搜档网
当前位置:搜档网 › 对水煤浆加压气化工艺技术的评述

对水煤浆加压气化工艺技术的评述

对水煤浆加压气化工艺技术的评述
对水煤浆加压气化工艺技术的评述

对水煤浆加压气化工艺技术的评述

章荣林(中国天辰化学工程公司,天津 300400) 2006-11-17

1 水煤浆加压气化工艺技术的现状

水煤浆加压气化是美国德士古公司开发并应用于工业化生产的。国外已建成投产的装置有6套,15台气化炉。国内已建成投产的装置有7套,21台气化炉;正在建设、设计的装置还有4套,13台气化炉。这些已建成投产的装置最终产品有合成氨、甲醇、醋酸、醋酐、氢气、一氧化碳、燃料气、联合循环发电,各装置自建成投产后,一直连续稳定、长周期运行。该工艺技术的专利许可证费已有大幅度降低,装备国产化率已达90%以上,由于国产化率高,装置投资相应降低。一套投煤量500 t/d,气化压力为4.0MPa的气化炉系统投资约7000万元。一套投煤量1000t/d,气化压力为4.0MPa的气化炉系统投资约11000万元。一套投煤量750t/d,气化压力为6.5MPa的气化炉系统投资约9000万元。

近年来国内有关大专院校和科研单位还开发了具有自主知识产权的水煤浆气化工艺技术。华东理工大学开发的多喷嘴对置式水煤浆加压气化技术,西北化工研究院开发的多元料浆加压气化技术,都各有其特点。

2 特点及优点

(1)水煤浆气化对煤质的适应性较广。烟煤、次烟煤、无烟煤、高硫煤及低灰熔点劣质煤、石油焦等均能用作气化原料。气化温度一般比在还原性气氛下的灰熔点T4高50~100℃,由于耐火砖衬里承受高温抗渣的限制,一般要求煤的灰熔点在还原性气氛下T4<1300℃。气化温度下的煤灰粘度要求在25~40Pa.s之间,且变化平稳。对较高灰熔点的煤,也可以采用高灰熔点煤与低灰熔点煤混配煤或加石灰石作助熔剂以降低灰熔点的办法来解决。

原料煤中含氯、氟等卤素低一些比较好,否则在气化及后续系统的设备、管道选材上需要特别注意。

原料煤的成浆性必须作实验室试验,成浆性好的煤,其煤浆流动性能好,气化用的氧气消耗少。要求制成水煤浆的煤浆浓度在60%以上。影响制成高浓度水煤浆的一个重要因素是原料煤的内在水分,要求内在水分低于10%,否则制不成高浓度的水煤浆。西北化工研究院曾对兖矿南屯煤矿洗煤厂的煤泥作过制成高浓度水煤浆的研究,证明洗煤厂煤泥可以制成符合加压气化的水煤浆,这样便可以降低生产成本。原料煤的可磨性指数(HGI)要高,原料煤容易磨细,磨煤消耗的功率就少,成浆性能好。

原料煤中灰份含量要低,一般煤中灰分含量从20%降至6%,可节省煤耗5%左右,氧耗10%左右。有的厂已采用煤灰含量低的洗煤作原料,效果比较好。

(2)气化压力从2.5到8.5MPa皆有工业性生产装置在稳定长周期运行。采用6.5MPa气化有利于采用甲醇等压合成工艺,采用8.5MPa 气化有利于采用氨等压合成工艺,以降低能耗,节省投资。

(3)气化系统的热利用,有两种形式,一种是废热锅炉型,可回收煤气中的热量副产高压蒸汽,适用于联合循环发电,另一种是水激冷型,可制得水气比高达1.4的合成气,满足后续工序一氧化碳变换的需要,变换工序不需要外供蒸汽。适用于煤化工制合成氨、氢气、甲醇等化工产品。

(4)气化炉生产能力比较大,目前最大的气化炉日投煤量为2000t,国内最大的气化炉日投煤量为1000t,直径Φ3200mm。

(5)气化系统不需要外供蒸汽及输送气化原料用的N2或CO2。

(6)气化系统总热效率高达94%~96%,高于Shell干法气化(为91%~93%)和GSP干法气化(为88%~92%)。

(7)气化炉结构简单,为耐火砖衬里,气化炉内无转动装置或复杂的膜式水冷壁内件,所以制造方便,造价低。同时,因为采用热壁炉,内部热容量比较大,耐火砖升温至1000℃以上后,即可直接喷水煤浆投料,生产安全可靠,不像冷壁炉那样为了开工点火,防止

熄火和保证安全生产,在开停车和正常生产时都需要连续燃烧一部分液化气或燃料气。

(8)制备和输送水煤浆的流程比Shell法和GSP法制备粉煤和输送粉煤流程短,水煤浆泵送入气化炉比干法输送粉炉入炉简单得多,并且安全可靠,投资省。

(9)气化炉系统在有备用炉的情况下,气化装置运转率可高达100%,远高于单台气化炉(不设备用炉)的Shell法(只有74%~78%),水煤浆法单台气化炉的年运转率与Shell法单台气化炉相仿。

(10)煤气除尘比较简单,只需要一个文氏管洗涤器和一台洗涤塔就可以了,不需要像Shell法采用国内尚不能制造且价格昂贵、需经常更换内件的高温高压飞灰过滤器。

(11)碳转化率高达96%~98%,如采用多喷嘴对置式加压气化炉,碳转化率可达到99%。

(12)粗渣可用作建筑材料,细渣可作锅炉用燃料,如返回制浆系统,则更为经济。排出的一小部分灰水处理简单,处理后排出对环境无污染。

后续工序变换排出的部分冷凝液及工厂排出的废水,可作为制备水煤浆的用水。

气化后合成气中的H2S、COS等酸性气体可在后续脱除酸性气体工序中脱除并回收利用。

总的来说,水煤浆加压气化工艺属于洁净煤气化工艺技术。

3 缺点和存在的问题

(1)气化用原料煤受气化炉耐火砖衬里的限制,适宜于低灰熔点的煤,否则需要配煤或加助熔剂,使在还原性气氛下的煤灰熔点T4<1300℃。

(2)碳转化率较低(96%~98%),冷煤气效率较低(73%~74%),有效气成分(CO+H2)较低(80%~83%),有效气(CO+H2)比氧耗为336~410 m3/km3,有效气(CO+H2)比煤耗为550~620 kg/km3。(注:氧耗和煤耗与煤质的关系比较大)。

(3)气化炉现用的耐火砖使用寿命较短,一般为1~2年,国产砖寿命为1年左右,耐火砖较贵,1台投煤量为1000t/d的气化炉耐火砖需400万元左右,有待改进。

(4)气化炉喷嘴使用寿命较短,一般使用2个月后,需停车进行检查,维修或更换喷嘴头部。

4 国内对德士古水煤浆加压气化技术的收获

4.1 对工艺技术的掌握

我国自从鲁南化肥厂第一套水煤浆加压气化装置(2台气化炉)于1993年建成投产以来,相继建成了上海焦化厂气化装置(1995年建成投产),渭河化肥厂气化装置(1996年建成投产),淮南化肥厂气化装置(2000年建成投产),金陵石化公司气化装置(2005年建成投产),浩良河化肥厂气化装置(2005年建成投产),南化公司气化装置(2006年建成投产)。由于我国有关生产厂的精心消化吸收,已掌握了丰富的连续稳定运转经验,新装置一般都能顺利投产,短期内达到连续稳产、高产、长周期运行。并且掌握了以石油焦为原料的气化工艺技术。

4.2 人才的培养

通过上述工厂的设计、建设,我国已培养出了有丰富经验的工程公司及工程技术人员,可以独立进行水煤浆加压气化的工程设计和工程总承包工作,节约了建气化装置的软件费支出。同时,培养出了有丰富建筑安装经验的工程公司和工程技术人员。也培养出了经验丰富的对煤种作实验室评价和煤种试烧的工程技术人员。对于常规煤种,工程技术人员已有能力只凭煤种的实验室评价进行气化装置的工程设计。

4.3 装置的国产化率

通过上述装置的设计、制造、建设和生产的工程技术人员密切配合,装置的国产化率已有很大提高。软件设计全部可以由国内有经验的工程公司承担。主要设备如喷嘴、气化炉、破渣机、锁斗、捞渣机、文氏管洗涤器、洗涤塔、低压煤浆泵、高低压及真空黑水闪蒸罐、灰水沉降槽、高低压灰水泵、锁斗循环泵、洗涤塔循环泵、细灰过滤机等国内都能生产。耐高温又抗渣的耐火砖,国内有几家耐火材料厂

已都能生产。只有高压煤浆泵,国内正处于试制和试用阶段。

4.4 装置的投资

水煤浆加压气化装置的建设费用比Shell法和GSP法都要省,其建设费用比为Shell法∶GSP法∶水煤浆法=(2~2.5)∶1.5∶1,所以其固定生产成本比其他两种方法都低。

还有一点需要提一下的是煤耗和氧耗问题,它与原料煤质的关系比较大。但是无论是Shell法或GSP法,在粉煤气化时,需向气化炉内输入过热蒸汽,其用量相当于120~150kg/km3(CO+H2),过热蒸汽与粉煤的比例相当于(0.22~0.25)∶1,相当于水煤浆中含水20%。

宣传资料上介绍的煤耗和氧耗,实际上是忽略了生产过热蒸汽所用的煤耗及将蒸汽加热到1400~1500℃的煤耗和氧耗;在正常生产时,需

燃烧一部分燃料气,必将增加氧耗及燃料气耗(折煤耗);备煤时煤干燥需要增加煤耗。按宣传资料介绍,这两种方法的煤耗和氧耗比较

低,有效气(CO+H2)煤耗为550~600kg/km3,氧耗为330~360 m3/km3,加上以上这些煤耗和氧耗,实际上有效气(CO+H2)总煤耗将为620~

670 kg/km3,总氧耗将为380~410 m3/km3。煤耗和氧耗不但没有降低,反而比水煤浆气化法多了或相仿。另外还要考虑制煤粉和输送煤粉

增加的电耗。

鉴于以上几点,水煤浆加压气化工艺技术是一项成熟、国产化率高、投资省、建成后就能顺利投产,长周期稳产高产的工艺技术。

5 对国内开发的水煤浆技术的建议

近年来,华东理工大学、兖矿鲁南化肥厂和中国天辰化学工程公司开发研制了多喷嘴对置式水煤浆加压气化工艺技术,通过兖矿国泰化工有限公司(两套日处理1000~1150t的多喷嘴对置式水煤浆加压气化炉,气化压力4.0MPa,配套生产240 kt/a甲醇,联产71.8MW电)和山东德州华鲁恒升化工股份有限公司(一套日处理煤750t的多喷嘴对置式水煤浆加压气化炉,气化压力6.5MPa。)的设计、制造、建设、生产、实践,证明该气化工艺技术基本上是成功的。比单喷嘴顶喷气化炉可降低氧耗8%,煤耗2.2%,并且都通过了鉴定验收。但两个公司

