:

)(1

3210q q q q t t q M +++==

τ

三、箱梁的自由扭转应力

一)单室箱梁的自由扭转:

利用内外力矩平衡,求得自由扭转剪应力;

1、扭转剪应力:剪应力沿截面厚度方向相等,在全截面环流; 根据内外力矩平衡,可求得自由扭转剪应力。

等截面箱梁在无纵向约束,仅受扭矩作用,截面可自由凸凹时的扭转称为自由扭转,也即圣·维南(St. Venat)扭转。箱梁截面因板壁厚度较大,或具有加腋的角隅使截面在扭转时保持截面周边不变形,自由扭转即是一无纵向约束的刚性转动,可以认为,在扭矩作用下只引起扭转剪应力,而不引起纵向正应力。梁在纵向有位移而没有变形。

如图所示单箱梁在外扭矩

k M 作用下,剪力流 t

q x τ=沿箱壁是等值的,建立内外扭矩平衡方程,即得:

Ω

=ρ=ρ=??q ds q ds q M s

s

K

t K M Ω=

τ

式中: Ω——箱梁薄壁中线所围面积的两倍;

ρ——截面扭转中心至箱壁任一点的切线垂直距离。

2、扭转变形与位移:根据剪切变形计算式,得出纵向向位移计算式,然后引入封闭条件,即:始点纵向位移与终点位移相同,求得单室箱梁自由扭转时的变形与位移。 已知自由扭转剪应力为:

t K

M Ω=

τ (a)

如图所示,假设 z 为梁轴方向, u 为纵向位移, v 为箱周边切线方向位移,则可得剪切变形计算式为:

)

(z v z

v s u G

ρθτ

γ=??+??=

=

(b)

式中: )(z θ——截面扭转角。由上式积分可得纵向位移计算式:

?

?ρθ-τ

+=S

s ds

ds G z u z u 0

00')()( (c)

式中:

)(0z u ——积分常数,为初始位移值。

引用封闭条件,对上式积分一周,由于始点纵向位移与终点位移 u 是相同的,则:

??ρθ=τ

s s ds z ds G )(' (d)

将式(a)代入上式得:

d K

GJ M z =

)('θ (e)

式中抗扭刚度

?

Ω=t ds

G GJ d /2,说明箱梁在自由扭转时,扭率 'θ为常数。

引用式(a )和式(e )的关系,代入式(c ),纵向位移计算式可简化如下:

()ωθ)(')(0z z u z u -=

式中: ?——广义扇性座标;

至此,箱梁自由扭转时的应力、变形和位移都可求解。

二)多室箱梁的自由扭转:

多室箱梁扭转时,截面内是超静定结构,必须将各室切开,利用切口变形协调条件求解超静定剪力流。

对于单箱多室截面,则可根据单室箱梁的扭转微分方程: ??ρθ=τ

s

s ds z ds G )(',并考虑到箱壁中相

邻箱室剪力流所引起的剪切变形,则可对每室写出各自的方程,其一般形式为:

???

++--Ωθ=+-1,1,,1,1'][i i i i i i i i i i i G t ds

q t ds q t ds q

? ?

? Ω -

ρ = ωt ds

t ds

ds s

s 0 0

式中:

i q —第 i 箱室的剪力流,

i i

i t q =

τ;

i Ω—第 i 箱室周边中线所围面积的两倍。

而内外扭矩平衡方程为:

K i i M q =Ω∑

解上述联立方程,即可求得

1q 、 2q 和 3q ,而各箱梁壁处的自由扭转剪应力

i i

i t q =

τ也可求出,

在所求得 'θ(z)的关系式中,令 'θ(z)=1时所需的

k M 值,即为该箱梁的抗扭刚度。

四、箱梁的约束扭转应力

一)基本假定:

周边不变形,应力沿臂厚方向均匀分布,沿梁纵轴方向的纵向位移同自由扭转时纵向位移的关系式存在相似规律变化。

当箱梁端部有强大横隔板,扭转时截面自由凸凹受到约束,使纵向纤维受到拉伸或压缩,从而产生约束扭转正应力与约束扭转剪应力。此正应力在断面上的分布不是均匀的,这就引起了杆件弯曲并伴随有弯曲剪应力流。这样,箱梁在约束扭转时除了有自由扭转的剪应力外,还有因弯曲而产生剪应力。在箱梁截面比较扁平或狭长,或在变截面箱梁中,都有这种应力状态存在。

这里只简要介绍箱梁截面约束扭转的实用理论,它建立在以下假设的基础上。 1、箱梁扭转时,周边假设不变形,切线方向位移为:

)('),

(z z v

z v ρθρθ=??=

2、箱壁上的剪应力与正应力均沿壁厚方向均匀分布;

3、约束扭转时沿梁纵轴方向的纵向位移(即截面的凸凹)假设同自由扭转时纵向位移的关系式存在相似规律变化。

即: ?β)(')()(0z z u z u -=

式中:

)(0z u ——初始纵向位移,为一积分常数;

)('z β——截面凸凹程度的某个函数。 )(z β——扭转函数。

二)约束扭转正应力:

应用基本假定和截面上合力的平衡条件求解。

由基本假定,约束扭转时沿梁纵轴方向的纵向位移(即截面的凸凹)假设同自由扭转时纵向位移的关系式存在相似规律变化。即:

?β)(')()(0z z u z u -=,知纵向应变与正应力为:

?

?

?

-=-=?βσ?βεωω)(")()(")(z E z z z

由此可见,截面上的约束扭转正应力分布和广义扇性坐标 ?成正比。为确定截面计算扇性坐标的极点(也即扭转中心)和起始点,可应用截面上的合力平衡条件(因只有外扭矩M K 的作用)为:

???=σ=∑=σ=∑=σ=∑ωωω,

0,0,0xtds M ytds M tds N Y X

即,扇性静力矩 ?==F

dF S 0

?ω,扇性惯性积

?=?F

xdF 0, ?=F

ydF 0?

如令

ωJ 为主扇性惯性矩和 )(z B ω为约束扭转双力矩,即:

?

???

?

β-=?σ=?=ωωω???)(")(2z EJ dF z B dF

J F F

则正应力计算式可表示为:

?

ωω?=

σJ z B z )()(

这一形式与一般梁的弯曲正应力计算式

I MZ

=

σ相似。

三)约束扭转剪应力:

根据微元上力的平衡方程式和截面内外力矩的平衡式来计算。 如图,取箱壁上A 点的微分单元ds.dz ,根据力的平衡得到方程式(如图所示):

0=?τ?+?σ?ω

ωs z

将纵向应变与正应力的表达式:

?

?

?

-=-=?βσ?βεωω)(")()(")(z E z z z ,代入上式,并积分得:

??β+τ=τωs ds

z E 0

0)('" (b)

根据内外力矩平衡条件

?=ds

t M K ρτω可确定初始剪应力值

0τ(积分常数)为:

?Ω-Ω=

ds S t z E t M K ρβτ?)

