搜档网
当前位置:搜档网 › 催化剂活性位本质和构效关系的模型催化研究

催化剂活性位本质和构效关系的模型催化研究

催化剂活性位本质和构效关系的模型催化研究

催化剂活性的测定实验思考题

催化剂活性的测定实验思考题 1.为什么氮气的流速要始终控制不变? 答:(1)当氮气的流速为0.1L/min左右时,催化剂的活性较高;(2)V(CO+H2)是通过测有无催化剂时气体的流量差来测定的,因此氮气的流速应始终保持不变。 2.冰盐冷却器的作用是什么?是否盐加得越多越好? 答:(1)冰盐冷却器的作用是将未反应的甲醇蒸气冷凝从而将其截留在捕集器内,使之不影响V(CO+H2)的测量。(2)盐并非加得越多越好。如果盐加的过多,会使冷却器内温度过低,从而使经过的N2、CO及H2温度太低,从而低于湿式流量计上温度计测得的温度,在用理想气体状态方程是会存在一定误差。 3.试评论本实验评价催化剂的方法有什么优缺点。 答:优点: (1)原理巧妙,运用理想气体状态方程及道尔顿分压定律,仅通过测量有无催化剂气体流量的变化便可间接求得甲醇的进入量及反应量;(2)操作简单,只涉及一些基础的操作,如钢瓶、毛细管流量计及湿式流量计的使用等;(3)可以比较不同温度下催化剂的活性;ZnO 可重复利用。 缺点: (1)实验设备较复杂;(2)反应温度较高,存在一定危险性;(3)350℃与420℃催化剂活性差别不大,比较效果不明显;(3)将体系压强近似为大气压,存在一定误差。 4. 毛细管流速计与湿式流量计两者有何异同。 答:相同点:都能通过测量以表征待测气体的流速。 不同点:(1)毛细管流速计与待测气体“并联”,它根据气体在U型管进出口的压力不同而设计,通过U型管两端液面差来显示气体流速大小;湿式流量计待测气体“串联,它是通过直接测量一定时间内通过流量计的气体体积来表征气体流速大小,通过表盘上指针表征转速大小;(2)毛细管流速计只能表示气体瞬时流速大小,而湿式流量计可以准确测量气体在一段时间内的总流量。

催化剂基础知识

工艺基础知识 1.什么是催化剂?催化作用的特征是什么? 答:在化学反应中能改变反应速度而本身的组成和重量在反应前后保持不变的物质叫催化剂。加快反应速度的称正催化剂;减慢的称负催化剂。通常所说的催化剂是指正催化剂。 催化作用改变了化学反应的途径。在反应终了,相对于始态,催化剂虽然不发生变化,但却参与了反应,例如形成了活化吸附态,中间产物等,因而使反应所需的活化能降低。 催化作用不能改变化学平衡状态,但却能缩短了达到平衡的时间,在可逆反应中能以同样的倍率提高正逆反应的速度。催化剂只能加速在热力学上可能发生的反应,而不能加速热力学上不可能发生的反应。 催化作用的选择性。催化剂可使相同的反应物朝不同的方向反应生成不同的产物,但一种催化剂在一定条件下只能加速一种反应。例如一氧化碳和氢气分别使用铜和镍两种催化剂,在相应的条件下分别生成甲醇和甲烷+水。 一种新的催化过程,新的催化剂的出现,往往从根本上改变了某种化学加工过程的状况,有力推动工业生产过程的发展,创造出大量财富,在现代的无机化工、有机化工、石油化工和新兴的海洋石油化工工业中这样的例子不胜枚举。在与人类的生存息息相关的诸多方面如资源的充分利用,提高化学加工过程的效率,合成具有特定性能的

产品,有效地利用能源,减少和治理环境污染以及在生命科学方面,催化作用具有越来越重大的作用。 2.什么是活化能? 答:催化过程之所以能加快反应速度,一般来说,是由于催化剂降低了活化能。为什么催化剂能降低活化能呢?关键是反应物分子与催化剂表面原子之间产生了化学吸附,形成了吸附化学键,组成表面络合物,它与原反应物分子相比,由于吸附键的强烈影响,某个键或某几个键被减弱,而使反应活化能降低很多。催化反映中的活化能实质是实现上述化学吸附需要吸收的能量。从一般意义上来说,反应物分子有了较高的能量,才能处于活化状态发生化学反应。这个能量一般远较分子的平均能量为高,两者之间的差值就是活化能。在一定温度下,活化能愈大,反应愈慢,活化能愈小,反应愈快。对于特定的反应物的催化剂而言,反应物分子必须跨过相应的能垒才能实现化学吸附,进而发生化学反应。简言之,在化学反应中使普通分子变成活化分子所须提供的最小能量就是活化能。其单位通常用千卡/克分子或千焦/摩尔表示。 3.什么是催化剂活性?活性表示方法有那些? 答:衡量一个催化剂的催化效能采用催化活性来表示。催化活性是催化剂对反应速度的影响程度,是判断催化剂效能高低的标准。 对于固体催化剂的催化活性,多采用以下几种表示方法: ⑴.催化剂的比活性。催化剂比活性常用表面比活性或体积比活性,即所测定的反应速度常数与催化剂表面积活催化剂体积之比表