的多喷嘴对置式水煤浆加压气化炉都存在气化炉顶部耐火砖磨蚀较快和炉顶超温的问题,有待改进。有的专家认为主要是炉顶高径比取得

过小,导致炉子顶部耐火砖磨蚀过快引起的。作者认为现在的多喷嘴对置式水煤浆加压气化炉已比常规同生产能力的单喷嘴顶喷气化炉要

高出许多,如再加高及加大直径,必然在喷嘴顶部空间会形成死气层,停车时气化炉内难以用氮气置换干净,不够安全,且增加投资。现

在的多喷嘴对置式水煤浆加压气化炉由于比常规的单喷嘴顶喷气化炉要高,再加上多3套喷嘴和其相应的高压煤浆泵、煤浆阀、氧气阀、

止回阀、切断阀以及连锁控制仪表,一套气化炉系统的投资已比常规的单喷嘴气化炉多约3000万元,每年还要多增加维护检修费。虽然氧

耗和煤耗都有所降低,但是由于其固定生产成本高,维修费用高,已失去了一部分优越性。所以作者认为应从多喷嘴的安装角度、水煤浆

和氧气从喷嘴喷出的速度、喷嘴喷射型式上下功夫加以改进,促成该工艺技术的发展。

近年来,西北化工研究院开发的多元料浆加压气化工艺技术引起了煤化工界和建设单位的重视,一些新建厂又把注意力集中到建设多元料浆加压气化装置上来。开发多元料浆的目的是在制备多元料浆时掺入油类制成发热量较高的水、油、煤多元料浆,提高煤浆的热值,降低煤耗和氧耗。作者认为该工艺技术有一定的片面性,国内许多以重油和石脑油为原料的化肥厂,由于原料涨价,生产成本提高,都在

以煤代油改变原料路线,现在又提出水煤浆中掺和重油,不符合国情。同时,掺少了意义不大,如掺重油后的多元料浆热值想达到相当于

煤的热值,则1 m3水煤浆(水煤浆浓度按63%)中要掺入670 kg重油,如重油价按3500元/t,煤价以400元/t计,则1吨多元料浆的价

格约为1400元,在工业生产上是用不起的。所以有待改进。

多喷嘴对置式水煤浆气化技术的产业化应用和对引进煤气化技术的剖析

于广锁1,周志杰1,刘海峰1,王亦飞1,王辅臣1,龚欣1,于遵宏1,孙卓庆2,杨树青2,祝庆瑞2,朱敏2,孙永奎2(1.华东理工大学,上海 200237;

兖矿国泰化工有限公司,山东滕州 277527) 2006-01-11

[摘要] 阐述了多喷嘴对置式水煤浆气化技术的工艺特点,介绍了该技术产业化应用于兖矿国泰化工有限公司、山东华鲁恒升化工股份有限公司的运行状况。并剖析了引进煤气化技术的特点和存在的问题。随着多喷嘴对置式水煤浆气化技术实现产业化,将扭转我国煤气化技术长期依赖进口的局面。

[关键词] 煤气化;水煤浆;多喷嘴对置式;气流床

煤炭气化,即在一定温度、压力条件下利用气化剂(O2、H2O或CO2)与煤炭反应生成洁净合成气(CO、H2的混合物),是对煤炭进行化学加工的一个重要方法,是实现煤炭洁净利用的关键。气流床煤气化技术代表着发展趋势,是现在最清洁的煤利用技术之一,主要包括:以水煤浆为原料的多喷嘴对置式水煤浆气化技术、GE(Texaco)气化技术、Global E-Gas气化技术,以干粉煤为原料的Shell气化技术、Prenflo 气化技术、GSP气化技术。

煤气化技术是发展煤基化学品(氨、甲醇、二甲醚等)、煤基液体燃料、先进的IGCC发电、多联产系统、制氢、燃料电池等过程工业的基础,是这些行业的共性技术、关键技术和龙头技术。据专家估计,我国“十一五”末期年气化用煤估计约1×108t。以煤间接液化为例,规模为5Mt/a的生产装置,气化用煤在22~25Mt/a。国内在建的甲醇装置、合成氨装置、煤制油装置和处于筹建中的煤制烯烃装置、煤制油装置、甲醇装置等,已展现了对煤气化技术的强劲需求。

“九五”期间华东理工大学、兖矿鲁南化肥厂、中国天辰化学工程公司承担了国家重点科技攻关课题“新型(多喷嘴对置)水煤浆气化炉开发”,进行了多喷嘴对置式水煤浆气化炉的中试研究。有关部门组织的鉴定和验收认为“填补了国内空白”和“国际领先”。“十五”期间多喷嘴对置式水煤浆气化技术已进入商业示范阶段。“新型水煤浆气化技术”已获“十五”国家高技术研究发展计划(863计划)立项,由兖矿集团有限公司、华东理工大学承担,在兖矿国泰化工有限公司建设多喷嘴对置式水煤浆气化炉及配套工程,进行多喷嘴对置式水煤浆气化技术的工业示范。在国家发改委的支持下,山东华鲁恒升化工股份有限公司大氮肥国产化工程建设一台多喷嘴对置式水煤浆气化炉(6.5MPa,日处理煤750t)。现两套多喷嘴对置式水煤浆气化工业示范装置均已进入正常工业运行。

1 多喷嘴对置式水煤浆气化过程及特点

水煤浆气化压力为3.0~6.5MPa,温度约1300℃。在此高温下化学反应速率相对较快,而气化过程速率为传递过程控制。为此,采取的技术对策是:通过喷嘴配置、优化炉型结构及尺寸,在炉内形成撞击流,以强化混合(热质传递)过程并形成合理的流场结构,从而达到良好的工艺与工程效果:有效气成分高、碳转化率高、耐火砖寿命长。

1.1 气化过程及技术特点

具有自主知识产权的多喷嘴对置式水煤浆气化示范装置的技术特点是:多喷嘴对置的水煤浆气流床气化炉及复合床煤气洗涤冷却设备;分级净化的煤气初步净化工艺;蒸发分离直接换热式含渣水处理及热回收工艺。

图1 多喷嘴对置式水煤浆气化技术工艺流程

1—磨煤机;2—煤浆槽;3—多喷嘴对置式气化炉;4—锁斗;5—水洗塔;6—蒸发热水塔;7—真空闪蒸器;8—澄清槽;9—灰水槽

(1) 多喷嘴对置式气化及煤气初步净化

煤浆经隔膜泵加压,通过四个对称布置在气化炉气化室中上部同一水平面的工艺喷嘴,与氧气一起对喷进入气化炉。对置气化炉的流场结构由射流区、撞击区、撞击流股、回流区、折返流区和管流区组成。

煤浆颗粒在气化炉内的气化过程经历以下步骤:颗粒的湍流弥散、颗粒的振荡运动、颗粒的对流加热、颗粒的辐射加热、煤浆蒸发与颗粒中挥发分的析出、挥发产物的气相反应、煤焦的多相反应、灰渣的形成等。

气化反应是串并联反应同时存在的极为复杂的反应体系,可分为一次反应与二次反应:

①一次反应区(燃烧区)

进入该区的反应物有工艺氧、煤浆以及回流流股和折返流流股中CO、H2等。水煤浆入炉后,首先进行雾化,同时接受来自火焰、炉内壁、高温气体、固体物等的辐射热,以及回流流股及折返流流股的热量。煤浆瞬间蒸发,煤粉发生热裂解并释放出挥发分。裂解产物、挥发分及其他易燃组分在高温、高氧浓度下迅速完全燃烧,放出大量热。这个过程耗时相当短,主要发生在射流区与撞击区中,其结束的标志是氧消耗殆尽。

②二次反应区

进入二次反应区的组分有煤焦、CO2、CH4、H2O以及CO、H2等组分。这里主要进行的是煤焦、CH4等与H2O、CO2发生的气化反应,生成CO和H2。这是有效气的重要来源。二次反应主要发生在管流区。

③一次与二次反应共存区

多喷嘴对置气化炉中射流区与撞击区、撞击流股、回流区、折返流区共存,不时进行质量交换,再加湍流的随机性,射流区的反应组分及产物都有可能进入撞击区、撞击流股、回流区、折返流区,导致这些区域既进行一次反应,也进行二次反应。

出气化室夹带熔融态灰渣的高温合成气,在复合床结构的洗涤冷却室内完成合成气的洗涤冷却和熔渣的初步分离。

采用混合器、旋风分离器和水洗塔相结合的节能高效煤气初步净化系统,使煤气中灰、渣的含量降到最低,并且减少压力损失。

(2) 含渣水的处理

气化炉及煤气初步净化系统来的含渣水分别减压后导入含渣水处理系统,含渣水首先进入蒸发热水塔蒸发室。蒸发室内含渣水大量汽化,溶解在水中的酸性气体一起解吸。蒸发室产生的蒸汽进入热水室与循环灰水直接接触换热,使灰水得到最大程度的升温。蒸发室底部增浓的液相再进行真空闪蒸,进一步降低含渣水温度和浓缩渣,将酸性气体完全解吸。

1.2 与引进水煤浆气化技术的区别

(1) 引进水煤浆气化技术为单喷嘴,流场为受限射流,停留时间分布宽,碳转化率低,射流以较大速度冲刷耐火砖。多喷嘴对置式

水煤浆气化技术采用撞击流,旨在加强混合,强化热质传递。实践证明气化效果优于引进水煤浆气化技术。

(2) 引进水煤浆气化技术采用文氏管与筛板塔组合初步净化煤气,多喷嘴对置式水煤浆气化技术采用混合器、分离器、泡罩塔组合方案,采用“分级”净化,属高效、节能型净化工艺。

(3) 引进水煤浆气化技术采用间接换热方案回收黑水余热,多喷嘴对置式水煤浆气化技术采用直接换热方案回收黑水热量,有利于解决换热器结垢堵塞问题,提高热传递效率。

(4) 具有自主知识产权的多喷嘴对置式水煤浆气化技术专利费将比引进技术大大降低,仅为引进技术的1/3左右。

2 建于兖矿鲁南的多喷嘴对置式水煤浆气化工业装置

兖矿集团有限公司、华东理工大学共同承担“十五”国家高技术研究发展计划(863计划)重大课题“新型水煤浆气化技术”的研究,在山东鲁南(兖矿国泰化工有限公司)建设多喷嘴对置式水煤浆气化技术工业装置及配套工程,总投资16亿元,采用两台日处理1150t煤多喷嘴对置式水煤浆气化炉(4.0MPa)配套生产240kt/a甲醇、联产71.8MW发电,进行多喷嘴对置式水煤浆气化技术的工业示范。空分装置由中国华陆工程公司设计,气化装置由中国天辰化学工程公司设计。示范装置于2003年5月1日正式开工建设,由中国化学工程第三建设公司负责气化装置、空分装置的建设。气化炉由哈尔滨锅炉厂制造,耐火砖由洛阳耐火材料研究院高耐厂、新乡耐火材料厂生产,60km3/h空分装置由杭氧液空有限公司生产。

