搜档网
当前位置:搜档网 › 铟的特点和储量及其化合物

铟的特点和储量及其化合物

铟的特点和储量及其化合物

立志当早,存高远

铟的特点和储量及其化合物

是(铁)闪锌矿,含量为100~10000ppm,在铜矿中也有一定含量的铟。由于铟在矿物中含量很低,不能作为单独一种工业原料开采;即使铟在闪锌矿中含量最富,也仍然不能作为独立开采的矿物,只能在重有色金属冶炼过程中作为综合利用原料的副产品回收。一般在进行原料的综合冶炼时,只要铟的含量达到200ppm,就具有综合回收的价值。

铟是一种银白色的金属,相对密度为7.3,熔点为156.6℃,沸点为2075℃; 其性质柔软,可塑性强,并有延展性,可压成极簿的薄片,但拉伸极限低,黏度大,故难拉成丝和不利于切削。铟的导电性比铜约低4/5,其热膨胀系数几乎是铜的1 倍以上。

铟的化学性质与铁近似,常与锌、铁一起形成类质同象物。铟可生成一价、二价和三价化合物,但只有三价化合物是稳定的,在水溶液中只存在三价铟的化合物。

氧化铟是黄色不溶于水的物质,当铟在空气中氧化或将氢氧化铟煅烧时都可得到氧化铟。氧化铟可在700~800℃时被氢或炭还原成为金属。低价氧化物是还原时的中间产品。

将碱或氨与铟盐的溶液作用,可以制得氢氧化铟,呈白色胶状沉淀。氢氧化铟在pH 值为3.5~3.7 的稀溶液中就开始析出,当铟的浓度增加时,氢氧化铟析出的pH 值可向酸性移动。

三氯化铟是无色、易于挥发的化合物,熔点为586℃,但是,在450 ℃时已开始升华,可溶解于水。

硫酸铟是铟的重要盐类之一,在中性溶液中结晶出五水化合物,在100~120 ℃时,还逐渐脱水成为无水化合物。硫酸铟为白色固体,溶解于水。

专题2-5:主族金属-镓与铟的化合物(解析版)

系列二 主族金属 专题5 镓与铟及其化合物 一、镓单质 (1)Ga 熔点29.78℃,在手中融化,但Ga 的沸点为2403℃,是液相存在的温度范围最大的金属单质,常用于制造高温下使用的温度计,镓之所以有此特性在于镓的晶体中似存在Ga 2,因此其熔点低,当沸腾时,Ga 2分裂为原子,所以沸点高。 (2)常温下,镓与铟表面存在氧化层,导致其化学性质不活泼。Ga 与铝类似,具有两性,金属性若于铝,既可以与酸反应也可以与碱反应:2Ga+3H 2SO 4=====Ga 2(SO 4)3+3H 2↑;2Ga+2NaOH+2H 2O=====2NaGaO 2 +3H 2↑ (3)常温下,镓与铟可以和氯气和溴反应;高温下,都可以与O 2、S 、P 、As 等非金属直接化合。 二、氧化物和氢氧化物 (4)Ga 2O 3和Ga(OH)3两性偏酸;Ga(OH)3+3OH -=====[Ga(OH)6]3-。Ga(OH)3可溶于NH 3·H 2O ,而Al(OH)3不溶于NH 3·H 2O (5)In 2O 3和In(OH)3几乎无两性表现,In 2O 3溶于酸,但不溶于碱。 (6)Ga(OH)3、In(OH)3微热时脱水,生成氧化物:2M(OH)3=====△M 2O 3+3H 2O(M 表示Ga 或In)。 三、镓与铟的制备 (7)因为镓常与铝、锌、锗等金属混在一起,所以可在提取出这些金属之后的废料中提取。例如由铝矾土矿制备Al 2O 3的工艺流程中,铝酸盐溶液经CO 2酸化后分离出Al(OH)3沉淀的母液富集了镓。将母液再次经CO 2 酸化后便可得到富集的Ga(OH)3,使之溶于碱再进行电解即可得到单质镓。Ga(OH)3 + OH -=====Ga(OH)4 -,Ga(OH)4-+3e -=====Ga + 4OH -。 (8)铟的制备方法是将提取过的闪锌矿残渣用硫酸浸取,酸浸取液经中和后投入锌片,铟就沉积在锌片上,用极稀的硫酸溶去锌,将不溶杂质溶于硝酸,再加入BaCO 3,便沉淀出氧化铟,在高温下用氢气还原制得金属铟。 【习题1】镓是1871年俄国化学家门捷列夫在编制元素周期表时曾预言的“类铝”元素。镓的原子序数为31,

铟的应用毒性及其对身体的危害

铟的应用、毒性及其对身体的危害 1.性质 铟(In)原子序数49。是一种非常软、银白色的、比较稀有的、 带有光泽的纯金属。晶体结构稳定,四方体。比重7.3、熔点 156.4°C。溶于酸,与碱和水不反应。当弯曲时,发出声调很高的 纯金属声音。 铟的一个不寻常的性质是铟是最常见的具有轻微放射性的同位素,它非常缓慢地由β射线衰变为锡。但不认为这种辐射是危险的,因为它的半衰期是441×1014年,比宇宙的年龄大4个量级,比天然钍大50万倍以上。不同于周期表的邻居镉,铟并不是一个出名的蓄 积毒物。 2.应用 铟的第一次大规模应用是在第二次世界大战期间涂在高性能飞 机发动机轴承表面。随着生产逐渐增加,作为新的用途用于合金、 焊料和电子等。在20世纪50年代,极少的铟被用来作为辐射源和晶

体管合金交界处的集流器。在20世纪80年代中、末期,磷化铟半导体和液晶显示器铟锡氧化物薄膜的发展引起了很大的兴趣。到1992年,薄膜应用已成为最大的最终用途。 3.其他用途 制造低熔点高温合金。24%铟和76%镓构成的合金在室温为液体。一些铟化合物,如锑化铟、磷化铟、氮化铟是具有使用性质的半导体。合成半导体需要的成分铜铟镓硒(CIGS)用来制造太阳能电池薄膜。以化合物半导体为基础,用在发光二极管(LED)和激光二极管(LDS),如由金属有机物气相外延制成的InGaP。铟的超纯金属有机物,特别是高纯度的三甲基铟(trimethylindium,TMI)用来作为 III-V族化合物半导体的前体,同时,它还可在II-VI化合物半导体作为半导体掺杂剂。 也可以镀在金属和玻璃上蒸发形成一面镜子,这种做法与用银 一样,但具有较高的耐腐蚀性能。在制作电致发光面板时,氧化铟(In2O3)被用来作为透明导电玻璃基板。作为光过滤器用在低压钠气灯。

