搜档网
当前位置:搜档网 › 随机过程报告记录——马尔可夫链

随机过程报告记录——马尔可夫链

随机过程报告记录——马尔可夫链
随机过程报告记录——马尔可夫链

随机过程报告记录——马尔可夫链

————————————————————————————————作者:————————————————————————————————日期:

马尔可夫链

马尔可夫链是一种特殊的随机过程,最初由A.A .M arkov 所研究。它的直观背景如下:设有一随机运动的系统E (例如运动着的质点等),它可能处的状态记为

,....E ,...,E ,E n 10总共有可数个或者有穷个。这系统只可能在时刻t=1,2,…n,…上

改变它的状态。随着∑的运动进程,定义一列随机变量Xn,n=0,1, 2, ?其中Xn=k ,如在t=n 时,∑位于Ek 。

定义1.1 设有随机过程}{T n X n ∈,,若对任意的整数T n ∈和任意的

,,...,110I i i i n ∈+条件概率满足

}i {},...,i X i {1n 100

01n 1n n n n n n i X X P i X X P ======++++ 则称}{T n X n ∈,为马尔可夫链,简称为马氏链。

实际中常常碰到具有下列性质的运动系统∑。如果己知它在t=n 时的状态,则关于它在n 时以前所处的状态的补充知识,对预言∑在n 时以后所处的状态,不起任何作用。或者说,在己知的“现在”的条件下, “将来”与“过去”是无关的。这种性质,就是直观意义上的“马尔可夫性”,或者称为“无后效性”。 假设马尔可夫过程}{T n X n ∈,的参数集T 是离散时间集合,即T={0,1,2,…},其相应Xn 可能取值的全体组成的状态空间是离散状态空间I={1,2,..}。

定义1.2 条件概率

}{P 1)(i X j X p n n n ij ===+

称为马尔可夫链}{T n X n ∈,在时刻n 的一步转移矩阵,其中i ,j ∈I ,简称为转

移概率。

一般地,转移概率)(P n ij 不仅与状态i,j 有关,而且与时刻n 有关。当)(P n ij 不依赖于时刻n 时,表示马尔可夫链具有平稳转移概率。若对任意的i ,j ∈I ,马尔可夫

链Xn,n ∈T}的转移概率)(P n ij 与n 无关,则称马尔可夫链是齐次的。

定义1.3 设p 表示一步转移概率p ,所组成的矩阵,且状态空间1={1,2,…n},则

称为马尔可夫链的一步转移概率矩阵。它具有如下性质: (1);.,0P ij I j i ∈≥,

I

i P I

j ij ∈=∑∈,1)2(

定理1.1 设}{T n ∈,X n 为马尔可夫链,则对任意的≥∈n ,....2,1和I i i i n 1,有

这表明马尔可夫链的有限维分布完全由它的初始概率和一部转移概率所决定。因此,只要知道初始概率和一部转移概率,就可以知道马尔可夫链的统计特性。

定义1.4 假设{Xn ,n ≥0}是齐次马尔可夫链,其状态空间为I ,转移概率为Pij ,

称概率分布{I

j j

∈,π }为马尔可夫链的平稳分布,若它满足

对于不可约马尔可夫链,若它的状态是非周期,正常返的,则它是遍历的; 对 于不可约马尔可夫链,若它的状态是有限且非周期的,则它是遍历的。

值得注意 的是,对于一个马尔可夫链,并不是一定存在)(n n p lim ∞

→。例如设马尔可

夫链的一部转移矩阵为:

易知I p 2n =)((单位矩阵),p p 12n =+)( ,所以)

(n n p lim ∞

→ 不存在。

在随机过程理论中,马尔可夫链是一类占有重要地位,具有普遍意义的随机 过程。它广泛应用于现代社会的各个领域,尤其在预测领域有着广泛的应用。马尔可夫链的预测方法分为很多种。