该气化装置于2005年7月21日一次投料成功,一次打通整个工艺流程,并按计划完成80h连续、稳定运行。在空分装置具备条件正式投运后,多喷嘴对置式水煤浆气化装置于2005年10月16日13:08投料成功,10月17日1:52打通全部工艺流程,生产出甲醇。至今(2005年11月25日)B#气化装置累计运行约1000h,运转率约90%。运行期间由于其他系统的问题,气化装置共进行了十余次开停车,并进行多次连投,均未出现任何异常。A#气化装置也于近期投入运行。工业运行证实,多喷嘴对置式水煤浆气化装置具有如下优点:装置开车方便、操作灵活、负荷增减自如,操作的方便程度优于引进的水煤浆气化装置;自动化程度高,全部采用集散控制系统(DCS)控制,特别是氧煤比投自动串级控制,气化炉操作简单方便;整个气化系统运行状况稳定;工艺技术指标极为先进;洗涤冷却室液位可控,无带水带灰现象发生;合成气中细灰含量低;含渣水系统热回收效率高,灰水温度得到最大程度提高。该气化装置当前正处于正常工业运转中。

2005年11月30日,在一对烧嘴运行、系统压力3.0MPa的条件下,A#气化装置成功地进行了另一对烧嘴的带压连投,这极大丰富了多喷嘴对置式水煤浆气化技术的操作经验,为提高整个生产系统的操作稳定性、连续性等奠定了坚实基础。

兖矿国泰的多喷嘴对置式水煤浆气化装置以北宿精煤为原料,基于对生产运行的分析,初步统计的工艺技术指标为:煤浆流量(总) 46m3/h

煤浆浓度61.9%

氧气流量(总) 23100m3/h

操作压力 3.6MPa

操作温度~1260℃

有效气(CO+H2) ≥84%

渣中含碳量~5%

碳转化率≥98%

有效气(CO+H2)比氧耗 365m3/km3

有效气(CO+H2)比煤耗 545kg /km3

3 在山东华鲁恒升的应用

通过专利实施许可的方式,并在国家发改委“十五”重大技术装备研制项目的支持下,多喷嘴对置式水煤浆气化技术应用于山东华鲁恒升化工股份有限公司大氮肥国产化工程,建设了一台多喷嘴撞击流气化装置(6.5MPa,处理煤750t /d)。图1为该气化炉烧嘴平台。气化装置由中国华陆工程公司设计,气化炉由哈尔滨锅炉厂制造,喷嘴由航天部十一所(北京)制造,耐火砖由新乡耐火材料厂生产。装置于

2004年底建成,并于2004年12月1日一次投料成功。

图2多喷嘴对置式水煤浆气化炉的烧嘴平台(山东华鲁恒升化工股份有限公司)

经过调整和优化,多喷嘴对置式水煤浆气化炉于2005年6月初正式投入运行。优化后的首次运行为2005年6月2日7:40至2005年6月5日15:45,该气化炉在连续正常运转80h后计划停车。

自2005年6月初正式投入运行至今(2005年11月25日),多喷嘴对置式水煤浆气化装置已进行多次投料,其中也进行了多次连投。导致停车的因素均与气化工艺本身无关,主要为断电、前系统动设备故障、仪表空气压力低、计划停车等。该气化装置当前正处于正常工业运转中。

基于对运行状况的分析,可以得出以下结论。

(1) 优化后多喷嘴对置式气化炉已累计运转2000h以上(截至11月25日),已经历了较长生产周期的考核。最长运行时间488h。

(2) 多喷嘴对置式水煤浆气化炉开、停车方便,简单易行,不存在任何问题。在正常运行过程中,气化炉运转平稳,无异常情况,运行情况良好。

(3) 运行80h计划停车后,进炉检查发现:炉内情况良好,烧嘴室无烧损痕迹,烧嘴室向火面砖完好;整个向火面耐火砖无任何异常情况;耐火砖挺拔如初,棱角分明,挂渣均匀;炉内情况表明,不存在火焰烧损对侧耐火砖的情况;炉内构件良好,激冷环、下降管、破泡条等均完好无损;各个工艺烧嘴完好,无任何磨损、烧蚀情况。2005年7月2日拆检发现,四个工艺烧嘴无任何异常,烧嘴室状况良好。2005年11月下旬入炉检查,炉内耐火砖状况良好。运行实践证实,多喷嘴对置式水煤浆气化炉早期出现的问题已得到根本克服和解决,工程上不存在问题。据此,完全有理由相信,炉内耐火砖将有理想的使用寿命。

(4) 在工艺指标方面,多喷嘴对置式气化炉展现了较大优势。6月22日~7月1日的运行工艺指标统计值如下。

多喷嘴对置式水煤浆气化炉操作负荷30.5m3/h。

多喷嘴对置式水煤浆气化炉有效气比煤耗581.34kg /km3,单喷嘴顶置式气化炉比煤耗630.80kg /km3,降低约8.5%。考虑到多喷嘴对置式水煤浆气化炉的碳洗塔出口温度平均比单喷嘴顶置式气化炉约低4.04℃,比煤耗实际上应更低。

多喷嘴对置式水煤浆气化炉合成气中有效气(CO+H2)含量约为83.51%,单喷嘴顶置式气化炉约83.05%。

多喷嘴对置式水煤浆气化炉中的H2含量呈现普遍高于单喷嘴顶置式气化炉的趋势,平均约高1个百分点左右。H2含量高是水蒸气分解率高的结果,意味着发气量大,印证了比煤耗降低的结论。

灰渣中残碳含量约为2.21%,表明碳转化率应大于98%。

在提高操作负荷和装置生产能力方面,多喷嘴对置式气化炉有很大的潜力,这是源于其撞击流的技术原理和先进的工艺技术。

4 对引进煤气化技术的剖析

我国自上世纪80年代就开始引进国外的煤气化技术,包括早期引进的Lurgi固定床气化、U-gas流化床气化、Texaco气流床水煤浆气化,以及近期新一轮引进和拟引进的BGL固定床气化、Shell气流床粉煤气化、GSP气流床粉煤气化和仍处于强劲引进势头中的Texaco 气流床水煤浆气化等。世界上所有的气化技术在我国几乎都有应用,世界上也只有我国使用如此众多种类的煤气化技术。

据不完全统计,我国引进的煤气化装置每天消耗煤量约58000 t,主要包括:引进Texaco水煤浆气化技术的厂家约有11家(如山东鲁南、上海焦化、陕西渭河、安徽淮南、黑龙江伊春、江苏金陵、江苏南化、陕西神木、山东邹城、陕西榆林等),正洽谈的有数家,煤气化装置的处理煤量总规模约28000t/d;引进Shell粉煤气化技术的厂家约有12家(如湖南岳阳、湖北枝江、安徽安庆、湖北应城、广西柳州、云南安宁、云南曲靖、河南永城、河南中原大化、河南开洋化工、神华煤制油等),煤气化装置的处理煤量总规模约23000t/d;引进加压Lurgi煤气化技术(山西天脊)的处理煤量规模约2000 t/d;处于引进中的GSP粉煤气化技术的处理煤量总规模约5000 t/d。据此估算,引进煤气化技术的专利实施许可费约2亿多美元,花费了我国巨额外汇。这还不包括昂贵的专有设备费和现场技术服务费等。据估计,专有设备耗费外汇也高达数亿美元。

另外需要特别指出的是,对带废锅流程粉煤气化技术的引进带有很大的盲目性,在尚未有一套该类气化装置开车的情况下,却连续引进了十余套。根据以往的经验,该技术在国内必然会经历一段消化吸收与实践摸索的过程,为此肯定要付出一定的代价,实际上昂贵的投资已让相关厂家难以承受。

煤气化技术早期的引进,的确对我国经济的发展起到了推动作用,但引进的煤气化技术并不都是完善的技术,使我国成为了国外气化技术的试验场,让我们付出了很大的代价。例如投资数亿元建于上海的世界上唯一具有工业规模的U-gas引进气化装置已于2003年退出历史舞台。引进的其他气化技术存在如下诸多问题。

十多年的生产实践表明,引进的水煤浆气化技术不足之处在于:气化喷嘴寿命较短;气化效率有待进一步提高;不适于大型化;黑水系统结垢影响长周期运行;气化炉带水限制了操作负荷的提高等。

引进的带废锅流程的气化技术有更多的弊端:气化炉及废热锅炉结构过于复杂,加工难度大,主要设备全部依赖进口,投资远大于水煤浆气化技术;投资过高导致无法备炉,这也是今后生产厂家即将面临的严峻问题;由于技术原因,气化压力不超过4.0MPa,这无法满足等压生产甲醇的要求;除尘用陶瓷过滤器需每年更换,每次费用约500万元;该技术目前世界上仅有一套,而且是用于联合循环发电,尚无生产合成气的经验,国内没有技术支撑;国内引进该技术的企业均为生产合成氨与甲醇等化工产品,采用废热锅炉流程明显不合理。原定2004年开车的企业由于诸多原因现已推迟到2006年。

拟引进的另一粉煤进料气流床加压气化技术自1989年至2002年其拥有权频繁变动过三次,这势必影响该技术的完善与发展。唯一一套气化煤粉的黑水泵厂工业气化装置于15年前就不再气化煤粉了,应该说,技术拥有者近期对此技术的研究较少。另外,该技术气化炉的结构尺寸也比较特别,高径比仅为1.75~1.83(同类型气化炉为3~4),这样导致物料平均停留时间偏短,停留时间分布过宽,短路出炉的物料量可能大,势必影响碳的转化率。而且其单喷嘴也不适于大型化。淮南煤在德国5MW中试气化炉上的试烧情况如下:下渣口易堵,气化炉压差易波动;输送煤粉的N2量过大,合成气中N2含量高达15%~19%。另外,该气化技术在煤气初步净化工艺和渣水处理工艺方面工程经验匮乏。

5 多喷嘴对置式水煤浆气化技术亟待扶持

多喷嘴对置式水煤浆气化技术的产业化成功标志着我国拥有了完全自主知识产权的煤气化技术,从此告别长期依赖进口、受制于人的时代。相对引进煤气化技术,多喷嘴对置式水煤浆气化技术具有明显优势:与引进的水煤浆气化技术相比,技术指标先进,易于大型化(可日处理煤2000~3000t);与引进的带废锅流程的气化技术相比,工艺更加合理,设备投资大大降低。

