搜档网
当前位置:搜档网 › 二次函数和最值问题总结

二次函数和最值问题总结

二次函数和最值问题总结
二次函数和最值问题总结

二次函数的最值问题

二次函数2

(0)y ax bx c a =++≠是初中函数的主要容,也是高中学习的重要基础.在初中阶段大家已经知道:二次函数在自变量x 取任意实数时的最值情况(当0a >时,函数

在2b x a =-处取得最小值244ac b a -,无最大值;当0a <时,函数在2b x a

=-处取得最大值2

44ac b a

-,无最小值. 本节我们将在这个基础上继续学习当自变量x 在某个围取值时,函数的最值问题.同时还将学习二次函数的最值问题在实际生活中的简单应用. 二次函数求最值(一般围类)

例1.当22x -≤≤时,求函数2

23y x x =--的最大值和最小值. 分析:作出函数在所给围的及其对称轴的草图,观察图象的最高点和最低点,由此得到函数的最大值、最小值及函数取到最值时相应自变量x 的值.

解:作出函数的图象.当1x =时,min 4y =-,当2x =-时,max 5y =.

例2.当12x ≤≤时,求函数2

1y x x =--+的最大值和最小值. 解:作出函数的图象.当1x =时,min 1y =-,当2x =时,max 5y =-.

由上述两例可以看到,二次函数在自变量x 的给定围,对应的图象是抛物线上的一段.那么最高点的纵坐标即为函数的最大值,最低点的纵坐标即为函数的最小值.

根据二次函数对称轴的位置,函数在所给自变量x 的围的图象形状各异.下面给出一些常见情况:

例3.当0x ≥时,求函数(2)y x x =--的取值围.

解:作出函数2

(2)2y x x x x =--=-在0x ≥的图象.

可以看出:当1

x=时,

min

1

y=-,无最大值.

所以,当0

x≥时,函数的取值围是1

y≥-.

例4.当1

t x t

≤≤+时,求函数2

15

22

y x x

=--的最小值(其中t为常数).分析:由于x所给的围随着t的变化而变化,所以需要比较对称轴与其围的相对位置.解:函数2

15

22

y x x

=--的对称轴为1

x=.画出其草图.

(1) 当对称轴在所给围左侧.即1

t>时:当x t=时,2

min

15

22

y t t

=--;

(2) 当对称轴在所给围之间.即1101

t t t

≤≤+?≤≤时:

当1

x=时,2

min

15

113

22

y=?--=-;

(3) 当对称轴在所给围右侧.即110

t t

+

当1

x t=+时,22

min

151

(1)(1)3

222

y t t t

=+-+-=-.

综上所述:

2

2

1

3,0

2

3,01

15

,1

22

t t

y t

t t t

?

-<

?

?

=-≤≤

?

?

?-->

?

在实际生活中,我们也会遇到一些与二次函数有关的问题:

二次函数求最值(经济类问题)

例1.为了扩大需,让惠于农民,丰富农民的业余生活,鼓励送彩电下乡,国家决定对购买彩电的农户实行政府补贴.规定每购买一台彩电,政府补贴若干元,经调查某商场销售彩电台数y(台)与补贴款额x(元)之间大致满足如图①所示的一次函数关系.随着补贴款额x的不断增大,销售量也不断增加,但每台彩电的收益Z(元)会相应降低且Z与x之间也大致满足如图②所示的一次函数关系.

(1)在政府未出台补贴措施前,该商场销售彩电的总收益额为多少元?

(2)在政府补贴政策实施后,分别求出该商场销售彩电台数y和每台家电的收益Z与

政府补贴款额x 之间的函数关系式;

(3)要使该商场销售彩电的总收益w (元)最大,政府应将每台补贴款额x 定为多少?并求出总收益w 的最大值.

分析:(1)政府未出台补贴措施前,商场销售彩电台数为800台,每台彩电的收益为200元;(2)利用两个图像中提供的点的坐标求各自的解析式;(3)商场销售彩电的总收益=商场销售彩电台数×每台家电的收益,将(2)中的关系式代入得到二次函数,再求二次函数的最大值.

解:(1)该商场销售家电的总收益为800200160000?=(元);

(2)依题意可设1800y k x =+,2200Z k x =+,∴有14008001200k +=,

2200200160k +=,解得12115k k ==-,.所以800y x =+,12005

Z x =-+. (3)1(800)2005W yZ x x ??==+-+ ???