('"0 (c)

式中

??=?s

tds

S 0

为扇性静矩。

将式(c )代入式(b )即可得约束扭转时的剪应力:

t S z E t M K

?ωβτ)('"+Ω=

(d)

式中:

Ω

-

=?ds S S S ρ??

?

从式(d )可见,约束扭转时截面上的剪应力为两项剪应力之和。第一项是自由扭转剪应力

t M K

n Ω=

τ;第二项是由于约束扭转正应力沿纵向的变化而引起的剪应力为:

t S z E ??βτ)

('"=

或可表示为:

t J S z B ??

ω?τ)('-

=

此式在形式上与一般梁的弯曲剪应力公式

b J S Q X X

y y =

τ相似。

四)约束扭转扭角的微分方程:

应用截面上内外扭矩平衡和截面上纵向位移协调求解; 截面约束系数μ反映了截面受约束的情况。 为确定约束扭转正应力及剪应力,都必须确定扭转函数 )(z β。为此,根据假设,可得到的剪应变

公式:

)

(z v z

v s u G

ρθτ

γ=??+??=

=

(a)

再应用内外扭矩平衡方程,可得到微分方程:

μβθρ

)(')('z z GJ M K

-= (b)

式中:截面极惯矩 ?=tds

J 2ρρ;截面约束系数(或称翘曲系数)

p

d J J -

=μ1。

截面约束系数

μ反映了截面受约束的程度。对圆形截面, ρ=J J d ,因此 μ=0,式(b )为自由

扭转方程,即圆形截面只作自由扭转。事实上,任何正多角形等厚度闭口断面对其中的扭转时也不发生翘曲。对箱形截面,箱梁的高宽比较大时, d J 与 p J 差别也越大, μ值就大,截面上约束扭转应力

也相应要大一些。

又引用封闭条件,即对式(a )中代入 w τ的关系式,沿周边积分一圈,利用 )()(0z z μμ=的条件,

可导得另一微分方程:

m z GJ z EJ d -=-)(")(""θβ? (c)

式中:

dz dM m K =

式(b )与式(c )是一组联立微分方程组,可以解出 )(z β与 )(z θ。如在外扭矩 k M 是 z 的二

次函数的条件下,则式(b )对 z 微分三次,可得

)

(""1

)(""z z θμ

β=

,代入式(c )得:

m

z GJ z EJ d -=-)(")(""1

θθμ

?

或写成:

?μθθEJ m

z K z -

=-)(")(""2

式中:

EJ GJ K d

=2

为约束扭转的弯扭特性系数。 此四阶微分方程的全解是:

2

243212)(z

EJ K m shkz C chkz C z C C z ?μ-

+++=θ

函数 )(z θ的各阶导数也可求出。积分常数C 1,C 2,C 3,C 4的值,可根据箱梁边界条件确定,如: 固端: θ=0(无扭转); 'β=0(截面无翘曲); 铰端: θ=0(无扭转); i B =0(可自由翘曲);

自由端: i B =0(可自由翘曲); '''β=0(无约束剪切)。

显然

)(z β也可随之而解,约束扭转正应力与剪应力都可解出。如箱梁为变截面梁,可以把梁分成

阶段常截面梁求解,或用差分法求解。

五、箱梁的畸变应力

一)弹性地基梁比拟法基本原理:

利用箱梁的畸变角微分方程与弹性地基梁的微分方程的相似形式,用受横向荷载的弹性地基梁来比拟箱梁的畸变;

根据比拟关系可以计算箱梁的畸双力矩和畸变角。

? 1、畸变角微分方程:

根据最小势能原理,在外力作用上结构处于平衡状态时,当有任何虚位移时,体系的总势能的变分为零可求得畸变角微分方程。

? 2、弹性地基微分方程: 已知弹性地基微分方程.

?3、物理量的相似关系:

畸变角微分方程与弹性地基微分方程有相似的形式;

其方程中各物理量之间都有着相似的关系。

?4、边界条件的相似比拟:

剪力刚性,可自由翘曲的横隔板---简支支座;

剪力柔性,可自由翘曲的横隔板---弹性支座;

剪力刚性,又翘曲刚性的横隔板---固端支座。

?5、畸变应力:

采用和弹性地基梁相同的方法,即初参数法,解畸变角微分方程,求得畸变应力。二)应用影响线计算畸变值:

弹性地基梁的弯矩与挠度影响线可以通过查表获得。

?1、无限长梁(

l

λ

≥4):

跨中截面作用一畸变荷载,该截面处的畸变双力矩和畸变角相应于无限长弹性地基梁在相应荷载作用下的弯矩和挠度。

可直接布载计算。

对于无限长梁(lλ≥4),跨中截面作用一畸变荷载,该截面处的畸变双力矩和畸变角相应于无限长弹性地基梁在相应荷载作用下的弯矩和挠度,其曲线如图所示。可直接布载(注意是畸变荷载)计算。因为图中曲线即可看作荷载作用点截面的ωD

B与γ的影响线。

?2、有限长梁(

l

λ

<4):

不同的边界条件,影响线不同;

计算箱梁截面各项几何特性与参数,然后确定在反对称荷载作用下的畸变荷载。再利用影响线,即可得畸变应力。

? 1)两端铰接: 两端铰接时,

ωD B 与 γ的影响线; ? 2)两端嵌固: 两端嵌固时,

ωD B 与 γ的影响线;

? 3)一端嵌固,一端铰接: 端嵌固,一端铰接时,

ωD B 与 γ的影响线。

六、箱梁剪力滞效应

? 一)基本概念:

宽翼缘剪切扭转变形的存在,而使远离梁肋的翼缘不参予承弯工作,也即受压翼缘上的压应力随着离梁肋的距离增加而减小,这个现象就称为“剪力滞后”,简称剪力滞效应; 剪力滞效应与截面纵桥向位置、荷载形式、支承条件、横桥向宽度、截面形状都有关系。

? 二)矩形箱梁剪力滞解析:

引入梁的竖向挠度与纵向位移两个广义位移,应用最小势能原理分析箱梁的挠曲,得到剪力效应的基本微分方程,可求是结构的剪力滞效应; 引入剪力滞效应系数λ来描述箱梁剪力滞效应。

? 三)剪力滞的分析与讨论: 有横向效应、纵向效应;