铟的特点、性质、储量、化合物及主要应用领域

立志当早,存高远 铟的特点、性质、储量、化合物及主要应用领域 是(铁)闪锌矿,含量为100~1000ppm,在铜矿中也有一定含量的铟。由于铟在矿物中含量很低,不能作为单独一种工业原料开采;及时铟在闪锌矿中含量最富,也仍然不能作为独立开采的矿物,只能在重有色金属冶炼过程中做为综合利用原料的副产品回收。一般在进行原料的综合冶炼时,只要铟的含量达到200ppm,就具有综合回收的价值。铟是一种银白色的金属,相对密度为7.3,熔点为156.6℃,沸点为2075℃;其性质柔软,可塑性强,并有延展性,可压成极薄的薄片,但拉伸极限低,黏度大,故难拉成丝和不利于切削。铟的导电性比铜约低4/5,其热膨胀系数几乎是铜的1 倍以上。铟的化学性质与铁近似,长与锌、铁一起形成类质同象物。铟可生成一价、二价和三价化合物,但只有三价化合物是稳定的,在水溶液中只存在三价铟的化合物。氧化铟(In2O3)是黄色不溶于水的物质,当铟在空气中氧化或将氢氧化铟煅烧时 都可得到氧化铟。氧化铟可在700~800℃时被氢或炭还原成为金属。低价氧化物InO 或In2O 是还原时的中间产品。将碱或氨与铟盐的溶液作用,可以制得氢氧化铟,呈白色胶状沉淀。氢氧化铟在PH 值为3.5~3.7 的稀溶液中就开始析出,当铟的浓度增加时,氢氧化铟析出的PH 值可向酸性移动。三氯化铟是无色、易于挥发的化合物,熔点为586℃,但是,在450℃时已开始升华,可溶解于水。硫酸铟[In2(SO4)3]是铟的重要盐类之一,在中性溶液中结晶出无水化合物[In2(SO4)3·5H2O],在100~120℃时,还逐渐脱水成为无水化合物。硫酸铟为白色固体,溶解于水。铟和硫可以生成硫化物,如将硫化氢通入中性或弱酸性的醋酸铟溶液中,就会析出黄色硫化物InS。目前,铟的矿产资源主要集中在美国、俄罗斯、加拿大、南非和中国,但是,其他地方如西欧有精炼厂。按USGS 统计,2000 年世界精矿生产量为220 吨,比上年增加了

铟(In) 一、物理性质:铟(英文:indium)拼音:yīn化学式:In原子序数49 ,原子量11 铟锭4.82,属周期系ⅢA族。1863年F.赖希和H.T.里希特为了寻找铊而研究闪锌矿,用处理矿物所得的硫化物进行光谱分析,发现一条靛蓝色光谱线,他们认为属于一种新的化学元素,其英文名称的含义是“靛蓝色”。 从常温到熔点之间,铟与空气中的氧作用缓慢,表面形成极薄的氧化膜,温度更高时,与氧、卤素、硫、硒、碲、磷作用。大块金属铟不与沸水和碱反应,但粉末状的铟可与水作用,生成氢氧化铟。铟与冷的稀酸作用缓慢,易溶于浓热的无机酸和乙酸、草酸。铟能与许多金属形成合金。铟的氧化态为+1和+3,主要化合物有In2O3、In(OH)3,与卤素化合时,能形成一卤化物和三卤化物。 二、主要来源:主要以微量存在于锡石和闪锌矿中,用化学法或电解法由闪锌矿制得。 1863年,德国的赖希和李希特,用光谱法研究闪锌矿,发现有新元素,即铟。 铊被发现和取得后,德国弗赖贝格(Freiberg)矿业学院物理学教授赖希由于对铊的一些性质感兴趣,希望得到足够的金属进行实验研究。他在1863年开始在夫赖堡希曼尔斯夫斯特(Himmelsfüst)出产的锌矿中寻找这种金属。这种矿石所含主要成分是含砷的黄铁矿、闪锌矿、辉铅矿、硅土、锰、铜和少量的锡、镉等。赖希认为其中还可能含有铊。虽然实验花费了很多时间,他却没有获得期望的元素。但是他得到了一种不知成分的草黄色沉淀物。他认为是一种新元素的硫化物。 三、元素用途:质软,能拉成细丝。纯态的金属铟几乎没有什么商业价值,主要用于制造合金,以降低金属的熔点。铟银合金或铟铅合金的导热能力高于银或铅。可作低熔合金、轴承合金、半导体、电光源等的原料。主要作飞机用的涂敷铅的银轴承的镀层。铟箔往往插入核反应堆中以控制核反应的进行,铟箔在反应堆中与中子反应后便呈现放射性,其呈现放射性的速度,可作为测量和反应进行的一个有价值的参数。 铟锭因其光渗透性和导电性强,主要用于生产ITO 靶材(用于生产液晶显示器和平板屏幕),这一用途是铟锭的主要消费领域,占全球铟消费量的70%。 其次的几个消费领域分别是:电子半导体领域,占全球消费量的12%;焊料和合金领域占12%;研究行业占6%。另,因为其较软的性质在某些需填充金属的行业上也用于压缝。如:较高温度下的真空缝隙填充材料。 医学:肝、脾、骨髓扫描用铟胶体。脑、肾扫描用铟-DTPA。肺扫描用铟Fe(OH)**3颗粒。胎盘扫描用铟Fe抗坏血酸。肝血池扫描用铟输铁蛋白。 四、产地: 中国是世界上铟锭主要生产地,此外全球还有美国、加拿大及日本等国生产。我国的铟分布在铅锌矿床和铜多金属矿床中,保有储量为13014t,分布15 个省区,主要集中在云南(占全国铟总储量的40%)、广西(31.4%)、内蒙古(8.2%)、青海(7.8%)、广东(7%)。尚未发现铟的单独矿床,它以微量伴生在锌、锡等矿物中。当其含量达十万分之几,就有工业生产价值,目前主要是从闪锌矿中提取。另外,从锌、铅和锡生产的废渣、烟尘中也可回收铟。 铟锭:执行标准:YS/T257-1998,牌号:In99.993 In99.97 In99.9,主要用途供制作多种合金、特殊焊料、涂层、生产高纯铟等。性状:银白色金属,质软,可塑性、延展性好。密度7.31g/cm3,熔点156.2℃产品规格2000g±100g 高纯铟:执行标准:YS/T264-1994,牌号:In-05(In>99.999%) In-06(In>99.9999%) 主要用途:用于制作半导体化合物、高纯合金及半导体材料的掺杂剂等。性状:银白色金属,

