搜档网
当前位置:搜档网 › 遥感原理与应用复习重点整理

遥感原理与应用复习重点整理

遥感原理与应用复习重点整理
遥感原理与应用复习重点整理

绪论

1、遥感的概念:在不直接接触的情况下,在地面,高空和外层空间的各种平台上,运用各种传感器获取各种数据,通过传输,变换和处理,提取有用的信息,实现研究地物空间形状、位置、性质、变化及其与环境的关系的一门现代应用技术学科。

遥感概念:在不直接接触的情况下,对目标或自然现象远距离探测和感知的一种技术。

2、遥感的分类:按照遥感的工作平台分类:地面遥感、航空遥感、航天遥感。

按照探测电磁波的工作波段分类:可见光遥感、红外遥感、微波遥感、多光谱遥感等。

按照遥感应用的目的分类:环境遥感、农业遥感、林业遥感、地质遥感等。

按照资料的记录方式:成像方式、非成像方式。

按照传感器工作方式分类:主动遥感、被动遥感。

3、遥感起源于航空摄影、摄影测量等。

第一章

1、电磁波:通过变化电场周围产生变化的磁场,而变化的磁场又产生变化的电场之间的相互联系传播的过程。电磁波的特性:具有二象性,即波动性(干涉、衍射、偏振现象)和粒子性。

2、波长最长的是无线电波,最短的是γ射线。

3、电磁波谱图:按电磁波在真空中传播的波长或频率递增或递减顺序排列制成的图案。

4、地物的反射率概念:地物对某一波段的反射能量与入射能量之比。反射率随入射波长变化而变化。反射类型:漫反射、镜面反射、方向反射。

5、影响地物反射率的3个因素:入射电磁波的波长,入射角的大小,地表颜色与粗糙程度。附:影响地物光谱反射率变化的因素:

a太阳的高度角和方位角。B传感器的观测角和方位角c不同的地理位置d地物本身的变异e时间、季节的变化

6、地物反射光谱曲线:根据地物反射率与波长之间的关系而绘成的曲线。1.不同地物在不同波段反射率存在差异2. 同类地物的反射光谱具有相似性,但也有差异性。不同植物;植物病虫害3. 地物的光谱特性具有时间特性和空间特性。(同物异谱,同谱异物)。

7、地物发射电磁波的能力以发射率作为衡量标准;地物的发射率是以黑体辐射作为参照标准。

8、绝对黑体:对任何波长的电磁波辐射都全部吸收的物体。(灰体发射率小于1)。

9、黑体辐射的三个特性:a.辐射通量密度随波长连续变化,每条曲线只有一个最大值。b.温度越高,辐射通量密度越大,不同温度的曲线不同。(绝对黑体表面,单位面积发出的总辐射能与绝对温度的四次方成正比)c.随着温度的升高,辐射最大值所对应的波长向短波方向移动。(维恩位移定律)

10、大气的垂直分层:对流层(航空遥感活动区)、平流层、电离层和外大气层。在可见光波段,引起电磁波衰减的主要原因是分子散射。在紫外、红外与微波区,引起衰减的主要原因是大气吸收。引起大气吸收的主要成分是:氧气、水(0.7~1.95)、臭氧(0.3以下)、二氧化碳(2.6~2.8)。

11、散射作用:太阳辐射在长波过程中遇到小微粒而使传播方向改变,并向各个方向散开。改变了电磁波的传播方向;干扰传感器的接收;降低了遥感数据的质量、影像模糊,影响判读。

12、三种散射方式:米氏散射:当微粒的直径与辐射波长差不多时的大气散射。

均匀散射:当微粒的直径比辐射波长大得多时发生的散射。

瑞利散射:当微粒的直径比辐射波长小得多时发生的散射。

13、大气窗口的概念:通过大气而较少被反射、吸收或散射,衰减程度较小,透过率较高的

电磁辐射波段。

第二章

1、遥感平台的概念与分类

遥感平台:遥感中搭载传感器的工具。有:地面平台、航空平台、航天平台。

2、全球定位系统GPS的组成有:地面控制部分(主控站、地面天线。监测站和通信辅助系统组成)空间部分(21颗工作卫星,3颗备用卫星组成),用户部分(天线、接收机、微处理机和输入输出设备组成)。

3、卫星姿态角定义:定义卫星质心为坐标原点,沿轨道前进的切线方向为x轴,垂直轨道的方向为y轴,垂直xy平面的为z轴,则卫星的姿态角有三种情况:绕x轴旋转的姿态角为滚动角,绕y轴旋转的姿态角为俯仰角,绕z轴旋转的姿态角为航偏角。用姿态测量仪测定:红外姿态测量仪、星相机、陀螺仪。

4、卫星运行周期:指卫星绕地一圈所需要时间,即从升交点开始运行到下次过升交点时的时间间隔。重复周期:指卫星从某地上空开始运行,经过若干时间的运行后,回到该地上空时所需要的天数。

5、陆地卫星的种类:高分辨陆地卫星,高光谱陆地卫星,合成孔径雷达,小卫星。

6、Landsat卫星的特点:近圆形,近极地,与太阳同步(卫星轨道面与太阳地球连线之间在黄道面内的夹角,不随地球绕太阳公转而改变),可重复的轨道。

7、landsat-7(美)传感器改型为ETM+、spot卫星(法)、IRS系列卫星(印度)、中国资源一号卫星系列(中国与巴西),合成孔径雷达型:SAR类卫星,Radarsat系列卫星(加拿大),ERS系列(欧洲),ENVISAT卫星,ALOS卫星(日),Terrasar-x卫星(德)。小卫星:a重量轻,体积小b研制周期短,成本低c发射灵活,启动速度快,抗毁性强d技术性能高。8、什么是TM影像:指美国陆地卫星4~5号专题制图仪(thematic mapper)所获取的多波段扫描影像。分为7个波段。主要特点为具较高空间分辨率、波谱分辨率、极为丰富的信息量和较高定位精度。

多光谱扫描仪(MSS)、反速光导管摄像机(RBV)、增强型专题制图仪(ETM+)

第三章

1、遥感传感器可分为四类:

(1)、摄影类型的传感器。(2)、扫描成像类型的传感器。(3)、雷达成像型的传感器。

(4)、非图像类型的传感器。

2、扫描成像类传感器是逐点逐行以时序方式获取的二维图像,有两种,一对物面扫描的成

像仪(如:红外扫描仪、MSS多光谱扫描仪、成像光谱仪等)。二对像面扫描的成像仪(如:线阵列CCD推扫式成像仪、电视摄像机等)。

3、TM是一个高级的多波段扫描型的地球资源敏感仪器,与多波段扫描仪MSS性能相比,

它具有更高的空间分辨率,更好的频谱选择性,更好的几何保真度,更高的辐射准确度和分辨率。Tm增加了一个扫描改正器。

4、ETM+是一台8谱段的多光谱扫描辐射计。HRV是一种线阵列推扫式扫描仪。

5、成像光谱概念:是以多路、连续并具有高光谱分辨率方式获取图像信息的仪器,基本上

属于多光谱扫描仪。

6、真实孔径侧视雷达的分辨率包括距离分辨率和方位分辨率。

距离分辨率指在脉冲发射方向上,能分辨两个目标的最小距离,与脉冲宽度有关,与距离无关。(采用脉冲压缩技术来提高)。

方位分辨率指:在雷达飞行方向上,能分辨两个目标的最小距离。(采用波长较短的电磁波,加大天线孔径,缩短观测距离来提高)。

7、INSAR数据处理的步骤:影像配准,干涉图生成,噪声滤除,基线估算,平地效应消除,

相位解缠,高程计算和纠正等。

第四章

1、图像的表示形式:光学图像和数字图像。

光学图像:是一个二维的连续的光密度函数。数字图像:是一个二维的离散的光密度函数。光学图像转化为数字图像指:把一个连续的光密度函数转化为一个离散的光密度函数。

2、贮存的格式有三种:BSQ格式即按波段记载数据文件,BIL格式即按照波段顺序交叉排列的遥感数据格式,GeoTIFF格式是一种通用的图像格式。

3、主流遥感图像处理系统主要有:envi,pci,erdas imagine等。

第五章

1、遥感图像的几何变形

(1)、传感器成像方式引起的图像变形。

(2)、传感器外方位元素变化的影响。

(3)、地形起伏引起的像点位移。

(4)、地球曲率引起的图像变形。

(5)、大气折射引起的图像变形。

(6)、地球自转的影响。

2、遥感影像的几何处理

(1)粗加工处理即做系统误差的改正。

(2)精纠正处理。(消除图像中的几何变形,产生一副符合某种地图投影要求的新图像)3、遥感影像精纠正处理的过程:

(1)像素坐标的变换,即将图像坐标转变为地图或地面坐标。

(2)对坐标变换后的像素亮度值进行重采样。

具体如下:

(1)根据图像的成像方式确定图像坐标和地面坐标之间的数学模型。

(2)根据地面控制点和对应像点坐标进行平差计算变换参数,评定精度。

(3)对原始图像进行几何变换计算,像素亮度值重采样。

4、纠正方法有:基于多项式的遥感图像纠正,基于共线方程的遥感图像纠正,基于有理函数的遥感图像纠正。

5、直接法与间接法纠正的概念。

答:直接法方案是从原始图像阵列出发,按行列的顺序依次对每个原始像素点位求其地面坐标系中的正确位置。间接法方案是从空白的输出图像阵列出发,按行列的顺序依次对每个输出像素点位反求原始图像坐标的位置。

6、雷达图像几何纠正是在粗校正图像的基础上,消除由地形引起的几何位置的误差,生成地理编码的正射图像。

7、图像间的自动配准是以spot影像为基准,TM影像为配准的。

第6章

1、为什么要进行辐射纠正?

答:传感器输出的能量包含了由于太阳位置和角度条件、大气条件、地形影响和传感器本身的性能等所引起的各种失真,这些失真不是地面目标本身的辐射,对图像的使用和理解造成影像,必须加以校正和消除。

2、辐射定标和辐射校正是遥感数据定量化的最基本环节。

3、辐射误差来源:

答:1)传感器本身的性能引起的辐射误差;2)大气的散射和吸收引起的辐射误差。

3)地形影响和光照条件的变化引起的辐射误差;

4、传感器的辐射定标:建立传感器每个探测元所输出的信号的数值量化值与该探测器对应像元内的实际地物辐射亮度值之间的定量关系。

5、遥感图像的辐射增强的实质是增强感兴趣目标和周围背景图像间的反差。

6、图像增强技术可分为两大类:空间域处理和频率域处理。空间域处理是指直接对图像进行各种运算以得到需要的增强效果。频率域处理指将空间域图像变换成频率域图像,然后在频率域中对图像的频谱进行处理,已达到增强图像的目的。

7、图像融合的概念:将多源遥感图像按照一定的算法,在规定的地理坐标系,生成新的图像的过程。

第7章

1、景物特征主要有:光谱特征、空间特征和时间特征。

2、空间特征指景物的各种几何形态。判读标志是:形状、大小、图形、阴影、位置、纹理、类型等。

3、影响景物判读的因素:地物本身的复杂性,传感器特性的影响,目视能力的影响。

第8章

1、遥感图像的计算机分类概念?

答:就是利用计算机对地球表面及其环境在遥感图像上的信息进行属性识别和分类,以达到识别图像信息所对应的实际地物,提取所需地物信息的目的。

2、遥感图像自动分类常用的特征变换有:主分量变换、哈达玛变换、生物量指标变换、比值变换和恵帽变换等。

3、计算机分类主要有:监督分类和非监督分类。监督分类是基于我们对遥感图像上样本区内地物的类别已知,利用这些样本类别的特征作为识别非样本数据类别的依据。而非监督分类是人们事先对分类过程不施加任何的先验知识。仅凭遥感影像的光谱特征的分布规律进行“盲目”的分类过程。其结果只是区分不同的类不能确定类别的属性特征。

《遥感原理与应用》复习题A

《遥感原理与应用》复习题A 一、名词解释 1、光学影像 2、数字影像 3、空间域图像 4、 ERDAS 5、红外扫描仪 6、多光谱扫描仪 7、真实孔径侧视雷达 8、全景畸变 9、合成孔径侧视雷达 10、方位分辨率 11遥感 12 遥感技术 13 电磁波 14 电磁波谱 15 绝对黑体 16 灰体 17 绝对温度 18 色温 19 大气窗口 20 发射率 二、填空题 8、TM影像为专题制图仪获取的图像。其在、、方面都 比MSS图像有较大改进。 9、遥感图像解译专家系统由三大部分组成,即、、。 3、全球定位系统在3S技术中的作用突出地表现在两个方面,、。 4、陆地卫星的轨道是,其图像覆盖范围约为185-185平方公里。SPOT卫星较之陆地卫星,其最大优势是最高空间分辨率达到米

三、简答题 1、叙述侧视雷达图像的影像特征 2、遥感图像处理软件应具备哪些基本功能? 3、叙述多项式拟合法纠正卫星图像的原理和步骤。 4、叙述多项式拟合法纠正卫星图像的原理和步骤。 5、多项式拟合法纠正选用一次项、二次项和三次项,各纠正遥感图像中的哪些变形误差? 6、黑体辐射遵循哪些规律? 7、叙述沙土、植物、和水的光谱反射率随波长变化的一般规律。 8、地物光谱反射率受哪些主要的因素影响? 9、何为大气窗口?分析形成大气窗口的原因 10、传感器从大气层外探测地面物体时,接收到哪些电磁波能量? 四、论述题 1.叙述遥感图像监督法分类的基本原理,请你设计一个完整的框架以实现遥感图像的监督法分类,指出每一步的功能

《遥感原理与应用》复习题答案 一、名词解释 略 二、填空题 1、光谱分辨率、辐射分辨率、空间分辨率 2、图像处理和特征提取子系统、解 译知识获取子系统、狭义的遥感图像解译专家系统。3、精确的定位能力和准确定时及测速能力4、太阳同步轨道 三、简答题 略 四、论述题 略