当结构约束条件与荷载形式确定以后,剪力滞效应随箱梁的跨宽比和惯矩比变化。

箱梁的结构与受力特点

(二)箱形截面的配筋 箱形截面的预应力混凝土结构一般配 有预应力钢筋和非预应力向普通钢筋。 1、纵向预应力钢筋:结构的主要受力 钢筋,根据正负弯矩的需要一般布置在顶板 和底板内。这些预应力钢束部分上弯或下弯 而锚于助板,以产生预剪力。近年来,由于 大吨位预应力束的采用,使在大跨径桥梁设 计中,无需单纯为了布置众多的预应力束而 增大顶板或底板面积,使结构设计简洁,而 又便于施工。 2、横向预应力钢筋:当箱梁肋板间距 厚的桥面板。的上、下两层钢筋网间,锚固于悬臂板端。 3时,可布置竖向预应力钢筋,面桥梁都采用三向预应力。 4 钢筋网。必须指出,因此必须精心设计,做到既安全又经济。 第二节 箱形梁的受力特点 作用在箱形梁上的主要荷载是恒载与活载。恒载 一般是对称作用的,活载可以是对称作用,但更多的 情况是偏心作用的,因此,作用于箱形梁的外力可综 合表达为偏心荷载来进行结构分析; 在偏心荷载作用下,箱形梁将产生纵向弯曲、扭 转、畸变及横向挠曲四种基本变形状态。详见图2-4。 1、纵向弯曲 产生竖向变位w ,在横截面上起纵向正应力M σ及剪应力M τ。对于肋距不大的箱形梁,M σ按初等梁 理论计算,当肋距较大时,会出现所谓“剪力滞效应”。 即翼板中的M σ分布不均匀,近肋翼板处产生应力高 βα+= 刚性扭转 横向挠曲 图2-4 箱形梁在偏心荷载 作用下的变形状态

峰,而远肋翼板处则产生应力低谷,这称为“正剪力滞”;反之,如果近肋翼板处产生应力低谷,而远肋翼板处则产生应力高峰,则为“负剪力滞”。对于肋距较大的宽箱梁,这种应力高峰可达相当大比例,必须引起重视。 2、刚性扭转 刚性扭转即受扭时箱形的周边不变形。扭转产生扭转角θ。分自由扭转与约束扭转。 (1)自由扭转:箱形梁受扭时,截面各纤维的纵向变形是自由的,杆件端面虽出现凹凸,但纵向纵维无伸长缩短,能自由翘曲,因而不产生纵向正应力,只产生自由扭转剪应力K τ。 (2)约束扭转:受扭时纵向纤维变形不自由,受到拉伸或压缩,截面不能自由翘曲。约束扭转在截面上产生翘曲正应力w σ和约束扭转剪应力w τ。 产生约束扭转的原因:支承条件的约束,如固端支承约束纵向纤维变形;受扭时截面形状及其沿梁纵向的变化,使截面各点纤维变形不协调也将产生约束扭转。如等厚壁的矩形箱梁、变截面梁、设横隔板的箱梁等,即使不受支承约束,也将产生约束扭转。 3、畸变(即受扭时截面周边变形) 畸变的主要变形特征是畸变角γ。薄壁宽箱的矩形截面受扭变形后,无法保持截面的投影仍为矩形。畸变产生翘曲正应力dw σ和畸变剪应力dw τ。 4、横向弯曲:畸变还会引起箱形截面各板的横向弯曲,在板内产生横向弯曲应力dt σ (纵截面上)。 5、局部荷载的影响:箱形梁承受偏心荷载作用,除了按弯扭杆件进行整体分析外,还应考虑局部荷载的影响。车辆荷载作用于顶板,除直接受荷载部分产生横向弯曲外,由于整个截面形成超静定结构,因而引起其它各部分也产生横向弯曲。图2-5表示箱形截面在顶板上作用车辆荷载,在各板中产生横向弯矩图。这些弯矩在各板的纵截面上产生横向弯曲正应力c σ及剪应力。 综合箱形梁在偏心荷载作用下产生的应力有: 在横截面上:纵向正应力:dw w M z σσσσ++= 剪应力:dw w M K τττττ+++= 在纵截面上;横向弯曲正应力:c dt s σσσ+= 在预应力混凝土梁中,跨径越大,恒载占总荷载比例就越大。一般地,由于恒载产生的对称弯曲应力是主要的,而由于活载偏心所产生的扭转应力是次要的。如果箱壁较厚,或沿梁的纵向布置一定数量的横隔板,限制箱形梁的畸变,则畸变应力也是不大的。但对于少设或不设横隔板的宽箱薄壁梁,畸变应力不可忽视。板的横向应力对于顶板、肋板及底板的配筋具有重要意义,必须引起重视。 图2-5 局部荷载作用下 横向弯矩图

(参考资料)32m预制箱梁计算书

32m 预制箱梁计算书 1. 计算依据与基础资料 1.1. 标准及规范 1.1.1. 标准 ?跨径:桥梁标准跨径30m ; ?设计荷载:公路-I 级(城-A 级验算); ?桥面宽度:(路基宽26m ,城市主干路),半幅桥全宽13m ,0.5m (栏杆)12.25m (机动车道)+0.5/2m (中分带)=13m 。 ?桥梁安全等级为一级,环境类别一类。 1.1.2. 规范 《公路工程技术标准》JTG B01-2013 《公路桥涵设计通用规范》(JTGD60-2015);(简称《通规》) 《公路钢筋混凝土及预应力混凝土桥涵设计规范》JTG D62-2004(简称《预规》) 《城市桥梁设计规范》(CJJ11-2011); 1.1.3. 参考资料 《公路桥涵设计手册》桥梁上册(人民交通出版社2004.3) 1.2. 主要材料 1)混凝土:预制梁及现浇湿接缝、横梁为C50、现浇调平层为C40; 2)预应力钢绞线:采用钢绞线15.2s φ,1860pk f MPa =,51.9510p E Mpa = × 3)普通钢筋:采用HRB400,400=sk f MPa ,5 2.010S E Mpa =× 1.3. 设计要点 1)预制组合箱梁按部分预应力砼A 类构件设计; 2)根据小箱梁横断面,采用刚性横梁法计算汽车荷载横向分布系数,将小箱梁简化为单片梁进行计算,荷载横向分配系数采用刚性横梁法计算。 3)预应力张拉控制应力值0.75σ=con pk f ,混凝土强度达到90%时才允许张拉预

应力钢束; 4)计算混凝土收缩、徐变引起的预应力损失时张拉锚固龄期为7d; 5)环境平均相对湿度RH=80%; 6)存梁时间不超过90d。 2.标准横断面布置 2.1.标准横断面布置图 2.2.跨中计算截面尺寸

