搜档网
当前位置:搜档网 › 量子点在荧光分析中的应用

量子点在荧光分析中的应用

量子点在荧光分析中的应用
量子点在荧光分析中的应用

量子点在荧光分析中的应用

量子点(Quantum Dots,QDs),即半径小于或接近于激子玻尔半径的半导体纳米晶粒,也称为半导体纳米颗粒。它的直径只有1~10nm,因此存在特殊的物理性质,如量子尺寸效应、表面效应等,表现出优良的纳米效应。它的激发光谱宽且连续分布、发射光谱窄而对称、发射光稳定性强,不易发生光漂白,通过改变粒子的尺寸和组成可获得从UV到近红外范围内的任意点的光谱,因此相对传统有机荧光试剂具有无可比拟的优越性。由于量子点具有上述独特的性质,自20世纪70年代末,它就在物理学、材料科学、化学及电子工程学等方面引起广泛的关注。近年来,随着制备技术的不断成熟与荧光量子产率的不断提高,有关量子点在荧光分析中的应用研究取得了重要进展。

1. 量子点的尺寸及其结构

量子点是一种零维的纳米材料。所谓零维的纳米材料是指当半导体材料从体相逐渐减小至一定临界尺寸(典型直径尺寸为1~10nm,可以抽象成一个点)以后,材料的特征尺寸在三个维度上都与电子的德布罗意波长或电子平均自由程相比拟或更小,电子在材料中的运动受到了三维限制,也就是说电子的能量在三个维度上都是量子化的,结构和性能也随之发生从宏观到微观的转变,称这种电子在三个维度上都受限制的材料为零维的纳米材料,即量子点。它主要是由II-IV族元素(如CdSe,CdTe,CdS,ZnSe等)和III-V族元素(如InP,InAs等)组成的纳米晶体。

量子点的结构一般包括核(core)、壳(shell)两个部分。核,一般使用CdSe、CdTe或者InAs等作为材料,其尺寸的大小及其晶格生长情况主要决定了其光学性质(包括发射波长和荧光量子产率)。壳是具有不同禁带宽度(通常是更宽禁带宽度)的其它材料,或者也可是真空介质。合适厚度的壳结构可以进一步提高量子点的荧光量子产率,而且外层的壳可以将核与外界隔绝而保护核,同时还可以为进一步的表面化学修饰提供良好的基底条件(如图1所示)。一般金属化合物/有机相合成得到的量子点表面会覆盖一层油相的TOPO表面活性剂分子,在生物应用之前,需要使用亲水性分子取代TOPO或使用两亲性分子在TOPO外包裹,使量子点具有水溶性。

图1 核壳结构量子点结构示意图

2. 量子点的基本性质

由于量子点粒径大小与物质中的许多特征长度,如电子的德布洛意波长、超导相干长度、隧穿势垒厚度、铁磁性临界尺寸相当,从而导致其物理、化学特性既不同于微观的原子、分子,也不同于宏观物体,而是介于宏观和微观物体之间的中间领域,具有许多体材料和分子级别的材料所没有的性质,如尺寸量子效应和介电限域效应等,并由此派生出量子点独特的发光特性。量子点的量子效应集中表现在以下几个方面:

2.l量子尺寸效应

在纳米尺度范围内,半导体纳米晶体随着其粒径的减小,会呈现量子化效应,显示出与块体不同的光学和电学性质。块状半导体的能级为连续的能级,当颗粒减小时,半导体的载流子被限制在一个小尺寸的势阱中,在此条件下,导带和价带过渡为分立的能级,因而使得半导体有效能级差增大,吸收光谱闽值向短波方向移动,这种效应就称为尺寸量子效应。通常当半导体纳米粒子尺寸与其激子玻尔半径相近时,随着粒子尺寸的减小,半导体纳米粒子的有效带隙增加,其相应的吸收光谱和荧光光谱发生蓝移,从而在能带中形成一系列分立的能级。随着粒子半径的减少,其吸收光谱发生蓝移,反之则红移。

2.2介电限域效应

随着粒径的不断减小,比表面积不断增加,半导体纳米粒子表面的原子数目与处于粒子内部的原子数目的比值增加,颗粒的性质受到表面状态的影响。与块状半导体相比,在半导体颗粒的表面存在更多电子陷阱,电子陷阱对半导体的光致发光特性起着关键的作用。半导体超微粒表面上修饰某种介电常数较小的材料后,它们的光学性质与裸露的超微粒相比,发生了较大变化,此种效应称为介电

限域效应。当介电限域效应所引起的能量变化大于由于尺寸量子效应所引起的变化时,超微粒的能级差将减小,反映到吸收光谱上就表现为明显的红移现象。2.3表面效应

表面效应是指随着量子点粒径的减小,大部分原子位于量子点的表面,量子点的比表面积随着粒径的减小而增大。由于纳米颗粒具有很大的比表面积,表面相原子数增多,导致了表面原子的配位不足,不饱和悬空键增多,使这些表面原子具有很高的活性,极不稳定,很容易与其它原子结合。这种表面效应将引起纳米粒子较大的表面能和较高的活性。表面原子的活性不但会引起纳米粒子表面运输和构型的变化,同时也会引起表面原子自身构象和电子能谱的变化,出现表面缺陷。表面缺陷导致陷阱电子或空穴,它们将反过来影响量子点的发光性质。2.4小尺寸效应

当超细微粒的尺寸与光波波长,De.Broglie(德布罗意波长)波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏;非晶态纳米微粒的颗粒表面层附近原子密度减少,导致声、广、电、磁、热、力学等特性呈现新的小尺寸效应。

2.5宏观量子隧道效应

微观粒子具有贯穿势垒的能力称为隧道效应。近年来,人们发现一些宏观量,例如微颗粒的磁化强度,量子相干期间的磁通量等也具有宏观隧道效应称为宏观的量子隧道效应。

3. 量子点的荧光特性

3.1量子点的发光机理

量子点由于粒径很小,电子和空穴被量子限域,连续能带变成具有分子特性的分立能级结构,因此其光学行为与一些大分子(如多环的芳香烃)很相似,可以发射荧光。由于光谱禁阻的影响,当半导体纳米粒子的直径小于其玻尔半径(一般小于10nm)时,这些小的半导体纳米晶粒就会表现出特殊的物理和化学性质。半导体纳米晶粒的光学性质源于纳米晶体中电子和空穴的相互作用。半导体的价带填满了电子,在价带和导带之间有一个禁带。当一束光照射到量子点上时,半导体吸收光子后,价带上的电子跃迁到导带。导带上的电子可以再跃迁回到价带,放出光子;也可以落入半导体中的电子陷阱。当电子落入较深的电子陷阱后,绝