遥感原理与方法期末考试复习

遥感原理与方法期末考试复习 第一章绪论 ★遥感的定义?遥感对地观测有什么特点? 广义遥感:泛指一切无接触的远距离探测,包括对电磁场、力场(磁力、重力)、机械波(声波、地震波)等的探测。实际工作中,重力、磁力、声波、地震波等的探测被划为物探(物理探测)的范畴,只有电磁波探测属于遥感的范畴。 狭义:是指对地观测,即从不同高度的工作平台上通过传感器,对地球表面目标的电磁波反射或辐射信息进行探测,并经信息记录、传输、处理和解译分析,对地球的资源与环境进行探测和监测的综合性技术。 定义:遥感是指不与目标物直接接触,应用探测仪器,接收目标物的电磁波信息,并对这些信息进行加工分析处理,从而识别目标物的性质及变化的综合性对地观测技术。 英文定义:Remote Sensing 简写为RS(3S之一) 空间特点—全局与局部观测并举,宏观与微观信息兼取 时相特点—快速连续的观测能力 光谱特点—技术手段多样,可获取海量信息 经济特点—应用领域广泛,经济效益高 ★遥感技术系统有哪几部分组成?每部分的作用。 信息获取是遥感技术系统的中心工作 信息记录与传输工作主要涉及地面控制系统 信息处理通过各种技术手段对遥感探测所获得的信息进行各种处理 信息应用是遥感的最终目的,包括专业应用和综合应用 ☆遥感有哪几种分类方法及哪些分类? 1)按遥感平台分:地面遥感、航空遥感和航天遥感 2)按工作方式分:主动式和被动式遥感.ps【主动式遥感是指传感器自身带有能发射电磁波的辐射源,工作时向探测区发射电磁波,然后接收目标物反射或散射的电磁波信息。被动式遥感是传感器本身不发射电磁波,而是直接接受地物反射的太阳光线或地物自身的热辐射。】 3)按工作波段分:紫外、可见光、红外、微波遥感、多光谱和高光谱遥感 4)按记录方式分:成像和非成像遥感 5)按应用领域分:外层空间、大气层、陆地、海洋遥感等,具体应用领域可分为城市遥感、环境、农业和林业遥感、地质、气象、军事遥感等。 遥感对地观测技术现状及发展展望? 现状(国内): 1)民用遥感卫星像系列化和业务化方向发展 2)传感器技术发展迅速 3)航空遥感系统日趋完善 4)国产化地球空间信息系统软件发展迅速 5)应用领域不断扩展 发展展望: 1)研制新一代传感器,以获得分辨率更高、质量更好的遥感数据 2)遥感图像信息处理技术发展迅速

遥感原理与应用知识点

第一章 1、遥感的定义:通过不接触被探测的目标,利用传感器获取目标数据,通过对数据进行分析,获取被探测目标、区域和现象的有用信息 2、广义的遥感:在不直接接触的情况下,对目标物或自然现象远距离感知的一种探测技术。 3、狭义的遥感:指在高空和外层空间的各种平台上,应用各种传感器(摄影仪、扫描仪和雷达等)获取地表的信息,通过数据的传输和处理,从而实现研究地面物体形状、大小、位置、性质以及环境的相互关系。 4、探测依据:目标物与电磁波的相互作用,构成了目标物的电磁波特性。(信息被探测的依据)传感器能收集地表信息,因为地表任何物体表面都辐射电磁波,同时也反射入照的电磁波。地表任何物体表面,随其材料、结构、物理/化学特性,呈现自己的波谱辐射亮度。 5、遥感的特点:1)手段多,获取的信息量大。波段的延长(可见光、红外、微波)使对地球的观测走向了全天候全天时。 2)宏观性,综合性。覆盖范围大,信息丰富,一景TM影像185×185km2,可见的,潜在的各类地表景观信息。 3)时间周期短。重复探测,有利于进行动态分析 6、遥感数据处理过程 7、遥感系统:1)被探测目标携带信息 2)电磁波辐射信息的获取 3)信息的传输和记录 4)信息的处理和应用 第三章 1、电磁波的概念:在真空或物质中电场和磁场的相互振荡以及振动而进行传输的能量波。 2、电磁波特征(特征及体现):1)波动性:电磁辐射以波动的形式在空间中传播 2)粒子性:以电磁波形式传播出去的能量为辐射能,其传播也表现为光子组成的粒子流的运动 紫外线、X射线、γ射线——粒子性 可见光、红外线——波动性、粒子性 微波、无线电波——波动性 3、叠加原理:当空间同时存在由两个或两个以上的波源产生的波时,每个波并不因其他的波的存在而改变其传播规律,仍保持原有的频率(或波长)和振动方向,按照自己的传播方向继续前进,而空间相遇的点的振动的物理量,则等于各个独立波在该点激起的振动的物理量之和。 4、相干性与非相干性:由叠加原理可知,当两列频率、振动方向相同,相位相同或相位差恒定的电磁波叠加时,在空间会出现某些地方的振动始终加强,另一些地方的振动始终减弱或完全抵消,这种现象叫电磁波的相干性。没有固定相位关系的两列电磁波叠加时,没有一定的规律可循,这种现象叫电磁波的非相干性

遥感原理与应用考试复习题

2014——2015年度《遥感原理与应用》考试复习题 (命题:2011级土管系) 第一章绪论 主要内容: ①遥感信息科学的研究对象、研究内容、应用领域 ②电磁波及遥感的物理基础 ③遥感平台和传感器 第二章遥感图像处理的基础知识 主要内容: 1.图像的表示形式 2.遥感数字图像的存储 3.数字图像处理的数据 4.数字图像处理的系统 考题: 第一二章(A卷) 1.电磁波谱中(A)能够监测油污扩散情况,(D)可以穿透云层、冰层。(2分) A.紫外电磁波(0.01-0.4μm) B.可见光(0.4-0.76μm) C.红外电磁波(0.76-100 0μm) D.微波电磁波(1mm-1m) 2.遥感按遥感平台可分为地面遥感、航空遥感、航天遥感。(2分) 3.遥感数字图像的存储格式包括BS、BIL、GeoTIFF。(1分) 4.遥感传感器由收集器、探测器、处理器、输出器几部分组成。(2分) 5.地图数据有哪些类型?(3分) 答:DEM 数字高程模型 DOM 数字正射影像图

DLG 数字线划图 DRG 数字栅格图 6.何谓遥感?遥感具有哪些特点?(5分) 答:遥感,即遥远的感知,是在不直接接触的情况下,使用传感器,接收记录物体或现象反射或发射的电磁波信息,并对信息进行传输加工处理及分析与解译,对物体现象的性质及其变化进行探测和识别的理论与技术。特点:①感测范围大,具有综合、宏观的特点②信息量大,具有手段多,技术先进的特点③获取信息快,更新周期短,具有动态监测的特点④其他特点:用途广,效益高,资料性、全天候、全方位等. B卷 1.绿色植物在光谱反应曲线可见光部分中的反射峰值波长是( B )。(1分) A 0.50μm B 0.55μm C 0.63μm D 0.72μm 2.遥感数字图像处理的数据源包括多光谱数据源、高光谱数据源、全色波段数据 源和SAR数据源。(3分) 3.数字化影像的最小单元是像元,它具有位置和灰度两个属性。(2分) 4.函数I=f(x,y,z,λ,t)表示的是一幅三维彩色动态图。(1分) 5.遥感在实际中的应用有哪些方面?(4分) 答:资源调查应用 环境监测评价 区域分析及建设规划 全球性宏观研究。

【遥感原理与应用】复习期末考试整理

第一章 绪论 ? 什么是遥感? 广义上:泛指一切无接触的远距离探测,实际工作中,只有电磁波探测属于遥感范畴。 狭义上:遥感探测地物基本原理:遥感是应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。现代遥感:特指在航天平台上,利用多波段传感器,对地球进行探测、信息处理和应用的技术。 ? 电磁波的传输过程 PxYBRXQ 。SOt0ure 。MDGVcH2。 ? 遥感技术系统 遥感技术系统是实现遥感目的的方法论、设备和技术的总称。MR4gQja 。im8FEKh 。l0lznrK 。 遥感技术系统主要有:①遥感平台系统②遥感仪器系统③数据传输和接收系统④用于地面波谱测试和获取定位观测数据的各种地面台站网;⑤数据处理系统。⑥分析应用系统。? 遥感应用过程 1.问题声明(分析问题、假设建模、指定信息需求) 2.数据收集(遥感、实地观测) 3.数据分析(目视解译、数字图像处理、可视化分析、测试假设) 4.信息表达(数据库、误差报告、统计分析、各类图件) ? 遥感的发展趋势 高分辨率、定量化、智能化、商业化 第二章 电磁波及遥感物理基础 ? 电磁波、电磁波谱(可见光谱) 遥感之所以能够根据收集到的电磁波来判断地物目标和自然现象,是因为一切物体,由于其种类、特征和环境条件的不同,而具有完全不同的电磁波反射或发射辐射特征。电磁波是一种横波。 电磁波的几个性质: 一般的光探测器或感光材料只对光强度有响应,因而只能感受到光波场的振幅信息,对相位信息则无响应。 干涉(interfere ) 频率相同、振动方向相同、相位差恒定的两列光/波相遇时,使某些地方振动始终加强(显得明亮),或者始终减弱(显得暗淡)的现象,叫光/波的干涉现象。应用:雷达、InSAR 太阳辐射(solar radiation ) 发射(Emission ) 吸收(Absorption ) 散射 (Scattering ) 反射(Reflection )