箱梁分析报告

第六章箱梁分析 ?主要优点: 抗扭刚度大、有效抵抗正负弯矩、施工方便、整体受力、适应性强、铺设管道方便。 ?箱梁截面受力特性: 箱梁在偏心荷载作用下的变形与位移,可分成四种基本状态:纵向弯曲、横向弯曲、扭转及扭转变形(即畸变); 箱梁在偏心荷载作用下,因弯扭作用在横截面上将产生纵向正应力和剪应力,因横向弯曲和扭转变形将在箱梁各板中产生横向弯曲应力与剪应力。 ?箱梁对称挠曲时的弯曲应力: 箱梁对称挠曲时,产生弯曲正应力、弯曲剪应力。 ?箱梁的自由扭转应力: 箱梁在无纵向约束,截面可自由凸凹的扭转称为自由扭转,只产生剪应力,不引起纵向正应力; 单室箱梁的自由扭转应力,多室箱梁的自由扭转应力。 ?箱梁的约束扭转应力: 当箱梁端部有强大横隔板,扭转时截面自由凸凹受到约束称为约束扭转,产生约束扭转正应力与约束扭转剪应力; 这里介绍的约束扭转的实用理论建立是一定的假定之上的。 ?箱梁的畸变应力: 当箱梁壁较薄时,横隔板较稀时,截面就不能满足周边不变形的假设,则在反对称荷载作用下,截面不但扭转还要畸变,产生畸变翘曲正应力和剪应力,箱壁上也将引起横向弯曲应力; 用弹性地基比拟梁法解析箱梁畸变应力。 ?箱梁剪力滞效应: 翼缘剪切扭转变形的存在,而使远离梁肋的翼缘不参予承弯工作,这个现象

就是剪力滞效应; 可应用变分法的最小势能原理求解。 第六章 箱梁分析 一、主要优点 箱形截面具有良好的结构性能,因而在现代各种桥梁中得到广泛应用。在中等、大跨预应力混凝土桥梁中,采用的箱梁是指薄壁箱型截面的梁。其主要优点是: ? 截面抗扭刚度大,结构在施工与使用过程中都具有良好的稳定性; ? 顶板和底板都具有较大的混凝土面积,能有效地抵抗正负弯矩,并满足配筋的要求,适应具有正负弯矩的结构,如连续梁、拱桥、刚架桥、斜拉桥等,也更适应于主要承受负弯矩的悬臂梁,T 型刚构等桥型; ? 适应现代化施工方法的要求,如悬臂施工法、顶推法等,这些施工方法要求截面必须具备较厚的底板; ? 承重结构与传力结构相结合,使各部件共同受力,达到经济效果,同时截面效率高,并适合预应力混凝土结构空间布束,更加收到经济效果; ? 对于宽桥,由于抗扭刚度大,跨中无需设置横隔板就能获得满意的荷载横向分布; ? 适合于修建曲线桥,具有较大适应性; ? 能很好适应布置管线等公共设施。 二、箱梁截面受力特性 一)箱梁截面变形的分解 箱梁在偏心荷载作用下的变形与位移,可分成四种基本状态:纵向弯曲、横向弯曲、扭转及扭转变形(即畸变); 因弯扭作用在横截面上将产生纵向正应力和剪应力,因横向弯曲和扭转变形将在箱梁各板中产生横向弯曲应力与剪应力。 1、纵向弯曲:对称荷载作用;产生纵向弯曲正应力 M σ,弯曲剪应力 M τ。 纵向弯曲产生竖向变位 w ,因而在横截面上引起纵向正应力 M σ及剪应力 M τ,见图。图中虚线 所示应力分布乃按初等梁理论计算所得,这对于肋距不大的箱梁无疑是正确的;但对于肋距较大的箱形梁,由于翼板中剪力滞后的影响,其应力分布将是不均匀的,即近肋处翼板中产生应力高峰,而远肋板处则产生应力低谷,如图中实线所示应力图。这种现象称为“剪力滞效应”。对于肋距较大的宽箱梁,这种应力高峰可达到相当大比例,必须引起重视。

对箱梁受力的理解-2019年精选文档

对箱梁受力的理解 箱梁截面受力特性 作用在箱形梁上的重要荷载是恒载与活载。恒载通常是对称作用的,活载可以是对称作用,也可以是非对称作用,必须加以分别考虑。偏心荷载作用,使箱形梁既产生对称弯曲又产生扭转,因此,作用于箱形梁的外力可以综合表达为偏心荷载来进行结构分析。 箱梁在偏心荷载作用下的变形与位移,可分成4种基本状态:纵向弯曲、横向弯曲、扭转、扭转变形(即畸变)纵向弯曲:纵向弯曲产生竖向变位,因而在横截面上引起纵向正应力及剪应力。 扭转:箱形梁的扭转在这里是指刚性扭转,即受扭时箱形的周边不变形,变形的主要特征是出现扭转角。类型分为自由扭转和约束扭转,所谓自由扭转,即箱形梁受扭时,截面各纤维的纵向变形是自由的,杆件端面虽出现凹凸,但纵向纤维无伸长缩短,自由翘曲,因而不产生纵向正应力,只产生自由扭转剪应力。而受扭时纵向纤维变形不自由,受到拉伸或压缩,截面不能自由翘曲,则为约束扭转。约束扭转在截面上产生翘曲正应力和约束扭转剪应力。产生约束扭转的原因:支承条件的约束,如固端支承约束纵向纤维变形;受扭时截面形状及其沿梁纵向的变化,束扭转,如等壁厚的矩形箱梁、变截面梁等,即使不受支承约束,

也将产生约束扭转。在D62规范的5.5.1条的条文说明(第176页第五段):“在扭矩作用下的钢筋砼结构或构件,若扭矩系由荷载直接引起的,并可由静力平衡条件求得,一般称为平衡扭转;若扭转系由结构或相邻构件间的转动受到约束所引起,并由转动变形的连续条件所决定,一般称为协调扭转或是附加扭转。(其实就是上文中的自由扭转和约束扭转)由于后者的连续变形可引起内力重分布,对设计的扭矩起到折减的作用。本节规定的抗扭计算公式均未考虑协调扭矩或附加扭矩,也即本规范有关受扭构件的计算仅适用于平衡扭转。 畸变:畸变的主要特征是畸变角。薄壁宽箱的矩形截面受扭变形后,无法保持截面的投影仍为矩形。畸变产生翘曲正应力和畸变剪应力,同时由于畸变而引起箱形截面各板横向弯曲,在板内产生横向弯曲应力。值得注意的是:翘曲和畸变是2种不同的变形,翘曲是截面端面出现凹凸,箱形的周边不变形,变形是纵桥向的;畸变是受扭时截面周边变形。 横向弯曲:箱形梁承受偏心荷载作用,除了按弯扭杆件进行整体分析外,还需要考虑局部荷载的影响。车辆荷载作用于顶板,除直接受荷载部分产生横向弯曲外,由于整个截面形成超静定结构,因而引起其他各部分产生横向弯曲应力。 总结:在预应力砼桥梁中,跨度越大,恒载占总荷载的比值越大。有资料表明:20米跨径的桥的活载Mq占总弯矩M为35%,200米大跨径的桥的活载Mq占总弯矩M仅为9%,统计公式:

箱梁横梁计算

请问大家: 1)桥博计算连续梁的横隔梁时建模仅取横隔梁的宽度还是取横隔梁的两侧渐变段的截面作为模型计算截面? 2)对于箱梁的恒载如何处理,是作为均布荷载加载在桥面板上,还是作为集中力加载在腹板上? 3)对于顶板带横向预应力的桥梁,计算出来的结果是不是不考虑翼板根部的拉应力? 4)对于多室截面恒载如何分担? 希望大家发表自己的看法,如果有相关的算例最好上传学习一下! 向别的老工程师请教后他给我这样的解释:不知道大家有什么见解 1、横梁截面宽度取(b+2bh+12h'f),b为横梁厚度,bh为承托长度,h'f为板厚。 2、箱梁恒载主要都由腹板传递,取集中力加在腹板上。 3、个人认为应当考虑,施加横向预应力主要就是解决挑臂根部和腹板间桥面板下缘的拉应力,横向应力对横向钢束位置的调整非常敏感。 4、多室截面恒载可按腹板数量均分。 其实横向构件的计算分实体横梁和箱梁框架,以上的1、2、4点均用于实体横梁计算,第3点用于桥面板计算。 不知道大家有什么见解?