21(100)1620005x =--+,政府应将每台补贴款额x 定为100元,总收益有最大值,其最大值为162000元.

说明:本题中有两个函数图像,在解题时要结合起来思考,不可顾此失彼.

例2.市某大型酒店有包房100间,在每天晚餐营业时间,每间包房收包房费100元时,包房便可全部租出;若每间包房收费提高20元,则减少10间包房租出,若每间包房收费再提高20元,则再减少10间包房租出,以每次提高20元的这种方法变化下去.

(1)设每间包房收费提高x (元),则每间包房的收入为y 1(元),但会减少y 2间包房租出,请分别写出y 1、y 2与x 之间的函数关系式.

(2)为了投资少而利润大,每间包房提高x (元)后,设酒店老板每天晚餐包房总收入为y (元),请写出y 与x 之间的函数关系式,求出每间包房每天晚餐应提高多少元可获得最大包房费收入,并说明理由.

分析:(1)提价后每间包房的收入=原每间包房收包房费+每间包房收包房提高费,包房减少数=每间包房收包房提高费数量的一半;(2)酒店老板每天晚餐包房总收入=提价后每间包房的收入×每天包房租出的数量,得到二次函数后再求y 取得最大值时x 的值.

解:(1)x y +=1001,x y 212=

; (2))21100()100(x x y -?+=y 11250)50(2

12+--=x ,因为提价前包房费总收入为100×100=10000,当x=50时,可获最大包房收入11250元,因为11250>10000又因为每次提价为20元,所以每间包房晚餐应提高40元或60元. 说明:本题的答案有两个,但从“投资少而利润大”的角度来看,因尽量少租出包房,所以每间包房晚餐应提高60元应该更好.

例3.某水产品养殖企业为指导该企业某种水产品的养殖和销售,对历年市场行情和水产品养殖情况进行了调查.调查发现这种水产品的每千克售价1y (元)与销售月份x (月)满足关系式1y =36x 8

3+-

,而其每千克成本2y (元)与销售月份x (月)满足的函数关系如图所示.

(1)试确定b c 、的值;

(2)求出这种水产品每千克的利润y (元)与销售月份x (月)之间的函数关系式;

(3)“五·一”之前,几月份出售这种水产品每千克的利润最大?最大利润是多少? 分析:(1)将点(3,25),(4,24)代入求b 、c 的值;(2)y =1y -2y ;(3)将(2)中的二次函数配方为顶点式,再利用二次函数的增减性,在满足“五·一”之前的前提下求最大值.

解:(1)由题意:22125338124448b c b c ?=?++????=?++??,解得7181

292b c ?=-????=??;

(2)12y y y =-23115136298882x x x ??=-

+--+ ???21316822x x =-++; (3)21316822y x x =-

++ 2111(1236)46822x x =--+++21(6)118x =--+. ∵108

a =-<,∴抛物线开口向下.在对称轴6x =左侧y 随x 的增大而增大.由题意5x <,所以在4月份出售这种水产品每千克的利润最大.最大利润

211(46)111082

=--+=(元). 说明:本题在x =6,即6月份时取得最大值,但题目要求在“五·一”之前,所以要将二次函数配方为顶点式,利用二次函数的增减性来求解.

例4.某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m (件)与每件的销售价x (元)满足一次函数1623,3054m x x =-≤≤.

(1) 写出商场卖这种商品每天的销售利润y 与每件销售价x 之间的函数关系式;

(2) 若商场要想每天获得最大销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?

解:(1) 由已知得每件商品的销售利润为(30)x -元,

y 2

那么m 件的销售利润为(30)y m x =-,又1623m x =-.

2 (30)(1623)32524860,3054y x x x x x ∴=--=-+-≤≤

(2) 由(1)知对称轴为42x =,位于x 的围,另抛物线开口向下 ∴当42x =时,2max 342252424860432y =-?+?-=

∴当每件商品的售价定为42元时每天有最大销售利润,最大销售利润为432元. 二次函数求最值(面积最值问题)

例1.在矩形ABCD 中,AB=6cm ,BC=12cm ,点P 从点A 出发,沿AB 边向点B 以1cm /s 的速度移动,同时点Q 从点B 出发沿BC 边向点C 以2cm /s 的速度移动,如果P 、Q 两点同时出发,分别到达B 、C 两点后就停止移动.