催化剂评定指标

催化裂化催化剂的主要理化指标及其意义 一、化学指标 催化剂的化学组成表示催化剂中的主要成分及杂质的含量,通常包括: Al2O3、Na2O、Fe2O3、、灼烧减量五个主要指标,有时还包括Re2O3。 1、Al2O3含量:催化剂中Al2O3含量表示催化剂中Al2O3的总含量,是催化剂的主要化学成分。 2、Na2O含量:Na2O含量表示催化剂中含有的Na2O杂质含量。在催化裂化过程中,特别是在掺炼钒含量较高的渣油情况下, 3、Fe2O3含量:Fe2O3含量表示催化剂中含有的Fe2O3杂质含量。Fe2O3在高温下会分解并沉积在催化剂上,积累到一定程度就会引起催化剂中毒,其结果一是使催化剂活性降低。 4、SO42-含量:SO42-含量表示催化剂中含有的SO42-杂质含量。SO42-可与具有捕钒作用的金属氧化物(如氧化铝等)反应生成稳定的硫酸盐,从而使其失去捕钒能力。所以,在掺炼渣油的情况下,SO42-的危害性较大。 5、灼烧减量:灼烧减量是指催化剂中所含水份、铵盐及炭粒等挥发组份的含量。生产中控制其减量≤13%。 6、Re2O3含量:Re2O3含量是表示催化剂性能的指标之一。稀土通常来自催化剂中的分子筛,有时在催化剂制造工艺中也引入稀土离子达到改善性能的目的。通常Re2O3含量越高,催化剂活性越高,但焦炭产率也偏高。 对于平衡催化剂,有时还需知道其中的金属含量,如Ni、V、Na等,以便了解催化剂的污染程度。 二、物理性质 物理性质表示催化剂的外形、结构、密度、粒度等性能。通常包括:比表面积、孔体积、表观松密度、磨损指数、筛分组成五个主要项目。下面分别加以简述: 1、比表面积 催化剂的比表面积是内表面积和外表面积的总和。内表面积是指催化剂微孔内部的表面积,外表面积是指催化剂微孔外部的表面积,通常内表面积远远大于外表面积。单位重量的催化剂具有的表面积叫比表面积。

催化剂的组成与功能

催化剂的组成与功能 催化剂的组成:活性组分 载体 助催化剂 催化剂组分与功能关系: 一、 活性组分 它是催化剂的主要组分,有时由一种物质组成,有时由多种物质组成 如:乙烯氧化制环氧乙烷的银催化剂;丙烯氨氧化制丙烯腈用的钼和铋催化剂 2% 4% 6% 8% 10% 氨 含量 Mo的混合比 Mo-Fe合金组成与活性关系

活性组分的分类: 二、载体 载体是催化剂活性组分的分散剂、粘合剂和支撑物,是负载活性组分的骨架。 例如,乙烯氧化制环氧乙烷催化剂中的Ag就是负载在“α—Al2O3上的,这里的α—Al2O 3称为载体。 载体还常分为惰性载体与活性载体。严格来说,催化剂中的组分都不是惰性的,都对主剂与助剂有所影响,只不过活性载体的作用更为明显而已。 载体的作用与助催化剂的作用在很多方面有类似之处,不同的是载体量大,助催化剂量小;前者作用较缓和,后者较明显。另外,由于载体量大,可赋予催化剂以基本的物理结构与性能,如孔结构、比表面、宏观外形、机械强度等。此外,对主催化剂和助催化剂起分散作用,尤其对贵金属既可减少其用量,又可提高其活性,降低催化剂成本。作为高效催化剂,活

性组分与裁体的选择都非常重要。 下面是载体的分类和部分常见载体的种类: 催化剂的活性随载体比表面的增加而增加,为获得较高的活性,往往将活性组分负载于大比表面载体上。 载体与催化剂的活性、选择性、热稳定性、机械强度以及催化过程的传递特性有关,因此,在筛选和制造优良的催化剂时,需要弄清载体的物理性质和它的功能。 催化剂组分与含量的表示方法:例如:合成氨催化剂Fe—K2O—Al2O3用“—’将催化剂中的各组分隔开:加氢脱硫催化剂Co—Mo/α—Al2O3,斜线上为主剂和助剂,斜线下为载体。各组分的含量可用重量%、重量比表示,也可用原子%、原子比表示。

有关催化剂检测标准

有关催化剂检测标准 在化学反应里能改变反应物化学反应速率(既能提高也能降低)而不改变化学平衡,且本身的质量和化学性质在化学反应前后都没有发生改变的物质叫催化剂(固体催化剂也叫触媒)。据统计,约有90%以上的工业过程中使用催化剂,如化工、石化、生化、环保等。青岛科标检测研究院有限公司提供催化剂成分检测、催化剂成分测试及催化剂的相关性能检测。 检测产品: 化肥催化剂:脱毒剂、转化催化剂、变换催化剂、氨合成催化剂、甲醇催化剂等 炼油催化剂 石油化工催化剂:聚合催化剂、氧化催化剂、加氢催化剂、脱氢催化剂等 环保催化剂 其他催化剂:水解催化剂、甲烷化催化剂、合成甲醇催化剂、GLJ-B固体硫化剂、HB33型烷基吡嗪合成催化剂、TM型甲醛、甲醇净化催化剂、D101、D201型氨燃烧制氮催化剂等。 检测项目: 性能检测:抗压碎力、磨耗率、比表面积、孔径、堆密度、最佳反应条件、转换率、外形、结构、密度、粒度、孔体积、表观松密度、磨损指数、机械强度等。 分析项目:成分分析、配方还原、主成分分析等。 检测标准: HG/T 2086-2013 二氧化硫氧化制硫酸催化剂 HG/T 2089-2014 二氧化硫氧化制硫酸催化剂活性试验方法 HG/T 2225-2010 工业硫酸铝 HG/T 2271-2014 氨氧化制硝酸用铂催化剂 HG/T 2273.1-2013 天然气一段转化催化剂 HG/T 2273.2-2013 天然气二段转化催化剂 HG/T 2273.4-2014 天然气一、二段转化催化剂试验方法 HG/T 2505-2012 有机硫加氢催化剂 HG/T 2509-2012 甲烷化催化剂 HG/T 2511-2013 甲烷化催化剂化学成分分析方法 HG/T 2514-2014 有机硫加氢催化剂活性试验方法