关于横梁计算,由于在立交和高架设计时经常碰到,我谈一点个人看法, 如果没有张拉横梁预应力,各个腹板的受力极不均匀,位移大的腹板,弯距比较小,承受的力也比较小,但是张拉横向预应力以后,各个腹板受力就比较均匀了,一般边腹板的力与中腹板的力之比在1.0~1.2之间。 对于多箱室的,恒载应该考虑两种情况更安全,一个是各个腹板均分恒载,另一个是边腹板是中腹板的1.2倍, 另外一个就是桥面上的活载,大家是按照横梁上均布还是,腹板均分? 我一般是底板范围均分和腹板均分考虑,毕竟活载比重比较小,计算差别不是很大! 我的观点是: 1、活载应根据车辆荷载进行横向加载,考虑最不利组合。 2、计算宽度取实体厚度。楼上的宽度的取法从理论上讲是正确的。但是保守的取法可以留一定的安全储备。 请各位指正。

连续分叉曲线箱梁桥的计算分析与设计

文章编号:0451-0712(2003)08-0095-05 中图分类号:U4481213 文献标识码: 连续分叉曲线箱梁桥的计算分析与设计探讨刘 钊1,王 斌2,孟少平1,纪 诚2,张宇峰1 (1.东南大学 南京市 210096;2.南京市市政设计研究院 南京市 210008) 摘 要:南京新庄立交桥是一座以多层、多跨以及分叉连续为特色的预应力混凝土曲线梁结构。在讨论曲线箱梁基本受力特征的基础上,研究了分叉连续曲线箱梁桥的分析方法,并对预应力混凝土曲线箱梁桥设计中的若干问题进行了探讨。 关键词:预应力混凝土曲线梁;分析;设计 1 工程概况 南京市新庄立交桥位于五路交叉口上,为4层部分互通式定向立交。为展示现代化城市立体交通的设计理念,保证交通顺畅,本工程在立交的平面布置上尽量采用曲线展线布置,在结构设计上,采用独立圆柱墩、多跨预应力连续曲线梁,在主线和匝道的分叉处,采用匝道主线连续的分叉式多跨预应力混凝土连续曲线箱梁,分叉处仅设置独柱墩。 新庄立交桥上部结构由二、三、四层主线和匝道桥组成,除E匝道外,上部结构均采用预应力混凝土等截面连续箱梁。 全桥共19联,每联3~5跨不等,跨径31~42m,梁高均为1.8m,箱梁最小跨高比达到12313。箱梁为50号混凝土,预应力束采用

地梁受力与顶板梁受力分析

地梁受力与顶板梁受力相反是吗地梁受力与顶板梁受力相反是吗,,,,板梁是下部筋受力下部钢筋大板梁是下部筋受力下部钢筋大,,,,地梁受力与顶板梁受力相反是吗,板梁是下部筋受力下部钢筋大,而上部主要是支座筋,而地梁相反正确,地梁(基础梁)受力与普通梁正好相反,所以受力筋与支座筋位置也正好相反。地梁受力与框架梁梁受力相反,支座负筋位置也相反是的。有梁式筏板基础中的梁(JZL、JCL)与楼层框架梁(KL)及屋面框架梁(WKL)的受力方向是相反的。好像是倒盖楼。但有区别: 当承受地震横向作用时,柱是第一道防线,楼盖梁是耗能构件,所以要做到”强柱弱梁“”强剪弱弯“,梁要考虑箍筋加密区、塑性铰等问题;但筏形基础的基础梁通常不考虑参与抵抗地震作用计算 是的。有梁式筏板基础中的梁(JZL、JCL)与楼层框架梁(KL)及屋面框架梁(WKL)的受力方向是相反的。好像是倒盖楼。但有区别: 当承受地震横向作用时,柱是第一道防线,楼盖梁是耗能构件,所以要做到”强柱弱梁“”强剪弱弯“,梁要考虑箍筋加密区、塑性铰等问题;但筏形基础的基础梁通常不考虑参与抵抗地震作用计算。是不同的,因为他们的受力是相反的地梁承受基础的反作用力,荷载是向上的,而板顶梁承受的是向下的荷载,两者受力是相反的地梁承受地基反力方向向上,顶梁承受荷载向下,所以受力相反,至于钢筋上部大或下部大那就不一定,要作受力分析.基础梁是基础的一种型式,是结构的一部份,用于承受上部负荷及调整各基础内力,使各基础处于轴心受压或小偏心受压,改善基础受力的连续基础,它一般与桩基、条基、筏基共同受力,单一的基础梁受力已很少见。条基、筏基中的梁应该叫肋梁,肋梁和条基翼板或筏基板共同组成条基或筏基。基础拉梁是为了减少不均匀沉降,防止形变的拉压杆传力构件,它把水平荷载均匀地传给各个基础,有时充当上部墙体的基础。 拉梁顾名思义是连接和协调了两端的独基、承台或基础梁,许多拉梁共同起作用,把整个建筑物基础联合成刚度协调、变形一致的基础。基础梁的作用:1.提高结构整体性;2.抵抗柱底弯矩及剪力;3.调节沉降;4.承受底层填充墙荷载等。基础梁分为:

3×20普通钢筋箱梁计算书讲解

目录 1、工程概况 (2) 2、主要技术标准 (2) 3、采用规范 (2) 4、主要材料 (2) 5、计算参数 (2) 6、结构计算模型 (3) 7、持久状况承载能力极限状态计算 (4) 8、持久状况正常使用极限状态计算 (6) 9、横梁的计算 (8) 10、构件构造要求 (10) 11、结论 (10)