铟的特点、性质、储量及其化合物有哪些,主要应用于哪些领域

立志当早,存高远 铟的特点、性质、储量及其化合物有哪些,主要应用于 哪些领域 是(铁)闪锌矿,含量为100~10000ppm,在铜矿中也有一定含量的铟。由于铟在矿物中含量很低,不能作为单独一种工业原料开采;即使铟在闪锌矿中含量最富,也仍然不能作为独立开采的矿物,只能在重有色金属冶炼过程中作为综合利用原料的副产品回收。一般在进行原料的综合冶炼时,只要铟的含量达到200ppm,就具有综合回收的价值。铟是一种银白色的金属,相对密度为7.3,熔点为156.6℃,沸点为2075℃;其性质柔软,可塑性强,并有延展性,可压成极簿的薄片,但拉伸极限低,黏度大,故难拉成丝和不利于切削。铟的导电性比铜约低4/5,其热膨胀系数几乎是铜的1 倍以上。铟的化学性质与铁近似,常与锌、铁一起形成类质同象物。铟可生成一价、二价和三价化合物,但只有三价化合物是稳定的,在水溶液中只存在三价铟的化合物。氧化铟(In2O3)是黄色不溶于水的物质,当铟在空气中氧化或将氢氧化铟煅烧时都可得到氧化铟。氧化铟可在700~800℃时被氢或炭还原成为金属。低价氧化物1nO 或In2O 是还原时的中间产品。将碱或氨与铟盐的溶液作用,可以制得氢氧化铟,呈白色胶状沉淀。氢氧化铟在pH 值为3.5~3.7 的稀溶液中就开始析出,当铟的浓度增加时,氢氧化铟析出的pH 值可向酸性移动。三氯化铟是无色、易于挥发的化合物,熔点为586℃,但是,在450 ℃时已开始升华,可溶解于水。 硫酸铟(In2(SO4)3 是铟的重要盐类之一,在中性溶液中结晶出五水化合物[In2(S04)3-5H20],在100~120℃时,还逐渐脱水成为无水化合物。硫酸铟为白色固体,溶解于水。铟和硫可以生成硫化物,如将硫化氢通人中性或弱酸性的醋酸铟溶液中,就会析出黄色硫化物InS。目前,铟的矿产资源主要集

铟元素-铟元素化学符号-铟元素符号

铟元素|铟元素化学符号|铟元素符号 化学元素解释: 概述铟(英文:indium),元素符号In,原子序数49,原子量114.82,属周期系ⅢA族。铟是一种柔软的银灰色金属,带有光泽。从常温到熔点之间,铟与空气中的氧作用缓慢,表面形成极薄的氧化膜,温度更高时,与氧、卤素、硫、硒、碲、磷作用。大块金属铟不与沸水和碱反应,但粉末状的铟可与水作用,生成氢氧化铟。铟与冷的稀酸作用缓慢,易溶于浓热的无机酸和乙酸、草酸。铟能与许多金属形成合金。铟的氧化态为+1和+3,主要化合物有In2O3、In(OH)3,与卤素化合时,能形成一卤化物和三卤化物。铟-115是最常见的铟同位素,带有微弱的放射性。 发现及用途1863年F.赖希和H.T.里希特为了寻找铊而研究闪锌矿,用处理矿物所得的硫化物进行光谱分析,发现一条靛蓝色光谱,认为是一种新元素,并命名为铟,意思是靛蓝色,同年分离出金属铟。铟主要作为包复层或与其它金属制成合金,以增强耐腐蚀性;铟有优良的反射性,可用来制造反射镜;铟合金可作反应堆控制棒;在无线电和半导体技术中,铟及铟的化合物也有重要用途。铟可用作低熔点合金、半导体、整流器、热敏电阻等。含24%铟及76%镓的合金,在室温下是液体。铟是电子、电信、光电产业不可或缺的关键原材料

之一,70%的铟用于制造液晶显示产品,在电子、电信、光电、国防、通讯等领域具有广泛用途,极具战略地位。铟产业被称为信息时代的朝阳产业。 存在铟在地壳中的含量为1 10-5%,它虽然也有独立矿物,硫铟铜矿(CuInS2)、硫铟铁矿(FeInS4)、水铟矿[In(OH)3],但量极少,绝大部分铟都分散在其他矿物中,主要是含硫的铅、锌矿物,闪锌矿中铟的含量为0.0001%~0.1%,铅锌冶炼厂和锡冶炼厂都能回收铟。 资源分布铟是非常稀少的金属,全世界铟的地质含量仅为1.6万吨,为黄金地质储量的1/6。铟在地壳中的含量约十万分之一,没有独立矿物,广泛分布于闪锌矿中,含量在0.1%以下。铟矿物多伴生在有色金属硫化矿物中,特别是硫化锌矿,其次是方铅矿、氧化铅矿、锡矿、硫化铜矿和硫化锑矿等。虽然在一些有色金属精矿中铟得到初步富集,但由于铟品位低,一般不可直接作为提铟原料。而上述有色金属精矿经过冶炼或高炉炼铁后得到的粗锌、粗铅、炉渣、浸出渣、溶液、烟尘、合金、阳极泥等是提铟的主要原料。中国拥有世界上最大的铟储量,也是全球最大的铟生产国和出口国,产量占世界铟总产量的30%以上。2006年,中国精铟产量近6吨,原生铟供应量占全球的60%以上。日本是世界上最大的铟消费国,每年铟需求量占世界铟年产量的70%以上,绝大部分从中国进口。 综合性质物理性质 颜色和状态:银白色金属 声音在其中的传播速率(m/S):1215