催化剂评价微反装置

催化剂评价微反装置 原理 固定床反应器又称填充床反应器,装填有固体催化剂或固体反应物用以实现多相反应过程的一种反应器。固体物通常呈颗粒状,粒径2~15mm左右,堆积成一定高度(或厚度)的床层。床层静止不动,流体通过床层进行反应。它与流化床反应器及移动床反应器的区别在于固体颗粒处于静止状态。固定床反应器主要用于实现气固相催化反应,如氨合成塔、二氧化硫接触氧化器、烃类蒸汽转化炉等。用于气固相或液固相非催化反应时,床层则填装固体反应物。涓流床反应器可归属于固定床反应器,气、液相并流向下通过床层,呈气液固相接触。 固定床微反实验装置是采用可编程控制器和计算机控制的自动化微型实验装置。装置自动化操作,各操作点的温度、流量、压力信号及探测器信号由系统自动采集,并通过计算机实时显示反应过程中的各参数变化。通过计算机系统设定温度和流量值,用户可对装置实现自动化操作。根据不同的要求装置的反应压力可采用背压阀手动控制或自动控制的方式进行调解。 固定床反应器的优点是:①返混小,流体同催化剂可进行有效接触,当反应伴有串联副反应时可得较高选择性。②催化剂机械损耗小。③结构简单另有油换热或熔盐换热反应器、计算机联机的数据采集和温度控制软件、在线取样六通阀、多种类型液体加料泵和气相色谱仪,供用户订货时另外选择配置。此外,还可根据用户要求进行设计、加工。 简介 该装置是一个自动化系统,用于高温高压或者高温常压下进行的催化剂的评价。装置配备的高压/常压供气系统、高压/常压供液系统的管线路数可以按照不同要求来配置。将一定量的催化剂放置于反应器中,在特定的工艺条件下,对催化剂性能进行长时间连续的测试。 装置的核心工艺组件如反应器、冷凝器以及高低压分离器根据不同的工艺要求,采用特别的内表面处理工艺和结构设计,满足不同催化剂和工艺的实验要求;装置的仪表如减压阀、背压阀、流量计以及管阀件均选用进口元件,最大限度的保证使用的稳定性、可靠性和安全性。 固定床微反实验装置系统采用模块化的设计结构,不仅日常操作和维护简单,也保证了装置未来的升级简单容易。该装置对实验环境无特殊要求,通常的室内实验室环境即可满足要求。 技术参数高压微反装置常压微反装置备注 反应器数量 1-6个 1-6个可应用户要求设计 反应催化剂装量 1-20ml 1-20ml 可应用户要求设计 系统最高设计压力 10- 34.5MPa 常压可应用户要求设计 反应器最高设计温度 1000摄氏度 1000摄氏度可应用户要求设计 管路保温最高温度 150摄氏度 150摄氏度可应用户要求设计 反应器温度控制方式等温、多段式升温等温、多段式升温 反应器材质不锈钢不锈钢 气体接口 2-10路 2-10路模块式扩展 液体接口 1-2路 1-2路 气体流量控制 MFC,0.05-1L/min MFC,0.05-1L/min 液体流量控制微量泵微量泵、或气体发生器 反应器尺寸 20*600 mm 10*600 mm 可非标定制 外形尺寸 1300*1700*4500mm 1300*1700*800mm 可非标定制 装置反应器 装置采用框架式结构,模块化设计,分为气体减压、进料、反应、产品收集和放空等区域。所有工艺管线将安装在框架内,入口和放空管线在框架边设计有统一接口;所有的电气线路安排到专用的管线里并

催化剂试卷答案

一选择题 1.催化活性与吸附的关系是( C )。 A吸附越强活性越强B吸附越弱活性越强 C吸附适中时活性最强D吸附很弱或很强活性最强2.氧化反应常用具有( B )型半导体的氧化物为催化剂。An型半导体Bp型半导体 C本征半导体Dp和n半导体都可以 3.对催化剂描述正确的是( A ) A催化剂能同时加快正逆反应的速度 B催化剂改变化学反应的平衡常数 C催化剂不能改变化学反应的途径 D催化剂能降低控诉步骤的活化能 4.催化剂的活化方式不包括( D ) A氧化活化B还原活化C硫化活化D煅烧活化5.对于金属氧化物,下列条件中( C )不能形成n型半导体。 A掺杂低价金属离子B氧缺位 C引入电负性大的原子D高价离子同晶取代 6.催化剂的转化率越大,其选择性( D ) A 越好 B 越差 C 不变 D 无一定的规律 7.铂碳催化剂中( B ) A铂和碳都是活性组分B铂是活性组分碳是载

体 C铂是活性组分碳是助催化剂 D 碳是活性组分铂是助催化剂 8.在O2,CO,H2,N2中,金属最易吸附( A ) A O2 B CO C H2 D N2 9.下列影响催化剂活性衰退的原因中,可逆的是( D ) A 活性组分的烧结 B 活性组分剥落 C 催化剂的化学组成发生变化 D 吸附了其他物质 10.SO2被氧化成SO3的机理为: NO+O2→NO2SO2+NO2→SO3+NO 其中NO是( C ) A总反应的反应物B中间产物 C催化剂D最终产物 11.以下符合兰格缪尔吸附理论基本假定的是( A ) A.固体表面是均匀的,各处的吸附能力相同 B.吸附分子层可以是单分子层或者多分子层 C.被吸附分子间有作用,相互影响 D.吸附热和吸附的位置和覆盖度有关 二填空题 1.催化剂的一般组成包括主催化剂,助催化剂,共催化剂和载体。 2.Ea,Ed,Qc之间的关系为Ed=Ea+Qc 。

加氢催化剂的预硫化及其影响因素

加氢催化剂的预硫化及其影响因素 张笑剑 摘要:加氢催化剂的预硫化是提高催化剂活性,优化加氢催化剂操作,获得理想经济效益的关键之一。为获得理想的硫化效果,必须严格控制各阶段的反应条件。本文介绍了加氢催化剂预硫化的反应原理,探讨了在预硫化过程中影响催化剂预硫化效果的因素。 关键词:加氢催化剂硫化技术操作条件影响因素 加氢催化剂硫化是提高催化剂活性,优化装置操作,延长装置运转周期,提 高经济效益的关键技术之一。加氢催化剂主要由金属组分(一般为W,Mo,Co, , Ni 等)和载体(氧化铝 ,二氧化硅,沸石,活性炭,黏土,渗铝水泥和硅藻土等)两部分组成,金属组分以氧化态的形式负载在多孔的载体上,促进加氢脱氮,加氢脱硫,加氢脱芳烃,加氢脱金属,加氢脱氧和加氢裂化等反应。生产经验和理论研究表明:氧化态催化剂的加氢活性,稳定性和选择性均低于硫化态催化剂。只有将催化剂进行硫化预处理,使金属组分从氧化态转变为硫化态,催化剂才具有较高的活性,稳定性和选择性,抗毒性强,寿命长,才能够最大限度地发挥加氢催化剂的作用。 1硫化原理 1.1 H 2 S的制备 H 2 S主要来自硫化剂的分解:硫化剂的分解均为放热反应,且理论分解温度与 实际操作条件下的分解温度有所差别,一般有机硫化物在催化剂和H 2 条件下分解温度通常比常温下分解温度低10~25o C。 CS 2+4H 2 =CH 4 +2H 2 S CH 3SSCH 3 +3H 2 =2CH 4 +2H 2 S 1.2金属氧化物的硫化 金属氧化物的硫化是放热反应。理想的硫化反应应为 MoO 3+2H 2 S+H 2 =MS 2 +3H 2 O 9CoO+8H 2S+H 2 =Co 9 S 8 +9H 2 O 3NiO+2H 2S+H 2 =NiS+3HO WO 3+2H 2 S+H 2 =WS 2 +3H 2 O