1、工程概况 本桥是黑龙江省伊绥高速公路南互通E匝道桥第四联钢筋混凝土箱梁桥。采用3-20米等高度现浇钢筋混凝土箱梁桥。 2、主要技术标准 设计荷载:公路—I级 桥面宽度:B=10.5m 2个车道 设计安全等级二级 3、采用规范 《公路桥涵设计通用规范》(JTG D60-2004) 《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)《公路工程技术标准》(JTG B01-2003) 4、主要材料 主梁材料:C40混凝土 普通钢筋: HRB335钢筋,抗拉强度设计值为280MPa; 5、计算参数 (1)、采用空间有限元杆系将主梁离散为35个节点, 34个单元。荷载组合及验算内容一律按《公路桥涵设计通用规范》(JTG D60-2004)与《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)相关条文执行。 (2)、活载布置采用外侧偏载最不利方式布载。 (3)、荷载取值: ●恒载:一期恒载混凝土容重为26kN/m3;二期恒载为10cm沥青 铺装,容重为26kN/m3,防撞栏杆为9.6kN/m; ●活载:荷载标准为公路I级,并考虑汽车荷载引起的冲击力,

冲击系数的取值参照《公路桥涵设计通用规范》(JTG D60-2004)计算,由程序计算出此结构的自振频率为9.8Hz, 得到冲击系数 =0.36; ●汽车引起的离心力:取值参照《公路桥涵设计通用规范》(JTG D60-2004); ●汽车引起的制动力:取值参照《公路桥涵设计通用规范》(JTG D60-2004),如果有离心力参与荷载组合是制动力取值按照0.7 倍考虑; ●基础变位:基础作用按照支座不均匀沉降考虑,支座的沉降量 为0.5cm; ●温度梯度:依据《公路桥涵设计通用规范》(JTG D60-2004) 4.3.10 第3 条,对结构的梯度温度引起的效应进行考虑,取 值参照表4.3.10-3竖向日照正温差计算温度基数表混凝土铺 装的结构类型取值。混凝土上部结构竖向日照反温差为正温差 乘以-0.5。铺装为10cm沥青,T1取14 ℃,T2取 5.5℃; ●均匀温度:依据《公路桥涵设计通用规范》(JTG D60-2004), 取升温为30℃,降温38℃。 6、结构计算模型 采用空间杆系将上部主梁离散成51个节点,50个单元。结构离散图如下所示:

预应力混凝土连续箱梁纵向受力分析

预应力混凝土连续箱梁纵向受力分析 摘要:以某三跨预应力混凝土连续箱梁为例,利用有限元分析软件Midas/Civil分别建立了单梁模型和梁格法模型。通过对两种模型计算结果的比较,分析了单梁模型和梁格模型计算结果之间的差异,提出了设计计算分析中的一些建议。结论对同类桥梁的设计计算分析具有一定的参考意义。 关键词:连续箱梁平面杆系梁格法 1引言 对箱型梁桥进行有限元分析时通常可建立三种模型进行计算分析,即平面杆系、空间杆系以及空间实体模型。平面杆系模型方法简便,仅能反映杆系截面的平均力学特征,可用于简单结构的粗略分析;空间实体模型建模工作量大,适用于结构的局部分析;空间杆系模型在合理建模的情况下,能较为全面地反映结构的空间受力特点,具有基本概念清晰、易于理解和使用等特点[1]。本文从适用性和经济性出发,结合具体实例采用梁格法进行结构分析,并与平面杆系模型的计算结果进行比较分析验证梁格法的适用性。 2工程实例概况 本文以某三跨等截面预应力混凝土连续箱梁桥为例,桥跨布置为20m+32m+20m,桥面宽12.0m,为单箱双室截面,如图1所示;两侧翼缘悬臂板长2.0m,箱底宽7.5m,梁高1.45m,连续梁双点支撑,跨间无横隔板,仅在支点处设支座横梁。设计荷载:汽车-15、挂-80。 图1 桥梁简图(单位:cm) 3计算模型及计算结果分析 本文采用桥梁有限元分析软件Midas/Civil分别建立桥梁的单梁模型和梁格模型。 3.1单梁模型 采用Midas/Civil的空间梁单元建立桥梁的单梁模型,共建立节点73个,单元72个,如图2所示。其中汽车荷载的作用通过定义车道偏心加以考虑。

梁受力计算

第5章 受弯构件斜截面承载力计算 1.何谓无腹筋梁?简述无腹筋梁斜裂缝形成的过程。 答:不配置腹筋或不按计算配置腹筋的梁称为无腹筋梁。 无腹筋梁的斜截面破坏发生在剪力和弯矩共同作用的区段。只配置受拉主筋的混凝土简支梁在集中荷载作用下。当荷载较小,裂缝出现以前,可以把钢筋混凝土梁看作匀质弹性体,按材料力学的方法进行分析。随着荷载增加,当主拉应力值超过复合受力下混凝土抗拉极限强度时,首先在梁的剪拉区底部出现垂直裂缝,而后在垂直裂缝的顶部沿着与主拉应力垂直的方向向集中荷载作用点发展并形成几条斜裂缝,当荷载增加到一定程度时,在几条斜裂缝中形成一条主斜裂缝。此后,随荷载继续增加,剪压区高度不断减小,剪压区的混凝土在剪应力和压应力的共同作用下达到复合应力状态下的极限强度,导致梁失去承载能力而破坏。 2.无腹筋梁斜截面受剪破坏的主要形态有哪几种?破坏发生的条件及特点如何? 答:无腹筋梁斜截面受剪破坏的主要形态有斜压破坏、剪压破坏和斜拉破坏三种类型。如图题2所示。 (1)斜压破坏 这种破坏多发生在集中荷载距支座较近,且剪力大而弯矩小的区段,即剪跨比比较小(1<λ)时,或者剪跨比适中,但腹筋配置量过多,以及腹板宽度较窄的T 形或I 形梁。由于剪应力起主要作用,破坏过程中,先是在梁腹部出现多条密集而大体平行的斜裂缝(称为腹剪裂缝)。随着荷载增加,梁腹部被这些斜裂缝分割成若干个斜向短柱,当混凝土中的压应力超过其抗压强度时,发生类似受压短柱的破坏,此时箍筋应力一般达不到屈服强度。 (2)剪压破坏 这种破坏常发生在剪跨比适中(31<<λ),且腹筋配置量适当时,是最典型的斜截面受剪破坏。这种破坏过程是,首先在剪弯区出现弯曲垂直裂缝,然后斜向延伸,形成较宽的主裂缝—临界斜裂缝,随着荷载的增大,斜裂缝向荷载作用点缓慢发展,剪压区高度不断减小,斜裂缝的宽度逐渐加宽,与斜裂缝相交的箍筋应力也随之增大,破坏时,受压区混凝土在正应力和剪应力的共同作用下被压碎,且受压区混凝土有明显的压坏现象,此时箍筋的应力到达屈服强度。 (3)斜拉破坏 题图2(a) 破坏形态(b) 荷载-挠度曲线