铟的应用领域

立志当早,存高远 铟的应用领域 铟称得上合金的维生素,铟合金可用作钎焊料,铟是无铅焊料新的重要添加元素,世界无铅焊料的发展趋势有利于铟钎焊料的应用。利用铟合金熔点低的特点还可制成特殊合金,用于消防系统的断路保护装置及自动控制系统的热控装置;添加少量铟制造的轴承合金是一般轴承合金使用寿命的4-5 倍;铟合金还可用于牙科医疗、钢铁和有色金属的防腐装饰件、塑料金属化等方面。 由于铟具有较强的抗腐蚀性及对光的反射能力,可制成军舰或客轮上的反射镜。铟对中子辐射敏感,可用作原子能工业的监控剂量材料,目前用在原子能工业的铟,大约与电子工业上的用量相近。 铟可在蓄电池中作添加剂,在无汞碱性电池中作为缓蚀剂,可使电池成为绿色环保产品。铟在防止雾化层方面的用量不断增加,铟涂层最初是在汽车制造业中采用,有可能普及到工业及高档民用建筑业中去。日本索尼公司发明了以铟代替钪的新阴极,这样每根电子枪的成本就降到了掺钪电子枪的十分之一左右。因此,在电视机大功率输出、长寿命方面,铟的应用发展前景引人注目。在光电子领域,铟及其化合物半导体具有广泛的用途。在铟基III-V 族化合 物半导体如锑化铟(InSb)、磷化铟(InP)、砷化铟(InAs)等中,研究和应用最早的是锑化铟(InSb),而最受重视并具有潜在应用前景的是磷化铟(InP),它在微波通讯向毫米波通讯方面,作为光纤通讯的激光光源和异质结太阳能电池材料方面,都有突破性进展,展现了铟应用的可喜前景。锑化铟和砷化铟在红外探测和光磁器件方面也有重要用途。在太阳能电池中,含铟化合物薄膜材料正异军突起,以其高转换率、低成本、便于携带等优势受到瞩目。铜铟硒(CIS)等I-II- VI 三元化合物薄膜半导体材料,由于有价格低廉、性能良好和工艺简单的优点,将成为今后大力发展太阳电池工业的一个重要方向,促使铟在该领域的应

高纯铟

高纯铟 1.金属铟概述 1.1 铟的性质 铟(In)属于稀散金属,位于周期表ⅢA族,原子序数为49,相对原子质量为114.82,在地壳中含量与银相似,为1 x 10-5%;价数有+1和+3。铟呈银白色,有强金属光泽,可塑性很大,延展性好,可以压延成极薄的铟片,莫氏硬度为1.2。化学性质和铁相近,常温时不为空气所氧化,加热超过其熔点则迅速和氧、硫化合,无毒性。铟可溶于各种浓度的盐酸、硫酸和硝酸等无机酸,致密的铟在沸水及某些碱液中不被腐蚀。铟和溴在常温时即发生化合,加热时则可以与碘发生化合。铟可以与多种金属生成合金。应用形式为小锭或棒、丸、条、板、粒和单晶。纯度分工业级和高纯度级(不纯物少于10×10-4%)。表1为金属铟的主要物理性质。 表1 金属铟的主要物理性质 1.2 铟的用途 铟是一种多用途金属,是制造半导体、焊料、无线电工业、整流器和热电偶的重要材料,且随着科技的进步其应用范围在不断扩大,特别是在高科技领域,铟的应用具有广阔的前景,图4示出了铟的主要用途。 图 4 铟的用途 A 易熔合金 低熔点合金如伍德合金中每加1%的铟可降低熔点1.45℃,当加铟到19.1%时熔点可降到47℃。铟基低熔点合金是作热信号及热控制器件的材料,主要用于弱电器件及光学工业中;在特殊电气真空仪器中作可动元件的特殊润滑剂;作自动消火栓;作异型薄管制弯曲处加工的固形充填物,而不发生如用砂时的易滑动、用树脂或铅的易断裂以及没有用树脂或

铅时的难以清洗与清除之弊;利用含Bi大于55%的低熔点合金在凝固时的膨胀可充作安装难以固定的卡夹用材,或做珠宝加工的支撑夹具,便于精加工;无论作填充物或作夹具用,一旦加工完后,只需加热到其低熔点的温度时即可与主体分离,而低熔点合金仍可再用,类此还可作铸造模型的母型材用;作焊料,铟与锡的合金可作真空密封之用,如作玻璃-玻璃和玻璃-金属间的焊剂,In-Me远较Pb-Sn及Au-Sn优越,经登月舱在月球上着陆,查明了铟材在低温下的延展性十分可靠且不脆化与开裂;铟的二元、三元等低熔合金具有良好的高温抗伸强度及抗疲劳强度,常见的铟基低熔点合金见表2。 表2 铟基焊接剂 B 焊接剂 铟与银、铋和铅等金属可形成一系列熔点间于47~234℃的金属焊接剂,俗称软合金。因为铟焊料具有较好的润湿玻璃性能,且对某些贵金属基片的渗透较弱,故主要用于电子及低温物理领域焊接,既防止损坏印刷电路板,又可利用其熔点逐渐降低而实现堆焊电子元件等,如用在高真空系统中作焊接玻璃-玻璃、玻璃-金属及电子器件的焊接剂用。合金In-Cu32-Zn15-Cd20-Ni2-Ag30.5具有良好的导电性,又有较优的力学性能和防腐能力,故在机械工业中用作焊接钢、铁及有色金属的焊料;某些铟基低熔合金,如In-Sn25-37.5Pb25-37.5、InSn75、In-Sn50及In-Pb50等具有抗碱腐蚀特性,可作为氯碱工业化工设备的焊接剂。 C 涂层及防腐合金 铟及铟基合金具有耐磨、耐腐及力学性能良好的特性,故常用作控制仪表、地球物理仪、监测辐射仪及红外线仪等的涂层,如In-Zn-Al作航空及汽车工业中的防腐涂层;纯度大于99%的铟作高速航空发动机银铅铟轴承材料及传统装饰纪念品的涂层;如今由于铝导线在电力工业中的发展,用铟作铝线接头和连接器的涂层可保证高的电导率及良好的力学性能。 铟的另一重要用途是镀在飞机发动机、汽车发动机的轴承上,可增加轴承的强度、硬度和抗腐蚀性,并使表面易于涂油,从而能大大提高轴承的使用期限。In-Ag-Cu、In-Cu-Pb、In.Pb-AR及In-Cu等合金因制造高级高速发动机轴承而广泛用于航空及汽车工业;铟基合金可作玻璃透镜的抛光材料;金、钯、银、铜同铟组成的合金常用来制作假牙和装饰品,如In-Ni-Ga常用作牙科材料;In-Te77-82可作热电偶。 向润滑剂中添加少量铟的化合物,则可降低其腐蚀性;反射镜类仪器涂铟既能增大其反射性能、不怕海水腐蚀,又不易在空气中变暗,故为军工及海事中采用。 D 电子、电池工业 高纯铟是电子工业上的重要原料,用于制造化合物半导体锑化铟、砷化铟、磷化铟等,以及作为半导体锗、硅的掺杂元素。例如,锑化铟可用作红外线检波器的材料,磷化铟可用