(1)运动第t 秒时,△PBQ 的面积y(cm2)是多少?

(2)此时五边形APQCD 的面积是S(cm2),写出S 与t 的函数关系式,并指出自变量的取值围.

(3)t 为何值时s 最小,最小值时多少?

答案:

63

363

3360726612626262

1)1(2222有最小值等于时;当)()()()()()(S t t S t t t t t S t t t t y =∴+-=<<+-=+--?=+-=?-=

例2.小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门(木质).花圃的长与宽如何设计才能使花圃的面积最大?

解:设花圃的宽为x 米,面积为S 平方米

则长为:x x 4342432-=+-(米)

则:)434(x x S -=

x x 3442

+-= 4

289)417(42+-

-=x ∵104340≤-

∴2176<

≤x ∵64

17<,∴S 与x 的二次函数的顶点不在自变量x 的围, 而当2

176<≤x ,S 随x 的增大而减小, ∴当6=x 时,604

289)4176(42max =+--=S (平方米) 答:可设计成宽6米,长10米的矩形花圃,这样的花圃面积最大.

例3.已知边长为4的正方形截去一个角后成为五边形ABCDE (如图),其中AF=2,BF=1.试在AB 上求一点P ,使矩形PNDM 有最大面积.

解:设矩形PNDM 的边DN=x ,NP=y ,

则矩形PNDM 的面积S=xy (2≤x≤4)

易知CN=4-x ,EM=4-y .

过点B 作BH ⊥PN 于点H

则有△AFB ∽△BHP

∴PH

BH BF AF =,即3412--=y x , ∴52

1+-=x y , x x xy S 52

12+-==)42(≤≤x , 此二次函数的图象开口向下,对称轴为x=5,

∴当x≤5时,函数值y 随x 的增大而增大,

对于42≤≤x 来说,当x=4时,124542

12=?+?-=最大S . 【评析】本题是一道代数几何综合题,把相似三角形与二次函数的知识有机的结合在一起,能很好考查学生的综合应用能力.同时,也给学生探索解题思路留下了思维空间.

例4.某人定制了一批地砖,每块地砖(如图(1)所示)是边长为0.4米的正方形ABCD ,点E 、F 分别在边BC 和CD 上,△CFE 、△ABE 和四边形AEFD 均由单一材料制成,制成△CFE 、△ABE 和四边形AEFD 的三种材料的每平方米价格依次为30元、20元、10元,若将此种地砖按图(2)所示的形式铺设,且能使中间的阴影部分组成四边形EFGH .

(1)判断图(2)中四边形EFGH 是何形状,并说明理由;

(2)E 、F 在什么位置时,定制这批地砖所需的材料费用最省?

解:(1) 四边形EFGH 是正方形.

图(2)可以看作是由四块图(1)所示地砖绕C 点

按顺(逆)时针方向旋转90°后得到的,

故CE =CF =CG .

∴△CEF 是等腰直角三角形

因此四边形EFGH 是正方形.

(2)设CE=x, 则BE=0.4-x,每块地砖的费用为y元

那么:y=x×30+×0.4×(0.4-x)×20+[0.16-x-×0.4×(0.4-x)×10] 102+

(

24.0

2.0

)

=x

x

-

102+

(

)1.0

3.2

=x)4.0

-

0(<

当x=0.1时,y有最小值,即费用为最省,此时CE=CF=0.1.

答:当CE=CF=0.1米时,总费用最省.

初三.二次函数知识点总结

二次函数知识点总结 二次函数知识点: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c , ,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项 系数0a ≠,而b c , 可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c , ,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: 结论:a 的绝对值越大,抛物线的开口越小。 总结:

2. 2 =+的性质: y ax c 结论:上加下减。 总结:

3. ()2 =-的性质: y a x h 结论:左加右减。 总结: 4. ()2 =-+的性质: y a x h k

总结: 1. 平移步骤: ⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法 如下:

【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 三、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 请将2245y x x =++利用配方的形式配成顶点式。请将2y ax bx c =++配成 ()2 y a x h k =-+。 总结: 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者 通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ?? ?,其中2424b ac b h k a a -=-= ,. 四、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式 2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧, 左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c , 、以及()0c , 关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.