大部分以非辐射的形式而碎灭了,只有极少数的电子以光子的形式跃迁回价带或吸收一定能量后又跃迁回到导带。所以,当半导体中的电子陷阱较深时,量子产率就会较低。光致发光原理如图2所示:

图2 块状半导体和半导体纳米晶体的光致发光原理图

(图中实线表示辐射跃迁,虚线表示非辐射跃迁)

能够使物质产生激发态而发光的方法主要有三类:(l)给与光频辐射,由这种方法产生的光叫光致发光;(2)给与粒子或硬电磁辐射,如阴极射线、X射线、Y 射线等;(3)在化学反应中产生激发。当一个分子或原于吸收了外界给与的能量后,即刻引起发光;停止能量供给,发光也瞬间停止(持续10-7~10-6)。这样一种发光现象称为荧光。我们所讲的荧光属于第一类发光,也叫做光致荧光。类似地有X 线荧光、阴极射线荧光、化学荧光、生物荧光、放射荧光等。

3.2量子点的荧光特性

量子点的直径在2~10 nm(大约由10~50个原子的排列长度)。半导体材料处于这么小的粒径时表现出与相应大块宏观材料很不相同的各类性质,基于量子尺寸效应和介电限域效应的原因,从而表现出独特的光学特征。

(1)宽吸收

与传统的有机染料和荧光基团相比,量子点具有更宽的吸收光谱,如图3所示。理论上任何短于其荧光发射波长的单波长激发光源都可以有效激发量子点。这将非常有利于在多元分析中实现单激发光源下的多色探测、成像和定量分析应用。这一性质解决了传统荧光染料多元应用分析中对多光源的要求的难题。(2)窄的荧光发射

量子点具有窄而对称的荧光发射谱(例如CdSe/ZnS量子点半峰宽通常小于30 nm),如图4,没有明显的荧光拖尾,多色量子点同时使用时不容易出现光谱交叠,因而呈现出非常好的光谱分辨率。这将非常有利于量子点的多元分析应用。

图3 CdSe 量子点(绿线)与罗丹明图4 CdSe 量子点(绿线)与罗丹明6G(红线)激发谱比较6G(红线)发射谱比较

(3)尺寸可调的荧光发射

不同粒径的量子点发射不同波长的荧光,控制量子点的粒径就可以得到想要的发射波长,进行多元光谱编码可以得到数目巨大的编码库。目前商业可得的量子点发射波长覆盖了从465 nm (visible) 到2300 nm (infared)的波段。

(4)良好的光学稳定性

光稳定性对于荧光材料在荧光成像应用中是一个极为重要的特性。传统的有机染料或荧光团暴露在光源激发下几分钟时就发生明显的光漂白现象,而量子点是惰性无机材料化合物,而且通常有一层外壳包裹着,因而具有很好的光化学稳定性,能够重复经受光源数小时照射而没有明显的光性能损失,具有很高的光漂白门限。

图5 量子点和罗丹明6G 抗光漂白性能比较

(5)灵活的表面化学、生物可塑性

量子点具有非常灵活的表面可修饰性,我们可以方便的对其表面进行化学改性以适应有机或水相应用的需要。也可对量子点表面基团进行设计、改造接枝,使其能与特定的生物分子进行偶联绑定,以获得我们需要的生物探针。此外,也可对量子点进行表面设计改造之后应用于光学器件、光学计算、光电应用、发光二极管、激光器等其它领域。

此外,量子点还具有发射荧光强、荧光量子产率高、荧光寿命长、斯托克斯位移可选等特点。

4. 量子点作为荧光探针的应用

若量子点表面未加充分钝化,则可以用作荧光探针检测周围环境条件的改变。半导体材料的光谱特征与被吸附物质的种类和数量有关。cohen等人提出一种理论,即被吸附物质的最低空轨道可以以供体一受体模式与半导体材料带隙中的电子空穴相互作用,进一步影响半导体材料发射光的强度和寿命。这种类似的影响同样存在于量子点中。自20世纪70年代末,量子点就在物理学、材料科学、化学及电子工程学等方面引起广泛的关注。特别是1998年,MareelBruchez和Nie两个研究小组分别发表了量子点可作为生物探针,并且适用于活细胞体系的创新性论文,初步解决了如何将量子点溶于水溶液,以及量子点如何通过表面的活性基团与生物大分子偶联的问题之后,量子点在生物物质的荧光标记方面应用更多。如生物大分子之间的相互作用、细胞及组织的单色和多色标记、生物体组织和在体光学成像、基因测序等。

5. 小结

半导体量子点具有优良的光谱特征和光化学稳定性,可以大大拓宽利用荧光探测生物体系以及环境中有毒物种的应用范围。量子点可能会在细胞生物学领域产生深远的影响,如实现对活细胞内部分子运动规律的监测,或实时观测给体一受体的相互作用。这将帮助我们更深刻的理解细胞是怎样工作的,也有可能会改变细胞生物学家设计试验的方法。量子点在生物芯片研究中同样可以大有作为。量子点还有可能成为药物筛选的有力工具。所有这些研究为如何在纳米尺度上准确、快速、灵敏和有选择性的获取生物信息,了解化学过程,研究生命的本质创造了条件。半导体量子点在生物标记中的发展,为大量多色试验和诊断学带来了

新机会,其所具有的光学可调谐特点,使他们可以直接用作探针或作为传统探针的敏化剂。

将来,直接免疫标记和定位杂化的进一步发展会有更重要的应用,如在血细胞计数和免疫细胞生物学方面的应用。当然,目前量子点在荧光分析中的应用还存在一些不足,如稳定的、发光效率高的纳米粒子的制备条件较为苛刻,有机相合成的纳米微粒转移至水相后不稳定,而水相合成的纳米量子点质量不高,此外其生物相容性和大分子可接近性还有待于进一步提高。我们相信通过研究的不断深入,半导体纳米量子点在生物领域的应用前景还将更加广阔。