催化剂活性测试

一.实验操作 1.调节恒温槽40℃,杜瓦瓶中放入冰盐水 2.开启钢瓶,调节流量为100ml/min,开启温控仪使炉温升至350℃,每5min记录一次流量,连续记录30min。 3.换上放有催化剂的管,待炉温恒定后每5min记录一次流量,连续30min。 4.升温至420℃,重复操作3。 二.数据记录(单位:时间min,流量L,流速mL/min) 空管催化剂350℃催化剂420℃ 时刻流量流速时刻流量流速时刻流量流速31:30 3.20 0:00 1.50 0:00 4.30 36:30 3.74 108 5:00 2.16 132 5:00 0.05 146 41:30 4.28 108 10:00 2.82 132 10:00 0.87 164 46:30 4.72 108 15:00 3.53 142 15:00 1.61 146 51:30 0.32 120 20:00 4.22 138 20:00 2.37 152 56:30 0.84 105 25:00 4.92 140 25:00 3.12 150 61:30 1.36 106 30:00 0.62 140 30:00 3.87 150 35:00 1.31 138 35:00 4.63 152 三.数据处理 1.(1)空管 Slope=105mL/min V N2=3.15L (2)有催化剂,350℃

Slope=139.5mL/min V H2+CO =30*139.5-V N2=1.03L (3)有催化剂,420℃ Slope=150.5mL/min V H2+CO =30*150.5-V N2=1.365L 2.p(CH 3OH)=35091Pa p(大气压)=101.55Kpa=p(CH 3OH)+p (N 2) p (N 2)=66459Pa mol RT V N N 0880.0p n 2 22N == CH3OH N2OH 3CH N2n n p p = n (CH 3OH )=0.0465mol m (CH 3OH )=1.488g

催化原理_基本概念和常用术语

基本概念和常用术语 1.活性:指物质的催化作用的能力,是催化剂的重要性质之一。 选择性:指所消耗的原料中转化成目的产物的分率。用来描述催化剂上两个以上相互竞争反应的相对速率(催化剂的重要性质之一,指在能发生多种反应的反应系统中,同一催化剂促进不同反应的程度的比较。) 比活性:比活性(单位表面反应速率),取决于催化剂的组成与结构 分散度:指催化剂表面上暴露出的活性组分的原子数占该组分在催化剂中原子总数的比例,即D=ns(A)/nt(A)。 TOF:单位时间内每摩尔催化剂(或者活性中心)上转化的反应底物的量。 2.空速:指单位时间内通过单位质量(或体积)催化剂的反应物的质量(或体积)WHSV:每小时进料的重量(液体或气体))/催化剂的装填重量 空时收率:以“空时”作为时间的基准来计量所获得产物的收率。对于大多数反应器,物料在反应器中的停留时间或反应时间是很难确定的。在工程上经常采用空间速率的倒数来表示反应时间,称为“空时”。空时收率大,表示过程和反应器有较高的效率。 3.化学吸附:过电子转移或电子对共用形成化学键或生成表面配位化合物等方式产生的吸附。 表面覆盖率:指单层吸附时,单位面积表面已吸附分子数与单位面积表面按二维密堆积所覆盖的最大吸附分子数之比。 朗格缪尔(Langmuir)吸附: 1916年,朗格缪尔从动力学的观点出发,提出了固体对气体的吸附理论,称为单分子层吸附理论,该理论的基本假设如下: (1)固体表面对气体的吸附是单分子层的; (2)固体表面是均匀的,表面上所有部位的吸附能力相同; (3)被吸附的气体分子间无相互作用力,吸附或脱附的难易与邻近有无吸附分子无关; (4)吸附平衡是动态平衡,达到吸附平衡时,吸附和脱附过程速率相同。 定位吸附:被吸附物从一个吸附中心向另一吸附中心转移需克服能垒。当吸附物不具有此能垒能量时不能向另一吸附中心转移,即为定位吸附。 非定位吸附:若固体表面上不同区域能量波动很小,没有吸附中心,被吸附物在表面上的转移不需克服能垒,即为非定位吸附。 积分吸附热:指达到吸附平衡时,被气体吸附质覆盖的那部分吸附剂表面所产生的平均吸附热。它表示在吸附过程中,较长期间内热量变化的平均值。积分吸附热随吸附质浓度的大小而变化,一般用于区分物理吸附和化学吸附的吸附热。 4.速率控制步骤:速率控制步骤,是一个化学词汇,用以表达在化学反应中,反