二次函数最值问题及解题技巧(个人整理)

一、二次函数线段最值问题 1、平行于x轴的线段最值问题 1)首先表示出线段两个端点的坐标 2)用右侧端点的横坐标减去左侧端点的横坐标 3)得到一个线段长关于自变量的二次函数 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 2、平行于y轴的线段最值问题 1)首先表示出线段两个端点的坐标 2)用上面端点的纵坐标减去下面端点的纵坐标 3)得到一个线段长关于自变量的二次函数解析式 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 3、既不平行于x轴,又不平行于y轴的线段最值问题 1)以此线段为斜边构造一个直角三角形,并使此直角三角形的两条直角边分别平行于x轴、y轴 2)根据线段两个端点的坐标表示出直角顶点坐标 3)根据“上减下,右减左”分别表示出两直角边长 4)根据勾股定理表示出斜边的平方(即两直角边的平方和) 5)得到一个斜边的平方关于自变量的二次函数 6)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 7)根据所求得的斜边平方的最值求出斜边的最值即可 二、二次函数周长最值问题 1、矩形周长最值问题 1)一般会给出一点落在抛物线上,从这点向两坐标轴引垂线构成一个矩形,求其周长最值 2)可先设此点坐标,点p到x轴、y轴的距离和再乘以2,即为周长 3)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 2、利用两点之间线段最短求三角形周长最值 1)首先判断图形中那些边是定值,哪些边是变量 2)利用二次函数轴对称性及两点之间线段最短找到两条变化的边,并求其和的最小值3)周长最小值即为两条变化的边的和最小值加上不变的边长 三、二次函数面积最值问题 1、规则图形面积最值问题(这里规则图形指三角形必有一边平行于坐标轴,四边形必有一组对边平行于坐标轴) 1)首先表示出所需的边长及高 2)利用求面积公式表示出面积 3)得到一个面积关于自变量的二次函数 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 2、不规则图形面积最值问题 1)分割。将已有的不规则图形经过分割后得到几个规则图形 2)再分别表示出分割后的几个规则图形面积,求和 3)得到一个面积关于自变量的二次函数 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 或1)利用大减小,不规则图形的面积可由规则的图形面积减去一个或几个规则小图形的面积来得到

初中数学二次函数知识点总结

初中数学二次函数知识 点总结 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

初中数学二次函数知识点总结 原文阅读 I.定义与定义表达式 一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c (a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。 二次函数表达式的右边通常为二次三项式。 II.二次函数的三种表达式 一般式:y=ax^2+bx+c(a,b,c为常数,a≠0) 顶点式:y=a(x-h)^2+k [抛物线的顶点P(h,k)] 交点式:y=a(x-x?)(x-x ?) [仅限于与x轴有交点A(x?,0)和 B(x ?,0)的抛物线] 注:在3种形式的互相转化中,有如下关系: h=-b/2a k=(4ac-b^2)/4a x?,x?=(-b±√b^2-4ac)/2a III.二次函数的图像 在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。

IV.抛物线的性质 1.抛物线是轴对称图形。对称轴为直线 x = -b/2a。 对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0) 2.抛物线有一个顶点P,坐标为:P ( -b/2a ,(4ac-b^2)/4a )当-b/2a=0时,P 在y轴上;当Δ= b^2-4ac=0时,P在x轴上。 3.二次项系数a决定抛物线的开口方向和大小。 当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。 4.一次项系数b和二次项系数a共同决定对称轴的位置。 当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右。 5.常数项c决定抛物线与y轴交点。 抛物线与y轴交于(0,c) 6.抛物线与x轴交点个数 Δ= b^2-4ac>0时,抛物线与x轴有2个交点。 Δ= b^2-4ac=0时,抛物线与x轴有1个交点。

初三数学二次函数知识点总结及经典习题含答案

初三数学 二次函数 知识点总结 一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质: 上加下减。 3. ()2 y a x h =-的性质: 左加右减。 4. ()2 y a x h k =-+的性质: a 的符号 开口方向 顶点坐标 对称轴 性质 0a > 向上 ()00, y 轴 0x >时,y 随x 的增大而增大;0x <时,y 随 x 的增大而减小;0x =时,y 有最小值0. 0a < 向下 ()00, y 轴 0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值0. a 的符号 开口方向 顶点坐标 对称轴 性质 0a > 向上 ()0c , y 轴 0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值c . 0a < 向下 ()0c , y 轴 0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值c . a 的符号 开口方向 顶点坐标 对称轴 性质 0a > 向上 ()0h , X=h x h >时,y 随x 的增大而增大;x h <时,y 随x 的增大而减小;x h =时,y 有最小值0. 0a < 向下 ()0h , X=h x h >时,y 随x 的增大而减小;x h <时,y 随x 的增大而增大;x h =时,y 有最大值0.