遥感原理与应用复习题(Final Version)

遥感原理与应用复习题 一、名词概念 1. 遥感 广义:泛指一切无接触的远距离探测,包括对电磁场、力场、机械波(声波、地震波)等的探测。 狭义:是应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。 2. 传感器 传感器是遥感技术中的核心组成部分,是收集和记录地物电磁辐射能量信息的装置,如光学摄影机、多光谱扫描仪等,是获取遥感信息的关键设备。 3. 遥感平台 遥感平台是转载传感器进行探测的运载工具,如飞机、卫星、飞船等。按其飞行高度不同可分为近地平台、航空平台和航天平台。 4. 地物反射波谱曲线 地物的反射率随入射波长变化的规律称为地物反射波谱,按地物反射率与波长之间的关系绘成的曲线称为地物反射波谱曲线(横坐标为波长值,纵坐标为反射率) 5. 地物发射波谱曲线 地物的发射率随波长变化的规律称为地物的发射波谱。按地物发射率与波长之间的关系绘成的曲线称为地物发射波谱曲线。(横坐标为波长值,纵坐标为总发射) 6. 大气窗口 通常把通过大气而较少被反射、吸收或散射的透射率较高的电磁辐射波段称为大气窗口。 7. 瑞利散射 当微粒的直径比辐射波长小许多时,也叫分子散射。 8. 遥感平台 遥感平台:遥感中搭载传感器的工具统称为遥感平台。 遥感平台按平台距地面的高度大体上可分为地面平台、航空平台和航天平台三类。 9. TM 即专题测图仪,是在MSS基础上改进发展而成的第二代多光谱光学-机械扫描仪,采用双向扫描。 10. 空间分辨率 图像的空间分辨率指像素所代表的地面范围的大小,即扫描仪的瞬间视场或地面物体能分辨最小单元,是用来表征影像分辨地面目标细节能力的指标。通常用像元大小、像解率或视场角来表示。 11. 时间分辨率 时间分辨率指对同一地点进行遥感采样的时间间隔,即采样的时间频率,也称重访周期。 12. 波谱分辨率 波谱分辨率指传感器在接收目标辐射的波谱时能分辨的最小波长间隔,也称光谱分辨率。间隔愈小,分辨率愈高。 13. 辐射分辨率 指传感器接收波谱信号时,能分辨的最小辐射度差。 14. 传感器 传感器,也叫敏感器或探测器,是收集、探测并记录地物电磁波辐射信息的仪器。

遥感原理与应用复习重点整理 .doc

学习好资料欢迎下载 绪论 1、遥感的概念:在不直接接触的情况下,在地面,高空和外层空间的各种平台上,运用各 种传感器获取各种数据,通过传输,变换和处理,提取有用的信息,实现研究地物空间形状、 位置、性质、变化及其与环境的关系的一门现代应用技术学科。 遥感概念:在不直接接触的情况下,对目标或自然现象远距离探测和感知的一种技术。 2、遥感的分类:按照遥感的工作平台分类:地面遥感、航空遥感、航天遥感。 按照探测电磁波的工作波段分类:可见光遥感、红外遥感、微波遥感、多光谱遥感等。 按照遥感应用的目的分类:环境遥感、农业遥感、林业遥感、地质遥感等。 按照资料的记录方式:成像方式、非成像方式。 按照传感器工作方式分类:主动遥感、被动遥感。 3、遥感起源于航空摄影、摄影测量等。 第一章 1、电磁波:通过变化电场周围产生变化的磁场,而变化的磁场又产生变化的电场之间的相 互联系传播的过程。电磁波的特性:具有二象性,即波动性(干涉、衍射、偏振现象)和粒 子性。 2、波长最长的是无线电波,最短的是γ 射线。 3、电磁波谱图:按电磁波在真空中传播的波长或频率递增或递减顺序排列制成的图案。 4、地物的反射率概念:地物对某一波段的反射能量与入射能量之比。反射率随入射波长变 化而变化。反射类型:漫反射、镜面反射、方向反射。 5、影响地物反射率的 3 个因素:入射电磁波的波长,入射角的大小,地表颜色与粗糙程度。 附:影响地物光谱反射率变化的因素: a 太阳的高度角和方位角。 B 传感器的观测角和方位角 c 不同的地理位置 d 地物本身的变异 e时间、季节的变化 6、地物反射光谱曲线:根据地物反射率与波长之间的关系而绘成的曲线。 1.不同地物在不 同波段反射率存在差异 2. 同类地物的反射光谱具有相似性,但也有差异性。不同植物;植 物病虫害 3. 地物的光谱特性具有时间特性和空间特性。(同物异谱,同谱异物)。 7、地物发射电磁波的能力以发射率作为衡量标准;地物的发射率是以黑体辐射作为参照 标准。 8、绝对黑体:对任何波长的电磁波辐射都全部吸收的物体。(灰体发射率小于1)。 9、黑体辐射的三个特性: a.辐射通量密度随波长连续变化,每条曲线只有一个最大值。 b. 温度越高,辐射通量密度越大,不同温度的曲线不同。(绝对黑体表面,单位面积发出的总 辐射能与绝对温度的四次方成正比) c.随着温度的升高,辐射最大值所对应的波长向短波方向 移动。(维恩位移定律) 10、大气的垂直分层:对流层(航空遥感活动区)、平流层、电离层和外大气层。在可见光波段, 引起电磁波衰减的主要原因是分子散射。在紫外、红外与微波区,引起衰减的主要原因是大气吸 收。引起大气吸收的主要成分是:氧气、水( 0.7~1.95)、臭氧( 0.3 以下)、二氧化碳 ( 2.6~2.8)。 11、散射作用:太阳辐射在长波过程中遇到小微粒而使传播方向改变,并向各个方向散开。 改变了电磁波的传播方向;干扰传感器的接收;降低了遥感数据的质量、影像模糊,影响判 读。 12、三种散射方式:米氏散射:当微粒的直径与辐射波长差不多时的大气散射。 均匀散射:当微粒的直径比辐射波长大得多时发生的散射。 瑞利散射:当微粒的直径比辐射波长小得多时发生的散射。 13、大气窗口的概念:通过大气而较少被反射、吸收或散射,衰减程度较小,透过率较高的

遥感原理与应用期末题库

一、选择与判断 1、遥感技术系统的组成。 包括遥感信息的获取、遥感信息传输和遥感信息提取应用三大部分 2、遥感按电磁波的波谱范围的分类 3、可见光的波长范围 可见光通常指波长范围为:390nm - 780nm 的电磁波。人眼可见范围为:312nm - 1050nm。 4、微波遥感的特点 波长1mm—1m。是一个很宽的波段。可分为毫米波(1—10毫米)、厘米波(1—10cm)和分米波(1—10分米)。 微波的特点是: (1)能穿透云雾和一定厚度的植被、冰层和土壤,可获得其它波段无法获得的信息;(2)具有全天候的工作能力; (3)可以主动和被动方式成像。 因此在遥感技术上是很有潜力的一个波段。 5、叶绿素的主要吸收波段 主要吸收红光及蓝紫光(在640-660nm的红光部分和430-450nm的蓝紫光强的吸收峰)。 6、异物同谱现象是什么 “同物异谱”说的是相同的地物由于周围环境、病虫害或者放射性物质等影响,造成的相同的物种但是其光谱曲线不同,“异物同谱”顾名思义也就是不同的地物由于生长环境的影响光谱曲线相同。这就给遥感分类造成了困难,遥感影像在分类时主要依靠的就是地物的光谱特征,尤其是非监督分类,它的前提就是不存在“同物异谱”和异物同谱“现象。 7、黑体的反射率与吸收率