利用桥梁博士进行横梁计算的教程_计算

利用桥梁博士进行横梁计算的教程(续一) 本文介绍桥梁博士进行箱梁横梁计算。红色字体内容为本文的操作步骤,黑体字为相应的一些说明和解释。 基本情况在前文中有所介绍,这里主要介绍加载及边界条件的设定。 一、输入施工信息 共建立了三个施工阶段,阶段1安装所有单元;阶段2张拉所有钢束(钢束1、2),并灌浆;阶段3施加永久荷载。三个施工阶段的设置分别如图1.1-1.3所示。 图1.1 试工阶段1 在阶段3中所施加的永久荷载,是在求得8号墩上所承担的恒载(F0)的基础上,除以墩上箱梁的腹板数(n),而后在与腹板对应的位置处加以F0/n的集中力。如果要做的细,还可以按各腹板所承担的承载面积进行分配。 关于边界条件,可以在有支座的位置处设计边界条件,注意一般设一个横向约束即可,其它均可只设为竖向约束。图1.4给出了相应的约束和加载情况。

图1.2 试工阶段1 图1.3 试工阶段1

二、输入使用信息: 收缩徐变天数取为:3650。一般认为混凝土的收缩徐变可以持续数年。最在升温温差取为25度,降温温差也取25度。非线性温度按D60-2004中4.3.10定义,一个为正温差,一个为负温差。 活荷载描述:按公路一级车道荷载加载。因为本例中桥宽有40多m,故偏保守的取为10个车道。先按一个车道纵向影响线加载求得墩顶位置处承担的活荷载值,此例约为626KN,填入图2.1中鼠标处示处。 图2.1 活荷载输入 如图2.1所示,勾选横向加载——点横向加载有效区域按钮,将弹出如图2.2所示窗口。活载类别选择汽车,横向有效区域起点取为1m,终点为45.1m。 有必要说明下的是,采用桥博进行横向加载计算时并不用输入活载的横向分布调整系数,车道折减系数等,而是通过定义车道、横向有效分布区域等由桥博自行进行加载。

宽箱梁的数值计算分析

宽箱梁的数值计算分析 摘要:本文以某多箱室连续梁桥为例,讨论了宽箱梁的计算方法,并通有限元计算软件对比分析不同计算方法对宽箱梁计算结果的影响。以该桥的分析计算分析结果为例,从而为宽箱梁的计算提供可靠的计算依据。 关键词: 宽箱梁;单梁法;刚性横梁法;梁格法;数值分析 abstract: taking a more box chamber continuous girder bridge as an example, discusses the calculation method of wide box girder, and through a comparative analysis of the finite element calculation software of different calculation methods for wide box girder of the calculated results influence. with the analysis of the calculation results of the bridge as an example, the calculation of wide box girder so as to provide reliable calculation basis. keywords: wide box girder, single-beam method; rigid beam method; grillage method; numerical analysis 中图分类号:g613.4文献标识码:a文章编号: 1.前言 近年来,为适应交通功能现代化的需求,我国高速、高等级公路与城市立交工程建设迅猛发展;并随着桥梁建设材料性能与施工工艺水平的不断进步,为了缓解城市交通的压力,桥梁道路不断地拓宽。这就使得桥梁建设不得不跟着道路不断拓宽。对于城市道路,

横梁计算书..

该横梁高1.6m ,梁宽为12.5米,悬臂长2米。 二、设计规范 《公路工程技术标准》(JTG B01-2003) 《公路桥涵设计通用规范》 (JTG D60-2004) 《公路钢筋混凝土及预应力混凝土桥涵设计规范》 (JTG D62-2004) 《公路桥涵地基与基础设计规范》(JTG D63-2007) 《公路桥梁抗震设计细则》 (JTG/T B02-01-2008) 三、采用的计算方法和计算软件 (1)使用程序 : MIDAS/Civil, Civil2013 (2)截面设计内力 :3维 (3)构件类型 :部分预应力A 类构件 (4)公路桥涵的设计安全等级 : 一级 (5)构件制作方法 :现浇 四、设计荷载 (1)标准:公路一级 (2)上部结构重量以集中力和均布荷载的形式通过三个腹板传递到中横梁 防撞护栏重:26KN/m 桥面铺装:30.4KN/m 五、主要材料指标 主梁采用C50混凝土,预应力钢束采用低松弛2.15=d mm 钢绞线。混凝土、钢绞线等材料的弹性模量、设计抗压(拉)强度参数等基本参数均按现行规范取值。 1、混凝土 C50混凝土弹性模量MPa E c 41045.3?= 预应力混凝土容重为3/26m kN 钢筋混凝土容重为3/25m kN

2、低松弛钢绞线 直径mm d 2.15= 弹性模量MPa E p 51095.1?= 抗拉强度标准值:MPa f pk 1860= 张拉控制应力:MPa f pk 135873.0= 管道摩阻擦系数:25.0=μ 管道偏差系数:0015.0=k 锚具变形:mm l 6=? 六、模型简介 1、主梁单元截面 图一 主梁横断面图示 2、 单元数量 : 梁单元24个 图二 单元离散图 3、节点数量 : 27 个 4、钢束数量 : 8 个 5、边界条件数量 : 2 个 6、施工阶段 : 3 个

最新吊装平衡梁受力计算

回转半径i =√J/F =√1295.69/40.3=5.67 cm 其长细比λ=μl/ i =1*340/5.67=59.9 查取折减系数为φ=0.842,钢管允许应力【σ】=155MN/m2 压应力为P/F=Q/2/F=21.5*9.8*103/40.3*10-4 =52.3 MN/m2<φ【σ】=0.842*155=130.5 MN/m2 扁担压杆稳定校核 选用φ168*8钢管长4米. 其截面积F=40.3cm2惯性距J=1295.69 cm4 回转半径i =√J/F =√1295.69/40.3=5.67 cm 其长细比λ=μl/ i =1*400/5.67=70.6 查取折减系数为φ=0.842,钢管允许应力【σ】=155MN/m2 压应力为P/F=Q/2/F=34//2*9.8*103/40.3*10-4 =52.3 MN/m2<φ【σ】=0.842*155=130.5 MN/m2 2016年10月高等教育自学考试全国统一命题考试 学前比较教育试卷 (课程代码00401)