二次函数的几何最值问题

二次函数与几何图形结合 ---探究面积最值问题 〖方法总结〗: 在解答面积最值存在性问题时,具体方法如下: ①根据题意,结合函数关系式设出所求点的坐标,用其表示出所求图形的线段长; ②观察所求图形的面积能不能直接利用面积公式求出,若能,根据几何图形面积公式得到点的坐标或线段长关于面积的二次函数关系式,若所求图形的面积不能直接利用面积公式求出时,则需将所求图形分割成几个可直接利用面积公式计算的图形,进行求解; ③结合已知条件和函数图象性质求出面积取最大值时的点坐标或字母范围。 (2014?达州)如图,在平面直角坐标系中,己知点O(0,0),A(5,0),B(4,4). (1)求过O、B、A三点的抛物线的解析式. (2)在第一象限的抛物线上存在点M,使以O、A、B、M为顶点的四边形面积最大,求点M的坐标. (3)作直线x=m交抛物线于点P,交线段OB于点Q,当△PQB为等腰三角形时,求m的值.

(2014自贡)如图,已知抛物线c x ax y +- =232与x 轴相交于A 、B 两点,并与直线221-=x y 交于B 、C 两点,其中点C 是直线22 1-=x y 与y 轴的交点,连接AC . (1)求抛物线的解析式; (2)证明:△ABC 为直角三角形; (3)△ABC 内部能否截出面积最大的矩形DEFG ?(顶点D 、E 、F 、G 在△ABC 各边上)若能,求出最大面积;若不能,请说明理由.

(2014黔西南州)(16分)如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣3,0)、B(1,0)、C(0,3)三点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合),过点P作y轴的垂线,垂足点为E,连接AE. (1)求抛物线的函数解析式,并写出顶点D的坐标; (2)如果P点的坐标为(x,y),△PAE的面积为S,求S与x之间的函数关系式,直接写出自变量x的取值范围,并求出S的最大值; (3)在(2)的条件下,当S取到最大值时,过点P作x轴的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为点P′,求出P′的坐标,并判断P′是否在该抛物线上.

中考数学二次函数知识点总结

中考数学二次函数知识点总结 I. 定义与定义表达式 一般地,自变量x和因变量y之间存有如下关系:y=ax^2+bx+c (a, b, c为常数,a z0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,lal还能够决定开口大小,lal越大开口就越小,IaI 越小开口就越大. )则称y 为x 的二次函数。 二次函数表达式的右边通常为二次三项式。 II. 二次函数的三种表达式 一般式:y=ax A2+bx+c (a, b, c 为常数,a z0) 顶点式:y=a(x-hF2+k[抛物线的顶点P (h, k)] 交点式:y=a(x-x)(x-x)[ 仅限于与x 轴有交点A(x, 0)和B( x, 0) 的抛物线] 注:在 3 种形式的互相转化中,有如下关系: h=-b/2a k=(4ac-bA2)/4a x,x=(- b±V bA2-4ac)/2a III. 二次函数的图像 在平面直角坐标系中作出二次函数y=xA2 的图像,能够看出,二次函数的图像是一条抛物线。 IV. 抛物线的性质 1. 抛物线是轴对称图形。对称轴为直线x=-b/2a 。 对称轴与抛物线的交点为抛物线的顶点P。特别地,当b=0时,抛物 线的对称轴是y 轴(即直线x=0)