黑体的反射率=0,吸收率=1(如果一个物体对于任何波长的电磁辐射都全部吸收,则这个物体就叫做黑体。) 8、黑体辐射通量密度与波长、温度的关系 辐射出射度随波长连续变化,每条曲线只有一个最大值。 ?温度越高,辐射出射度越大,不同温度的曲线不相交。 ?随着温度的升高,辐射最大值所对应的波长向短波方向移动。 即黑体总辐射出射度随温度的增加而迅速增加,它与温度的四次方成正比。温度的微小变化,就会引起辐射通量密度很大的变化。是红外装置测定温度的理论基础。 9、普朗克定律在全波段积分得到的定律 由普朗克公式可知,在给定的温度下,黑体的光谱辐射是随波长而变化;同时温度越高,辐射通量密度也越大,不同温度的曲线是不相交的。 10、维恩位移定律的主要结论 维恩位移定律:黑体辐射光谱中最强辐射的波长(λmax)与黑体绝对温度(T)成反比。随着温度的升高,辐射最大值所对应的波长移向短波方向。 11、地物反射的三种类型 黑体或绝对黑体:发射率为1,常数。 灰体:发射率小于1,常数 选择性辐射体:反射率小于1,且随波长而变化。 12、朗伯面反射的特点 对于漫反射面,当入射照度一定时,从任何角度观察反射面,其反射亮度是一个常数,这种反射面称朗伯面。把反射比为1的朗伯面叫做理想朗伯面。 特点:其反射亮度是一个常数 13、决定大气散射的主要因素 散射的方式随电磁波长与大气分子直径、气溶胶微粒大小之间的相对关系而变化 大气粒子的成分;大气粒子的大小;大气粒子的含量;波长 14、瑞利散射的特点 (1)当大气中粒子的直径比波长小得多时发生,由分子与原子引起(分子散射) (2)散射强度与波长的四次方成反比,即波长越长,散射越弱 (3)主要发生在可见光和近红外波段,波长>1um可忽略 15、列举典型的光机扫描仪 机载红外扫描仪;气象卫星上携带的AVHRR传感器;MSS多光谱扫描仪;TM/ETM专题制图仪 16、列举典型的推帚(固体)扫描仪 1)SPOT卫星上的HRV传感器 2)美国Ikonos、Quikbird卫星传感器 17、遥感平台按距地高度的分类

遥感原理复习资料全

电磁波遥感原理:一切物质由于其种类、特征和环境条件的不同,而具有完全不同的电磁波反射或发射辐射特性。 波的概念:波是振动在空间的传播。 机械波:声波、水波和地震波 电磁波(ElectroMagnetic Spectrum ):由振源发出的电磁振荡在空气中传播。 电磁波是通过电场和磁场之间相互联系 电磁辐射:这种电磁能量的传递过程(包括辐射、吸收、反射和透射)称为电磁辐射。 电磁波谱:将各种电磁波在真空中的波长按其长短,依次排列制成的图表。 可见光:0.38-0.76 μm,鉴别物质特征的主要波段;是遥感最常用的波段。 基尔霍夫:良好的吸收体也是良好的辐射体 黑体辐射(Black Body Radiation ):黑体的热辐射称为黑体辐射。 普朗克定律:黑体辐射电磁波的能量和波长由它的温度唯一决定 大气窗口:通过大气而较少被反射、吸收或散射的透射率较高的电磁辐射波段。 地物波谱:地物波谱是地物各自具有的电磁波特性(发射辐射或者反射辐射) 地物反射率:地物对某一波段的反射能量与入射能量之比。反射率随入射波长而变化。 地球同步轨道:卫星运行与地球自转周期相同,轨道面可与地球赤道面相交,也可重合,若重合,即为地球静止轨道。 地球静止轨道:卫星与地球绕地轴作同步运转,卫星看起来似乎悬在空中不动。24小时绕地球一周,因而其距地约35400-37000公里。太阳同步轨道:卫星轨道与太阳同步,是指卫星轨道面与太阳地球连线之间在黄道面的夹角,不随地球绕太阳公转而改变。 重复周期:指卫星从某地上空开始运行,经过若干时间的运行后,回到该地空时所需要的天数。 雷达:是用无线电波探测物体并测定物体距离的仪器 采样:空间坐标数字化 量化:图像灰度的数字化 地球投影:将地表的球面点转换到平面 投影方式:等角投影、等积投影等 遥感图像构像方程:指地物点在图像上的图像坐标(x,y)和其在地面对应点的坐标(X,Y,Z)之间的数学关系 几何畸变:遥感图像的几何位置上发生变化,产生诸如行列不均匀,像元大小与地面大小对应不准确,地物形状不规则变化等变形 图像融合:将多源遥感图像按照一定的算法,在规定的地理坐标系,生成新的图像的过程 直方图均衡:将随机分布的图像直方图修改成均匀分布的直方图,其实质是对图像进行非线 判读标志:各种地物在图像上的各种特有表现形式,通常包括形状、大小、图形、阴影、位置、纹理、类型等 空间分辨力:传感器瞬时视场所观察到地面的大小 几何分辨力:能分辨出的最小地物的大小。 时间分辨率:我们把传感器对同一目标进行重复探测时,相邻两次探测的时间间隔成为遥感图像的时间分辨率。 监督分类:已知遥感图像上样本区地物的类属,利用这些样本类别的特征作为依据来识别非样本数据的类别。

遥感期末试卷1

一、填空题(每空1分,共20分) 1、TM影像为专题制图仪获取的图像。其在①、②、③方面都比MSS图像有较大改进。 2、绝对黑体不仅具有最大的___① ____,也具有最大的_②______,却丝毫不存在__ ③_____。 3、、当电磁波能量入射到地物表面上,将会出现三种过程,一部分能量被地物① _ ,一部分能量被地物 ②,成为地物本身内能,一部分能量被地物③。 4、陆地卫星的轨道是①轨道,其图像覆盖范围约为②平方公里。SPOT卫星较之陆地卫星,其最大优势是最高空间分辨率达到③。 5、、按高度划分,遥感平台大致可以分为__① ______、_ ② ____、__③ _三种。 6、_①年,我国第一颗地球资源遥感卫星(中巴地球资源卫星)在太原卫星发射中心发射成功。 7、、引起辐射畸变的原因有两个,即① _ 和②。 8、遥感图象的数字化需要经过__① ____和___ ② __两个阶段。 二、选择题。(每小题2分,共20分。) 1、绝对黑体是指() (A)某种绝对黑色自然物体 (B)吸收率为1,反射率为0的理想物体 (C)吸收率为0,反射率为1的理想物体 (D)黑色的烟煤 2、为什么晴朗的天空呈现蓝色?() A、瑞利散射 B、米氏散射 C、择性散射 D、折射 3、大气对电磁辐射的吸收作用的强弱主要与下面哪一个有关。() A.电磁辐射的波长 B.大气物质成分的颗粒大小 C.大气物质成分的密度 D.电磁辐射的强弱 4、当前遥感发展的主要特点中以下不正确的是:() (A)高分辨率小型商业卫星发展迅速 (B)遥感从定性走向定量 (C)遥感应用不断深化 (D)技术含量高,可以精确的反映地表状况,完全可以代替地面的调查。 5、下面遥感传感器属于主动方式的是:( ) A、TV摄象机 B、红外照相机