职业性铟及其化合物中毒的诊断

职业性铟及其化合物中毒的诊断 1 范围 本标准规定了职业性铟及其化合物中毒的诊断和处理原则。 本标准适用于在职业活动中长期接触铟及其化合物所致慢性中毒的诊断及处理。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 16180 劳动能力鉴定职工工伤与职业病致残等级 GBZ/T 173 职业卫生生物监测质量保证规范 3 诊断原则 根据6个月以上接触较高浓度铟及其化合物的职业史,出现以呼吸系统损害为主的临床表现,胸部影像学和病理检查符合肺泡蛋白沉积症或间质性肺疾病,结合职业卫生学调查和血铟的检测结果,参考职业健康监护资料,综合分析,排除其他原因所致类似肺部疾病,方可诊断。 4 诊断 4.1 肺泡蛋白沉积症 接触较高浓度铟及其化合物6个月以上。出现渐近性呼吸困难,可伴有咳嗽、咳痰、胸闷等症状,且同时满足以下两条: a) X线胸片常表现为双肺对称的弥漫细小的羽毛或结节状浸润影,并可见支气管充气征,肺门旁浸润阴影多延伸至外带,呈“蝴蝶状”分布,双肋膈角常不受累及。胸部CT多表现为双肺多发磨玻璃结节影,呈“地图”样分布,小叶内和小叶间隔增厚,典型者呈“铺路石征”,部分可见散在片状模糊影及实变影、支气管充气征,晚期少数病例有肺间质纤维化的表现。 b) 支气管肺泡灌洗液或肺组织病理见过碘酸雪夫(PAS)染色阳性颗粒状富磷脂蛋白样物质,且电镜下见嗜锇板层小体。 4.2 间质性肺疾病 接触较高浓度铟及其化合物2年以上。出现咳嗽、咳痰、胸闷,可伴有呼吸困难等症状,体格检查双下肺常闻及吸气末爆裂音(Velcro 啰音),晚期可伴有杵状指(趾),且同时满足以下两条: a) X线胸片早期显示双下肺野模糊阴影,密度增高如磨玻璃样,病情进展可出现双肺弥漫性网状或网状结节状浸润阴影。晚期有大小不等的囊状改变,呈蜂窝肺,肺体积缩小,膈肌上抬,叶间裂移位等。胸部CT常表现为两肺局部或广泛磨玻璃影,小叶中心结节、不规则线状影或网格状影,可见纤维化改变(蜂窝影、牵引性支气管扩张)和肺气肿。

铟资料汇总

(中南)铟的精炼是指除去原料铟中的一些杂质元素,而杂质中最难以除去的主要是镉、铊、锡、铅等,这是由于这四种元素的化学电位与铟的电位相近,必须通过控制电解液的组分进行精炼提纯。 区域熔炼法(周智华):由于铟具有较低的蒸气压,采用区域熔炼的方法,可使其它一些不能和铟起作用的杂质挥发,如分离B、Au、Ag、Ni 等。尤其适合于铟汞齐精炼后的处理。将汞齐电解后的铟置于涂炭的石英舟中,在温度600~700℃,真空度1.33×10-2~1.33×10-3Pa下,处理3~4 h,汞含量可降低至0.08μg/g。但S、Se、Te等对铟具有更高的亲和力,不能用区域熔炼法分离。 电解法:化学电位比铟低的金属杂质沉积在阳极,成为阳极泥;而化学电位比铟高的金属,若将其浓度降低到足够低的程度,则残留在电解液中而不至沉积在阴极。电解法按照电极状态的不同,可以分为2大类:液体铟汞齐电解法和固体铟阳极电解法。而通常所说的电解精炼法是指固体铟阳极电解法。 铟汞齐电解法:由于铟在汞中有较大的溶解度(70.3%,铟的原子百分数),而其它杂质元素难溶于汞,故可用此法来精炼铟。Gaumann最先提出用汞齐电解法精炼铟,发现该方法制得铟纯度高,但同时也发现该方法不能通过一次电解将杂质降低到需要的范围。Козин采用阶梯式双性汞齐电极和点阴极的电解槽进行多次精炼,可使杂质含量进一步降低。铟汞齐电解法的优点有:①使用铟汞齐电极,由于杂质扩散速度快,可避免电位较正的杂质在阳极表面累积。②杂质元素有一部分不溶于汞,而铟能较好地溶于汞,在阳极过程中即电解汞齐时,铟又能和杂质

较好分离。③纯度比固体铟阳极电解法的纯度高。但该法也有它的不足之处:①铟对汞具有高亲和性,导致难以除去汞。②高温除汞造成产品容易被容器材料污染。③必须利用一系列其他高纯试剂。④汞具有毒性。 阳极铟电解法:由于铟中镉、铊电位与铟很接近,难以通过电解法将其除去,往往需对其进行预先纯化。往铟中加入20%的KI的甘油溶液和单质碘,熔融,生成络合物K2CdI4。该方法操作简单,除镉效果好。ОмедвчукАА开发了在甘油电解质中电解精炼除镉的工艺,在含有10%的氯化锂和10%的碘化钾的甘油电解质中将杂质从液态铟阳极中氧化,并使之从阳极迁移至阴极而沉积除去,已在车里亚宾斯克电解锌厂实现工业化。金属铊的去除采用氯化法。用氯气作为氯化剂,在200~350℃下作用1~3 h,Tl的含量可降低至2μg/g,甚至达0.4μg/g。或利用NH4Cl除铊,将ZnCl2和NH4Cl按质量比为3∶1组成的熔融体,在250℃下作用1~3 h,铊首先进入熔体。采用NH4Cl的甘油溶液熔炼金属铟,也可以除去铟中60%~70%的铊。用KI的甘油溶液和单质碘,熔炼金属铟,用示踪法发现能除去大部分的铊。在铟的电解精炼中,电解液和电解槽的选择以及电解液成分、电解条件的确定都是至关重要的。常用的电解液为In2(SO4)3~H2SO4电解液体系或InCl3~HCl电解液体系,控制pH为2~3,可抑制铟的水解。但硫酸盐和氯化物作为电解液都有其不足之处。当铟中含有铊时,不宜采用氯化物作为电解液,因为铊在氯化物介质中标准电位比铟更低,使得铊和铟一起沉积在阴极。另外,用氯化物作为电解液,在用In和HCl反应制备InCl3过程中,