具有自主知识产权的多喷嘴对置式水煤浆气化技术现在正处于进入产业化的关键阶段,需要国家各方面的大力培育和支持,使其为我国的国民经济建设发挥更大的作用。这关系着国计民生,关系着我国的能源安全。

我们呼吁国家大力支持我们自己的多喷嘴对置式水煤浆气化技术的推广应用,希望国家鼓励和支持企业使用具有自主知识产权的国内技术,

如在立项、国拨资金、银行贷款贴息、减税和其他的政策(如电能的上网)等方面给予支持,为多喷嘴对置式水煤浆气化技术推广创造优惠条件。同时希望国家叫停国外技术的重复引进。这样既可促进具有自主知识产权的煤气化技术尽早付诸大规模应用,并拉动相关民族产业的发展,又可省去巨额专利费(如果至2010年新增煤气化用煤的50%采用引进技术的装置气化,则至少还需专利费3亿美元)。

水煤浆水冷壁清华炉气化技术

水煤浆水冷壁(清华炉)气化技术 水煤浆水冷壁(清华炉)气化技术一、概述 北京盈德清大科技有限责任公司是盈德气体集团有限公司与清华大学清华炉煤气化技术的发明人共同组建的合资公司,取得了清华大学的授权,独家经营清华炉煤气化技术,并与清华大学共同进行后续相关技术的研发和推广。 第一代清华炉耐火砖气化技术(非熔渣—熔渣分级气化技术)大型工业装置已分别在大唐呼伦贝尔(18/30项目)、鄂尔多斯市金诚泰化工有限责任公司(一期60万吨甲醇装置)、山西阳煤丰喜肥业(集团)临猗分公司投入运行,运行至目前三套装置均运行稳定,专家鉴定认为“该技术优于国外同类技术,具有国际先进水平”。 第二代清华炉水煤浆水冷壁技术是气化炉的燃烧室采用水冷壁型,气化炉内件本身是一台膜式水冷壁,安装在整个气化炉承压外壳中。气化炉运行时,气化反应段膜式壁固化的灰渣层,能够对水冷壁起保护作用,防止水冷壁管受到熔渣的侵蚀,达到“以渣抗渣”的效果。水冷壁清华炉煤气化技术对煤种适应性强,能够消化高灰份、高灰熔点、高硫煤,易于实现气化煤本地化。清华炉煤气化技术残炭含量低,废渣易于收集处理,废水无难处理污染物,正常生产过程中无废气排放;制浆用水可以使用工厂难以处理的有机废水,对环境友好。第二代水煤浆水冷壁清华炉煤气化技术的工业装置于2011年8月在山西丰喜投入运行,首次投料即进入稳定运行状态,并全面实现了研发和设计意图。至2012年1月9日计划检修,创造了首次投料并安全、稳定、连续运行140天的煤化工行业奇迹。水冷壁清华炉气体成份与水煤浆耐火砖炉气体成份相当,且不必每年数次更换锥底砖,定期更换全炉向火面砖,节约运行费用并提高单台气化炉的年运转率,为煤气化生产装置的“安稳长满优”运行创造了条件。 清华炉煤气化技术可应用于国家重点新能源领域,煤炭的清洁利用和石油、天然气替代项目。适用于合成氨、甲醇、煤制氢、煤制乙二醇、煤制烯烃、煤制油、煤制天然气、煤制芳烃、冶金、石化、陶瓷、玻璃、液体燃料及电力等行业。 清华炉煤气化技术为煤炭洁净化开发,利用丰富的“三高”煤资源走出了一条创新之路,第一代清华炉已有山西丰喜、山西焦化、内蒙金诚泰、大唐呼伦贝尔、惠生内蒙、江苏永鹏等多个生产厂家20余台气化炉建成运行或即将投运;第二代水煤浆水冷壁清华炉煤气化技术除山西丰喜运行外,已与石家庄盈鼎、潍坊盈德公司、克拉玛依盈德公司、中海石油天野化工有限公司、江苏德邦兴华化工科技有限公司、山东金诚化工科技有限公司、新疆天智辰业化工有限公司、河北正元化工集团公司、阳泉煤业(集团)有限责任公司、兴安盟乌兰泰安能源化工有限责任公司等十几家公司签约。目前,正在对在贵州水城矿业集团鑫晟煤化工有限公司和黑龙江北大荒农业股份有限公司浩良河分公司的水煤浆耐火砖炉进行水冷壁技术改造。这将为水煤浆水冷壁清华炉技术的推广、应用提供了更加广阔的发展前景。二、技术特点

水煤浆气化及变换操作

水煤浆气化及变换操作知识问答 1 煤气化的基本概念是什么? 答:煤的气化是使煤与气化剂作用,进行各种化学反应,把煤转变为燃料用煤气或合成用煤气。 2 煤气化必备的条件是什么? 答:煤炭气化时,必须具备三个条件,即气化炉、气化剂、供给热量,三者缺一不可。 3 简述煤气化工艺的分类。 答:煤气化工艺按照操作压力分为常压气化和加压气化;; 1)按照操作过程的连续性分为间歇式气化和连续气化;; 2)按照排渣方式分为液态排渣和固态排渣;; 3)按照固体原料(煤)反应物料在炉内的运动过程状态分为固定床、流化床、气流床和熔融床(熔渣池)。 4 气流床煤气化工艺按照气化炉的进料状态都有哪些分类?其代表技术有哪些? 答:气流床煤气化工艺按照气化炉的进料状态分为干法粉煤进料和湿法水煤浆进料。 国外技术:干法粉煤进料的代表技术为荷兰壳牌干煤粉气化工艺(SHELL Process),德国未来能源公司的GSP气化技术;湿法水煤浆进料的代表技术为美国GE公司的水煤浆气化工艺(GEGP)。另外,德国未来能源公司的GSP气化技术,能够以干煤粉和水煤浆两种进料方式进料。 国内技术:湿法水煤浆进料的技术有西北化工研究院的多元料浆技术和华东理工大学的四喷嘴对置气化技术,干法煤粉进料的技术为西安热工研究院的两段式气化技术。 5 气流床气化技术有哪些特点? 答:气流床气化技术的主要特点: (1)采用干粉形式或水煤浆形式进料;; (2)加压、高温气化;;

(3)液态排渣;; (4)气化强度大;; (5)气化过程中不产生有机污染物,具有良好的环保效应。 6 试简要叙述煤气化技术发展的趋势。 答:随着技术的不断进步,煤气化技术由常压固定床向加压气流床气化技术发展的同时,气化炉能力也向大型化发展,反应温度也向高的温度(1500~~1600℃)发展,固态排渣向液态排渣发展,这主要是为了提高气化效率,碳转化率和气化炉能力,实现装置的大型化和能量高效回收利用,降低合成气的压缩能耗或实现等压合成,降低生产成本,同时消除或减少对环境的污染。 7 水煤浆加压气化工艺装置由哪儿部分组成? 答:水煤浆加压气化工艺主要由水煤浆制备和储存、水煤浆加压气化和粗煤气的洗涤、灰水处理和粗渣/细渣的处理等四部分组成。 8 煤的工业利用价值通过哪些项目来判断?其各自包含哪些内容? 答:煤的工业利用价值可通过工业分析和元素分析测定判断。 工业分析的内容包括水分Mt(内水M in 、外水M f )、灰分(A)、挥发分(V)、固定 碳(FC)、硫分(S)、发热值(Q)、可磨指数(HGI)、灰熔点(IT/F1;DT/F2;ST/F3;FT/F4)等。 元素分析包括C、H、O、N、S、Cl以及灰分中各种金属化合物的含量。 9 水煤浆加压气化的技术经济指标有哪些?它们各自的含义是什么? 答:水煤浆加压气化的技术经济指标主要有碳转化率、冷煤气效率,比煤耗、比氧耗、氧耗、有效气产率、气化强度、O/C原子比。 各自的含义为: (1)碳转化率煤气中携带的碳占入炉总碳的比率,% (2)冷煤气效率煤气的高位热值与入炉煤的高位热值的比率,% (3)比煤耗每生产1000Nm3有效气消耗的干煤量,kgCoal/kNm3(CO+H 2 ) (4)比氧耗每生产1000Nm3有效气消耗的氧气量,Nm3O 2/kNm3(CO+H 2 ) (5)氧耗单位重量的煤气化所需要消耗的氧量,Nm3O 2 /Tcoal (6)有效气产生率单位体积的煤气中有效气CO+H 2 所含的比例,% (7)气化强度单位容积的反应器在单位时间生产的干煤气量,Nm3/m3·h

水煤浆气化工艺对原料煤的要求

水煤浆气化工艺对原料煤的要求 水煤浆气化炉工艺原则上在高于灰熔点5O~100~C以上的温度下操作,以便于顺利排渣,根据德士古水煤浆气化厂的生产经验,水煤浆加压气化用煤选择原则应以煤的“气化性能及稳定运行性能”为主。 2.1煤的灰分含量 灰分是煤中的无用形式成分,为使其能顺利地以液态形式排出水煤浆气化炉,必须将温度升至其灰熔点以上,无谓的增加了氧气消耗有资料表明,在同样的气化反应条件下,灰分每增加l%,氧耗增加0.7%~0.8%,煤耗增大1.3%一1.5%;其次灰分增加,使烧嘴和耐火砖的磨损加剧,寿命大大缩短,同时灰、黑水中的固含量升高,系统管道、阀门、设备的磨损率大大加剧,设备故障率提高。灰分含量高对成浆性能也有一定的影响,除使煤浆的有效成分降低之外,还使煤质的均匀性变差,消弱了煤浆分散剂的分散性能,在相同的情况下,对提高煤浆浓度不利。建议所选煤样的灰渣干基含量不高于l3%。 2.2煤的最高内水含量 煤的内水含量对气化过程的主要影响表现在对成浆性能的影响,一般认为煤的内水含量越高,煤中的O/C越高,含氧官能团和亲水官能团越多,空隙率越发达,煤的制浆难度越大。煤质对成浆性能的影响是多方面的,各影响因素之问密切相关。煤的内在水含量越高时所制得的煤浆浓度越低,而且使添加剂的消耗、煤耗、氧耗均有一定的增加,综合技术与经济方面考虑,水煤浆加压气化原料用煤的最高内在水含量以小于8%为宜. 2.3煤渣的熔融特性