遥感原理与应用知识点汇编

学习-----好资料 第一章电磁波及遥感物理基础 一、名词解释: 1遥感:(1)广义的概念:无接触远距离探测(磁场、力场、机械波); (2)狭义的概念:在遥感平台的支持下,不与目标地物相接触,利用传感器从远处将目标 地物的地磁波信息记录下来,通过处理和分析,揭示出地物性质及其变化的综合性探测技术。2、电磁波:变化的电场和磁场的交替产生,以有限的速度由近及远在空间内传播的过程称为电磁波。 3、电磁波谱:将电磁波在真空中传播的波长或频率递增或递减依次排列为一个序谱,将此序谱称为电磁波谱。 4、绝对黑体:对于任何波长的电磁辐射都全部吸收的物体称为绝对黑体。 5、绝对白体:反射所有波长的电磁辐射。 6、光谱辐射通量密度:单位时间内通过单位面积的辐射能量。 8、大气窗口:电磁波通过大气层时较少被反射、吸收和散射的,透过率较高的电磁辐射波 段。 11、光谱反射率:p =P P/P O X 100%,即物体反射的辐射能量P P占总入射能量R的百分比,称为反射率p。 12、光谱反射特性曲线:按照某物体的反射率随波长变化的规律,以波长为横坐标,反射率为纵坐标所得的曲线。 二、填空题: 1、电磁波谱按频率由高到低排列主要由丫射线、X射线、紫外线、可见光、红外线、微波、无线电波等组成。 2、绝对黑体辐射通量密度是温度T 和波长入的函数。(19页公式) 3、一般物体的总辐射通量密度与绝对温度和发射率成正比关系。 4、维恩位移定律表明绝对黑体的最强辐射波长入乘绝对温度T是常数2897.8。当绝对 黑体的温度增高时,它的辐射峰值波长向短波方向移动。 5、大气层顶上太阳的辐射峰值波长为0.47 卩m。 三、选择题:(单项或多项选择) 1、绝对黑体的(②③) ①反射率等于1②反射率等于0③发射率等于1④发射率等于0。

《遥感原理与应用》习题答案

遥感原理与应用习题 第一章遥感物理基础 一、名词解释 1 遥感:在不接触的情况下,对目标或自然现象远距离感知的一门探测技术。 2遥感技术:遥感技术是从人造卫星、飞机或其他飞行器上收集地物目标的电磁辐射信息,判认地球环境和资源的技术。 3电磁波:电磁波(又称电磁辐射)是由同相振荡且互相垂直的电场与磁场在空间中以波的形式移动,其传播方向垂直于电场与磁场构成的平面,有效的传递能量和动量。电磁辐射可以按照频率分类,从低频率到高频率,包括有无线电波、微波、红外线、可见光、紫外光、4电磁波谱:把各种电磁波按照波长或频率的大小依次排列,就形成了电磁波谱 5绝对黑体:能够完全吸收任何波长入射能量的物体 6灰体:在各种波长处的发射率相等的实际物体。 7绝对温度:热力学温度,又叫热力学温标,符号T,单位K(开尔文,简称开) 8色温:在实际测定物体的光谱辐射通量密度曲线时,常常用一个最接近灰体辐射曲线的黑体辐射曲线作为参照这时的黑体辐射温度就叫色温。 9大气窗口:电磁波通过大气层时较少被反射、吸收和散射的,透过率较高的波段称。 10发射率:实际物体与同温度的黑体在相同条件下的辐射功率之比。 11光谱反射率:物体的反射辐射通量与入射辐射通量之比。

12波粒二象性:电磁波具有波动性和粒子性。 13光谱反射特性曲线:反射波谱曲线是物体的反射率随波长变化的规律,以波长为横轴,反射率为纵轴的曲线。 问答题 1黑体辐射遵循哪些规律? (1 由普朗克定理知与黑体辐射曲线下的面积成正比的总辐射通量密度W随温度T的增加而迅速增加。 (2 绝对黑体表面上,单位面积发射的总辐射能与绝对温度的四次方成正比。 (3 黑体的绝对温度升高时,它的辐射峰值向短波方向移动。 (4 好的辐射体一定是好的吸收体。 (5 在微波段黑体的微波辐射亮度与温度的一次方成正比。 2电磁波谱由哪些不同特性的电磁波段组成?遥感中所用的电磁波段主要有哪些? a. 包括无线电波、微波、红外波、可见光、紫外线、x射线、伽玛射线等 b. 微波、红外波、可见光 3 物体的辐射通量密度与哪些因素有关?常温下黑体的辐射峰值波长是多 少?

遥感原理期末复习资料(知识点汇总)

遥感的定义: 遥感是指利用飞机、卫星或其他飞行器等运载工具(平台)上安装的某种装置(传感器),探测目标的特征信息(电磁波的反射或发射辐射),经过传输、处理,从中提取感兴趣信息的过程 遥感类型:按平台分为地面遥感、航空遥感、航天遥感、宇航遥感 遥感信息特点: (1)真实性、客观性 (2)探测范围大 (3)资料新颖且能迅速反应动态变化 (4)成图迅速 (5)收集资料方便 遥感系统的组成: 1、目标的信息特性 2、目标信息的传输 3、空间信息的采集 4、地面接收与预处理 5、信息处理 6、信息分析与应用

电磁波:交互变化的电磁场在空间的传播。 (1)电磁波与电磁波谱红外划分 ※紫外线:波长范围为0.01~0.38um,太阳光谱中只有0.3~0.38um波长的光到达地面,对油污染敏感,但探测高度在2000m 以下。 ※可见光:波长范围0.38~0.76um,人眼对可见光有敏锐的感觉,是遥感技术应用中的重要波段。 ※红外线:波长范围为0.76~1000um,根据性质可分为近红外、中红外、远红外和超远红外。 ※微波:波长范围为1mm~1m,穿透性好,不受云雾的影响。红外划分: ※近红外:0.76~3.0um,与可见光相似。 ※中红外:3.0~6.0um,地面常温下的辐射波长,有热感,又

叫热红外。 ※远红外:6.0~15.0um,地面常温下的辐射波长,有热感,又叫热红外。 ※超远红外:15.0~1000um,多被大气吸收,遥感探测器一般无法探测。 偏振:指横波的振动矢量偏于某些方向的现象或振动方向对于传播方向的不对称性。 黑体:在任何温度下,对各种波长的电磁辐射的吸收系数等于1(100%)的物体。 ※黑体辐射:黑体的热辐射称为黑体辐射。 黑体辐射定律:包括普朗克定律,玻尔兹曼定律,维恩位移定律,瑞里—金斯公式(注:基尔霍夫定律是一般物体发射定律。) 发射率概念:地物的辐射出射度(单位面积上发出的辐射总通量)W与同温度下的黑体辐射出射度 W黑的比值。 按照发射率与波长的关系,把地物分为: 黑体或绝对黑体:发射率为1,常数 灰体:发射率小于1,常数 选择性辐射体:反射率小于1,且随波长而变化。 物体的发射辐射—基尔霍夫定律:在一定温度下,地物单位面积上的辐射通量W和吸收率之比,对于任何物体都是一个常数,并等于该温度下同面积黑体辐射通量W 黑。在给定的温度下,物体的发射率=吸收率(同一波段);吸收率越大,发射率也越