根据指标值序列分组有3种。1)数据序列约定俗成的分组方法:根据 人 们 长久的经验进行分组:由于人们在现实生活中积累了生活经验,人们对认识的事物有了感性的了解,就可以对现象进行分组。2)样本均值一均方差分组法:对于数据序列n x x x ,...,,21,可看作是一个时间序列的前n 个观测值,算出样本均值x 和样本均方差s ,根据具体情况以样本均值为中心,s 为标准进行分组。3)有序聚类分组法:有序聚类是对有序样品进行分类的一种方法,更加充分地考虑序列的数据结构,使划分的区间更加合理。有序聚类实现的经典算法是Fisher 算法,其基本原理为:设时间序列n x x x ,...,,21的某一归类是

定义其均值向量为

将公式

定义为{n x x x ,...,,21} 的直径,其含义表示该变量段内部各变量之间的差异情况。其值越小,表示该段内变量之间差异越小,或说相互间越接近;反之,表示该段 内变量之间差异越大,或说相互间越分散。 三种马氏链预测方法:

1)基于绝对分布的马尔可夫链预测 步骤1 对历史数据进行分组;

步骤2 确定观测值的状态,写出频数矩阵,)(,E j i ij n ∈和一步转移矩阵E j i ij f ∈,)(,

其中1

-n n f ij ij =

,其中n 为样本容量,当时∞→n ,可用频数估计概率ij ij f p =∧

,从

而得到一步转移概率矩阵∧

∧=ij 1p p 。 步骤3 “马氏性”检验

步骤4 已知时刻l 时系统取各个状态的概率可视为马尔可夫链的初始分布, 比如x1取状态2, m=5,则始分布(0)P =(0,1,0,0,0),于是l+1时的绝对分布

)P ,P ,P ,P ,(P P P P (5)

5(4)4(3)3(2)2(1)1(0)1==)(,可认为时刻1+1时系统所取的状态j 满足}P {max P i 15

i 1j 1)(≤≤=,从而预测1+ t 时刻的状态。

步骤5 还可以用马氏链的平稳性,遍历性对系统分析。 2)叠加马氏链预测

步骤1 对历史数据进行分组;

步骤2 计算各阶的一步转移矩阵},...2,1{P ...P P k 21k I =,,

,,其中E j i ij f P ∈=,22)(,=2ij f

2

-n n (2)

ij

,其他类推。

步骤3“马氏性”检验

步骤4 如果要预测时刻1+1的状态,可分别利用1, 1-1,?,1-k+1作为初始态,,l+1所处的状态j 满足}P {max P i 5

i 1j )

()(≤≤=。列表分析

图1 叠加马氏链预测分析表 步骤5 重复步骤1-4递推预测;

步骤6 进行平稳性,遍历性及其他分析。 3)加权马氏链预测

步骤1 对历史数据进行分组;

步骤2 计算各阶的一步转移矩阵},...2,1{P ...P P k 21k I =,,

,,其中E j i ij f P ∈=,22)(,

2ij

f

2

-n n (2)ij

,其他类推。

步骤3 “马氏性”检验; 步骤4 计算各阶相关系数:

计算规范的相关系数:

步骤5 预测n+1时刻的状态

步骤6 重复1-5,预测n+2时刻的状态,其余类推 步骤7 讨论其他性质。

马尔可夫预测方法是马尔可夫链在预测领域的一种应用方法。最初这种方法在水文,气象,地震等方面有广泛的应用,之后经济学家将其应用于研究市场占有率,预测经营利润等方面。在马尔可夫预测方法中,一个非常重要的问题就是对一步状态转移概率矩阵的估算。

下面以实例分析马尔可夫链在现实生活中的应用。下面给出长江水域6类水质所占的比例。

现在要对长江未来10年的水质污染的发展趋势做一个总体的预测。

为此可建立长江水质污染的马尔可夫链趋势预测的一步转移概率矩阵估计的最优化模型。设枯水期长江全流域水质在第t 年属于Ⅰ类、Ⅱ类、Ⅲ类、Ⅳ类、Ⅴ类、劣Ⅴ类这6类状态的比例向量分别为