煤灰的熔融特性是煤的灰熔点(还原条件下),煤的灰熔点以低于反应温度50~100~C为宜(熔融温度)。若煤的灰熔点提高,为使气化炉顺利排渣,必须将气化炉的反应温度提高至煤的灰熔点以上,温度提高使气化炉耐火砖的寿命相应缩短(气化炉的操作温度每提高100~C,耐火砖的磨蚀速率增加2倍),氧耗、煤耗增加。为了降低操作温度必须加入助熔助,而助熔剂的加入会增加煤中惰性物质含量,使耐火砖磨蚀加剧,提高了制浆成本,固体灰渣处理量增加,灰渣水系统的结垢量上升。煤的灰熔点以低于l300℃为宜,考虑到煤的气化效率及耐火砖的使用周期等方面的因素,最好的煤种灰熔点在1250~l300℃,如果原料煤的灰熔点太低,由于生产条件下煤灰的黏度降低,也会加剧对耐火砖的侵蚀,较低灰熔点的煤种可以通过配煤来解决。 2.4灰的粘温特性 黏度是衡量流体流动性能的主要指标,要实现气化温度下灰渣以液态顺利排出气化炉,黏度应在合适的范围之内,既要保证在耐火砖表面形成有效的灰渣保护层,又要保持一定的流动性。根据国内外对液态排渣锅炉的研究指出,灰渣的黏度应在25~40Pa·S之间方可保证顺利排渣,水煤浆气化炉在操作温度下灰渣黏度控制在25~3OPa·S 为宜。影响灰渣黏度的主要因素是煤灰的组成,即灰成分。煤灰的主要矿物质成分是Al2O3、SiO2、MgO等,通过调查研究表明:A12O3是灰渣熔点升高、黏度变差的主要成分。Al2O3含量越高,煤灰的流动温度越高;A1203含量高于40%时,煤灰的流动温度大于l500℃。MgO含量一般很少,MgO又和SiO2形成低熔点的硅酸盐。起到降低灰融熔温度的作用。SiO2是煤灰成分中含量最高的组分,使煤的灰熔融特性变差,黏度升高,但它与其它的组分(CaO)可以形成低熔点的

德士古水煤浆气化技术概况与发展讲解

毕业设计(论文) 题目德士古水煤浆气化技术概况与发展 专业 学生姓名 学号 小组成员 指导教师 完成日期 新疆石油学院 1、论文(设计)题目:德士古水煤浆气化技术概况与发展

2、论文(设计)要求: 3、论文(设计)日期:任务下达日期 完成日期 4、系部负责人审核(签名): 新疆石油学院 毕业论文(设计)成绩评定 1、论文(设计)题目:德士古水煤浆气化技术概况与发展 2、论文(设计)评阅人:姓名职称 3、论文(设计)评定意见:

成绩:5、论文(设计)评阅人(签名): 日期:

德士古气化技术概况与发展 摘要本文简要介绍了德士古气化技术现状、原理、工艺流程,以及一些存在的问题。 煤气化,即在一定温度、压力条件下利用气化剂(O2、H2O或CO2)与煤炭反应生成洁净合成气(CO、H2的混合物),是对煤炭进行化学加工的一个重要方法,是实现煤炭洁净利用的关键。1984年我国建设了我国第一套Texaco水煤浆气化装置,气化炉是水煤浆加压气化技术的关键设备之一。目前,国内外最常用的水煤浆气化炉是德士古气化炉。Texaco气化炉由喷嘴、气化室、激冷室(或废热锅炉)组成。其中喷嘴为三通道,工艺氧走一、三通道,水煤浆走二通道。介于两股氧射流之间。水煤浆气化喷嘴经常面临喷口磨损问题,主要是由于水煤浆在较高线速下(约30 m /s)对金属材质的冲刷腐蚀。喷嘴、气化炉、激冷环等为Texaco水煤浆气化的技术关键。 最后是对德士古气化技术的展望,还有新型煤气化技术发展前景,及发展重要意义。从我国经济发展全局出发,结合我国的能源资源结构和分布,寻求行之有效的替代石油技术,以缓解我国石油进口的压力.水煤浆代替燃油技术在国内外已经成熟,用水煤浆代替原油对我国国民经济发展具有重要的战略意义. 关键词德士古煤气化,水煤浆,气化炉,工艺烧嘴

水煤浆气化装置灰水系统除硬技术探究

水煤浆气化装置灰水系统除硬技术探究 摘要:近年来,随着我国经济的不断发展和社会的不断进步,各个领域都有了 一定上的技术提升。这些化肥生产的公司也在生产的装置上,以及技术上进行了 相应的改变。随着我国节能环保的不断推出,以及绿色发展的不断进行水煤浆气 化系统结垢装置方面存在的问题,严重的干扰的相关企业的正常发展。下面将结 合河南的某化肥公司进行水煤浆气化装置中灰水槽的钙含量以及硬度进行相应的 分析,同时,针对三种除应技术进行对比,分别包括电絮凝除硬技术、酸性气除 硬技术以及膜吸收除硬技术,通过对比后最终选用的处理技术为酸性气除硬技术。关键词:水煤浆;灰水系统;除硬技术 引言:用于水煤浆气化工艺可以更好地利用资源,为企业创造更多的经济效益, 因此备受关注。但是在水煤浆气化灰水系统的运行中发现,水煤浆企划装置系统 存在着严重的结垢问题。为了更好地解决存在的污垢问题,维持系统的长时间稳 定运转,提高企业的经济效益,就要对灰水系统的除硬技术进行研究,在原有的 雏鹰基础上进行相应的提升,降低水煤浆气化装置长时间的结垢难题。下面将对 水煤气化装指灰水系统除应技术进行相应的研究和分析,并提出自己的观点,以 供相关企业参考。 一、水煤浆气化灰水系统 1.1水煤浆气化灰水系统中存在的问题 由于我国能源分布存在着缺少石油天然气,但存在着丰富的煤的特点,因此,基 于我国的能源分布更好地利用煤炭资源,降低在使用过程中的污染问题,是现阶 段符合我国国情发展以及能源多元化的重要手段,利用一定的技术进行煤炭资源 的清洁利用处理,是推动我国能源更好地利用以及经济发展的重要手段。这其中 最常出现的就是水煤浆气化灰水系统的使用。但水煤浆气化灰水系统的应用过程 中还存在着大量的问题。由于在水煤浆系统运行的初期所需要的补水量非常大, 系统经过一次脱盐用的水量高达每小时125立方米,这个过程中,造成氨水的量 消耗的极大,同时,在废水排除系统外管道出现了严重的腐蚀和结垢现象。这些 问题主要表现在以下几个方面: (1)水煤浆系统的系统补水和系统的各处冲水所需要用的水量巨大。在进行拖 延补水的过程中,大量高品质的水被补入灰水系统内,造成了高品质水的浪费。(2)高压闪蒸系统在实际的运行中达不到所要求的设计参数。由于达不到实际 工作所需,因此水中的酸性物质在高压闪蒸的过程中,不能被有效地处理,因此 导致设备的运行期间都处于酸性状态,对设备造成了一定的腐蚀性。 (3)灰水系统的处理中,排水过程没有相应的设置工艺指标。在进行灰水系统 的工艺指标设计时,是根据相关设备的液体位置进行分析来调整灰水系统的高低,没有根据相应的指标进行设计,因此导致灰水系统存在着浓缩性倍数整体较低的 情况。 (4)灰水系统中所使用的水质情况不够稳定。由于回水系统中的水质不够,稳定,存在着波动较大的情况,因此导致药剂的浓度波动也偏大,不能够更好地处 理水中的钙和镁离子美的聚集情况,对后期的管道和设备出现结垢的情况创造了 一定条件。 (5)灰水系统的水资源利用率较低。在实际运行的过程中,由于系统的补水量 消耗大,因此导致对水资源的利用率较低。例如在实际应用的过程中一吨安的取 水情况约为15立方米,而排出的水则达到七立方米,因此,在系统的应用过程

多喷嘴对置式水煤浆气化技术工程设计介绍

多喷嘴对置式水煤浆气化技术工程设计介绍 0 前言 进入新的世纪以来,世界能源状况对我们国家的建设产生了重大影响,国家的能源安全、经济的快速发展、我国资源的基本构成等因素,使煤炭的综合利用以及煤化工事业受到了广泛的关注,同时也促成了空前规模的煤化工建设热潮,来自方方面面的投资正使煤化工以前所未有的速度发展。该领域的装置规模、技术水平都有了整体的提升,新技术开发、装备制造能力以及生产管理水平也取得了可喜的进步。随着一批大型煤化工装置陆续投产,人们在探询各种技术路线优劣时也能够更客观冷静,在总结和比选各种技术的特点时,也增加了几分把握。如果说这些投产的装置在当初建设时还算大型的话,现在看来这只是进入更大规模装置建设的起点,也是国有大型煤炭、电力和石化企业进入煤化工领域的试水之举。特别是“十一五”期间,国家对能源的消耗和废弃物的减排提出了明确的定量要求,由于煤气化对此举足轻重的影响而必将更加引人注目。可以肯定地说,煤制油、煤制烯烃必将催生更大规模的煤化工装置。煤气化技术作为煤化工装置的龙头自始至终是人们探索和争论的焦点,选择何种煤气化技术也是投资者在决策时最需要慎重考虑和把握的,实践也证明选择是否适合自己的煤气化技术对煤化工项目是至关重要的。现以多年来参与水煤浆气化工程设计的经历,就多喷嘴对置式水煤浆气化装置工程设计谈一点体会。 1 多喷嘴对置式水煤浆气化技术的工艺特点 目前己投入生产运行大型煤气化装置,采用水煤浆气化的装置普遍有较高的运转率,水煤浆气化的可靠性已无可争议,以GE(德士古)水煤浆气化技术为代表的单喷嘴水煤浆气化得到了广泛地认同,近年来研发成功的多喷嘴对置式水煤浆气化技术,也成功实现了在大型装置上的工业化运行。“九五”期间华东理工大学、兖矿鲁南化肥厂、中国天辰化学工程公司承担了国家重点课题《新型(多喷嘴对置)水煤浆气化技术开发》,进行了中间试验研究,有关部门组织了鉴定和验收。“十五”期间进行了工业性示范装置的建设,由中国天辰化学工程公司负责进行多喷嘴对置式水煤浆气化装置和配套工程的设计,在兖矿国泰化工有限公司进行工程建设,工程列入“十五”期间的国家“863”计划。气化装置设置2台日处理1150t煤、气化压力4.0MPa,以日处理20t煤的中间试验装置为基础进行工程放大。该装置于2005年7月21日一次投料成功,于12月11日至19日进行了现场考核,其生产负荷和技术指标均达到了预定的设讨寸旨标,各项技术经济指标优于国外同类技术,说明工业化放大设计是成功的。我国已拥有自主知识产权的先进煤气化技术,标志着我国现代煤化工技术完全依赖国外技术的时代已经结束。 多喷嘴对置式水煤浆气化技术的化学反应原理与单喷嘴水煤浆气化技术相同,但其过程机理与受限射流反应器的单喷嘴水煤浆气化炉又有很大的不同,多喷嘴对置式水煤浆气化炉采用撞击流技术来强化和促进混合、传质、传热。位于气化炉直筒段上部的4个工艺喷嘴在同一水平面上,相互垂直布置,通过4 股射流的撞击可以使反应更充分并显著提高碳转化率。从考核和生产企业总结的数据来看,碳转化率均可提高约1%~2%,有效气成分可提高约2%,相应的比氧耗降低约7.9%,比煤耗降低约2.2%。多喷嘴对置式水煤浆气化技术粗煤气初步净化和渣水处理的配置,较好地解决了粗煤气带灰和设备管道结垢堵塞问题。采用复合床洗涤冷却技术液位平稳,减弱了粗煤气的带水带灰现象,通过在