(整理)催化剂与催化作用复习

名词解释(10~15分,4~6题)填空(10~15分,5~10题)简要回答问题(45~55分,6~8题)论述题(25~35,2~3题) 第1、2章复习思考题 1、催化剂是如何定义的? 催化剂是一种能够改变化学反应速度而不能改变反应的热力学平衡位置,且自身不被明显消耗的物质。 2、催化剂在工业上的作用功能或者效果有哪些? 1)使得原来难以在工业上实现的过程得以实现。 2)由过去常常使用的一种原料,可以改变为多种原料。 3)原来无法生产的过程,可以实现生产。 4)原来需要多步完成的,变为一步完成。 5)由原来产品质量低,能耗大,变为生产成本低,质量高 6)由原来转化率低,副产物多,污染严重,变为转化率高,产物单一,污染减少 3、载体具有哪些功能和作用?8 ①分散作用,增大表面积,分散活性组分;②稳定化作用,防止活性组分熔化或者再结晶;③支撑作用,使催化剂具备一定机械强度,不易破损;④传热和稀释作用,能及时移走热量,提高热稳定性; ⑤助催化作用,某些载体能对活性组分发生诱导作用,协助活性组分发生催化作用。 4、代表催化剂性能的重要指标是什么? 催化剂的反应性能是评价催化剂好坏的主要指标,它主要包括催化剂的活性、选择性和稳定性。(1)催化剂的活性:指催化剂能加快化学反应的反应速度的程度 (2)催化剂的选择性:使反应向生成某一特定产物的方向进行。 (3)催化剂的稳定性:是指在使用条件下,催化剂具有稳定活性的周期 5、多相催化反应的过程步骤可分为哪几步?实质上可分为几步? (1)外扩散—内扩散—化学吸附—表面反应—脱附—内扩散—外扩散 (2)物理过程—化学过程—物理过程 6、吸附是如何定义的? 气体与固体表面接触时,固体表面上气体的浓度高于气相主体浓度的现象。 7、物理吸附与化学吸附的本质不同是什么? 本质:二者不同在于其作用力不同,前者为范德华力,后者为化学键力,因此吸附形成的吸附物种也不同,而且吸附过程也不同等诸多不同。 不同的表现形式为:(后面) 8、为何说Langmuir吸附为理想吸附?基本假设是什么? 模型假设:①吸附表面均匀,各吸附中心能量相同;②吸附分子间无相互作用;③单分子层吸附,吸附分子与吸附中心碰撞进行吸附,一个分子只占据一个吸附中心;④在一定条件下,吸附与脱附可建立动态平衡。 9、催化剂的比表面测定有哪些实验方法? (1)BET法测比表面积 1)测定原理和计算方法 依据BET提出的多层吸附理论以及BET吸附等温曲线进行测定和计算的。利用BET方程进行作图,采用试验采集数据并利用图解法进行计算。 2)实验方法 测定表面积的实验方法通常有,低温氮吸附容量法、重量法和色谱法等,当表面积比较小时,采用氮吸附法。 (2)色谱法测定比表面积 色谱法测定比表面积时载气一般采用He或H2,用N2做吸附质,吸附在液氮温度下进行。 10、何为扩散?催化剂颗粒内部存在几种扩散形式? (1)扩散:分子通过随机运动,从高浓度向低浓度进行传播的现象。

催化剂的指标及其意义

催化剂的各项指标及其意义 一、化学指标 催化剂的化学组成表示催化剂中的主要成分及杂质的含量,通常包括: Al2O3、Na2O、Fe2O3、、灼烧减量五个主要指标,有时还包括Re2O3。 1、Al2O3含量:催化剂中Al2O3含量表示催化剂中Al2O3的总含量,是催化剂的主要化学成分。 2、Na2O含量:Na2O含量表示催化剂中含有的Na2O杂质含量。在催化裂化过程中,特别是在掺炼钒含量较高的渣油情况下, 3、Fe2O3含量:Fe2O3含量表示催化剂中含有的Fe2O3杂质含量。Fe2O3在高温下会分解并沉积在催化剂上,积累到一定程度就会引起催化剂中毒,其结果一是使催化剂活性降低。 4、SO42-含量:SO42-含量表示催化剂中含有的SO42-杂质含量。SO42-可与具有捕钒作用的金属氧化物(如氧化铝等)反应生成稳定的硫酸盐,从而使其失去捕钒能力。所以,在掺炼渣油的情况下,SO42-的危害性较大。 5、灼烧减量:灼烧减量是指催化剂中所含水份、铵盐及炭粒等挥发组份的含量。生产中控制其减量≤13%。 6、Re2O3含量:Re2O3含量是表示催化剂性能的指标之一。稀土通常来自催化剂中的分子筛,有时在催化剂制造工艺中也引入稀土离子达到改善性能的目的。通常Re2O3含量越高,催化剂活性越高,但焦炭产率也偏高。 对于平衡催化剂,有时还需知道其中的金属含量,如Ni、V、Na等,以便了解催化剂的污染程度。 二、物理性质

物理性质表示催化剂的外形、结构、密度、粒度等性能。通常包括:比表面积、孔体积、表观松密度、磨损指数、筛分组成五个主要项目。下面分别加以简述: 1、比表面积 催化剂的比表面积是内表面积和外表面积的总和。内表面积是指催化剂微孔内部的表面积,外表面积是指催化剂微孔外部的表面积,通常内表面积远远大于外表面积。单位重量的催化剂具有的表面积叫比表面积。 比表面积是衡量催化剂性能好坏的一个重要指标。不同的产品,因载体和制备工艺不同,比表面积与活性没有直接的对应关系。 测定比表面积采用的方法是氮吸附容量法。 2、孔体积 孔体积是描述催化剂孔结构的一个物理量。孔结构不仅影响催化剂的活性、选择性,而且还能影响催化剂的机械强度、寿命及耐热性能等。 孔体积是多孔性催化剂颗粒内微孔的体积总和,单位是毫升/克。孔体积的大小主要与催化剂中的载体密切相关。对同一类催化剂而言,在使用过程中孔体积会减小,而孔直径会变大。 孔体积测量采用的方法是水滴法。 3、磨损指数 一个优良的催化裂化催化剂,除了要具有活性高、选择性好等特点以外,还要具有一定的耐磨损机械强度。机械强度不好的催化剂,不但操作过程中跑损多、增大催化剂用量、污染环境,严重时会破坏催化剂在稀、密相的合理分布,甚至使生产装置无法运转。