9,....2,1,0,)6(P ),...2(P ),1(P t t t t ==t )()(α.设66)(?=ij p P 为6类状态矩阵的一步转移概率,根据误差平方和达到最小的准则,建立如下最优化模型:

用matlab 软件求解得

由下式

可以对长江未来10年的水质污染属于Ⅰ类、Ⅱ类、Ⅲ类、Ⅳ类、Ⅴ类、劣Ⅴ类这6类状态的比例向量作出预测,预测结果见下表

从预测计算结果可以看出:枯水期长江全流域水质属于Ⅳ类、Ⅴ类、劣Ⅴ类这3类状态的比例并没有发生根本性的减少,水质污染程度依然十分严重。

因此我们要采取积极措施,例如要严加控制企业废水和城市生活垃圾乱排乱放,政府要大力推进城市发展生态农业和有机农业,综合防治面源污染。加大宣传力度,使群众能够清醒地认识到水资源危机和保护环境的意识等。只有这样才能保护我们的长江。

马尔可夫链预测模型,关键在于转移概率矩阵的可靠性,因此该预测模型要求足够多足够准确的统计数据,才能保证预测精度。如何利用马氏链做出更符合实际的预测结果是我们今后研究的课题,影响预测结果的因素很多,比如分组情况,分组不同有时候会得出不同的预测结果,有没有更科学的分组方法? 这些都是值得探讨的问题。

107509-概率统计随机过程课件-第十三章马尔可夫链第一节第二节(上)

第十三章 马尔可夫链 马尔可夫过程是一类特殊的随 机过程, 马尔可夫链是离散状态的马尔可夫过程,最初是由俄国数学家马尔可夫1896年提出和研究的. 应用十分广泛,其应用领域涉及 计算机,通信,自动控制,随机服务,可靠性,生物学,经济,管理,教育,气象,物理,化学等等. 第一节 马尔可夫链的定义 一.定义 定义 1 设随机过程} ),({T t t X ∈的状态空间S 是有限集或可列集,对任意正整数n ,对于T 内任意1+n 个参数121+<

如果条件概率 })(,,)(,)(|)({221111n n n n j t X j t X j t X j t X P =???===++})(|)({11n n n n j t X j t X P ===++,(13.1) 恒成立,则称此过程为马尔可夫链. 式(13.1)称为马尔可夫性,或称无后效性. 马氏性的直观含义可以解释如下: 将n t 看作为现在时刻,那末,121,,,-???n t t t 就是过去时刻,而1+n t 则是将来时刻.于是,(13.1)式是说,当已知系统现时情况的条件下,系统将来的发展变化与系统的过去无关.我们称之为无后效性. 许多实际问题都具有这种无后 效性. 例如 生物基因遗传从这一代 到下一代的转移中仅依赖于这一代而与以往各代无关. 再如,每当评估一个复杂的计 算机系统的性能时,就要充分利用系统在各个时刻的状态演变所具有

的通常概率特性:即系统下一个将到达的状态,仅依赖于目前所处的状态,而与以往处过的状态无关. 此外,诸如某公司的经营状况 等等也常常具有或近似具有无后效性. 二. 马尔可夫链的分类 状态空间S 是离散的(有限集或可列集),参数集T 可为离散或连续的两类. 三.离散参数马尔可夫链 (1)转移概率 定义2 在离散参数马尔可夫链 },,,,,),({210??????=n t t t t t t X 中, 条件概率 )(})(|)({1m ij m m t p i t X j t X P ===+ 称为)(t X 在时刻(参数)m t 由状态i 一 步转移到状态j 的一步转移概率, 简称转移概率.