2. 抛物线有一个顶点P,坐标为:P(-b/2a , (4ac-"2)/4a)当-b/2a=0 时,P在y轴上;当△二b^2-4ac=0时,P在x轴上。 3. 二次项系数a 决定抛物线的开口方向和大小。 当a>0时,抛物线向上开口;当a v0时,抛物线向下开口。|a|越大,则抛物线的开口越小。 4. 一次项系数b 和二次项系数a 共同决定对称轴的位置。 当a与b同号时(即ab> 0),对称轴在y轴左; 当a与b异号时(即ab v 0),对称轴在y轴右。 5. 常数项c 决定抛物线与y 轴交点。 抛物线与y 轴交于(0, c) 6. 抛物线与x 轴交点个数 △=b A2-4ac >0时,抛物线与x轴有2个交点。 △=bA2-4ac=0时,抛物线与x轴有1个交点。 △=bA2-4ac v 0时,抛物线与x轴没有交点。 X的取值是虚数(x=-b±V bA2 —4ac的值的相反数,乘上虚数i,整个式子除以2a) V. 二次函数与一元二次方程 特别地,二次函数(以下称函数)y=axA2+bx+c, 当y=0 时,二次函数为关于x 的一元二次方程(以下称方程),即 axA2+bx+c=0 此时,函数图像与x轴有无交点即方程有无实数根。函数与x轴交点的横坐标即为方程的根。

二次函数基础典型经典题型(全面超好)

二次函数精讲基础题型 一认识二次函数 1、y=mx m2+3m+2 是二次函数,则m 的值为( ) A 、0,-3 B 、0,3 C 、0 D 、-3 2、关于二次函数y=ax 2 +b ,命题正确的是( ) A 、若a>0,则y 随x 增大而增大 B 、x>0时y 随x 增大而增大。 C 、若x>0时,y 随x 增大而增大 D 、若a>0则y 有最大值。 二简单作图 1在一个坐标系内做出2 x y =,12 +=x y ,12 -=x y ,2 )1(-=x y ,2 )1(+=x y 你发现了什么结论 2同样的在同一个坐标系内做出2 x y -=,2 2x y -=,12 --=x y , 12+-=x y 2)1(--=x y ,2)1(+-=x y 的图像,你又发现了什么结论,并且与上一题的 图像比较的话,你又有什么样新的发现 3 已知抛物线y x x =-+1235 2 2,五点法作图。 2、已知y=ax 2 +bx+c 中a<0,b>0,c<0 ,△<0,画出函数的大致图象。 三,二次函数的三种表达形式,求解析式 1求二次函数解析式: (1)抛物线过(0,2),(1,1),(3,5); (2)顶点M (-1,2),且过N (2,1); (3)与x 轴交于A (-1,0),B (2,0),并经过点M (1,2)。

2 抛物线过(-1,-1)点,它的对称轴是直线x +=20,且在x 轴上截取长度为22的线段,求解析式。 3、根据下列条件求关于x 的二次函数的解析式 (1)当x=3时,y 最小值=-1,且图象过(0,7) (2)图象过点(0,-2)(1,2)且对称轴为直线x=2 3 (3)图象经过(0,1)(1,0)(3,0) (4)当x=1时,y=0;x=0时,y= -2,x=2 时,y=3 (5)抛物线顶点坐标为(-1,-2)且通过点(1,10) 三 图像与a,b,c 的符号之间的关系 1、二次函数y=ax 2 +bx+c 的图象是抛物线,其开口方向由_________来确定。 2、 已知y=ax 2 +bx+c 的图象如下,则:a _____0,b _____0,c _____0,a+b+c_______0, a-b+c__________0。2a+b________0, ac b 42 -_________0 3.已知函数c bx ax y ++=2 的图象如图 1-2-11所示,给出下列关于系数a 、b 、 c 的不等式:①a <0,②b<0,③c>0,④2a +b <0,⑤a +b +c >0.其中正确的不等式的序号为___________- 4.已知抛物线c bx ax y ++=2 与 x 轴交点的横坐标为-1,则a +c=_________.

(完整word版)初中二次函数知识点总结(全面)

二次函数知识点 二次函数概念: 1.二次函数的概念:一般地,形如y=ax 2+bx+c (a b c ,,是常数,a ≠0)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数a ≠0,而b c ,可以为零.二次函数的定义域是全体实数。<<>≤≥ 2. 二次函数y=ax 2+bx+c 的性质 1)当a >0时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值 2 44ac b a -. 2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,.当2b x a <- 时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b x a =-时,y 有最大值2 44ac b a -. (三)、二次函数解析式的表示方法 1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); 2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠); 3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可 以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 练习 1.下列关系式中,属于二次函数的是(x 为自变量)( ) A. B. C. D. 2. 函数y=x 2-2x+3的图象的顶点坐标是( ) A. (1,-4) B.(-1,2) C. (1,2) D.(0,3) 3. 抛物线y=2(x-3)2的顶点在( ) A. 第一象限 B. 第二象限 C. x 轴上 D. y 轴上