量子点的应用—一种新型的荧光定量检测技术

中国兽医杂志2007年(第43卷)第6期69量子点的应用一一种新型的荧光定量检测技术 徐飞,丁双阳 (中国农业大学动物医学院,北京海淀100094) 中图分类号:¥859.84文献标识码:E文章编号:0529—6005(2007)06—0069—02 半导体量子点,简称量子点(quantumdots,QDS),即材料的尺寸在三维空间进行约束并达到一定的临界尺寸(,--I抽象为一个点),因此其表现出许多独特的光、电特性,特别是Ⅱ~yl族荧光量子点(如CdSe、CdTe、CdS等),一直以来都是人们研究的热点‘1|。 传统上,这些材料一般用于电子、物理和材料工程领域,而1998年美国加州伯克里大学的Alivisatos小组和印第安纳大学Nie小组几乎同时提出荧光量子点可应用于生物标记这一思想,并同时在((Science》发表了相应的研究结果,开创了荧光量子点在生物技术中研究应用的先河。随后,生物化学、分子生物学、细胞生物学、蛋白质组学、医学诊断、药物筛选和荧光检测等领域都不同程度的开展了相关的研究,取得了可喜的研究成果,而且荧光量子点在其他领域的新应用也如雨后春笋般涌现。本文重点综述了量子点的特性及其在荧光定量检测应用中的研究进展,并对其在食品安全检测方面的发展前景予以展望。 1与传统有机染料相比,量子点有以下的优势1.1量子点是无机半导体材料,激发谱宽,发射谱窄。可以通过单一波长激发,产生多种可被同时检测的发射颜色,因此可用于多色标记。而传统的有机染料正好与之相反。 1.2量子点的稳定性要远远高于有机染料分子。有资料表明,大约是100倍。这点足以实现对一些生物过程的长时间跟踪标记。 1.3量子点通过调整粒径的大小得到不同颜色的荧光,使用一种偶联方法就可实现多色标记。而对于有机染料分子是不可能达到的[1]。 2量子点在荧光检测中的应用 2.1常规荧光检测法量子点在常规的荧光检测中的应用主要是荧光淬灭法。一些本身不发荧光的被分析物质可以使某种荧光化合物发生荧光淬灭,通过测量荧光化合物荧光强度的下降,可以间接的测定该物质的浓度。目前,我国对这方面的研究比较多,主要针对一些毒离子定量和快速测定。 严拯宇等[23于2005年首次报道了应用量子点进行药物分析的研究,建立了一种测定中药饮片中 收稿日期:2006—09—11 项目来源:国家自然科学基金项目(30671585) 作者简介:徐飞(1981一),女,硕士生,主要从事兽医药理与毒理实验研究 通讯作者:丁双阳,E—mail:dingsy@cau.edu.cn微量铜残留的方法。CdSe/ZnS核壳型量子点表面用牛血清白蛋白修饰后作为荧光探针,而Cu2+在pH 7.4的缓冲液中的能使其发生荧光淬灭,因而间接测定了铜的含量。研究表明,Cu2+浓度在0.6~6.0 ng/ml范围内有良好的线性关系(r=0.9989),检测限为0.1ng/ml,回收率在93.6%~108.0%。而后,赖艳等[33于2006年也建立了一种测定微量铜的荧光检测方法并且对人发样品和茶叶样品做了检测。 研究表明,该方法干扰小,特异性强,反应灵敏,线性范围为41.5~248.8ng/ml(r=0.9921),检出限为 8.5ng/ml。 随着量子点在生物领域的应用日益广泛,人们也开始尝试着利用其进行生物大分子的测定。2006年徐靖等[4]应用水相合成的CdTe/CdS核壳型量子 点荧光探针成功的测定DNA的含量。以巯基丙酸(HS。CH:CH。COOH)为稳定剂水相合成了核壳型CdTe/CdS量子点。基于DNA对量子点荧光的淬灭 效应,建立了一种测定DNA的荧光分析法,同时详细研究了pH、量子点浓度、离子强度、温度等条件对量子点荧光及DNA测定的影响。研究表明,该方法 测定ctDNA线性范围为50.O~750.0ng/ml,检出限为20ng/ml,7次重复测定500ng/mlctDNA的相对标准偏差为2.0%。此方法简便快速,适用于合 成样品的测定。 2.2免疫荧光检测方法美国华盛顿的Goldman研究小组长期以来一直致力于量子点标记抗体进行 免疫荧光检测的研究并取得了卓著的成果。首先,他们使用了一种重组蛋白作为QDs和抗体的偶联物,通过静电作用完成对抗体的标记。而后,他们又寻找到了一种更为优秀的偶联物一生物素。生物素和亲和素既可偶联抗体等生物大分子,又可与多种标记物结合;生物素化的抗体还保持着原有的活性;1分子亲和素可与4分子的生物素结合,而结合力是抗原抗体反应的1万倍,从而产生多级放大效应,大大提高检测的灵敏度。2003年[5],他们应用此方法成功的检测了葡萄球菌B型肠毒素的含量,检测限为10ng/ml。2004年,Goldman等¨]用夹心免疫法同时检测霍乱毒素、蓖麻毒素、志贺样毒素1、葡萄球菌肠毒素B等4种毒素的混合物。实验表明,这种QDs一抗体偶联物,既能同时检测,又可以进行定量分析。 此外,MeganA等[7]也利用亲和素标记的CdSe/ZnS核壳型量子点,检测了大肠杆菌OⅢ:H,血清型病原的单个细胞,并把传统的有机染料和QDs的作用进行对比,结果发现,QDs标记的细胞检测限  万方数据

量子点与生物标记

量子点与生物标记 应化1002班王艳 荧光分析法是生物学研究中十分重要的方法之一,其检测灵敏度很大程度上取决于标记物的发光强度和光化学稳定性。目前使用的大多数荧光试剂如有机荧光染料等存在着光学稳定性较差、激发光谱范围窄、发射光谱较宽、与生物分子的背景荧光难以区分等不可忽视的弱点,导致应用中灵敏度下降。量子点作为一种新型的荧光纳米材料,弥补了有机染料的上述缺点,引起分析化学和生命科学领域的广泛关注。 量子点即半导体纳米粒子,也称半导体纳米晶,是指半径小于或接近于激子玻尔半径的半导体纳米晶粒。它们由n-VI族或n l-V族元素组成,性质稳定,能够接受激发光产生荧光,具有类似体相晶体的规整原子排布。在量子点中,载流子在三个维度上都受到势垒的约束而不能自由运动。需要指出的是,并非小到100nm以下的材料就是量子点,真正的关键尺寸取决于电子在材料内的费米波长。只有当三个维度的尺寸都小于一个费米波长时,才称之为量子点。 量子点独特的性质基于它自身的量子效应,当颗粒尺寸进入纳米量级时,尺寸限域将引起库仑阻塞效应、尺寸效应、量子限域效应、宏观量子隧道效应和表面效应,从而派生出纳米体系具有常观体系和微观体系不同的低维物性,展现出许多不同于宏观材料的物理化学性质 作为荧光探针,量子点的光学特性比在生物荧光标记中常用的传统有机染料有明显的优越性: (l)宽的激发波长范围及窄的发射波长范围,可以使用小于其发射波长的任意波长激发光来激发,并且可以通过改变QDs的物理尺寸对荧光峰位进行调控。这样就可以使用同一种激发光同时激发多种量子点,从而发射出不同波长的荧光,进行多元荧光检测。相反多种染料的荧光(多种颜色)往往需要用多种激光加以激发,这样不仅增加了实验费用,而且使分析系统变得更加复杂。此外,由于QDs的这种光学特性,可以在其连续的激发谱中选取更为合适的激发波长,从而使生物样本的自发荧光降到最低点,提高分辨率和灵敏度。 (2) 量子点具有较大的斯托克斯位移(stokes shift),能够避免发射光谱与激发光谱的重叠,从而允许在低信号强度的情况下进行光谱学检测。生物医学样本通常有很强的自发荧光背景,有机荧光染料由于其Stokes位移小,检测信号通常会被强的组织自发荧光所淹没,而Q Ds的信号则能克服自发荧光背景的影响,从背景中清楚地辨别检测信号。QDs的荧光发射光谱相对狭窄,因此能同时显现不同颜色而无重叠,这样就能在实验中同时进行不同组分的标记。 (3) 量子点的发射峰窄而对称,重叠小,相互干扰较小,在一定程度上克服了光谱重叠所带来的问题。 (4) 量子点的发射波长可通过控制其大小和组成调节,因而有可能任意合成发射所需波长的量子点,大小均匀的量子点谱峰为对称的高斯分布; 此外,量子点hiP、InAs能够发射700~1500nm多种波长的荧光,可以填补普通荧光分子在近红外光谱范围内种类很少的不足。对于一些不利于在紫外和可见区域进行检测的生物材料,可以利用半导体量子点在红外区域染色,进行检测,完全避免紫外光对生物材料的伤害,特别有利于活体生物材料的检测,同时大幅度降低荧光背景对检测信号的干扰。 (5) 量子点的抗光漂白能力强,有高度光化学稳定性,是普通荧光染料的100