随机过程-C4马尔可夫链

练习四:马尔可夫链 随机过程练习题 1.设质点在区间[0,4]的整数点作随机游动,到达0点或4点后以概率1停留在原处, 在其它整数点分别以概率 3 1 向左、右移动一格或停留在原处。求质点随机游动的一步和二步转移的概率矩阵。 2.独立地重复抛掷一枚硬币,每次抛掷出现正面的概率为p ,对于2≥n 求,令n X =0, 1,2或3,这些值分别对应于第1-n 次和第n 次抛掷的结果为(正,正),(正,反), (反,正)或(反,反)。求马尔可夫链},2,1,0,{ =n X n 的一步和二步转移的概率矩阵。 3.设}0,{≥n X n 为马尔可夫链,试证: (1)},,,|,,,{11002211n n m n m n n n n n i X i X i X i X i X i X P ======++++++ }|,,,{2211n n m n m n n n n n i X i X i X i X P =====++++++ (2)}|,,,,,,{11221100++++++======n n m n m n n n n n i X i X i X i X i X i X P }|,,,{111100++=====n n n n i X i X i X i X P ==?+++m n n n X i X P ,,{22 }|11+++=n n m n i X i 4.设}1,{≥n X n 为有限齐次马尔可夫链,其初始分布和转移概率矩阵为==0{X P p i 4,3,2,1,4 1}==i i ,???? ?? ? ??=4/14/14/14/18/34/18/14/14/14/14/14/14/14/14/14/1P ,试证 }41|4{}41,1|4{12102<<=≠<<==X X P X X X P 5.设}),({T t t X ∈为随机过程,且)(11t X X =,,),(22 t X X = ),(n n t X X =为独 立同分布随机变量序列,令2,,)(,011110≥=+===-n X cY Y X t Y Y Y n n n ,试证 }0,{≥n Y n 是马尔可夫链。 6.已知随机游动的转移概率矩阵为???? ? ??=5.005.05.05.0005.05.0P ,求三步转移概率矩阵) 3(P 及 当初始分布为1}3{,0}2{}1{000======X P X P X P 时经三步转移后处于状态 3的概率。 7.已知本月销售状态的初始分布和转移概率矩阵如下: (1))4.0,2.0,4.0()0(=T P ,???? ? ??=6.02.02.02.07.01.01.08.08.0P ;

随机过程——马尔可夫过程的应用

随机过程——马尔可夫过程的应用 年级:2013级 专业:通信工程3班 姓名:李毓哲 学号:31

摘要:随机信号分析与处理是研究随机信号的特点及其处理方法的专业基础, 是目标检测、估计、滤波灯信号处理理论的基础,在通信、雷达、自动检测、随机振动、图像处理、气象预报、生物医学、地震信号处理等领域有着广泛的应用,随着信息技术的发展,随机信号分析与处理的理论讲日益广泛与深入。 随机过程是与时间相关的随机变量,在确定的时刻它是随机变量。随机过程的具体取值称作其样本函数,所有样本函数构成的集合称作随机过程的样本函数空间,所有样本函数空间及其统计特性即构成了随机过程。通信工程中存在大量的随机现象和随机问题。如:信源是随机过程;信道不仅对随机过程进行了变换,而且会叠加随机噪声等。 马尔可夫过程是一类非常重要的随机过程。随着现代科学技术的发展,很多在应用中出现的马氏过程模型的研究受到越来越多的重视。在现实世界中,有很多过程都是马尔可夫过程,马尔可夫过程在研究质点的随机运动、自动控制、通信技术、生物工程等领域中有着广泛的应用。我们可以通过对马尔可夫过程的研究来分析马尔可夫信源的特性。 关键词:随机过程,马尔可夫过程,通信工程,应用

目录 一、摘要 二、随机过程 、随机过程的基本概念及定义 、随机过程的数学描述 、基于MATLAB的随机过程分析方法三、马尔可夫过程 马尔可夫过程的概念 马尔可夫过程的数学描述 四、马尔可夫过程的应用 马尔可夫模型在通信系统中的应用 马尔可夫模型在语音处理的应用 马尔可夫模型的其他应用 五、结论 参考文献