铟的简介

铟的简介 铟(英文:indium)拼音:yīn 关于此字: 繁体字:铟 部首:钅,部外笔画:6,总笔画:11 ; 繁体部首:金,部外笔画:6,总笔画:14 五笔86&98:QLDY 仓颉:XCWK 笔顺编号:31115251341 四角号码:86700 UniCode:CJK 统一汉字U+94DF 物理性质: 颜色和状态:银白色金属 声音在其中的传播速率(m/S):1215 密度:7.31克/厘米3 熔点:156.61℃ 沸点:2080℃ 莫氏硬度:1.2 电离能(kJ /mol) :5.786电子伏特 M - M+ 558.3 M+ - M2+ 1820.6 M2+ - M3+ 2704 M3+ - M4+ 5200 M4+ - M5+ 7400 M5+ - M6+ 9500 M6+ - M7+ 11700 M7+ - M8+ 13900 M8+ - M9+ 17200 M9+ - M10+ 19700 其它:稀散元素之一,有延展性,比铝软。 化学性质: 元素原子量:114.8 元素类型:金属 原子体积(立方厘米/摩尔):15.7 原子序数:49 元素符号:In 相对原子质量:114.8 核内质子数:49 核外电子数:49 核电荷数:49

氧化态: 主要:In+3 其它:In+1, In+2 质子质量:8.1977E-26 质子相对质量:49.343 所属周期:5 所属族数:IIIA 摩尔质量:115g/mol 外围电子排布:5s2 5p1 核外电子排布:2,8,18,18,3 晶体结构:晶胞为单斜晶胞。 晶胞参数: a = 325.23 pm b = 325.23 pm c = 494.61 pm α= 90° β= 90° γ= 90° 原子半径:2 其它:易溶于酸或碱;不能分解水;在空气中很稳定;燃烧时会发生鲜紫色的火焰。 元素辅助资料: 元素来源:主要以微量存在于锡石和闪锌矿中,用化学法或电解法由闪锌矿制得。 元素用途:质软,能拉成细丝。可作低熔合金、轴承合金、半导体、电光源等的原料。主要作飞机用的涂敷铅的银轴承的镀层。 元素在太阳中的含量(ppm):0.004 元素在海水中的含量(ppm):太平洋表面0.0000001 地壳中含量(ppm):0.049 发现: 1863年,德国的赖希和李希特,用光谱法研究闪锌矿,发现有新元素,即铟。 铊被发现和取得后,德国弗赖贝格(Freiberg)矿业学院物理学教授赖希由于对铊的一些性质感兴趣,希望得到足够的金属进行实验研究。他在1863年开始在夫赖堡希曼尔斯夫斯特(Himmelsfüst)出产的锌矿中寻找这种金属。这种矿石所含主要成分是含砷的黄铁矿、闪锌矿、辉铅矿、硅土、锰、铜和少量的锡、镉等。赖希认为其中还可能含有铊。虽然实验花费了很多时间,他却没有获得期望的元素。但是他得到了一种不知成分的草黄色沉淀物。他认为是一种新元素的硫化物。 只有利用光谱进行分析来证明这一假设。可是赖希是色盲,只得请求他的助手H.T.李希特进行光谱分析实验。李希特在第一次实验就成功了,他在分光镜中发现一条靛蓝色的明线,位置和铯的两条蓝色明亮线不相吻合,就从希腊文中“靛蓝”(indikon)一词命名它为indium(铟)(In)。两位科学家共同署名发现铟的报告。分离出金属铟的还是他们两人共同完成的。他们首先分离出铟的氯化物和氢氧化物,利用吹管在木炭上还原成金属铟,于1867年4月在法国科学院展出。 铟在地壳中的分布量比较小,又很分散。它的富矿还没有发现过,只是在锌和其他一些金属

铟金属的基本常识

铟金属的基本常识 铟属于稀散金属,密度7.3,熔点156.61℃,沸点2080℃。从常温到熔点之间,铟与空气中的氧作用缓慢,表面形成极薄的氧化膜,温度更高时,与氧、卤素、硫、硒、碲、磷作用。大块金属铟不与沸水和碱反应,但粉末状的铟可与水作用,生成氢氧化铟。铟与冷的稀酸作用缓慢,易溶于浓热的无机酸和乙酸、草酸。铟的可塑性强,有延展性,可压成极薄的金属片。铟能与许多金属形成合金。 目前已知的铟矿物有硫铟铜矿、硫铟铁矿、水铟矿。铟主要呈类质同象存在于铁闪锌矿、赤铁矿、方铅矿以及其它多金属硫化物矿石中。此外锡矿石、黑钨矿、普通角闪石中也含有铟。 铟是制造半导体、焊料、整流器、热电偶的重要材料。纯度为99.97%的铟是制作高速航空发动机银铅铟轴承的材料,低熔点合金如伍德合金中每加1%的铟可降低熔点1.45℃,当加到19.1%时熔点可降到47℃。铟与锡的合金可用作真空密封,能使玻璃与玻璃或玻璃与金属粘接。金、钯、银、铜与铟组成的合金常用来制作假牙和装饰品。铟是锗晶体管中的掺杂元素,在PNP锗晶体管生产中使用铟的数量最大。 镓、铟、铊、锗、硒、碲和铼通常称为稀散金属,这7个元素从1782年发现碲以来,直到1925年发现铼才被全部发现。这一组元素之所以被称为稀散金属,一是因为它们之间的物理及化学性质等相似,划为一组;二是由于它们常以类质同象的形式存在于有关的矿物当中,难以形成独立的具有单独开采价值的稀散金属矿床;三是它们在地壳中的平均含量较低,以稀少分散状态伴生在其他矿物之中,只能随开采主金属矿床时在选冶中加以综合回收和利用。 稀散金属具有极为重要的用途,是当代高科技新材料的重要组成部分。由稀散金属与其他有色金属组成的一系列化合物半导体、电子光学材料、特殊合金、新型功能材料及有机金属化合物等,均需使用独特性能的稀散金属。用量虽说不大,但至关重要,缺它不可。因而广泛用于当代通讯技术、电子计算机、宇航、医药卫生、感光材料、光电材料、能源材料和催化剂等行业。 稀散金属在自然界中主要以分散状态赋存在有关的金属矿物中,如闪锌矿一般都富含镉、锗、镓、铟等,个别还含有铊、硒与碲;黄铜矿、黝铜矿和硫砷铜矿经常富含铊、硒及碲,个别的还富含铟与锗;方铅矿也常富含铟、铊、硒及碲;辉钼矿和斑铜矿富含铼,个别的还富含硒;黄铁矿常富含铊、镓、硒、碲等。目前,虽然已发现有近200种稀散元素矿物,但由于稀少而未富集成具有工业开采的独立矿床,迄今只发现有很少见的独立锗矿、硒矿、碲矿,但矿床规模都不大。 我国稀散金属矿产资源比较丰富,已探明有稀散金属矿产储量的矿区:锗矿分布在11个省区,其中广东、云南、吉林、山西、四川、广西和贵州等省区的储量占全国锗总储量的96%;镓矿分布在21个省区,主要集中在山西、吉林、河南、贵州、广西和江西等省区;铟矿分布在15个省区,主要集中在云南、广西、内蒙古、青海、广东;铊矿分布在云南、广东、甘肃、湖北、广西、辽宁、湖南等7个省区;硒矿分布在18个省区,主要集中在甘肃,其次为黑龙江、广东、青海、湖北和四川等省区;碲矿分布在15个省区,主要集中在江西、广东、甘肃;铼矿分布在陕西、黑龙江、河南和湖南、湖北、辽宁、广东、贵州、江苏9个省。