二次函数知识点汇总(全)

二次函数知识点(第一讲) 一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质:(上加下减)

3. ()2 y a x h =-的性质:(左加右减) 4. ()2 y a x h k =-+的性质: 三、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k , 处,具体平移方法如下:

【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数() 2 y a x h k =-+与2 y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到 前者,即2 2424b ac b y a x a a -? ?=++ ??? ,其中2424b ac b h k a a -=-= ,. 五、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方 向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为: 顶点、与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 六、二次函数2y ax bx c =++的性质 1. 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有

2020年中考二次函数与几何图形经典题型汇编【含中考相似三角形中考线段中的动点问题】

2020 年中考二次函数与几何图形

1.中考相似三角形 2.中考线段中的动点问题 目录 中考复习战略汇集 (1) 二次函数与几何图形 (2) 模式1:平行四边 形 (2) 模式2:梯 形 (4) 模式3:直角三角 形 (6) 模式4:等腰三角 形 (8) 模式5:相似三角 形 (10) 模拟题汇编之动点折叠问题 (11)

二次函数与几何图形 模式 1:平行四边形 分类标准:讨论对角线 例如:请在抛物线上找一点 p 使得 A 、B 、C 、P 四点构成平行四边形,则可分成 以下几种情况 ( ( ( 1)当边 AB 是对角线时,那么有 AP // BC 2)当边 AC 是对角线时,那么有 AB //CP 3)当边 BC 是对角线时,那么有 AC // BP 1 、在平面直角坐标系中,已知抛物线经过 A(-4,0),B(0,-4),C(2,0)三点. (1)求抛物线的解析式; (2)若点 M 为第三象限内抛物线上一动点,点 M 的横坐标为 m ,△AMB 的面积为 S. 求 S 关于 m 的函数关系式,并求出 S 的最大值; (3)若点 P 是抛物线上的动点,点 Q 是直线 y=-x 上的动点,判断有几个位置能 使以点 P 、Q 、B 、0 为顶点的四边形为平行四边形,直接写出相应的点 Q 的坐标.

2 、如图,抛物线 y x 2 2x 3与 x 轴相交于 A 、B 两点(点 A 在点 B 的左侧), 与 y 轴相交于点 C ,顶点为 D . ( ( 1)直接写出 A 、B 、C 三点的坐标和抛物线的对称轴; 2)连结 BC ,与抛物线的对称轴交于点 E ,点 P 为线段 BC 上的一个动点,过 点 P 作 PF//DE 交抛物线于点 F ,设点 P 的横坐标为 m . ① 用含 m 的代数式表示线段 PF 的长,并求出当 m 为何值时,四边形 PEDF 为 平行四边形? ② 设△BCF 的面积为 S ,求 S 与 m 的函数关系.

全初三数学二次函数知识点归纳总结

二次函数知识点归纳及相关典型题 第一部分 基础知识 1.定义:一般地,如果c b a c bx ax y ,,(2 ++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数2 ax y =的性质 (1)抛物线2 ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2 ax y =的图像与a 的符号关系. ①当0>a 时?抛物线开口向上?顶点为其最低点; ②当0a 时,开口向上;当0