二、随机过程 、随机过程的基本概念及定义 自然界变换的过程通常可以分为两大类——确定过程和随机过程。如果每次试验所得到的观测过程都相同,且都是时间t的一个确定函数,具有确定的变换规律,那么这样的过程就是确定过程。反之,如果每次试验所得到观测过程都不相同,是时间t的不同函数,没有为确定的变换规律,这样的过程称为随机过程。 、随机过程的数学描述 设随机试验E的样本空间Ω,T是一个数集(T∈(-∞,∞)),如果对于每一个t ∈T,都有一个定义在样本空间Ω上的随机变量 X(w,t),w∈Ω,则称依赖于t的一族随机变量{X(w,t),t∈T}为随机过程或随机函数,简记为{X(t),t∈T }或X(t),其中t称为参数,T称为参数集。当T={0,1,2,…},T={1,2,…},T={…,-2,-1,0,1,2,…}时,{X(w,t)t∈T}称为随机序列或时间序列。 、基于MATLAB的典型随机过程的仿真 信号处理仿真分析中都需要模拟产生各种随机序列,通常都是先产生白噪声序列,然后经过变换得到相关的随机序列,MATLAB有许多产生各种分布白噪声的函数。

随机过程与马尔可夫链习题答案

信息论与编码课程习题1——预备知识 概率论与马尔可夫链 1、某同学下周一上午是否上课,取决于当天情绪及天气情况,且当天是否下雨与心情好坏没有关系。若下雨且心情好,则50%的可能会上课;若不下雨且心情好,则有10%的可能性不上课;若不下雨且心情不好则有40%的可能性上课;若下雨且心情不好,则有90%的可能不会上课。假设当天下雨的概率为30%,该同学当天心情好的概率为20%,试计算该同学周一上课的可能性是多大? 分析: 天气情况用随机变量X 表示,“0”表示下雨,“1”表示不下雨;心情好坏用Y 表示,“0”表示心情好用“0”表示,心情不好用“1”表示;是否上课用随机变量Z 表示,“0”表示上课,“1”表示不上课。由题意可知 已知[]5.00,0|0====Y X Z P ,[]5.00,0|1====Y X Z P []1.00,1|1====Y X Z P ,[]9.00,1|0====Y X Z P []4.01,1|0====Y X Z P ,[]6.01,1|1====Y X Z P []9.01,0|1====Y X Z P ,[]1.01,0|0====Y X Z P []3.00==X P ,[]7.01==X P []2.00==Y P ,[]8.01==Y P 即题目实际上给出了八个个条件概率和四个概率 [][][][]0,0|00|000===?==?===X Y Z P X Y P X P Z P [][][]0,1|00|10===?==?=+X Y Z P X Y P X P [][][]1,0|01|01===?==?=+X Y Z P X Y P X P [][][]1,1|01|11===?==?=+X Y Z P X Y P X P 由于X ,Y 相互独立,则有 [][][][]0,0|0000===?=?===X Y Z P Y P X P Z P [][][]0,1|010===?=?=+X Y Z P Y P X P [][][]1,0|001===?=?=+X Y Z P Y P X P [][][]1,1|011===?=?=+X Y Z P Y P X P []5.02.03.00??==Z P 1.08.03.0??+9.02.07.0??+1.08.07.0??+ =? 注意:全概率公式的应用 2、已知随机变量X 和Y 的联合分布律如又表所示, 且()Y X Y X g Z +==2 11,,()Y X Y X g Z /,22==, 求:

随机过程-C4马尔可夫链复习过程

随机过程-C4马尔可 夫链

收集于网络,如有侵权请联系管理员删除 练习四:马尔可夫链 随机过程练习题 1.设质点在区间[0,4]的整数点作随机游动,到达0点或4点后以概率1 停留在原处,在其它整数点分别以概率3 1 向左、右移动一格或停留在原 处。求质点随机游动的一步和二步转移的概率矩阵。 2.独立地重复抛掷一枚硬币,每次抛掷出现正面的概率为p ,对于2 ≥n 求,令n X =0,1,2或3,这些值分别对应于第1-n 次和第n 次抛掷的结果为(正,正),(正,反),(反,正)或(反,反)。求马尔可夫链},2,1,0,{Λ=n X n 的一步和二步转移的概率矩阵。 3.设}0,{≥n X n 为马尔可夫链,试证: (1)},,,|,,,{11002211n n m n m n n n n n i X i X i X i X i X i X P ======++++++ΛΛ }|,,,{2211n n m n m n n n n n i X i X i X i X P =====++++++Λ (2)}|,,,,,,{11221100++++++======n n m n m n n n n n i X i X i X i X i X i X P ΛΛ }|,,,{111100++=====n n n n i X i X i X i X P Λ==?+++m n n n X i X P ,,{22Λ }|11+++=n n m n i X i 4.设}1,{≥n X n 为有限齐次马尔可夫链,其初始分布和转移概率矩阵为 ==0{X P p i 4,3,2,1,4 1}==i i ,???? ? ? ? ??=4/14/14/14/18/34/18/14/14/14/14/14/14/14/14/14/1P ,试证 }41|4{}41,1|4{12102<<=≠<<==X X P X X X P 5.设}),({T t t X ∈为随机过程,且)(11t X X =,,),(22Λt X X =Λ ),(n n t X X =为独立同分布随机变量序列,令 2,,)(,011110≥=+===-n X cY Y X t Y Y Y n n n ,试证}0,{≥n Y n 是马尔可夫链。 6.已知随机游动的转移概率矩阵为??? ?? ??=5.005.05.05.0005.05.0P ,求三步转移概率矩 阵)3(P 及当初始分布为1}3{,0}2{}1{000======X P X P X P 时经三步转 移后处于状态3的概率。 7.已知本月销售状态的初始分布和转移概率矩阵如下: (1))4.0,2.0,4.0()0(=T P ,???? ? ??=6.02.02.02.07.01.01.08.08.0P ;

随机过程报告——马尔可夫链.doc

马尔可夫链 马尔可夫链是一种特殊的随机过程,最初由 A.A .M arkov 所研究。它的直观背景如下 : 设有一随机运动的系统 E ( 例如运动着的质点等 ) ,它可能处的状态记为E 0 , E1 ,..., E n ,.... 总共有可数个或者有穷个。这系统只可能在时刻t=1,2, n, 上改变它的状态。随着的运动进程,定义一列随机变量 Xn,n=0,1, 2, ?其中Xn=k,如在 t=n 时,位于 Ek。 定义 1.1 设有随机过程 X n, n T ,若对任意的整数 n T 和任意的 i 0 , i1 ,...i n 1 I , 条件概率满足 { i n 1 X i ,..., X n i n }{ i n 1 X n i n } P X n 1 0 P X n 1 则称 X n, n T为马尔可夫链,简称为马氏链。 实际中常常碰到具有下列性质的运动系统。如果己知它在t=n 时的状态,则关于它在 n时以前所处的状态的补充知识,对预言在 n时以后所处的状态,不起任何作用。或者说,在己知的“现在”的条件下,“将来”与“过去”是 无关的。这种性质,就是直观意义上的“马尔可夫性”,或者称为“无后效性” 。假设马尔可夫过程 X n, n T 的参数集T是离散时间集合,即T={0,1,2, }, 其相应 Xn可能取值的全体组成的状态空间是离散状态空间I={1,2,..}。 定义 1.2 条件概率 P( n) { j X n i } ij p X n 1 称为马尔可夫链X n, n T 在时刻n的一步转移矩阵,其中i,j I ,简称为转移概率。 一般地,转移概率 P ij( n )不仅与状态 i,j 有关,而且与时刻 n有关。当 P ij( n)不依赖于时刻 n时,表示马尔可夫链具有平稳转移概率。若对任意的 i ,j I,马尔可夫