量子点光学传感器的研究进展.

量子点光学传感器的研究进展 * 来守军 (重庆三峡学院化学与环境工程学院,重庆404000 摘要分别从荧光转换传感器、荧光共振能量传感器、磷光转换传感器和定位传感器等方面综述了量子点光学传感器的发生机理及其在测定金属离子、阴离子、小分子、共振能量转移体系以及磷光材料、固态材料方面的应用。最后介绍了量子点光学传感器存在的问题和发展趋势。 关键词量子点光学传感器 Research Development of Opt ical Sensor Based on Q uant um Dots LAI Shoujun (Depa rtment of Chem istry and Env ir onmental Eng ineering,Cho ng qing T hr ee G or ge U niver sity,Cho ng qing 404000Abstract T he r esear ch dev elopment o f the o pt ical sensor based o n quantum do ts is rev iewed f rom four sect ions,which are fluo rescence -based transduction,fluorescence resonance energ y -tr ansfer -based senso rs,phospho rescence transduction,and immobilizatio n techniques,and it s applications are also rev iewed.T he exist ing pro blems and develo p -ments trend of the optical senso r based o n quantum do ts are intro duced. Key words quantum do ts,optical,senso r *重庆市教育委员会科学技术研究项目资助(KJ081102 来守军:男,1977年生,讲师,博士研究生,主要从事量子点传感器方面的研究 T el:023-******** E -mail:laishj04@https://www.sodocs.net/doc/f89273122.html,

生物医学荧光量子点功能材料的应用

生物医学荧光量子点功能材料的应用量子点(quantumdot,QD)又称为半导体纳米微晶体(semiconductornanocrystal)材料,由Ⅱ-Ⅱ族或Ⅱ-Ⅱ族元素组成,粒径为1~100nm,是小于或接近激子玻尔半径的半导体纳米颗粒[1]。荧光量子点功能材料是一种新兴的无机发光纳米材料,因其独特的光学性能、电学和光电性质,克服了细胞在可见光区的自发荧光对标记分子所发信号的掩盖现象,较好地实现对所研究分子的长时间荧光标记观察。因此,荧光量子点功能材料作为一种生物示踪的标志物,受到了越来越广泛的关注与研究,并已成为近期新的国内外研究热点。 1荧光量子点功能材料的基本特点及合成修饰方法 1.1荧光量子点功能材料的基本特点 探索和发展高灵敏度的非同位素检测方法一直是生物医学研究领域十分关注的课题,其中使用有机荧光染料来标记细胞是广泛应用的方法之一。传统的荧光染料有着不可逾越的缺陷:较宽的发射光谱和较窄的激发光谱,在多种成分同时成像时容易造成荧光光谱的重叠,导致了荧光探针数量较少;荧光染料性质不稳定,容易分解和漂白,其产物易对细胞造成破坏[2]。荧光量子点功能材料相比于传统的有机荧光分子,具有分子激发光谱特性好、发射光谱对称、吸收光谱宽而连续、荧光效率高、寿命长、光学化学稳定性、不易被生物活性物质降解等优点[3]。量子点的荧光发射波长可以通过改变荧光量子点的半径以及化学成分而得到,因此其荧光覆盖了从近紫外光到近红外光的光谱范围。量子点标记作为一种高灵敏度的非同位素检测方法,被认

为是有机荧光标记染料的合适替代物。 1.2荧光量子点功能材料的合成及修饰方法 荧光量子点功能材料的合成方法有溶胶法、溶胶凝胶法、微乳液法、电化学沉积法、气相沉积法等[4],其制备研究早期,普遍使用产量低、粒径分布特性差的气相沉积法或者是水溶液中的共沉淀法。经过不断发展,荧光量子点功能材料的合成从有机金属法过渡到水相合成法,再到目前较为常用的溶胶法。如今,量子点的合成技术在粒径分布、荧光量子的产率及一次合成的数量上都有了明显的突破。荧光量子点材料的发光性质不仅同其合成技术有关,而且还与其表面所修饰的分子的结构性质密切相关。在荧光量子点材料修饰具有特异性识别目标物的生物分子或者其他化合物时,就可以利用荧光量子点的荧光增强、荧光淬灭、氧化还原的性质与待检测的底物联系起来或者发生反应,进而将其用于目标物的分析。如将荧光量子点材料用不同的金属离子来修饰,以构建新型的传感材料。一般情况下,合成的荧光量子点因表面覆盖一层疏水的配体而难以直接应用于以水溶液为微环境的生物医学检测领域,需要对其进行一定的修饰才能使其具有水溶性。目前,已经存在多种修饰荧光量子点的方法,如包覆法、化学交换法、疏水相互结合法等。 2荧光量子点功能材料在生物医学工程中的应用 荧光量子点材料在生物医学、药学、环境检测、食品卫生和公共安全等领域均有广泛的应用。由于其应用领域较为宽泛,因此本研究主要讨论荧光量子点功能材料在生物医学中的应用。按照基于荧光量