GE水煤浆气化技术工艺烧嘴的探讨

GE水煤浆气化技术工艺烧嘴的探讨 为了在开车投料期间更好更迅速的工艺烧嘴,保证气化的投料成功以及平稳运行。文章对工艺烧嘴的管口方位的设置以及与工艺烧嘴所连接管道的设计中需要注意的地方做出了探讨和阐述。 标签:气化;工艺烧嘴;工艺 1 前言 我国是一个“富煤、贫油、少气”的国家,这样的能源特点决定了我国需要充分利用煤炭资源优势,大力发展现在煤化工。而煤气化装置是整个煤化工企业的一个核心装置。目前我国已投产和在建的气化炉多达近200台,而其中主要使用的德士古水煤浆加压气化技术。 水煤浆加压气化装置长周期安全运行对企业有着重要的意义,但是由于工艺烧嘴的使用寿命多在100天作用,最好的运行周期也仅仅只有140天。因此在生产过程中不可避免的要频繁更换烧嘴,因此烧嘴的更换速度特别对于企业的长周期平稳运行有重要的意义。 本文以某采用GE水煤浆加压气化技术的60万吨/年甲醇项目的为例,说明如何设置烧嘴管口方位以及周围管道布置以满足快速更换烧嘴的需要。 2 工艺烧嘴更换原理 在气化炉开车投料之前,需要用预热烧嘴替换工艺烧嘴对气化炉进行升温。当气化炉内温度达到1000~1200℃后,需要对气化炉烧嘴进行更换,首先将预热烧嘴卸下用其中设备吊出气化炉顶部,其次用起重设备将工艺烧嘴吊装入气化炉顶部后与气化炉顶部法兰安装,然后待工艺烧嘴安装完毕后开始连接相应的氧气、煤浆和烧嘴冷却水管道。在更换烧嘴的过程中,由于气化炉炉温温降非常快,因此更换烧嘴时间的必须尽量的短,如果气化炉炉温将至1000℃以下,则需要重新用预热烧嘴对气化炉经行升温。 3 工艺烧嘴管口方位的设置 工艺烧嘴共有5个管口,从上到下依次为中心氧气进口、水煤浆进口、外环氧进口、烧嘴冷却水进口和烧嘴冷却水出口。在更换烧嘴的时候,气化炉燃烧室的温度约为1000~1200℃,为了保护工艺烧嘴,在工艺烧嘴吊装、安装过程中需要用金属软管连接烧嘴冷却水系统,如图1。而工艺烧嘴本身只有1000kg,而所连接金属软管的重量相对与烧嘴本身,重量约为烧嘴的50%。而在吊装烧嘴为必须保证烧嘴左右平衡,因此必须将烧嘴冷却水进出口成180°对称布置。另外由于烧嘴冷却水盘管有一段是深入气化炉内(如图2)因此烧嘴的必须竖直向上抬起一段高度后才能左右移动,而烧嘴冷却水进口管口均连接有阀门,因此烧嘴

德士古水煤浆加压气化说明

德士古水煤浆加压气化属于先进的第二代煤气化技术。炉型主要分为激冷型和废热锅炉型,国内引进的鲁南、渭河、上海焦化、淮南等几套德士古煤气化装置均采用激冷型气化炉。从厂家运行的实际情况来看,都存在着合成气偏流问题,现就此作简明介绍,仅供有关技术人员和操作人员参考。 1 工艺过程简述 德士古水煤浆加压气化的基本工艺过程是用高压煤浆泵将煤浆送入烧嘴,同时将来自空分的高压氧也送入烧嘴,氧走烧嘴的外环隙和中心管,煤浆走内环隙,二者一起由烧嘴喷入气化炉中,充分混合雾化,在1350~1400 ℃温度下进行气化反应,生成的高温合成气和熔融渣一起流经渣口,激冷环、下降管,进入激冷室的激冷水中。高温合成气和熔融渣与激冷水直接接触激冷,激冷的目的是将高温气体直接冷却到该压力下的饱和蒸汽温度,将熔融渣冷却后沉积,实现气渣分离。分离出的渣经破渣机,通过锁斗定期排入渣池,由捞渣机捞出装车外运。激冷水是由激冷水泵从洗涤塔抽出,送入激冷环,并沿下降管内壁旋转均匀分布下流。激冷水在下降管内壁形成的水膜,不仅避免高温气流及熔渣与下降管内壁直接接触而保护下降管,同时也逐渐降低气体温度。在激冷水中激冷后的合成气沿下降管和上升管的环隙空间均匀鼓泡上升,出激冷室后,经文丘里洗涤器和洗涤 摘要:结合渭化德士古气化装置运行实际情况,从加强原料煤质量管理,选择适当的操作温度和抓好备炉工作等3方面论述了德士古气化炉稳定运行的要点。 关键词:德士古煤气化炉稳定运行要点 我厂德士古水煤浆气化装置是目前国内运行中压力等级最高的一套装置,它的长周期稳定运行,不仅可以使我集团公司的生产水平再上新台阶,同时也为我国的煤化工发展提供有益借鉴。结合我公司实际运行情况及本人多年操作经验,仅就德士古气化炉稳定运行的要点浅谈一下笔者的看法。 1. 加强原料煤的质量管理,提高煤浆浓度 为了进一步提高气化炉的生产能力,实现气化炉长周期,安全稳定运行,并达到高产、优质、低耗之目的。首先要加强煤的质量管理,固定碳、化学活性、机械强度、热稳定性、灰熔点等指标入厂前要严格把关,力求提高;尽量降低硫份、灰分等杂质的含量。把灰分的含量作为重点来抓,灰分应尽可能的低。同时做好煤浆的制备工作,稳定煤浆浓度,并尽可能的提高煤浆浓度。 1.1加强煤的质量管理 之所以将灰分作为重点,主要从以下几方面考虑:首先,灰分直接影响煤中的有效成分,进而影响煤气化的效率。实践证明,灰分增高1%,在入炉煤浆量同样情况下,生产能力下降约1.8%,这样将严重制约我装置的高负荷运行。 其次,灰分中以SiO2为主,依据我们厂多年的原料煤分析情况,灰分高时,煤中煤矸石就多,SiO2就高,这样导致煤灰中CaO+Fe2O3+MgO/SiO2+AL2O3比值降低,而该酸碱比直接与灰的粘度和灰熔点有关,每当灰分升高时,我们炉温被迫

GE水煤浆气化工艺操作规程

GE水煤浆气化操作规程 编写:陈广庆冯长志赵旭清 审核:李美喜仇庆壮 审定:董忠明 批准:石集中 新能能源公司气化车间 二○○八年十二月 目录 第一章:工艺说明 4 一、岗位任务 4 二、岗位管辖范围 4 三、工艺原理7 四、工艺流程8 五、联锁说明15 第二章:工艺参数34 一、重要设计数据34 二、正常操作数据38 三、仪表报警值及联锁值38 第三章:操作规程39 一、开车39 1原始开车(第一套气化系统开车)39 2正常开车(第二套气化系统开车)64 3倒气化炉系统65 4短期停车后开车65 5长期停车后开车65 二、正常操作65 1正常维护操作65 2加减负荷操作66 三、停车67 1 正常停车(第一套气化系统停车)67 2 正常停车(第二套气化系统停车)74 3长期停车(大修停车)76

4紧急停车76 四、事故处理78 第四章:安全与环保91 一、人身安全91 二、设备安全92 三、环保92 附录:92 表1.设备一览表92 表2.安全阀一览表92 表3.工艺参数控制报警连锁一览表92 图1.GE水煤浆气化工艺流程图 129 第一章工艺说明 一、岗位任务 气化岗位是把煤浆制备工序生产的合格水煤浆与空分装置生产的氧气(纯度>99.6%)在一定的工艺条件下进入气化炉内进行部分氧化反应,生成以CO、H2、CO2为主要成份的合成气,经增湿、降温、除尘后送入下游变换工序;同时,将系统中产生的黑水送入闪蒸、沉降系统处理,以达到回收热量及灰水再生、循环使用的目的,产生的粗渣及细渣送出界区外。二、岗位管辖范围 岗位的管辖设备: 序号设备名称设备位号数量(台)备注 1 气化炉R1201A/B/C 3 2 洗涤塔T1201A/B/C 3 3 研磨水槽V1105 1 4 烧嘴冷却水槽V1201 1 5 烧嘴冷却回水分离罐V1202A/B/C 3 6 事故烧嘴冷却水罐V1203 1 7 激冷水过滤器V1204A~F 6 8 气化炉密封水罐V1205A/B/C 3 9 消音器水封罐V1206A/B/C 3 10 锁斗冲洗水罐V1207A/B/C 3 11 锁斗V1208A/B/C 3 12 渣池V1209A/B/C 3 13 高压氮气贮罐V1210A/B 2 14 集渣池V1211 1 15 高压闪蒸罐V1301A/B/C 3 16 高压闪蒸分离器V1302A/B/C 3 序号设备名称设备位号数量(台)备注 17 低压闪蒸罐V1303A/B/C 3 18 真空闪蒸罐V1304A/B/C 3 19 第一真空闪蒸分离器V1305A/B/C 3 20 第二真空闪蒸分离器V1307A/B/C 3 21 除氧器V1309 1 22 沉降槽V1310 1