马尔可夫链

马尔可夫过程 编辑词条 一类随机过程。它的原始模型马尔可夫链,由俄国数学家A.A.马尔可夫于1907年提出。该过程具有如下特性:在已知目前状态(现在)的条件下,它未来的演变(将来)不依赖于它以往的演变 ( 过去 ) 。例如森林中动物头数的变化构成——马尔可夫过程。在现实世界中,有很多过程都是马尔可夫过程,如液体中微粒所作的布朗运动、传染病受感染的人数、车站的候车人数等,都可视为马尔可夫过程。关于该过程的研究,1931年A.H.柯尔莫哥洛夫在《概率论的解析方法》一文中首先将微分方程等分析的方法用于这类过程,奠定了马尔可夫过程的理论基础。 目录 马尔可夫过程 离散时间马尔可夫链 连续时间马尔可夫链 生灭过程 一般马尔可夫过程 强马尔可夫过程 扩散过程 编辑本段马尔可夫过程 Markov process 1951年前后,伊藤清建立的随机微分方程的理论,为马尔可夫过程的研究开辟了新的道路。1954年前后,W.费勒将半群方法引入马尔可夫过程的研究。流形上的马尔可夫过程、马尔可夫向量场等都是正待深入研究的领域。 类重要的随机过程,它的原始模型马尔可夫链,由俄国数学家Α.Α.马尔可夫于1907年提出。人们在实际中常遇到具有下述特性的随机过程:在已知它目前的状态(现在)的条件下,它未来的演变(将来)不依赖于它以往的演变(过去)。这种已知“现在”的条件下,“将来”与“过去”独立的特性称为马尔可夫性,具有这种性质的随机过程叫做马尔可夫过程。荷花池中一只青蛙的跳跃是马尔可夫过程的一个形象化的例子。青蛙依照它瞬间或起的念头从一片荷叶上跳到另一片荷叶上,因为青蛙是没有记忆的,当现在所处的位置已知时,它下一步跳往何处和它以往走过的路径无关。如果将荷叶编号并用X0,X1,X2,…分别表示青蛙最初处的荷叶号码及第一次、第二次、……跳跃后所处的荷叶号码,那么{Xn,n≥0} 就是马尔可夫过程。液体中微粒所作的布朗运动,传染病受感染的人数,原子核中一自由电子在电子层中的跳跃,人口增长过程等等都可视为马尔可夫过程。还有些过程(例如某些遗

随机过程 第五章 连续时间的马尔可夫链

第五章 连续时间的马尔可夫链 5.1连续时间的马尔可夫链 考虑取非负整数值的连续时间随机过程}.0),({≥t t X 定义5.1 设随机过程}.0),({≥t t X ,状态空间}0,{≥=n i I n ,若对任意 121...0+<<<≤n t t t 及I i i i n ∈+121,...,,有 })(,...)(,)()({221111n n n n i t X i t X i t X i t X P ====++ =})()({11n n n n i t X i t X P ==++ (5.1) 则称}.0),({≥t t X 为连续时间马尔可夫链. 由定义知,连续时间马尔可夫链是具有马尔可夫性的随机过程,即过程在已知现在时刻n t 及一切过去时刻所处状态的条件下,将来时刻1+n t 的状态只依赖于现在状态而与过去无关. 记(5.1)式条件概率一般形式为 ),(})()({t s p i s X j t s X P ij ===+ (5.2) 它表示系统在s 时刻处于状态i,经过时间t 后转移到状态j 的转移概率. 定义5.2 若(5.2)式的转移概率与s 无关,则称连续时间马尔可夫链具有平稳的或齐次的转移概率,此时转移概率简记为 ),(),(t p t s p ij ij = 其转移概率矩阵简记为).0,,()),(()(≥∈=t I j i t p t P ij 以下的讨论均假定我们所考虑的连续时间马尔可夫链都具有齐次转移概率.简称为齐次马尔可夫过程. 假设在某时刻,比如说时刻0,马尔可夫链进入状态i,而且接下来的s 个单位时间单位中过程未离开状态i,(即未发生转移),问随后的t 个单位时间中过程仍不离开状态i 的概率是多少呢?由马尔可夫我们知道,过程在时刻s 处于状态i 条件下,在区间[s,s+t]中仍然处于i 的概率正是它处于i 至少t 个单位的无条件概率..若记 i h 为记过程在转移到另一个状态之前停留在状态i 的时间,则对一切s,t 0≥有 },{}{t h P s h t s h P i i i >=>+> 可见,随机变量i h 具有无记忆性,因此i h 服从指数分布. 由此可见,一个连续时间马尔可夫链,每当它进入状态i,具有如下性质: (1) 在转移到另一状态之前处于状态i 的时间服从参数为i v 的指数分布;