量子点的性质、合成及其表面修饰研究

量子点的性质、合成及其表面修饰研究 【摘要】近年来,量子点作为一种重要材料在多个领域成为研究热点,本文分别从量子点的性质、合成及其表面修饰三个方面概括介绍了量子点。明确量子点具有荧光效率高,激发光谱宽,发射光谱窄、稳定性好等优点,是一种新型的纳米材料;通过有机相和无机相可制备不同的量子点,由于无机相制备过程能控制表面电荷,引入特殊官能团,故无机相制备应用更为广泛;通过对量子点的表面修饰,有效的改善量子点水溶性较差,不能与生物大分子直接作用的问题,使得量子点在生物方面的应用进一步加强。 【关键词】量子点;性质;合成;表面修饰 量子点主要是由Ⅱ-Ⅵ族和Ⅲ-Ⅴ族元素组成的均一或核壳结构纳米颗粒,又称半导体纳米晶体。由于发生结构和性质发生宏观到微观的转变,其拥有独特的光、电、声、磁、催化效应,因此成为一类比较特殊的纳米材料。自1990年7月美国召开第一届纳米会议[1],各国都在纳米技术方面给予巨大的投入,使得包括量子点技术在内的纳米技术飞速发展,其应用已突破原来的微电子和光电材料领域[2-3]。 1 量子点的基本特性 量子点的基本特性有:量子尺寸效应,表面效应,量子限域效应,宏观量子隧道效应,除此之外,量子点具有一些独特的光学效应[4],这使得量子点较传统的荧光染料用来标记生物探针具有以下优势: (1)量子点具有宽的激发光谱范围,可以用波长短于发射光的光激发,并产生窄而对称的发射光谱,避免了相邻探测通道之间的干扰。而有机染料荧光分子激光光谱较窄,每一种荧光分子必须用固定波长的光来激发,而且产生的荧光峰较宽,且不对称,有些拖尾,这给区分不同的探针分子带来了困难,故很难用有机染料分子同时检测多种组分。 (2)量子点还可以“调色”,即通过调节同一组分粒径的大小或改变量子点的组成,使其荧光发射波长覆盖整个可见光区。尺寸越小,发射光的波长越小。因此可用一个激发光源同时激发多个不同尺寸的量子点,使它们发出不同颜色的光进行多通道检测。这样可以同时使用不同光谱特征的量子点,而发射光谱不出现交叠或者只有很小程度的重叠,使标记生物分子的荧光光谱的区分、识别都会变得更加容易。 (3)量子点的稳定性好,抗漂白能力强,荧光强度强,具有较高的发光效率。半导体量子点的表面上包覆一层其他的无机材料,可以对核心进行保护和提高发光效率,从而进一步提高光稳定性。Chan和Nie通过实验证明ZnS包覆的CdSe比罗丹明6G分子要亮20倍和稳定100~200倍,可以经受多次激发而其光学特性没有显著变化,且标记后对生物大分子的生理活性影响很小,因此为研

量子点作为荧光探针在生物医学领域的研究进展

Hans Journal of Nanotechnology纳米技术, 2016, 6(1), 9-13 Published Online February 2016 in Hans. https://www.sodocs.net/doc/f89273122.html,/journal/nat https://www.sodocs.net/doc/f89273122.html,/10.12677/nat.2016.61002 Advances of Quantum Dots as Fluorescent Probes in Biological and Medical Fields Guolong Song, Xiangdong Kong* Institute of Biomaterials and Marine Biological Resources, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou Zhejiang Received: Jan. 27th, 2016; accepted: Feb. 13th, 2016; published: Feb. 16th, 2016 Copyright ? 2016 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.sodocs.net/doc/f89273122.html,/licenses/by/4.0/ Abstract Quantum dots (QDs), three-dimensional (3-D) nanocrystals, possess a great deal of unique optical performances, such as wide excitation wavelength, narrow and symmetric emission wavelength, high quantum yield, long fluorescence lifespan, stable optical property. QDs can be used as fluo-rescent probes to label different components in biosystem, which contains tissues, cells, molecules and living animals imaging. A review on the advances of QDs as fluorescent probes in Biological and Medical fields is given in the paper. Keywords Quantum Dots, Biological Probes, In Vivo Imaging 量子点作为荧光探针在生物医学领域的 研究进展 宋国龙,孔祥东* 浙江理工大学生命科学学院,生物材料与海洋生物资源研究所,浙江杭州 收稿日期:2016年1月27日;录用日期:2016年2月13日;发布日期:2016年2月16日 *通讯作者。

量子点发光材料综述

量子点发光材料综述 1.量子点简介 1.1量子点的概述 量子点(quantum dot, QD)是一种细化的纳米材料。纳米材料是指某一个维度上的尺寸小于100nm的材料,而量子点则是要求材料的尺寸在3个维度都要小于100nm[1]。更进一步的规定指出,量子点的半径必须要小于其对应体材料的激子波尔半径,其尺寸通常在1-10nm左右[2]。由于量子点半径小于对应体材料的激子波尔半径,量子点能表现出明显的量子点限域效应,此时载流子在三个方向上的运动受势垒约束,这种约束主要是由静电势、材料界面、半导体表面的作用或是三者的综合作用造成的。量子点中的电子和空穴被限域,使得连续的能带变成具有分子特性的分离能级结构[1]。这种分离结构使得量子点有了异于体材料的多种特性以及在多个领域里的特殊应用。 1.2量子点的特性 由于量子点中载流子运动受限,使得半导体的能带结构变成了具有分子原子特性的分离能级结构,表现出与对应体材料完全不同的光电特性。 1.2.1 量子尺寸效应 纳米粒子中的载流子运动由于受到空间的限制,能量发生量子化,连续能带变为分立的能级结构,带隙展宽,从而导致纳米颗粒的吸收和荧光光谱发生变化[3]。这种现象就是典型的量子尺寸效应。研究表明,随着量子点尺寸的缩小,其荧光将会发生蓝移,且尺寸越小效果越显著[4]。 1.2.2 表面效应 纳米颗粒的比表面积为A m=S V =4πR2 4 3 πR3 =3 R ,也就是说量子点比表面积随着颗 粒半径的减小而增大。量子点尺寸很小,拥有极大的比表面积,其性质很大程度上由其表面原子决定。当其表面拥有很大悬挂键或缺陷时,会对量子点的光学性质产生极大影响[5]。 1.2.3 量子隧道效应 量子隧道效应是基本的量子现象之一。简单来说,即当微观粒子(例如电子等)能量小于势垒高度时,该微观粒子仍然能越过势垒。当多个量子点形成有序阵列,载流子共同越过多个势垒时,在宏观上表现为导通状态。因此这种现象又