遥感原理与应用期末复习题

1.广义遥感:泛指一切无接触的远距离探测,包括对电磁场、力场、机械波(声波、地震波)等的探测 2.狭义遥感:在高空或者外层空间的各种平台上,通过各种传感器获得地面电磁波辐射信息,通过数据的传输 和处理揭示地面物体的特征、性质及其变化的综合性探测技术。 3.传感器是收集、量测和记录遥远目标的信息的仪器,是遥感技术系统的核心。传感器一般由信息收集、探测 系统、信息处理和信息输出4部分组成。 4.遥感平台是装载传感器的运载工具 5.主动遥感:传感器主动发射一定电磁波能量并接收目标的后向散射信号。如:雷达。被动遥感:传感器不向目标发射电磁波,仅被动地接收目标物的自身发射和对自然辐射的反射能量。太阳是被动遥感最主要的辐射源多波段遥感:在可见光和红外波段间,再细分成若干窄波段,以此来探测目标。 6.遥感分类:按照遥感的工作平台分类:地面遥感、航空遥感、航天遥感。按照探测电磁波的工作波段分类:可见光 遥感、红外遥感、微波遥感、多波段遥感等。按照遥感应用的目的分类:环境遥感、农业遥感、林业遥感、地质遥感 等.按照资料的记录方式:成像方式、非成像方式(如:雷达辐射计等)按照传感器工作方式分类:主动遥感、被动遥 感 7.遥感的特点:大面积的同步观测、时效性、数据的综合性和可比性、经济性、局限性。 1.电磁波:由振源发出的电磁振荡在空气中传播。 2.电磁辐射:这种电磁能量的传递过程(包括辐射、吸收、反射和透射)称为电磁辐射。 3.电磁波谱:将各种电磁波在真空中的波长按其长短,依次排列制成的图表。 4.地球辐射的分段特性:一、内容:1、0.3~2.5μm(可见光与近红外):地表以反射太阳辐射为主,地球自身热辐射 可忽略不计。2、2.5~6μm(中红外):地表以反射太阳辐射、地球自身热辐射均为被动RS辐射源。3、6μm以上(远 红外):以地球自身热辐射为主,地表以反射太阳辐射可忽略不计。二、意义:1、可见光和近红外RS影像上的信息来自地物反射特性。 2、中红外波段遥感影像上信息既有地表反射太阳辐射的信息,也有地球自身热辐射信息。3、热红外波段遥感影像上的信息来自地物本身的辐射特性。 5.绝对黑体:如果一个物体对于任何波长的电磁辐射都全部吸收,则这个物体是绝对黑体。绝对黑体则是吸收率≡1,反射率≡0,与物体的温度和电磁波波长无关。 6.黑体辐射规律:普 5.图2.11太阳辐照度分布曲线分析:太阳光谱相当于5800K的黑体辐射;据高分辨率光谱仪观察,太阳光谱连续的光谱线的明亮背景上有许多离散的明暗线,称为弗朗和费吸收线,据此可以探测太阳光球中的元 素及其在太阳大气中的比例;太阳辐射的能量主要集中在可见光,其中0.38 ~0.76μm的可见光能量占太阳辐射总 能量的46%,最大辐射强度位于波长0.47μm左右;到达地面的太阳辐射主要集中在0.3 ~3.0μm波段,包括近紫外、 可见光、近红外和中红外。这一波段区间能量集中,且相对稳定,是被动遥感主要的辐射源;经过大气层的 太阳辐射有很大的衰减,衰减最大的区间便是大气分子吸收最强的波段;各波段的衰减是不均衡的。 6.大气散射:太阳辐射通过大气时遇到空气分子、尘粒、云滴等质点时,传播方向改变,并向各个方向散开; 7.瑞利散射:当微粒的直径比辐射波长小得多时,此时的散射称为瑞利散射。(大气中的原子和分子,氮、氧、二氧化碳等分子)。特点:散射率与波长的四次方成反比,波长越长,散射越弱;影响:瑞利散射对可见光的影响较大, 对红外辐射的影响很小,对微波的影响可以不计。 问题:多波段遥感中一般不使用蓝紫光的原因?无云的晴天,天空为什么呈现蓝色?朝霞和夕阳为什么都偏橘 红色?蓝紫光波长短,散射强度较大,红光,红外,微波波长较长,散射强度弱。 8.米氏散射:当微粒的直径与辐射光的波长差不多时(即d≈λ)称为米氏散射(烟、尘埃、水滴及气溶胶等)。为何 红外遥感探测时要避免使用云雾天气所成的影像?云雾的粒子大小和红外线的波长接近,所以云雾对红外线的散射 主要是米氏散射,红外遥感不可穿云透雾 9.无选择性散射:当微粒的直径比波长大得多时(即d>λ)所发生的散射称为无选择性散射。为何云雾呈白色?空气中存在较多的尘埃或雾粒,一定范围的长短波都被同样的散射,使天空呈灰白色的。 问题:1、太阳光为何是可见的?2、蓝色火焰为何比红色火焰高?6、微波为何能穿云透雾? 10.大气窗口:通常将这些吸收率和散射率都很小,而透射率高的电磁辐射波段称为大气窗口。 11.典型地物的反射波谱曲线分析:(1)植被反射波谱曲线:规律性明显而独特。可见光波段(0.38~0.76μm)有一个小的反射峰,两侧有两个吸收带。这是因为叶绿素对蓝光和红光吸收作用强,而对绿光反射作用强。在近红外波段 (0.7~0.8 μrn)有一反射的“陡坡”,至1.l μm附近有一峰值,形成植被的独有特征。这是由于植被叶细胞结构

《遥感原理与应用》期末复习重点.doc

绪论 1.1遥感的概念 丄狭义的遥感:应用探测仪器,不与探测目相接触,从远处把目标的电磁波特性纪录下來,通过分析,揭示出物 体的特 征性质及其变化的综合性探测技术。 丄 广义的遥感:泛指一切无接触的远距离探测,包括对电磁波、机械波(声波、地震波)、重力场、地磁场等的 探测。 遥感探测的基本过程 去 辐射源:目标的电磁辐射能量(自身发射,散射、反射) 丄 记录设备(传感器,或有效载荷):扫描仪(多光谱扫描 仪),相机(CCD 相机、全景相机、高分辨率相机等)、 雷达、辐射计、 散射计等。 丄存储设备:胶片、磁带、磁盘 丄传送系统:人造卫星的信号是地血发送到卫星的,在卫星中经过放大、变频转发到地血,山地血接收站接收。 亠 分析解译(人工解译、计算机解译) 1)国外航天遥感的发展 第一代1G 1957年10B4U ,苏联第一颗人造地球卫星发射成功 1960年4月1H,美国发射第一颗气象卫星Tiros 1,为真正航天器对地球观测开始。 1960年Evelyn L. Pruitt 提出“遥感,,一词。1962年在美国密歇根大学召开的笫一次环境遥感国际讨论会上,美国海军研究 局的Eretyn Pruitt (伊?普鲁伊特)首次提出“Remote Sensing 词,会后被普遍采用至今。 1972年7月23 日第一颗陆地卫星ERTS-1 (Earth Resources Technology Satellite 1 )发射(示改名为Landsat-1),装有MSS 传感器,分辨率为79米。1975年1月22R, Landsat-2发射,1978年3月5日,Landsat-3发射。 1978年6月,美国发射了第一颗载有SAR (Synthetic Aperture Radar,合成孔径雷达)卫星的Seasat,以后不同国家陆续 发射 载有SAR 的卫星。 1982年7月16U, Landsat-4反射,装载MSS, TM 传感器,分辨率提高到30米。1985年3月1日,Landsat-5发射,1993年 1()月,Landsat-6发射失败,1999年4月15日,Landsat-7发射,装载ETM+,分辨率提高到15米。 1986年2月,法国发射SFOT-1,装有PAN 和XS 遥感器,分辨率捉高到10米多光谱波段,SPOT-5全色波段分辨率达至l 」5m, 2.5m 。 2000年初美国发射MODIS 是Teira (EOS ?AMl )卫星的主要探测仪器,地面分辨率较低(星下点离间分辨率为250米,500 米,1000米等o 2000年7月15H,笫一颗重力卫星CHAMP 发射成功,它是由德国GFZ 独口研制的,也是世界上首先采用SST 技术的卫星。 2002年,重力卫星GRACE 发射,它是美国(NASA )和德国(GFZ 洪同开发研制的。 2) 中国航天遥感的发展 1970年4月24日发射笫一颗人造卫星“东方红1号”——通信卫星。 1988年9月7日中国发射第一颗气象卫星“风云1号二 1999年1()月14日发射第一颗地球资源卫星“屮国?巴西地球资源遥感卫星” (CBERS-1) (China Brazil Earth Resources Satellite ),最高空间分辨率:19.5米。 3) 小卫星 重量在1000公斤以下的卫星称为小卫星。小卫星质量小于500kg,占卫星总量的70%o 1.3遥感的类型 1)按遥感平台据地面的高低划分 丄 地面遥感:100m 以下平台与地面接触,平台冇:汽车、船舰、三角架、塔等。为航空和航天遥感作校准和辅 助工作。 丄航空遥感:100m-100km 以下的平台,平台有:飞机和气球。可以进行各种遥感实验和校正工作。特点:灵活 大、图像 《遥感》重点章节1.3.5.8 1.2遥感发展简史 * 无记录的地面遥感阶段(1608-1838年) * 有记录的地而遥感阶段(1839-1857年) 4 空中摄影遥感阶段(1858-1956年) 4 航天遥感阶段(1957-)