TPD可以分析催化剂表面活性位的数量

TPD可以分析催化剂表面活性位的数量、种类和强度等。TPR主要考察催化剂中的可还原性物质的种数及还原温度。 程序升温还原技术简称TPR(Temperature Programmed Reduction)是一种在等速升温的条件 下进行的还原过程。在升温过程中如果试样发生还 原,气相中的氢气浓度随温度变化而发生浓度变化, 把这种变化过程记录下来就得氢气浓度随温度变化 的TPR图。它是在TPD技术上发展起来的一种催 化研究方法,主要用来研究金属催化剂的性能,八十 年代以来开始应用于氧化物催化剂的研究[1]。虽然 目前对催化剂的表征方法很多,如X射线粉末衍 射,电镜,光电子能谱以及红外光谱等,但这些技术 都不能给出催化剂在实际工作状态下的性质。TPR 由于其高灵敏性(不依赖催化剂的特殊性质,只要处 于可还原状态即可)而在生产科研中普遍使用[2]。 老驰09:24:39 。TPR谱图 上的还原峰温及峰高(或峰面积)确实能反映出催化 剂表面氧的活性和数目。因而TPR技术对研究催化 剂表面性质能提供非常有用的信息 老驰09:25:09 ,TPR技术是 探测催化剂中金属氧化物的状态及还原能力的一种 有效手段,对TPR谱图的分析可以获得许多重要的 有关催化剂表面性质的信息。与其它表征方法如加 光电子能谱、俄歇电子能谱、低能电子衍射、离子散 射、顺磁共振法等相结合对催化剂表面性质的研究 将更深入、更确切。 老驰09:33:45 你参考文献 《延安大学学报:自然科学版》2006年25卷3期 <> 催化剂的活性稳定性 催化反应中催化剂的活性稳定性变化很大,有的可以几年,有的初活性很高,但活性稳定性只有几秒钟,失活很快;催化剂的活性稳定性长短决定了反应器的类型,稳定性只有几秒钟的催化剂只能采用流化床,频繁再生;当然催化剂活性稳定性差影响工业化,因此了解催化剂活性稳定性变化原因和提高催化剂的活性稳定性是催化剂工业化必须面对的问题. 导致催化剂活性稳定性差的原因很多,主要有: 1 毒物的吸附

第六节 催化剂的组成与功能

第六节催化剂的组成与功能 多相固体催化剂是目前石油化学等工业中使用比例最高的催化剂。 出早期用于加氢反应的Ni等极少数单组分催化剂外,大多数是多组分催化剂,这些组分,可根据其各自在催化剂中的作用,分别定义为: 1)主催化剂 又称活性组分,是多组分催化剂中的主体,是必备的组分。 ⑵. 载体 是活性组分的分散剂、黏合物或支撑体,是负载活性组分的骨架;载体的主要作用是提供孔结构和高表面积,同时增大催化剂的强度;活性物和助剂负载于载体上所得的催化剂,称为负载型催化剂;载体的种类很多,有天然的也有人工的,可分为低比表面积和高比表面积两类。载体的结构和性能不仅关系到催化剂的活性和选择性,还关系到催化剂的热稳定性、机械强度及传递特性等,选择载体时必需弄清其结构、性质和其它功能。 载体的功能 1. 载体的功能主要有⑴提供有效的表面和适宜的孔结构,维持活性组分高度分散;⑵增强催化剂的机械强度,使催化剂具有一定的形状和大小,应根据催化剂的强度要求来选择合适强度的体,粘结剂的加入可以补强;⑶改善催化剂的热传导性能,以满足反应过程的传热要求;⑷减少活性组分的用量,特别是贵金属的用量;⑸载体可提供附加活性,载体一般不要求有催化活性,但是如为目的反应的活性则对反应有利;⑹活性组分与载体之间的溢流现象和强相互作用,影响催化活性。 ⑶. 助催化剂 是催化剂的辅助成分,量较少;助剂本身无活性或活性很小,加入之后可以改变催化剂的化学组成和结构,从而能提高催化剂的活性、选择性、稳定性或寿命。助剂按作用机理的不同可分为结构型和电子型两类。结构性助剂:通过对载体和活性组分的结构作用,主要是提高活性组分的分散性和稳定性;电子型助剂:通过改变催化剂的电子结构,促进催化剂的选择性。例如,合成氨用的铁催化剂,通过加入少量的 Al2O3 使其活性提高,寿命大大延长。--结构助剂。加人 K2O 使 Fe 原子的电子密度增加,提高其活性,所以 K2O 是电子型的助催化剂。 4)共催化剂 是和主催化剂同时起催化作用的物质。二者缺一不可。两者单独使用活性都很低,但组合起来却表现出很高的催化活性,所以称它们为共催化剂。 助催化剂和载体的区别 1.助催化剂和载体目的:都是为了提高催化剂的活性、选择性、寿命(抗烧结、积炭、中毒、流失)、耐热性、机械强度、耐磨损性等性能,功能有很多相似之处,但是有以下几点区别。 助催化剂和载体的比较: 载体:载体:用量大、且对用量不敏感;稳定性好;表面积大、孔径、孔体积确定,分别制备;与活性组分之间有时有相互作用;有时可以使用载体,也可以不使用。 2.助剂:用量较小、对用量敏感;经常使用多种助剂;常与主体催化剂结合,

催化剂对异氰酸酯反应活性的影响

催化剂对异氰酸酯反应活性的影响 催化剂能降低反应活性能,使反应速率加快,缩短反应时间,控制副反应,因此在聚氨酯的制备中常常使用催化剂。对催化剂的要求一般是:催化活性高、选择性强。常用的催化剂为有机叔胺类及有... 催化剂能降低反应活性能,使反应速率加快,缩短反应时间,控制副反应,因此在聚氨酯的制备中常常使用催化剂。对催化剂的要求一般是:催化活性高、选择性强。常用的催化剂为有机叔胺类及有机金属化合物。 聚氨酯合成中所采用的催化剂,都是既能催化与羟基的反应,也能催化与水的反应,但所有催化剂对这二个反应的催化活性各不相同。一般,叔胺类催化剂对异氰酸酯与水的反应(即通常所说的“发泡反应”)的催化效率大于对异氰酸酯与羟基反应(即所谓所的“凝胶反应”)的催化效率,有机金属类催化剂对凝胶反应的催化效率更显著,即各催化剂都有其选择性。 2.2.1.1 异氰酸酯反应的催化机理 一般认为,异氰酸酯与羟基化合物反应的催化机理是,异氰酸酯或羟基化合物先与催化剂生成不稳定的络合物,然后发生反应,生成聚氨酯。但这种络合催化反应理论也有几种说法,至今还不是十分清楚。 一种公认的催化机理是基于异氰酸酯受亲核的催化剂进攻,生成中间络合物,再与羟基化合物反应。如二异氰酸酯与二元醇的反应机理如下:

另外,有人认为金属有机化合物的催化机理与叔胺类不同,是形成一种三元活化络合物。有人提出羟基化合物与催化剂形成四节环活化络合物,再与异氰酸酯反应生成氨基甲酸酯。 2.2.1.2 叔胺催化剂酸碱性对反应活性的影响 在聚氨酯制备反应中,一般很少用酸类催化剂,酸性催化剂(如苯甲酰氯、无机及有机酸)对氨基甲酸酯及脲基甲酸酯生成反应有较低的催化作用,但重要的是它们能抑制缩二脲的生成反应,因而抑制交联反应。若聚醚中尚有微量碱(开环聚合用的KOH)未被除去,则与二异氰酸酯反应时,碱金属化合物会催化交联副反应,发生凝胶。因而可加入酸中和,并且若酸稍过量,则抑制交联反应,可使预体能长期储存。 叔胺类催化剂对异氰酸酯与羟基化合物反应的影响,除了其碱性程度外,还有位阻效应等因素。一般来说,碱性大、位阻小,则催化能力强。叔胺对水与异氰酸酯反应的催化活性的影响比羟基与异氰酸酯反应的催化活性大(见图2-2),故叔胺催化剂一般用于聚氨酯泡沫制备。在所有叔胺类催化剂中,三亚乙基二胺是一种结构特殊的催化剂,由于它是杂环化合物,叔胺N原子上没有位阻,所以它对发泡反应及凝胶反应都具有较强的催化性能,是聚氨酯泡沫塑料常用的催化剂之一,也可用于聚氨酯胶粘剂、弹性体等的制备。据估计,在水/醇混合体系中,它对羟基催化能力占80%,对水占20%,对羟基与异氰酸酯反应的催化活性比水大,具有类似有机金属化合物的催化性能,不仅广泛用于泡沫,而且也用于聚氨酯弹性体、胶粘剂、涂料。 不同的异氰酸酯对各种反应有不同的催化活性。有人研究了两种催化剂对异氰酸酯-端伯羟基聚醚、异氰酸酯-端仲羟基聚醚及异氰酸酯-水反应速率常数及活化能进行了比较,实验结果见表2-7。表中K1、K2及K3分别为TDI与普通PPG聚醚(端基为仲羟基)、EO封端聚醚(伯羟基)和水的反应速率常数[单位L/(g·mol·h)]。 表2-7 氨基甲酸酯及脲生成反应的速率常数K及活化能E

催化剂微反应活性测定

催化剂微反应活性的测定 介绍了裂化催化剂微反活性指数的气相色谱分析方法。使用SP-3420A 型气相色谱仪对标准原料油中汽油含量的百分数和油样微活指数进 行测定,取得了满意的效果。石油是重要的战略资源,提高石油资源的利用率,将更多的重油转化为清洁的轻质油品是社会对催化新材料和催化剂研究的热切需求。催化裂化是重要的原油二次加工手段,提高重油催化裂化转化深度和轻质油收率的一个关键因素是催化剂。气相色谱法测定裂化催化剂微反活性是提供微反活性指数和有关特性 数据的实验方法,是评价裂化催化剂裂化活性的重要指标。 2.实验部分 2.1仪器与试剂 SP-3420A型气相色谱仪,配氢火焰离子化检测器(FID);BF-2002微反活性专用版色谱工作站;WFS-1D裂化催化剂微活性测定仪)。 原料油:直馏轻柴油235-337℃馏分;正十二烷。 2.2裂化反应操作条件 反应温度:460±1℃ 进油量:1.56±0.02g 反应时间:70s 催化剂:5.0g 反应后氮气吹扫时间:10min 吹扫气体流量:20mL/min 2.3色谱条件

气相色谱柱:BFSP-0690-01,0.5m×2mm(ID);汽化室温度:280℃;检测器温度:280℃;柱温:初始温度35℃,保持0.5min,以12℃ /min升至235℃,保持5min;载气:高纯氮;进样量:0.4μL。 2.4测定步骤 将待测催化剂样品放在烘箱内,在120℃下烘干1小时。称取5.0g 催化剂装入床层温度控制在460℃的微活性测定仪的反应器中,启动仪器后,仪器在70s内将1.56g标准原料油匀速注入反应器中进行反应,然后再用氮气吹扫10min,反应产物收集于瓶中,该收集瓶放在冰水混合的冷阱中,反应产物用气相色谱进行分析,根据分析数据计算催化剂的微反活性指数。由于裂化活性与催化剂组成、原料油性质和操作条件有关,因此必须严格控制微活性测定仪系统温度控制精度、进油速度及进油量。 汽油与柴油谱图分界点的确定:在汽油与标准轻柴油混合物中加入少量正十二烷,以正十二烷的保留时间作为分界点。在分界点之前是汽油,分界点之后为柴油。 3.结果与讨论 图1、图2分别为标准原料油毛细管柱和经裂化反应后的油 样色谱图。 汽油、柴油馏分含量的百分数及微反活性指数(MA)由BF-2002微反活性专用版色谱工作站直接计算得出,计算方法如下: MA=100-100W1(1-G)/W 式中:W1——液体产物量,g; W——进油量,g; G——液体产物中汽油的含量的百分数。 标准原料油中汽油含量的百分数G=50.76%,用气相色谱连续做3次 分析测出的汽油含量的百分数平均值G=50.88%,偏差-0.12。油样中实测的汽油含量的百分数G=55.85%,油样微活指数MA=64.1且同一 样品两次实验结果的MA≯2。

催化剂的活性评价流程与装置

催化剂的活性评价流程与装置 催化剂活性评价流程主要有配气装置、SCR反应器和尾气收集分析三部分组成,SCR反应器内径为7.5mm,壁厚2mm,置于管式电炉中,将镍铬热电偶插入催化剂床层中,用程序升温装置来控制反应温度。实验流程图如图2.1所示。 而SCR反应主要在固定床反应器中进行,实验采用的反应器是内径为7.Smm、壁厚为2mm的圆柱形不锈钢,并将不锈钢反应器置于管式电炉中,将镍铬正负加热电偶插入反应器内,利用程序升温装置控制反应需要的温度,反应装置如图2.2所示。