水煤浆加压气化装置的技术改进

水煤浆加压气化装置的技术改进 郑宝祥程光旭国蓉(西安交通大学环境与化工学院,陕西西安,710049) 2005-01-16 水煤浆加压气化工艺是美国德士古公司在重油气化工艺的基础上开发的具有代表性的第2代气化技术。因其煤种适应性广,生产连续性强,热量回收合理,可以高压运行,单炉生产能力大,压缩功耗及能耗低,环境污染少等优点倍受世界各富煤国的青睐。 本文主要总结渭河煤化工集团有限责任公司水煤浆加压气化装置的运行状况及技术改进措施,研究和分析影响装置稳定运行的主要因素,对拟建、在建装置在工艺选择、工程设计、项目建设和操作运行都会有较好的借鉴作用。 1装置流程介绍 1.1 流程介绍 原煤经煤称重给料器送入磨煤机。助溶剂通过石灰石给料机、石灰石螺旋输送机送入磨机中,以改善煤浆中灰渣的流动性。添加剂经计量泵送入磨机,以改善煤浆的流动性。水经计量送入磨机中。这些物料在磨机中通过磨棒的研磨,再通过滚筒筛滤去大颗粒后,煤浆进入磨机出口槽,最后合格煤浆经磨机出口槽泵送入大煤浆槽。 煤浆槽中的煤浆经高压煤浆给料泵送入气化炉顶部的德士古烧嘴,空分工段来的高压氧经缓冲后进入烧嘴的中心管和外环隙。在炉膛的高温条件下,煤浆与氧气在气化炉燃烧室内发生部分氧化反应,生成以CO、H2、CO2、H2O(汽)为主要成分的粗合成气。该合成气经激冷室冷却洗涤后,再经喷嘴洗涤器进入碳洗塔,经碳洗塔下部(侵入式)、上部(冲击式塔盘)洗涤后,干净的工艺气送入变换工号。激冷室的粗渣经破渣机破碎后送入锁渣罐,锁渣罐卸压排出的渣经捞渣机送至汽车,拉出厂外,碳洗塔及激冷室排放的黑水送入灰水处理工号。 从气化炉和碳洗塔来的黑水进入高压闪蒸罐,高压闪蒸罐顶部气体送灰水加热器冷凝,底部分离出的固体和液体送入低压闪蒸罐。低压闪蒸罐顶部闪蒸气送往碳洗塔给料槽,底部排出的固体和液体送进真空闪蒸上塔。真空闪蒸上塔顶部闪蒸气去高位真空冷凝器,上塔底部的液体和夹带的固体进入下塔。真空闪蒸下塔顶部闪蒸气去低温真空冷凝器,底部的固体和液体经泵加压与絮凝剂混合后进入沉淀池。沉淀池顶部的清水循环使用,底部的灰浆送入框板式压滤机。 1.2 流程特点 1)选用棒磨机 在煤浆制备中,磨煤机分为球磨机和棒磨机两种。国内主要采用球磨机,但球磨机功率大,操作难,要经常加钢球。选用棒磨机,体积小,能耗低,处理量大,磨制的煤浆中超尺寸粒子较少,粒度分布合理,且操作方便。 2)四级闪蒸的灰水处理系统 四级闪蒸较两极闪蒸多了两级真空闪蒸,真空应达-51.7kPa。灰水中溶解气在此压力下基本上可以全部闪蒸出,降低了循环使用的灰水对管道及设备造成腐蚀的危险,而在其他的两级和三级正压闪蒸塔中,由于经闪蒸后的灰水温度高,所以循环回锁斗的灰水必须用换热器冷却降温,增加了换热器被堵而造成的维修工作。 3)采用框板式压滤机 在水煤浆加压气化工艺中,灰浆过滤采用两种类型的过滤机,一种是框板式压滤机,一种是转筒式压滤机。转筒式压滤机体积庞大而过滤面积小,且过滤程度不够充分,即滤饼湿含量高。框板式压滤机则构造简单,过滤面积大占地省,且过滤充分,滤饼湿含量较低。 4)6.5MPa气化 采用6.5MPa与低压(2.6,4.0MPa)比较,操作能力大幅增加。一台6.5MPa的气化炉产气量相当于4.0MPa的1.8倍。因此,在同样产气量下,它占地少,所用的系列少,备件少,操作维护工作量减少,操作人员减少。另外,整个系统设备体积减少,设备投资基本相当。

水煤浆加压气化工艺评价

水煤浆加压气化工艺评价 范立明1,2,郭金鹏1(1.渭河煤化工集团公司,陕西渭南 714000;2.西安交通大学,陕西西安 710049) 2004-07-16 近年来,围绕大型合成氨装置原料由油或气改煤,以及新上煤化工装置选用何种煤气化工艺,在煤化工界引起了广泛的关注和讨论,其讨论的焦点主要集中在气流床气化工艺,即干法进料的Shell气化工艺及湿法进料的Texaco水煤浆气化工艺上。渭河煤化工集团作为我国第一套采用6.5MPa水煤浆加压气化技术的大型化肥装置,1996年投产后,经过多年的消化吸收与技术改造,才掌握了这套技术,因而对水煤浆加压气化了解较深。我们也曾有幸参加过有关煤气化工艺的技术讨论会,感到大家需要对可选用的煤气化工艺有一个客观的评价和认识,因此本文谨对我们所采用的水煤浆气化工艺进行总结,希望能对煤化工企业有所启迪。 1 渭化的经历和总体评论 通过实践,我们深深体会到德士古技术是一个比较好的洁净煤生产技术。水煤浆的制备、输送、计量及控制简单、安全、可靠;设备国产化率高,易于实现大型化,投资相对低一些。但掌握起来难度比较大。因为无论是专利商还是承包商都缺乏足够的工程经验与生产运行经验,设计中难免存在一些问题和不足。因而需要通过生产实践才能真正掌握这门技术。 投产之初,我们就遇到了气化系统工艺气带灰、带水问题,生产稳定不下来,无论是专利商还是承包商都拿不出有效的解决办法。面对困境,渭化的技术人员反复研究,先后共提出了14条改造措施,对系统进行了多次“手术”。中间几经反复曲折,带灰带水的难题终于得到了解决。 灰水系统与除渣系统设计缺陷比较多,系统堵塞与设备磨损非常严重,其中激冷水泵与锁斗循环泵两台泵的磨损及碳洗塔出口管线堵塞问题尤为突出。主要进口设备之一——高压灰水泵每台价值400多万元,可就是开不稳,运行不了几天就得停车维修。在生产实践中,我们对灰水系统和除渣系统进行了多项改造,其间我们还用每台80多万元的国产泵取代了进口的高压灰水泵。经过改造,灰水系统和除渣系统终于稳定下来。 投产初期,由于气化炉拱顶经常超温和炉膛耐火砖磨损严重,设计寿命为8000h的进口炉砖,仅使用3000h就报废。对此,我们反复研究,对炉砖结构及筑炉方案提出了多项改进意见,并采用廉价的国产炉砖取代了昂贵的进口炉砖。经反复摸索改进,我们创出了一套独有的筑炉技术,从而使炉砖使用寿命从原设计的8000h延长至16000~20000h。 随着气化炉压力等级的提高,变换催化剂出现了砷中毒问题,使用寿命大大缩短。对此,我们与西北化工研究院的科技人员共同攻关,完成了“煤制合成气脱砷技术及净化剂的研究开发”,解决了砷中毒问题,且该项目获得陕西省石化科技进步一等奖。 问题一个又一个解决了,可是气化装置还是稳定不下来,平均运行不到10天就得停车一次。于是我们开始对专利商的原始设计提出质疑,并对国内外采用德士古技术生产厂家实际使用的煤种进行广泛调查,最终作出了改换煤种的决策,并两次提出和修改改换煤种的主要技术指标。对此,我们对工厂周边5 个省区20 多个矿点进行深入调查和比较选择,最后下决心改换原料煤种,生产也由此稳定下来,从而从技术和工程实际上证明水煤浆加压气化原料用煤的选择性。 2 对水煤浆加压气化工艺的评价 总的来说以煤为原料,需要采用高效的洁净煤技术,这是毫无疑问的。而目前争论最为激烈的是德士古水煤浆气化与壳牌粉煤气化技术。此两者孰优孰劣、孰长孰短?产品制造成本低,特别是直接材料费用低是它们共同的优势,而建设投资大则是它们共同的缺憾。至于它们之间的具体比较,由于缺少对Shell干煤粉气化的技术认识及生产实践,在此只能对Texacao水煤浆加压气化谈一些粗浅看法,仅供参考。 2.1 原料的适应性

水煤浆气化装置原料煤的选择

水煤浆气化装置原料煤的选择 张永胜 (神华包头煤化工有限公司) 摘 要: 简要介绍水煤浆气化制取粗煤气,如何选择原料煤种。 关键词: 原料煤;气化;粗煤气 采用原料煤制浆气化生产粗煤气的工艺流程在国内外广泛使用,原料煤经煤运系统送至煤贮斗,经称重给料机控制输送量送入棒磨机,加入一定量的水、添加剂、碱液,物料在棒磨机中进行湿法磨煤。出棒磨机的煤浆浓度约65% ,排入磨煤机出口槽,经出口槽泵加压后送至气化工段煤浆槽。添加剂选择木质磺酸类添加剂。调整浆的pH 值在6~ 8,采用42%浓度的碱液。磨浆水为净化排出的含少量甲醇的废水及甲醇精馏废水。煤浆由煤浆槽经煤浆加压泵加压后连同空分送来的高压氧通过烧嘴进入气化炉,在6. 5M Pa 压力、1400℃左右高温下,煤浆与氧发生如下主要反应: CmHnSr + m /2 O 2—→mCO + (n/2 - r) H 2 +rH 2S CO + H 2O —→H 2+ CO 2 气化反应在气化炉反应段瞬间完成,生成CO 、H 2、CO 2、H 2O 和少量CH 4、H 2S 等气体。原料中的矿渣在高温下熔融成液态渣沿炉壁流下,与粗煤气一起进入激冷室,在此,粗煤气被激冷到250℃左右,被水汽饱和后离开气化炉,经文丘里洗涤器、碳洗塔、旋风分离器,除去煤气中的飞灰、氨等杂质,进入CO 变换装置。 气化炉反应中生成的熔渣进入激冷室水浴后被分离出来,排入锁斗,定时排入渣池,由捞渣机捞出后装车外运,气化炉及碳洗塔等排出的洗涤水(称为黑水) 送往灰水处理系统。 采用水煤浆加压气化制粗煤气工艺技术要求,必须做好原料煤种试验评价工作。针对该工艺流程,我们对内蒙古主产煤地区的部分煤矿(豪赖沟矿、杨四塔、石湾子矿、安家坡矿、弓家塔) 所提供的煤样进行了煤质分析及评价,完成了原料粉体制备及粒度级配,并进行了实验室料浆制备、添加助熔剂试验及其成浆性能试验。根据试验结果,对所提供的煤样进行了用于水煤浆加压气化指标预估及气化性能评价。 1 原料煤种分析结果 见表1 2 煤质分析 作为水煤浆加压气流床气化的原料煤种,其原料煤种煤质直接影响着料浆的成浆性能、气化性能、经济性能以及气化生产装置的稳定性。根据煤质分析结果,对所有煤种用于水煤浆加压气化制粗煤气的适应性进行评价。 2.1 水分、O /C 和可磨指数评价 原料煤的水分含量和O/C 是反映煤的变质程度的两个重要指标,也是衡量煤种成浆性能的重要指标。所提供煤样中水分含量中等,O/C 均较高,均属变质程度浅的煤种。可磨 c w m