量子点作为荧光离子探针应用的研究进展

Material Sciences 材料科学, 2016, 6(1), 95-101 Published Online January 2016 in Hans. https://www.sodocs.net/doc/f89273122.html,/journal/ms https://www.sodocs.net/doc/f89273122.html,/10.12677/ms.2016.61012 Advances of Quantum Dots as Fluorescence Ion Probes Guolong Song1, Yizhong Han1,2, Zhengyang Cui1, Xiangdong Kong1,2* 1Institute of Biomaterials and Marine Biological Resources, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou Zhejiang 2The Key Laboratory of Advanced and Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou Zhejiang Received: Jan. 7th, 2016; accepted: Jan. 26th, 2016; published: Jan. 29th, 2016 Copyright ? 2016 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.sodocs.net/doc/f89273122.html,/licenses/by/4.0/ Abstract Quantum dots (QDs), a sort of quasi zero-dimensional (0-D) nanomaterials, possess numerous ex-cellent optical properties, such as wide excitation, narrow emission, strong intensity, long lifetime, and stable fluorescence etc. Therefore, QDs as fluorescence ion probes show many advantages like high sensitivity, simple instrument, excellent repeatability, and rapid spot detection. This paper reviews the recent advances of QDs as fluorescence ion probes in applications of detecting metal ions, anions, and small molecules etc. Keywords Quantum Dots, Ion Probes, Metal Ions, Anions 量子点作为荧光离子探针应用的研究进展 宋国龙1,韩义忠1,2,崔正阳1,孔祥东1,2* 1浙江理工大学生命科学学院,生物材料与海洋生物资源研究所,浙江杭州 2浙江理工大学材料与纺织学院,教育部先进纺织材料与制备重点实验室,浙江杭州 *通讯作者。

荧光量子点探针及其标记技术_蒋飞荣

文章编号 :1004-0374(2010)04-0391-05 收稿日期:2009-10-09;修回日期:2009-12-09基金项目:国家高技术研究发展计划(“863”计划)(2007AA021809;2007AA021811); 国家重点基础研究发展计划(“973”计划)(2010CB833605); 湖南省科技厅资助项目(2008FJ3186); 2009年度新世纪优秀人才支持计划(NCET-10-0790)#共同第一作者 *通讯作者:E-mail :rencaiping@https://www.sodocs.net/doc/f89273122.html,; Tel :0731-******** 荧光量子点探针及其标记技术 蒋飞荣1,2#,贾文婷1#,张兴燊2,任彩萍1* (1中南大学肿瘤研究所,长沙 410078;2广西中医学院,南宁 530001) 摘要:量子点作为一种新型荧光标记物,与有机染料和荧光蛋白质相比,它们具有可调谐且宽的吸收 光谱,激发可产生多重荧光颜色、强荧光信号、抗光漂白能力强等独特的光学特性,使其广泛应用在生物和医学领域。该文就量子点探针的表面修饰和功能化及其标记技术的研究进展进行了阐述。关键词:荧光量子点;探针;生物标记中图分类号:Q6-33 文献标识码:A Fluorescent quantum dots probes and their biological labeling JIANG Fei-rong 1, 2#, JIA Wen-ting 1#, ZHANG Xing-shen 2, REN Cai-ping 1* (1 Cancer Research Institute, Central South University, Changsha 410078, China; 2 Guangxi Traditional Chinese Medical University, Nanning 530001, China) Abstract: As emerging promising fluorescent labels, semiconductor quantum dots (QDs) have tremendous potential in the fields of biology and medicine because of their unique optical properties with size-tunable light emission, broad absorption spectra for simultaneous excitation of multiple fluorescence colors, superior signal brightness, resistance against photobleaching, etc. This article briefly discusses the recent progresses on fluorescent QDs probes and their biological labeling including their surface modification and functionalization.Key words: fluorescent quantum dots; probe; biological labeling 荧光半导体量子点(fluorescent semiconductor quantum dots ,QDs)是一种由II-VI 族(如CdSe 和CdTe)或III-V 族(如InP 和InAs)或IV-VI 族(如PbS 和PbSe)元素组成的、直径一般在1~100 nm 、能够接受激发光产生荧光的半导体纳米颗粒。Bruchez 等[1]通过在QDs 表面包裹SiO 2,再连接上羟基以及Chan 和Nie [2]采用巯基乙酸修饰QDs ,解决了QDs 的水溶性和生物兼容性问题。 QDs 独特的光学特性、表面修饰和生物功能化以及标记技术的优势使得QDs 在生物学、活细胞和体内成像、药物研究和筛选、生物芯片等领域得到了广泛应用。本文就QDs 探针的表面修饰和功能化及其标记技术进行阐述。 1 QDs的特征 一种典型的水溶性核壳型QDs 应该包括: (1)一 个半导体核(如CdSe),其直径决定荧光的波长;(2)一个半导体外壳(如ZnS),用来提高量子产率;(3)一个亲水层,用来保证其水溶性[3]。与传统的有机荧光标记物相比,QDs 具有以下特点:(1)激发波长范围宽、发射波长范围窄,可以采用同一波长激发光同时激发不同颜色QDs [4]; (2)QDs 的荧光强度高及核壳结构稳定性好,可以经受反复多次激发,荧 DOI:10.13376/j.cbls/2010.04.001

荧光量子点

荧光量子点探针在生物医学中的应用进展 杨冰冰1302班2013113010222 【摘要】量子点(半导体纳米微晶体)作为一种新型荧光探针,在生物医学领域中应用已引起国内外科学工作者的极大关注。文章主要概括了荧光量子点在活细胞荧光标记及组织光学成像、肿瘤细胞示踪及检测、荧光免疫分析和微生物学等方面的应用。 【关键词】荧光量子点探针生物标记 量子点(quantumdots,QDs)又称半导体纳米微晶体,是一种由0族元素组成的能够接受激发光产生荧光的半导体纳米颗粒,其颗粒直径一般约为1~100nm。由于其具有独特的量子尺寸效应和表面效应,表现出优良的光谱特征和光化学稳定性,许多科学工作者已经尝试着将其应用于生物学领域,并且取得了一定的进展。本文将主要评述荧光量子点探针在生物医学中的应用进展。 一,活细胞荧光标记及组织光学成像 细胞或细胞组分成像的标准方法是用荧光物质对相关部位进行标记,量子点作为纳米尺寸的晶体,有着独特的光化学和光物理学特性,使其不仅适合单分子成像,也可以进行组织整体的成像研究。Chen 等首次报道了将量子点与标记分子复合物通过转染进入细胞核,在实验中他们将量子点与SV40(猴病毒40)大的T抗原核定位信号(NLS)结合,并经转染进入活细胞,通过荧光成像系统监测到复合物从细胞质到细胞核的运动过程。这一工作首次将量子点用于细胞核中进行长时程生物现象观测,提供了一种新的无细胞毒性成像技术。Wu等证明