铟摇身成稀土概念之_后_

中国商报/2011年/4月/8日/第010版 财经/投资 身价倍增 铟摇身成稀土概念之“后” 本报记者邓大洪 稀土第二概念 “铟价上涨的空间很大,与铟相关的个股值得关注,”浙商证券策略分析师林建告诉中国商报记者。近期,在基本金属和贵金属屡创新高的同时,小金属品种不甘寂寞,亦在上演“以小搏大”的行情。短短3个多月,铟价就从年初的3385元/公斤飙升至当前的4325元/公斤,涨幅高达28%。 林建认为,储量稀少、供给趋紧、需求增加决定其价格继续攀高的潜力巨大。 储量方面,目前自然界中尚未发现铟的单独矿床,它主要是微量伴生在锌和锡等矿物中。铟的全球储量约1.6万-1.9万吨,中国储量1.3万吨,约占全球储量的75%,是全球第一大原生铟供应国。铟的主要来源是闪锌矿,其中铟含量为0.0001~0.1%,当含量达到0.002%,就有工业回收价值。因此,铟是铅锌冶炼厂的副产品。 供应方面,自2006年以来,我国铟一直处于减产状态。2008年全球精铟产量为1427吨,中国精铟产量为377吨,占比为26%。当前,中国不断加强对稀有金属的宏观调控,铟的供给正逐步趋紧。 需求方面,由于铟具有光渗透性和导电性强的属性,当前主要应用于ITO(氧化铟锡) 靶材,而ITO主要应用于生产液晶显示器和平板屏幕,这一用途占全球铟消费量的83%。其他消费领域包括:化合物消费占比9%,合金领域占比5%,半导体行业占比3%。目前液晶面板的需求增速减缓,而CIGS(铜铟镓硒)薄膜太阳能电池和LED成为铟消费新的增长亮点。 “多重因素和催化剂重叠,将导致铟价大幅上扬”。林建说,相比基本金属和贵金属的屡创历史新高,目前铟价尽管出现快速上涨,但距离2006年8000元/千克的历史峰值,仍有85%的潜在增长空间,从而吸引金融资本的大量买盘。 中银国际策略分析师乐宇坤也对中国商报记者说:“我们对基本金属的价格前景逐渐趋于谨慎。然而对于稀有金属(如铟、锗、钼和稀土等)而言,下游新兴产业需求日趋旺盛,中国政府也可能出台一系列的扶持政策,因此稀有金属将享有更好的供需前景,未来价格上涨空间也更为广阔。” “新兴领域的需求增长将可能推动铟价加速上涨,未来铟价上涨空间很大。在需求爆发的同时,铟的产能受限,未来全球原生铟的产量增速将依赖于中国。”华融证券策略分析师告诉中国商报记者。 据中国有色工业金属年检预测,未来全球原生铟的产量增速将继续依赖中国产量的增长。此外虽然目前全球再生铟主要来自于日本和韩国,但是铟的主要下游产品LCD 和LED 目前全球的主要生产和消费基地已经转移到我国大陆和台湾地区,同时日韩再生铟生产成本也较高,因此这两国再生铟的产量增长潜力较小。 公开信息显示,目前全球约 84%的铟被制作为应用于平板显示的铟锡金属氧化物,铟同时还是高效太阳能电池和下一代电脑芯片的关键材料,因此铟业被普遍看好为“新材料朝阳产业”。自2011 年初以来,在美、日、韩等主要平板显示市场需求增加的推动下,铟价已出现快速持续上涨。

铟知识

立志当早,存高远 铟知识 铟属于稀散金属,密度7.3,熔点156.61℃,沸点2080℃。从常温到熔点之间,铟与空气中的氧作用缓慢,表面形成极薄的氧化膜,温度更高时,与氧、卤素、硫、硒、碲、磷作用。大块金属铟不与沸水和碱反应,但粉末状的铟可与水作用,生成氢氧化铟。铟与冷的稀酸作用缓慢,易溶于浓热的无机酸和乙酸、草酸。铟的可塑性强,有延展性,可压成极薄的金属片。铟能与许多金属形成合金。 目前已知的铟矿物有硫铟铜矿、硫铟铁矿、水铟矿。铟主要呈类质同象存在于铁闪锌矿、赤铁矿、方铅矿以及其它多金属硫化物矿石中。此外锡矿石、黑钨矿、普通角闪石中也含有铟。 铟是制造半导体、焊料、整流器、热电偶的重要材料。纯度为99.97%的铟是制作高速航空发动机银铅铟轴承的材料,低熔点合金如伍德合金中每加1%的铟可降低熔点1.45℃,当加到19.1%时熔点可降到47℃。铟与锡的合金可用作真空密封,能使玻璃与玻璃或玻璃与金属粘接。金、钯、银、铜与铟组成的合金常用来制作假牙和装饰品。铟是锗晶体管中的掺杂元素,在PNP 锗晶体管生产中使用铟的数量最大。 镓、铟、铊、锗、硒、碲和铼通常称为稀散金属,这7 个元素从1782 年发 现碲以来,直到1925 年发现铼才被全部发现。这一组元素之所以被称为稀散金属,一是因为它们之间的物理及化学性质等相似,划为一组;二是由于它们常以类质同象的形式存在于有关的矿物当中,难以形成独立的具有单独开采价值的稀散金属矿床;三是它们在地壳中的平均含量较低,以稀少分散状态伴生在其他矿物之中,只能随开采主金属矿床时在选冶中加以综合回收和利用。 稀散金属具有极为重要的用途,是当代高科技新材料的重要组成部分。由稀