水煤浆气化与粉煤气化的模拟评价

水煤浆气化与粉煤气化的模拟评价 唐宏青(中国石化集团兰州设计院,甘肃兰州,730060) 2001-12-16 由于油价的上涨使以油为原料的化肥、甲醇企业面临困境,以渭河化肥厂为代表的大型水煤浆制氨厂却闪起生机,为洁净煤化工开辟了新的前景。现在,众多厂家又提出引进粉煤气化技术,进一步提高洁净煤化工的效益。但是外商及其代理人在提出这一新技术时,有过分夸大粉煤气化效益的倾向,最突出一点是:粉煤气化的有效气量(CO+H2)比水煤浆气化多10%~12%,氧耗量低 15%~25%。如此可贵的技术进步,引起国内学者的严肃思考,对其真实性存有疑问。许多人提出应该用高新技术对这个问题进行定量的评价,为投资决策者提供可靠的依据。 对这两个工艺进行评价,单纯依靠外商报价是无济于事的。用模拟技术对国外报价进行评价的办法,已在多项工程中得以应用。可以有信心地说,在研究模拟技术30年后的今天,做这一件事并不困难。毫无疑问,“模拟—评价”是化学工程的成熟技术。 1 客观评价的基础 建国至今,我国已经引进三十多套大型合成氨装置,可以博览世界氮肥新技术。不妨回忆引进的过程,每当引进签约时,都是国际先进水平,投产时就不一定了。因为随着时间的推移,技术在逐渐发展,国情也有一定的变化。历年来,国内的生产企业与设计院为这些企业进行技术改造。普遍的看法是,有百年历史的合成氨技术进步是渐进的,大幅度的技术进步是难以得到的。 为了正确地评价这两个工艺,应该建立一个“评价平台”。在这个平台上,尽量设置一个相对一致的初始和终止条件,输入两种工艺不同的数据,从而客观地评价这两个过程效果。无疑,这样的评价是比较公正的。 目前见到的对这两种工艺的评价,都是数字来自于资料的评价。这些评价片面地建立在只针对气化炉的基础上作出的,而且只是从气化炉出口组成的百分数出发的,忽略了气化炉出口干气绝对量的变化。这就是问题所在。 现在这两种炉子不仅仅打算用在制取合成气上,还打算用在制取甲醇、二甲醚、煤液化、合成油和氢气的工艺上。气化炉出来的粗水煤气的成分、数量、温度、压力将影响到它的后续工艺的指标。也就是说,只有在产物一致的前提下,才能比较这两种工艺的区别,可以让人看清各自的特点,成为投资者建厂的依据。 2 评价平台 2.1 工艺终点 两种煤气化工艺评价的终点,是合成氨工艺中可以设想为达到一致的地方。这无疑应该是液氨产品。但进行这样的模拟过分烦琐,不利于对比分析。两种煤气化工艺的评价流程分别见图1和图2。因此,可以将这一终点前移至中变入口点。在水煤浆制氨的工艺中,这一点是客观存在的,在粉煤气化制氨流程中,这一点是很接近的,不会失去粉煤气化流程的真实性。 这样的工艺评价终点是合理的,尽管这一评价终点的气体组成、温度、压力不尽相同,其后续工艺上也会稍有变化,但这一区别已经不影响评价的结果,可视为公平的评价终点。 上述工艺终点仅仅适合于合成氨,对于甲醇、二甲醚、合成油、制氢等工艺,还不能这样做。图 1和图2是合成氨流程从投煤到评价终点的工艺信息图。

水煤浆气化技术在中国的应用及其发展

水煤浆技术 水煤浆气化技术在中国的应用及其发展

我国水煤浆技术已经进入产业化推广阶段,这对一大批为环保问题困扰的中小企业来说是一个好消息。 记者日前从"水煤浆锅炉及其应用技术暨产品发布会"上获悉,水煤浆是上个世纪80年代发展起来的一种低污染、高效率、流动性强的新型流体燃料。它是由煤炭、水和添加剂通过物理加工成的浆体燃料,具有像油一样的易于装卸储存及直接雾化燃烧的特点。 经过"六五"、"七五"期间重点科技攻关,我国的水煤浆技术已经取得突破性的进展,并进入产业化阶段。实践证明,水煤浆在锅炉和窑炉中的燃烧效率可高达95%-98%,而燃用水煤浆的运行成本仅仅占成本的1/3。 目前水煤浆已经在国内电站、钢厂、炼化等大中型企业有所应用,但限于实用型燃烧设备的技术没有及时跟进,中小企业对此应用甚少。据会议主办者介绍,目前这一难题已基本得到解决。北京天融环保设备中心开发出一套完整的水煤浆锅炉及燃烧器的设计、生产、制造技术,并通过了有关部门的专家评审。 据悉,我国现有10万吨以下的锅炉约70万台,而因烟尘排放不符合环保标准和运行效率低下,将停用、更换和改造的锅炉高达50%以上。仅在现有锅炉本体不变的情况下,改燃水煤浆,就可为国家节约数百亿元固定资产投资。 2 中国水煤浆气化技术的研究与开发 2 中国水煤浆气化技术的研究与开发 中国的水煤浆气化技术是在对引进技术吸收消化过程中发展起来的,尤其是通过"七五"、"八五"和"九五"国家重点科技攻关,结合引进技术的工业实践,逐步形成了一套创新的研究开发方法,建立起系统的水煤浆气化理论,成功地开发出具有中国特色的水煤浆气化技术。 2.1水煤浆制备技术 根据中国煤种特点,中国科学院山西煤炭化学研究所从煤化学角度研究了煤炭成浆性能的影响因素,中国矿业大学通过试验与生产实践,提出了评价烟煤成浆性难度指标的经验公式。这些研究成果,为中国水煤浆制备技术发展提供了有益的指导。目前,中国已有多个水煤浆用添加剂和水煤浆生产厂家。根据煤种不同,选用不同品种与系列的添加剂制备水煤浆,气化用水煤浆浓度为60~65%。 2.2研究开发方法与气流床气化理论 水煤浆气化涉及高温、高压、非均相、流动、传递与化学反应等复杂化学物理过程,难以在实验室中进行工业条件下的过程研究。对此,华东理工大学在化学工程与工艺相关理论指导下,结合多年研究开发中积累的方法与经验,在对气化过程进行深刻、全面分析基础上,提出了正确把握各种影响因素间关系的层次机理模型。对复杂的气化过程进行合理分解,实现了研究课题的命题转化,开创了一套适用于研究气流床气化过程的科学研究开发方法。即在冷模装置上研究流体流动规律、雾化与混合规律;借鉴工程经验,在计算机上综合迭代的一步转化方法。 采用国际先进的三维激光多谱勒粒子动态分析仪(DualPDA)和Mafiven测粒仪,在大型冷模装置上研究气流床内流体的速度分布、浓度分布、停留时间分布、雾化粒径及其分布等,分别建立了流动与反应三区模型、速度分布、浓度分布、停留时间分布、雾化粒径及其分布等数学模型,由此形成了系统的气流床水煤浆气化理论与专利技术,为该领域的技术创新奠定了基础。 2.3新型气化喷嘴与耐磨气化喷嘴

水煤浆加压气化装置设计及采购_孙铭绪

第2期(总第95期)煤 化 工No.2(Total No.95) 2001年5月 Coal Chemical Industry May 2001 水煤浆加压气化装置设计及采购 孙铭绪 中国天辰化学工程公司 300400 摘 要 介绍鲁南化肥厂和上海三联供工程在引进德士古水煤浆加压气化装置过程中的采购经验,指出了该技术的国产化前景,对国内引进、开发设计、消化吸收国外先进技术有重要参考价值。 关键词 水煤浆 气化 技术引进 设计 采购 文章编号:1005-9598(2001)02-0030-03 中图分类号:TQ534 文献标识码:B 引 言 为了充分利用我国的煤炭资源,摆脱目前我国生产氮肥主要依靠采用无烟块煤为原料,以常压固定层间歇式气化制取原料气的局面,早在1980年,国家计委、国家科委和原化工部决定设立“水煤浆加压气化制取合成气”的研究课题,以化肥研究所和化工部第一设计院(天辰化学工程公司)为主,科研与设计合作建立中试装置进行开发研究。1984年又决定从美国德士古发展公司购买技术许可证及工艺软件包,在山东鲁南化肥厂建立“水煤浆加压气化制取合成气”的工业性示范装置。气化装置设计能力相当于8万t/a合成氨,并加工成13万t/a尿素。 我公司先后设计了临潼中试装置、鲁南化肥厂二期工程、上海焦化总厂三联供工程和水煤浆气化及煤化工国家工程研究中心中试装置等4套水煤浆加压气化装置,现就鲁南化肥厂、上海焦化总厂三联供工程的设计采购工作做简要的介绍。 1 鲁南化肥厂设计采购概况 1.1 设计规模 每天气化360t原料煤,添加石灰石18t,生产有效气体(CO+H2)52.56万m3。当时结合老厂改造需要,将气化压力定为2.64MPa,采用容积为12.74m3的气化炉2台,1开1备。 收稿日期:2000-12-151.2 设计范围及工作方法 设计范围包括空分、气化、净化、压缩合成、尿素及相应的公用工程。除气化之外,全部采用国内技术和国产设备。 水煤浆加压气化装置的设计采用购买专利商美国德士古发展公司的技术许可证和工艺软件包(PDP),由我公司承担工程设计和负责关键设备、仪表、阀门的采购,摆脱了以往引进技术必须由国外工程公司承担工程设计和采购设备的引进模式,为国家节省了大量外汇和投资。在签订购买技术许可证合同时,专利商强烈要求必须由一家做过水煤浆加压气化装置设计的工程公司做工程设计和采购设备,或至少要请一家对该装置设计有经验的工程公司作设计、采购和建设咨询,所以原化工部才决定请美国贝克特尔工程公司做咨询。为了深入了解水煤浆加压气化技术,我公司还派工程技术人员参加了专利商的工艺软件包编制工作。 1.3 原料煤的选择 鲁南化肥厂附近有七五煤矿,所以决定选用当地七五煤为原料。但七五煤的特点是灰熔点高。 元素分析(以干基计)(质量分数,%): C H N S O灰 71.78 4.45 1.33 1.33 6.2114.90 在还原气氛下的灰熔点(℃): T1T2T3T4 885128813101449 经德士古公司蒙特贝洛实验室试验,认为必须添加助熔剂石灰石以降低灰熔点。 近年来,鲁南化肥厂在邻近又找到了低灰熔点的煤,但含硫量比七五煤高,现已改用这种高硫和低

相关主题