了量子点标记抗体能特异地识别亚细胞水平的分子靶点。他们用量子点标记的羊抗鼠IgG作为二抗,结合抗Her2单克隆抗体,观察到了乳腺癌细胞表面的Her2。用抗生物素蛋白交联具有不同发射光谱特征的量子点,配合生物素标记的二抗和特异性单抗,不仅能同时识别细胞表面的Her2和核抗原,也能同时识别胞浆微管蛋白和核抗原。与有机荧光染料Alexa488比较,量子点发射的荧光较强而且不被激发光淬灭。Jaiswal等基于量子点荧光的稳定性,用DHLA包被的量子点与活细胞于37e共孵育,观察到量子点通过内吞作用进入细胞,也观察到交联生物素的量子点进入生物素化的细胞。进入细胞的量子点不影响细胞的形态和生长,培育12d还可看到细胞内的量子点荧光。Lidke 等应用QDs的荧光示踪EGF与其受体erbB1的结合和信号转导过程,直接实时动态观察到一个信号分子与细胞膜结合通过细胞丝足、胞吞内化,以及与erbB2、erbB3相互作用的全过程,直观显示了癌细胞信号转导的过程,这表明QDs为研究活细胞内的信号传递及其分子机制开辟了一条新的途径。 二,肿瘤细胞示踪及检测 将基于量子点荧光探针建立的光学成像技术应用于肿瘤的早期诊断有着巨大潜力,这是一项灵敏的、非电离性、花费相对便宜的技术。Nida等将量子点连接的表皮生长因子受体与抗生长因子抗体形成共轭对来探测宫颈癌前期生物学标志物,结合光学成像技术,显示宫颈癌在分子水平的变化,有助于肿瘤的早期诊断。Kim等将近红外QDs以4.0@10-7mol/L的浓度分别注射入小鼠前爪及猪腹股沟皮下,

钙钛矿量子点的保护以及荧光传感应用

钙钛矿量子点的保护以及荧光传感应用 卤化铅钙钛矿是近年来兴起的半导体材料,由于其在光伏电池中的出色性能(光电转化效率超过20%)被研究者广泛关注。和传统的镉基量子点相比,钙钛矿纳米晶具有优秀的光学性质,例如高荧光量子产率(最高达100%),覆盖整个可见光区的可调发射光谱(从400-700 nm),相对低温的合成途径(从室温至150 ℃)等。 这些优越的特性使钙钛矿量子点在光电器件领域具有潜在的应用价值,例如太阳能电池/发光二极管/光泵浦激光/光检测器等。然而,钙钛矿量子点对湿度、氧气、极性和非质子溶剂以及热分解的不稳定性,影响了它们的进一步研究和分析方面的应用。 本论文共四章。第一章,文献综述。 主要介绍了钙钛矿量子点研究的发展过程,包括钙钛矿量子点的合成方法,光物理化学性质,稳定性的影响因素,现有的稳定方法,以及在光电和传感等方面的应用,并提出本论文的研究思路及其意义。第二章,利用研磨法制备有机无机杂化钙钛矿材料,探索其在湿度荧光传感的应用。 研究工作考察了其湿度传感的灵敏度和检测限,通过耦合红色荧光化合物,获得了一种比色型的荧光湿度传感器,达到了肉眼分辨湿度的效果,实验还考察了该传感器的稳定性。第三章,利用分子晶体苯甲酸作为包埋钙钛矿量子点的基质,不需要配体交换,进行量子点在苯甲酸晶体中的嵌入。 通过稳定性试验,考察晶体本身致密的结构对量子点的稳定性的影响。利用透射电子显微镜和激光共聚焦倒置荧光显微镜,观测量子点在苯甲酸晶体内部的分布。

通过荧光光谱和荧光寿命、荧光量子产率的测量,研究包埋量子点前后的光学性质特别是荧光性质的变化。实验利用这种复合晶体进行了暖白光LED的构建。 第四章,利用CsPbBr3NC量子点,通过固态阴阳离子的一步交换,获得了分散在KC1表面的CsPbC13-MnNC。利用KC1的多晶体软塑性成形的性质,通过压片成型,获得了具有橙红色荧光且发光可调的固态发光材料。 利用电感耦合等离子体质谱和荧光寿命的测量,证明了 Mn的掺杂。由于CsPbC13至Mn的能量转移效应,获得了强荧光的Mn发射,并用于光致发光的LED 颜色转换层。

量子点发光材料综述

量子点 1.量子点简介 1.1量子点的概述 量子点(quantum dot, QD)是一种细化的纳米材料。纳米材料是指某一个维度上的尺寸小于100nm的材料,而量子点则是要求材料的尺寸在3个维度都要小于100nm错误!未找到引用源。。更进一步的规定指出,量子点的半径必须要小于其对应体材料的激子波尔半径,其尺寸通常在1-10nm左右错误!未找到引用源。。由于量子点半径小于对应体材料的激子波尔半径,量子点能表现出明显的量子点限域效应,此时载流子在三个方向上的运动受势垒约束,这种约束主要是由静电势、材料界面、半导体表面的作用或是三者的综合作用造成的。量子点中的电子和空穴被限域,使得连续的能带变成具有分子特性的分离能级结构错误!未找到引用源。。这种分离结构使得量子点有了异于体材料的多种特性以及在多个领域里的特殊应用。 1.2量子点的特性 由于量子点中载流子运动受限,使得半导体的能带结构变成了具有分子原子特性的分离能级结构,表现出与对应体材料完全不同的光电特性。量子尺寸效应 纳米粒子中的载流子运动由于受到空间的限制,能量发生量子化,连续能带变为分立的能级结构,带隙展宽,从而导致纳米颗粒的吸收和荧光

光谱发生变化错误!未找到引用源。。这种现象就是典型的量子尺寸效应。研究表明,随着量子点尺寸的缩小,其荧光将会发生蓝移,且尺寸越小效果越显着错误!未找到引用源。。 表面效应 纳米颗粒的比表面积为A A=A A =4AA2 4 3 AA3 =3 A ,也就是说量子点比表面 积随着颗粒半径的减小而增大。量子点尺寸很小,拥有极大的比表面积,其性质很大程度上由其表面原子决定。当其表面拥有很大悬挂键或缺陷时,会对量子点的光学性质产生极大影响错误!未找到引用源。。 量子隧道效应 量子隧道效应是基本的量子现象之一。简单来说,即当微观粒子(例如电子等)能量小于势垒高度时,该微观粒子仍然能越过势垒。当多个量子点形成有序阵列,载流子共同越过多个势垒时,在宏观上表现为导通状态。因此这种现象又称为宏观量子隧道效应错误!未找到引用源。错误!未找到引用源。。 介电限域效应 上世纪七十年代Keldysh等人首先发现了介电限域效应错误!未找到引用源。。该现象可以表示为在不同介质中,因两种不同材料接触界面引起的介电作用变强的现象。与未被介质包裹的量子点相比,被介质包裹的量子点屏蔽效应变弱,带电粒子间库伦作用变大,增加了激子的振子强度和结合