考察催化剂活性的实验步骤: (1)催化剂的装填:称取所需质量催化剂放入管式反应器中,催化剂两端塞入少量高温棉,用来固定催化剂床层,将装好的管式反应器置于加热炉膛内。 (2)管路密闭性检查:首先通入N2检查反应装置的气密性,打开N2钢瓶阀门,在质量流量计上设定流入装置的气体流量,并密封出口,当通入的气体使压力表读数达到O.1MPa时,停止通气,如果在10min内压力没有下降,表示反应装置的密封良好。 (3)配气:设定好每个质量流量计的给定值,进行配气(利用N2作为载气,模拟实验需要的烟气流量)。当气体混合均匀并达到稳定一段时间,使催化剂吸附NO达到饱和,这样可以避免NO的减少是催化剂的吸附造成的。 (4)加热反应:通过程序升温设定加热炉温度,进行升温。达到反应温度后,每一温度均稳定反应1h以上才开始分析。 (5)NO去除率分析:分别在进气口和出气口取样,用2L的铝箔采样袋集满气体后,用KM900手持式烟气分析仪测定进出口NO浓度,分析不同实验条件下催化剂对NO的催化还原的反应活性。 (6)NO转化率的计算。根据反应前后NO浓度值,计算各反应温度下的NO的转化率,定义为脱硝率,以此数据作为衡量催化剂活性的指标。 脱硝率=(入口NO浓度一出口NO浓度)/入口NO浓度

工业催化思考题

《工业催化》思考题 Chap 1 一.思考题 1.催化反应的反应热、活化能是否与非催化反应的相同?为什么? 2.催化剂能否改变化学平衡? 3.催化剂的活性、选择性的含义是什么? 4.影响催化剂的寿命的因素有哪些? 5.载体在催化剂中的作用是什么? 6.结构型助剂与调变型助剂有何区别? 7.一个好的工业催化剂应满足哪些条件? 8.何为转化率、收率和比活性?如何计算转化率、收率和选择性? 9.固体催化剂按导电性分为几类?每类催化剂的基本特征是什么? 二.习题 1.合成氨反应,450 C°下无催化剂时活化能为83Kcal/mol,使用铁催化剂后,活化能降为43Kcal/mol,求催化反应速度加快了多少倍? 2.丙烯氨氧化生产丙烯晴,原料气流量1.9NL/min ,内含丙烯76.85%,产物用水吸收,吸收液体积为9750mL/30min,其中丙烯晴浓度为0.65%,该溶液比重为1.00,尾气量为421.3 NL/30min ,内含丙烯0.7%,计算丙烯晴转化率、丙烯晴产率和丙烯晴选择性。 3.已知CH2=CH2+1/2O2 —k1→ +25.17 Kcal/mol, E1=12Kcal/mol CH2=CH2+3O2 —k2→ 2CO2 + 2H2O + 339.6 Kcal/mol, E2=15Kcal/mol 问当温度由200 C°升高到300 C°时,生成环氧乙烷和CO2 的速度常数之比k1/k2各为多少?设A1和A2相等。 4.正己烷裂化反应,达到规定的反应速率,用沸石催化剂反应温度为270 C°,用无定形SiO2-Al2O3催化剂需450 C°,设上述温度范围内反应活化能皆为125KJ/mol,求两种催化剂的活性比。 5.A→ (目的产物) 两个反应均为一级反应,若欲提高生成B1的相对选择性, ↘B2(副产物)所的用催化剂对两个反应的活化能E1和E2应有怎样的关系?这种情况下,低温还是高温对提高B1的选择性有利? 6.为使于400K进行的某非催化反应提高反应速度到原来的103倍,向此体系

催化剂的组成

一.催化剂的组成: 1.活性组分: 2.助催化剂: 3.载体: 二.催化剂的制备 其制备方法有酸法,碱法和醇铝法三种。目前国内主要采用碱法,少数厂家采用醇铝法。 (1)酸法将硫酸铝配成6%的水溶液,加入中和槽中,再将液氨配成15%~20%的氨水,按计算量将氨水快速加入,在强烈搅拌下于室温反应40~60 min,至pH值达到8~9左右时,反应基本完成。将生成的沉淀物经压滤、用无离子水洗涤除去杂质离子,洗涤水中一般加少量氨水调节pH值为8~9,以防洗涤过程中氢氧化铝发生胶凝过程而引起物料损失。将洗涤过的沉淀物加入少量33%的硝酸溶液,在强烈搅拌下生成胶状料浆(此过程称为打浆)。再经喷雾干燥,将得到的微球形氢氧化铝挤条成型,在550℃下焙烧活化4h,即脱水形成活性氧化铝。(2)碱法把工业固体烧碱加水配成浓度为600 g/L的烧碱溶液,在50~80℃下加入氢氧化铝后升温至110℃,保温3 h进行反应,将所得溶液用水稀释至含氧化铝为100g/L,静置0.5~1h,经过滤,除去氢氧化铁等不溶性杂质,再将清液和20%硝酸溶液按照一定比例进行中和反应,温度控制在30~50℃下,控制pH 7~7.5,反应10 min 左右以后,再将反应液在常温搅拌下老化2h,经过滤、用无离子水多次洗涤、于110℃烘干、挤条成型、干燥、500℃活化4h,制得活性氧化铝。 (3)醇铝法将金属铝片加入异丙醇溶液中进行反应,生成异丙醇铝,通过水蒸气鼓泡(入口温度180℃,水解温度175℃),使异丙醇铝水解,生成水合氧化铝,经熟化、过滤、于100℃干燥、500℃脱水活化,制得活性氧化铝。其 (4)高温快脱法:将氢氧化铝(水合氧化铝)经高温快速脱水、成型、水热处理及干燥后制得成品。 (5)炭化铝胶法:将氢氧化铝和氢氧化钠混合,再经中和、二氧化碳碳化、水洗、压滤、干燥、粉碎、捏合、挤条、干燥、煅烧等过程制得成品。 (6)喷雾干燥法:将氢氧化铝与工业硫酸反应,再经碱液中和、水洗、喷雾干燥、煅烧等过程制得成品。

相关主题