随机过程报告——马尔可夫链

马尔可夫链 马尔可夫链是一种特殊的随机过程,最初由A.A .M arkov 所研究。它的直观背景如下:设有一随机运动的系统E (例如运动着的质点等),它可能处的状态记为,....E ,...,E ,E n 10总共有可数个或者有穷个。这系统只可能在时刻t=1,2,…n,…上改变它的状态。随着∑的运动进程,定义一列随机变量Xn,n=0,1, 2, ?其中Xn=k ,如在t=n 时,∑位于Ek 。 定义1.1 设有随机过程}{T n X n ∈,,若对任意的整数T n ∈和任意的,,...,110I i i i n ∈+条件概率满足 }i {},...,i X i {1n 100 01n 1n n n n n n i X X P i X X P ======++++ 则称}{T n X n ∈,为马尔可夫链,简称为马氏链。 实际中常常碰到具有下列性质的运动系统∑。如果己知它在t=n 时的状态,则关于它在n 时以前所处的状态的补充知识,对预言∑在n 时以后所处的状态,不起任何作用。或者说,在己知的“现在”的条件下, “将来”与“过去”是无关的。这种性质,就是直观意义上的“马尔可夫性”,或者称为“无后效性”。 假设马尔可夫过程}{T n X n ∈,的参数集T 是离散时间集合,即T={0,1,2,…},其相应Xn 可能取值的全体组成的状态空间是离散状态空间I={1,2,..}。 定义1.2 条件概率 }{P 1)(i X j X p n n n ij ===+ 称为马尔可夫链}{T n X n ∈,在时刻n 的一步转移矩阵,其中i ,j ∈I ,简称为转移概率。 一般地,转移概率)(P n ij 不仅与状态i,j 有关,而且与时刻n 有关。当)(P n ij 不依赖 于时刻n 时,表示马尔可夫链具有平稳转移概率。若对任意的i ,j ∈I ,马尔可夫

随机过程报告记录——马尔可夫链

随机过程报告记录——马尔可夫链

————————————————————————————————作者:————————————————————————————————日期:

马尔可夫链 马尔可夫链是一种特殊的随机过程,最初由A.A .M arkov 所研究。它的直观背景如下:设有一随机运动的系统E (例如运动着的质点等),它可能处的状态记为 ,....E ,...,E ,E n 10总共有可数个或者有穷个。这系统只可能在时刻t=1,2,…n,…上 改变它的状态。随着∑的运动进程,定义一列随机变量Xn,n=0,1, 2, ?其中Xn=k ,如在t=n 时,∑位于Ek 。 定义1.1 设有随机过程}{T n X n ∈,,若对任意的整数T n ∈和任意的 ,,...,110I i i i n ∈+条件概率满足 }i {},...,i X i {1n 100 01n 1n n n n n n i X X P i X X P ======++++ 则称}{T n X n ∈,为马尔可夫链,简称为马氏链。 实际中常常碰到具有下列性质的运动系统∑。如果己知它在t=n 时的状态,则关于它在n 时以前所处的状态的补充知识,对预言∑在n 时以后所处的状态,不起任何作用。或者说,在己知的“现在”的条件下, “将来”与“过去”是无关的。这种性质,就是直观意义上的“马尔可夫性”,或者称为“无后效性”。 假设马尔可夫过程}{T n X n ∈,的参数集T 是离散时间集合,即T={0,1,2,…},其相应Xn 可能取值的全体组成的状态空间是离散状态空间I={1,2,..}。 定义1.2 条件概率 }{P 1)(i X j X p n n n ij ===+ 称为马尔可夫链}{T n X n ∈,在时刻n 的一步转移矩阵,其中i ,j ∈I ,简称为转 移概率。 一般地,转移概率)(P n ij 不仅与状态i,j 有关,而且与时刻n 有关。当)(P n ij 不依赖于时刻n 时,表示马尔可夫链具有平稳转移概率。若对任意的i ,j ∈I ,马尔可夫

相关主题