量子点在荧光分析中的应用

量子点在荧光分析中的应用 量子点(Quantum Dots,QDs),即半径小于或接近于激子玻尔半径的半导体纳米晶粒,也称为半导体纳米颗粒。它的直径只有1~10nm,因此存在特殊的物理性质,如量子尺寸效应、表面效应等,表现出优良的纳米效应。它的激发光谱宽且连续分布、发射光谱窄而对称、发射光稳定性强,不易发生光漂白,通过改变粒子的尺寸和组成可获得从UV到近红外范围内的任意点的光谱,因此相对传统有机荧光试剂具有无可比拟的优越性。由于量子点具有上述独特的性质,自20世纪70年代末,它就在物理学、材料科学、化学及电子工程学等方面引起广泛的关注。近年来,随着制备技术的不断成熟与荧光量子产率的不断提高,有关量子点在荧光分析中的应用研究取得了重要进展。 1. 量子点的尺寸及其结构 量子点是一种零维的纳米材料。所谓零维的纳米材料是指当半导体材料从体相逐渐减小至一定临界尺寸(典型直径尺寸为1~10nm,可以抽象成一个点)以后,材料的特征尺寸在三个维度上都与电子的德布罗意波长或电子平均自由程相比拟或更小,电子在材料中的运动受到了三维限制,也就是说电子的能量在三个维度上都是量子化的,结构和性能也随之发生从宏观到微观的转变,称这种电子在三个维度上都受限制的材料为零维的纳米材料,即量子点。它主要是由II-IV族元素(如CdSe,CdTe,CdS,ZnSe等)和III-V族元素(如InP,InAs等)组成的纳米晶体。 量子点的结构一般包括核(core)、壳(shell)两个部分。核,一般使用CdSe、CdTe或者InAs等作为材料,其尺寸的大小及其晶格生长情况主要决定了其光学性质(包括发射波长和荧光量子产率)。壳是具有不同禁带宽度(通常是更宽禁带宽度)的其它材料,或者也可是真空介质。合适厚度的壳结构可以进一步提高量子点的荧光量子产率,而且外层的壳可以将核与外界隔绝而保护核,同时还可以为进一步的表面化学修饰提供良好的基底条件(如图1所示)。一般金属化合物/有机相合成得到的量子点表面会覆盖一层油相的TOPO表面活性剂分子,在生物应用之前,需要使用亲水性分子取代TOPO或使用两亲性分子在TOPO外包裹,使量子点具有水溶性。

一种基于量子点荧光微球的高灵敏度免疫层析技术初步研究

学校代码:10270 学号:072200928 硕士学位论文 论文题目一种基于量子点荧光微球的高灵敏度 免疫层析技术初步研究 学院生命与环境科学学院 专业生物化学与分子生物学 研究方向纳米检测技术 研究生姓名白亚龙 指导教师魏新林王元凤 完成日期 2010年4月

论文独创性声明 本论文是我个人在导师指导下进行的研究工作及取得的研究成果。论文中除了特别加以标注和致谢的地方外,不包含其他人或机构已经发表或撰写过的研究成果。其他同志对本研究的启发和所做的贡献均已在论文中做了明确的声明并表示了谢意。 作者签名:日期: 论文使用授权声明 本人完全了解上海师范大学有关保留、使用学位论文的规定,即:学校有权保留送交论文的复印件,允许论文被查阅和借阅;学校可以公布论文的全部或部分内容,可以采用影印、缩印或其它手段保存论文。保密的论文在解密后遵守此规定。 作者签名:导师签名:日期:

上海师范大学硕士学位论文摘要 摘要 量子点具有宽的吸收峰,窄而对称的发射峰,且发射峰(即发光颜色)随尺寸可调,以及较高的荧光强度、较强的抗光漂白能力等特点,与传统有机染料相比具有更优越的性能,是一种极具潜力的荧光探针制备物。近年来在生物与医学免疫检测方面得到飞速的发展,同时,在食品安全检测方面也不断渗透漫延。因其具有优越的光学性能,有望突破胶体金免疫层析检测,制备出更为灵敏的量子点免疫层析快速检测试纸条。 本项工作围绕量子点的免疫检测体系,主要开展以下方面的研究: 1. 制备MPA稳定的水溶性CdTe量子点,探讨了最佳的合成条件,随着回流时间的延长,得到一系列由绿色过渡到红色的CdTe量子点,并对不同时间取得的样品进行了紫外-可见吸收光谱、荧光光谱、TEM等表征。对其纯化和稳定性能也做了相应的探讨,发现透析不适合量子点纯化,体系pH8-10有利于量子点的稳定。 2. 以红色CdTe量子点作为代表,小鼠IgG作为模式抗体,用免疫层析法探讨了量子点与抗体的最佳偶联方式,先后对比了直接偶联、EDC与NHS单独最为偶联剂、EDC 与NHS混合作为偶联剂这三种方法制备量子点探针,免疫层析结果显示EDC与NHS 混合作为偶联剂(质量比3:4)制备得到的探针具有优越的性能。直接偶联与以NHS 作为偶联剂制备的探针性能较差,不适合实际应用。 3. 为了得到更高荧光强度的荧光粒子,从两个方面入手提高量子点荧光强度:第一,制备核壳型量子点以期提高量子点荧光强度;第二,制备CdTe@SiO2纳米粒子以期提高单个纳米粒子的荧光强度。通过实验结果来看,水相制备的核壳型纳米粒子荧光强度并未得到改善,反而降低。反相微乳液制备的CdTe@SiO2纳米粒子因为实验试剂等影响,荧光强度大幅度下降,更不适合于检测分析用。 4. 制备高强度的SiO2/CdTe纳米粒子,用反相微乳液或史道伯法合成50-500 nm的二氧化硅纳米粒子,用硅烷偶联剂APTES使其氨基化,然后用偶联剂EDC与NHS将其与CdTe量子点偶联,制备得到高强度的荧光微球。 5. 经过一系列优化实验,以小鼠IgG与羊抗小鼠互为抗原抗体组装荧光微球免疫层析体系,经过与胶体金免疫层析对比,初步判断灵敏度比胶体金免疫层析体系高4-20倍。 关键词:CdTe量子点;偶联;抗体;探针;二氧化硅;免疫层析

相关主题