精品好文档,推荐学习交流 本试卷共4页,满分l00分,考试时间l50分钟。 考生答题注意事项: 1.本卷所有试题必须在答题卡上作答。答在试卷上无效,试卷空白处和背面均可作草稿纸。2.第一部分为选择题。必须对应试卷上的题号使用2B铅笔将“答题卡”的相应代码涂黑o 3.第二部分为非选择题。必须注明大、小题号,使用0.5毫米黑色字迹签字笔作答。 4.合理安排答题空间,超出答题区域无效。 第一部分选择题 一、单项选择题(本大题共30小题,每小题l分。共30分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题卡” 的相应代码涂黑。未涂、错涂或多涂均无分。 1.最早提出比较教育术语的教育家是 A.萨德勒 B.康德尔 C.汉斯 D.朱利安 2.通过运用因素分析、质量分析、数量统计等方法,对比较研究的结果进行分析、说明和概括,达到对所研究问题的实质性认识从而得出有价值的结论的方法是 A.分析法 B.文献法 C.比较法 D.调查法 3.把各国、各地区同一类学前教育问题放在一起进行比较分析,从中找出各国、各地区学前教育特点和共同趋势的研究方法是 A.综合比较研究 B.专题比较研究 C.影响比较研究 D.问题比较研究 4.标志着日本保育所制度得到进一步充实和完善,对促进日本保育所的发展发挥了重要的指 导作用的是 A.《法制令》 B.《幼儿园保育及设备规程》 C.《保育所保育指南》 D.《幼儿园令》 5.日本提出了振兴幼儿教育的“七大政策支柱”的是 A.第一个幼儿园教育振兴计划 B.第二个幼儿园教育振兴计划 C.第三个幼儿园教育振兴计划 D.幼儿园教育振兴计划(2006-2010) 6.将“神学/懊悔教育/伦理学”纳入学前教师职前培养课程体系的国家是 A.法国 B.日本 C.德国 D.俄罗斯 7.日本经“教员检定考试”合格的高中毕业生,可以获得 A.一种资格证书 B.二种资格证书 C.专修资格证书 D.临时资格证书 8.1913年,英国的戴普福特建立了一所保育学校,主要招收被排斥在幼儿学校以外的5岁以 下的儿童,这所保育学校的创立者是 A.福禄培尔 B.欧文 C.麦克米伦姐妹 D.费舍尔 9.英国19世纪80年代颁布并落实了义务教育的规定,确定了儿童从5岁开始进行初等义务 教育的是 A.《费舍尔法案》 B.《初等教育法》 C.《哈多报告》 D.《巴特勒法案》

25m小箱梁计算书正文资料

预应力混凝土公路桥梁通用设计图成套技术 通用图设计计算书 (装配式预应力混凝土箱形连续梁主梁计算) 跨径:25m 路基宽度:26m 设计计算人:日期: 复核核对人:日期: 单位审核人:日期: 项目负责人:日期:

编制单位:中交第一公路勘察设计研究院编制时间:二○○七年一月

目录 1 计算依据与基础资料 ................... 错误!未定义书签。 标准及规范..................................................错误!未定义书签。 标准....................................................错误!未定义书签。 规范....................................................错误!未定义书签。 参考资料................................................错误!未定义书签。 主要材料....................................................错误!未定义书签。 设计要点....................................................错误!未定义书签。 2 横断面布置 ........................... 错误!未定义书签。 横断面布置图................................................错误!未定义书签。 跨中计算截面尺寸............................................错误!未定义书签。 3 汽车荷载横向分布系数、冲击系数计算.... 错误!未定义书签。 汽车荷载横向分布系数计算....................................错误!未定义书签。 刚性横梁法..............................................错误!未定义书签。 刚接梁法................................................错误!未定义书签。 铰接梁法................................................错误!未定义书签。 荷载横向分布系数汇总....................................错误!未定义书签。 剪力横向分布系数............................................错误!未定义书签。 汽车荷载冲击系数μ值计算....................................错误!未定义书签。 汽车荷载纵向整体冲击系数μ...............................错误!未定义书签。 汽车荷载的局部加载的冲击系数............................错误!未定义书签。 4 主梁纵桥向结构计算 ................... 错误!未定义书签。 箱梁施工流程................................................错误!未定义书签。 有关计算参数的选取.........................................错误!未定义书签。 计算程序 ...................................................错误!未定义书签。 持久状况承载能力极限状态计算 ..............................错误!未定义书签。 正截面抗弯承载能力计算..................................错误!未定义书签。 斜截面抗剪承载能力验算..................................错误!未定义书签。 持久状况正常使用极限状态计算...............................错误!未定义书签。 抗裂验算................................................错误!未定义书签。 挠度验算................................................错误!未定义书签。 持久状况和短暂状况构件应力计算 ............................错误!未定义书签。 使用阶段正截面法向应力计算..............................错误!未定义书签。

箱梁计算书(MIDAS分析)

连续箱梁挂蓝计算书(midas)(2009-07-04 11:47:42) 一、工程简介 主桥上部结构为32+68+32m三跨预应力混凝土连续箱梁,梁体自重γ取26kN/m3,跨端支座处、边垮直线段和跨中处梁高为2.8m,中支点处梁高为3.4m,梁高按圆曲线变化,圆曲线半径R=367.80m,顶板厚34cm,腹板厚分别为40cm和70cm,底板厚度由跨中的30cm按圆曲线变化至中点梁根部的60cm,中点处加厚到110cm。节段主要参数如下表所示: 由于0#块长度不够,1#选用整体挂篮施工(见设计图),荷载采用最重悬浇箱梁段A1段:90.0吨。 二、挂篮主要技术标准及参考资料 1、参考《公路桥涵施工技术规范》规定,各设计参数取值如下: (1)挂篮质量控制在浇筑梁段砼质量的0.3~0.5倍之间。 (2)允许最大变形(包括吊带变形的总和):20mm (3)施工及行走时抗倾覆安全系数:2.5 (4)自锚固系统的安全系数:2 2、参考资料 (1)、通桥2008-2261A-V; (2)、《路桥施工计算手册》-人们交通出版社; (3)、《简明施工计算手册》-中国建筑工业出版社; (4)、《悬臂浇注预应力混凝土梁桥》-人们交通出版社; (5)、本挂篮采用的设计规范有:

1)《铁路桥梁钢结构设计规范》(TB10002.2-2005); 2)《铁路桥涵钢筋混凝土和预应力混凝土设计规范》(TB10002.3-2005);3).《钢结构设计规范》(GB50017-2003); 4).《铁路桥涵设计基本规范》(TB10002.1-2005)。 3、主要材料的力学指标 (1)、Q235(A3钢),屈服应力,,弹性模量; (2)、20CrMnTi,屈服应力,弹性模量。 三、结构分析及计算参数 1、结构受力分析 根据悬灌梁段的实际情况,挂篮分以下三种工况进行受力检算: (1)、工况一:1#梁段施工时连体挂篮的强度检算; (2)、工况二:2#梁段施工时挂篮的强度检算 (2)、工况三:挂篮挠度验算; (3)、工况四:挂篮走行时抗倾覆计算。 2、作用于挂篮的主要荷载 参考《路桥施工计算手册》箱梁荷载取值如下: 荷载集中 (KN) 梁单元 (KN) 楼板 (KN) 压力 (KN) 自重 (KN) 合计 (KN) 底模混凝土0.00E+00 -5.34E+01 0.00E+00 0.00E+00 0.00E+00 -5.34E+01 内模混凝土0.00E+00 -3.51E+01 0.00E+00 0.00E+00 0.00E+00 -3.51E+01 外模混凝土0.00E+00 -1.81E+01 0.00E+00 0.00E+00 0.00E+00 -1.81E+01 输出荷载统计 集中 (KN) 梁单元 (KN) 楼板 (KN) 压力 (KN) 自重 (KN) 合计 (KN) 0.00E+00 -1.07E+02 0.00E+00 0.00E+00 0.00E+00 -1.07E+02

相关主题