遥感原理与应用习题

遥感原理与应用习题 第一章电磁波及遥感物理基础 名词解释: 1、遥感 2、遥感技术 3、电磁波 4、电磁波谱 5、绝对黑体 6、绝对白体 7、灰体 8、绝对温度 9、辐射温度 10、光谱辐射通量密度 11、大气窗口12、发射率 13、热惯量 14、热容量 15、光谱反射率 16、光谱反射特性曲线 填空题: 1、电磁波谱按频率由高到低排列主要由 ____ 、 ____ 、 ____ 、 ____ 、 ____ 、 ____ 、 ____ 等组成。 2、绝对黑体辐射通量密度是 ____ 和 ____ 的函数。 3、一般物体的总辐射通量密度与 ____ 和 ____ 成正比关系。 4、维恩位移定律表明绝对黑体的 ____ 乘 ____ 是常数2897.8。当绝对黑体的温度增高时,它的辐射峰值波长向 ____ 方向移动。 5、大气层顶上太阳的辐射峰值波长为 ____ μm 选择题:(单项或多项选择) 1、绝对黑体的①反射率等于1 ②反射率等于0 ③发射率等于1 ④发射率等于0。 2、物体的总辐射功率与以下那几项成正比关系①反射率②发射率③物体温度一次方④物体温度二次方

⑤物体温度三次方⑥物体温度四次方。 3、大气窗口是指①没有云的天空区域②电磁波能穿过大气层的局部天空区域③电磁波能穿过大气的电磁波谱段④没有障碍物阻挡的天空区域。 4、大气瑞利散射①与波长的一次方成正比关系②与波长的一次方成反比关系③与波长的二次方成正比关系④与波长的二次方成反比关系⑤与波长的四次方成正比关系⑥与波长的四次方成反比关系⑦与波长无关。 5、大气米氏散射①与波长的一次方成正比关系②与波长的一次方成反比关系③与波长无关。 问答题: 1、电磁波谱由哪些不同特性的电磁波组成?它们有哪些不同点,又有哪些共性? 2、物体辐射通量密度与哪些因素有关?常温下黑体的辐射峰值波长是多少? 3、叙述沙土、植物和水的光谱反射率随波长变化的一般规律。 4、地物光谱反射率受哪些主要的因素影响? 5、何为大气窗口?分析形成大气窗口的原因,并列出用于从空间对地面遥感的大气窗口的波长范围。 6、传感器从大气层外探测地面物体时,接收到哪些电磁波能量? 第二章遥感平台及运行特点 名词解释: 1、遥感平台 2、遥感传感器 3、卫星轨道参数 4、升交点赤经 5、轨道倾角 6、近地点角距 7、地心直角坐标系 8、大地地心直角坐标系 9、卫星姿态角10、开普勒第三定理 11、重复周期 12、近圆形轨道__ 13、与太阳同步轨道14、近极地轨道 15、偏移系数__ 16、GPS 17、ERTS_1__ 18、LANDSAT_1 19、SPOT 20、

遥感原理与应用(试题及答案数套)嘉园

遥感原理与应用 练习一: A卷参考答案要点 一、名词解释 1.绝对黑体:指能够全部吸收而没有反射电磁波的理想物体。 2.大气窗口:大气对电磁波有影响,有些波段的电磁波通过大气后衰减较小,透过率较高的波段。 3.图像融合:由于单一传感器获取的图像信息量有限,难以满足应用需要,而不同传感器的数据又具有不同的时间、空间和光谱分辨率以及不同的极化方式,因此,需将这些多源遥感图像按照一定的算法,在规定的地理坐标系,生成新的图像,这个过程即图像融合。 4.距离分辨力:指侧视雷达在发射脉冲方向上能分辨地物最小距离的能力。它与脉冲宽度有关,而与距离无关。 5.特征选择:指从原有的m个测量值集合中,按某一规则选择出n个特征,以减少参加分类的特征图像的数目,从而从原始信息中抽取能更好的进行分类的特征图像。即使用最少的影像数据最好的进行分类。 二、简答题(45) 1.分析植被的反射波谱特性。说明波谱特性在遥感中的作用。 由于植物进行光合作用,所以各类绿色植物具有相似的反射波谱特性,以区分植被与其他地物。 (1)由于叶绿素对蓝光和红光吸收作用强,而对绿色反射作用强,因而在可见光的绿波段有波峰,而在蓝、红波段则有吸收带; (2)在近红外波段(0.8-1.1微米)有一个反射的陡坡,形成了植被的独有特征; (3)在近红外波段(1.3-2.5微米)受绿色植物含水量的影响,吸收率大增,反射率大大下降;但是,由于植被中又分有很多的子类,以及受到季节、病虫害、含水量、波谱段不同等影响使得植物波谱间依然存在细部差别。 波谱特性的重要性: 由于不同地物在不同波段有着不同的反射率这一特性,使得地物的波谱特性成为研究遥感成像机理,选择遥感波谱段、设计遥感仪器的依据;在外业测量中,它是选择合适的飞行时间和飞行方向的基础资料;有效地进行遥感图像数字处理的前提之一;用户判读、识别、分析遥感影像的基础;定量遥感的基础。 3.遥感图像目视判读的依据有哪些,有哪些影响因素? 地物的景物特征:光谱特征、空间特征和时间特征。 影响因素包括:地物本身复杂性,传感器的性能以及目视能力。 4.写出ISODATA的中文全称和步骤。 迭代自组织数据分析算法 步骤: 1)初始化;2)选择初始中心;3)按一定规则(如距离最小)对所有像元划分; 4)重新计算每个集群的均值和方差;按初始化的参数进行分裂和合并; 5)结束,迭代次数或者两次迭代之间类别均值变化小于阈值; 6)否则,重复3-5;7)确认类别,精度评定。 6.写出MODIS中文全称,指出其特点。 MODIS即中等分辨力成像光谱仪,其特点是:

相关主题