铟的主要应用领域

铟的主要应用领域 铟的应用领域涉及很广。由于延展性(可塑性)极好、蒸气压低,又能够粘附在多种材料之上,所以它被广泛用作高空仪器和宇航设备中的垫片或内衬层材料。铟箔常用作超声波线性阻滞的接触器。 铟的最为重要的应用是在半导体工业技术和无线电电子技术这两大领域。有相当大部分的金属铟用于生产半导体材料。在无线电工业和电子工业中,铟用于制造特殊的接触装置,即将铟和银的氧化物经混合后压制而成。 在原子能工业中,铟用于制造中子的指示剂。许多铟的合金,常用于制造原子核反应堆中的控制棒。铟还是制造中子检测器的优良材料,并可以与金属镓相媲美。 金属铟在工业上最初的应用领域是制造工业轴承,在这方面的用途延续至今。轴承的表面镀上铟,轴承的使用年限比普通镀层的轴承延长5倍之多。铟和镓的合金可以对滑动元件起润滑作用而被用于电动真空仪器中。 金属铟易于在金属表面形成牢固的涂层,且有良好的抗腐蚀性能,特别是能阻止碱性溶液的腐蚀作用。铟的涂层不仅具有鲜艳的色泽而且易于抛光打磨。除了纯铟涂层之外,亦可用铟与锌等合金作为涂层。铟镀层亦用于装饰工艺方面。各种镜子、反光镜和反射器,如果表面镀上铟,则其反射性能会大大加强并耐海水的侵蚀,因此在海上船舶的反光镜常用到这种镀层。此外,表面镀铟的青铜丝网可用于排除真空仪器的汞蒸气。 由于铟的熔点较低,所以用它可制造出多种易熔合金。熔点在47~122℃范围内的这类含铟合金多用于制造各式各样的保险丝、熔断器、控温器及信号装置等。 铟的许多易熔合金用作钎焊料。甚至是纯净的金属铟本身,也极易与玻璃、石英、云母的表面润湿,且粘附得极佳。利用铟可以使压电材料制作成的零件相互牢固的焊接在一起。在制作多层集成电路时,选用含铟成分的钎焊料乃是至关重要的一步。 许多合金在掺入少量的铟之后,可以提高合金的强度、提高其延展性、提高其抗磨损与抗腐蚀的性能等,从而使铟得到了“合金的维生素”这样的美名,或者也有人称之为“奇妙的铟效应”。 铟的最富有发展前景的应用领域是口腔医学。已知用作假牙的合金基本上是以金、银和钯为主要成分并添加0.5%~10%铟的合金。牙科镶补物的材料中 添加少量的金属铟之后,可以显著地提高这些镶补物抗腐蚀的能力和硬度,同时这种合金材料不会发乌。 铟的某些合物,如氧化物、硫化物和磷酸盐,多用于制造黄色和橙黄色玻璃,以及特种光学玻璃。含有铋或镉的铟硼酸盐玻璃,能够吸收中等强度的X光,还可以吸收比热中子能量更高的中子。 由高纯氧化铟和氧化锡的玻璃态复合物(ITO)在等离子电视和液晶电视屏工业中用来制作透明导电的电极,还用作某些气体测量的敏感元件。

铟金属的基本常识

铟金属的基本常识 2009-3-2 14:33:59 铟属于稀散金属,密度7.3,熔点156.61℃,沸点2080℃。从常温到熔点之间,铟与空气中的氧作用缓慢,表面形成极薄的氧化膜,温度更高时,与氧、卤素、硫、硒、碲、磷作用。大块金属铟不与沸水和碱反应,但粉末状的铟可与水作用,生成氢氧化铟。铟与冷的稀酸作用缓慢,易溶于浓热的无机酸和乙酸、草酸。铟的可塑性强,有延展性,可压成极薄的金属片。铟能与许多金属形成合金。 目前已知的铟矿物有硫铟铜矿、硫铟铁矿、水铟矿。铟主要呈类质同象存在于铁闪锌矿、赤铁矿、方铅矿以及其它多金属硫化物矿石中。此外锡矿石、黑钨矿、普通角闪石中也含有铟。 铟是制造半导体、焊料、整流器、热电偶的重要材料。纯度为99.97%的铟是制作高速航空发动机银铅铟轴承的材料,低熔点合金如伍德合金中每加1%的铟可降低熔点1.45℃,当加到19.1%时熔点可降到47℃。铟与锡的合金可用作真空密封,能使玻璃与玻璃或玻璃与金属粘接。金、钯、银、铜与铟组成的合金常用来制作假牙和装饰品。铟是锗晶体管中的掺杂元素,在PNP锗晶体管生产中使用铟的数量最大。 镓、铟、铊、锗、硒、碲和铼通常称为稀散金属,这7个元素从1782年发现碲以来,直到1925年发现铼才被全部发现。这一组元素之所以被称为稀散金属,一是因为它们之间的物理及化学性质等相似,划为一组;二是由于它们常以类质同象的形式存在于有关的矿物当中,难以形成独立的具有单独开采价值的稀散金属矿床;三是它们在地壳中的平均含量较低,以稀少分散状态伴生在其他矿物之中,只能随开采主金属矿床时在选冶中加以综合回收和利用。 稀散金属具有极为重要的用途,是当代高科技新材料的重要组成部分。由稀散金属与其他有色金属组成的一系列化合物半导体、电子光学材料、特殊合金、新型功能材料及有机金属化合物等,均需使用独特性能的稀散金属。用量虽说不大,但至关重要,缺它不可。因而广泛用于当代通讯技术、电子计算机、宇航、医药卫生、感光材料、光电材料、能源材料和催化剂等行业。 稀散金属在自然界中主要以分散状态赋存在有关的金属矿物中,如闪锌矿一般都富含镉、锗、镓、铟等,个别还含有铊、硒与碲;黄铜矿、黝铜矿和硫砷铜矿经常富含铊、硒及碲,个别的还富含铟与锗;方铅矿也常富含铟、铊、硒及碲;辉钼矿和斑铜矿富含铼,个别的还富含硒;黄铁矿常富含铊、镓、硒、碲等。目前,虽然已发现有近200种稀散元素矿物,但由于稀少而未富集成具有工业开采的独立矿床,迄今只发现有很少见的独立锗矿、硒矿、碲矿,但矿床规模都不大。 我国稀散金属矿产资源比较丰富,已探明有稀散金属矿产储量的矿区:锗矿分布在11个省区,其中广东、云南、吉林、山西、四川、广西和贵州等省区的储量占全国锗总储量的96%;镓矿分布在21个省区,主要集中在山西、吉林、河南、贵州、广西和江西等省区;铟矿分布在15个省区,主要集中在云南、广西、内蒙古、青海、广东;铊矿分布在云南、广东、甘肃、湖北、广西、辽宁、湖南等7个省区;硒矿分布在18个省区,主要集中在甘肃,其次为黑龙江、广东、青海、湖北和四川等省区;碲矿分布在15个省区,主要集中在江西、广东、甘肃;铼矿分布在陕西、黑龙江、河南和湖南、湖北、辽宁、广东、贵州、江苏9个省。

相关主题