1二次函数的最值问题总结

二次函数的最值问题 二次函数2 (0)y ax bx c a =++≠是初中函数的主要内容,也是高中学习的重要基础.在初中阶段大家 本节我们将在这个基础上继续学习当自变量x 在某个范围内取值时,函数的最值问题.同时还将学习二次函数的最值问题在实际生活中的简单应用. 二次函数求最值(一般范围类) 例1. 当22x -≤≤时,求函数2 23y x x =--的最大值和最小值. 例2. 当12x ≤≤时,求函数21y x x =--+的最大值和最小值. 例3. 当0x ≥时,求函数(2)y x x =--的取值范围. 例4. 当1t x t ≤≤+时,求函数215 22 y x x =--的最小值(其中t 为常数). 在实际生活中,我们也会遇到一些与二次函数有关的问题: 二次函数求最值(经济类问题) 例1.为了扩大内需,让惠于农民,丰富农民的业余生活,鼓励送彩电下乡,国家决定对购买彩电的农户实行政府补贴.规定每购买一台彩电,政府补贴若干元,经调查某商场销售彩电台数y (台)与补贴款额x (元)之间大致满足如图①所示的一次函数关系.随着补贴款额x 的不断增大,销售量也不断增加,但每台彩电的收益Z (元)会相应降低且Z 与x 之间也大致满足如图②所示的一次函数关系. (1)在政府未出台补贴措施前,该商场销售彩电的总收益额为多少元? (2)在政府补贴政策实施后,分别求出该商场销售彩电台数y 和每台家电的收益Z 与政府补贴款额x 之间的函数关系式; (3)要使该商场销售彩电的总收益w (元)最大,政府应将每台补贴款额x 定为多少?并求出总收益w 的最大值. 例2.凯里市某大型酒店有包房100间,在每天晚餐营业时间,每间包房收包房费100元时,包房便可全部租出;若每间包房收费提高20元,则减少10间包房租出,若每间包房收费再提高20元,则再减少10间包房租出,以每次提高20元的这种方法变化下去. (1)设每间包房收费提高x (元),则每间包房的收入为y 1(元),但会减少y 2间包房租出,请分别写出y 1、y 2与x 之间的函数关系式. (2)为了投资少而利润大,每间包房提高 x (元)后,设酒店老板每天晚餐包房总收入为y (元),请写出y 与x 之间的函数关系式,求出每间包房每天晚餐应提高多少元可获得最大包房费收入,并说明理由.

二次函数知识点总结大全

1. 二次函数的定义: 2、 二次函数的解析式三种形式 与y 轴交点坐标(0,c ) (1)二次函数y=ax 2 (a z 0)的图象是一条抛物线, 其顶点是原点,对称轴是 y 轴;当a >0时,抛物线开口向上,顶点是最低点;当 a v 0时,抛物线开 口向下,顶点是取咼点; 2 ⑵二次函数?' 1 :二' b_ h_ 当a >0时,抛物线开口向上,图象有最低点,且 x >-二:,y 随x 的增大而增大,x v -二:, y 随x 的增大而减小;当a v 0时,抛物线开口向下,图象有最高点 Aac-b 1 b — X 二— I ;当a v 0时,当 二时,函数有最大值 4ac-b 2 4盘 4.二次函数 y=ax2+bx+c (a 丰0)的各项系数 a 、b 、c 对其图象的影响 (1) a 决定抛物线的开口方向和开口大小: a >0,开口向上;a v 0,开口向下.|a 的 越大,开口越小. b X ----- (2) a 与 b 决定抛物线对称轴的位置: a 、 b 同号,抛物线的对称轴(即 直线 )或顶点在y 轴左侧; i x ----- a 、 b 异号,抛物线的对称轴(即直线 一二)或顶点在y 轴右侧;(左同右异); b=0时,抛物线的对称轴是 y 轴. (3) c 决定抛物线与y 轴交点(0, c )的位置:c >0,抛物线与y 轴交于正半轴;c v 0,抛物线与y 轴交于负 半轴;c=0,抛物 二次函数 2 形如r ' - ■'0, a, b , c 为常数)的函数为二次函数 般式 y=ax 2 +bx+c( a 丰 0) -------------- 1 2 顶点式| y = a(x - h) + k b 2 4a c — b 2 两根式 y = a(x -x j (x -x 2 ) 3、二次函数 对称轴: b 2a 顶点坐标: (b 4ac-b 2) 2a' 4a 增减性:当a>0时,对称轴左边, 当a<0时,对称轴左边, y 随x 增大而减小;对称轴右边, y 随x 增大而增大;对称轴右边, y 随x 增大而增大 y 随x 增大而减小 b 71 — -- ⑶当a >0时,当 丄;时,函数有最小值

二次函数知识点总结及典型题目

二次函数知识点总结及典型题目 一.定义: 一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数. 二次函数的图象是抛物线,所以也叫抛物线y=ax2+bx+c ;抛物线关于对称轴对称且以对称轴为界,一半图象上坡,另一半图象下坡;其中c 叫二次函数在y 轴上的截距, 即二次函数图象必过(0,c )点. 二.二次函数2ax y =的性质 (1)抛物线2ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2ax y =的图像与a 的符号关系. ①当0>a 时?抛物线开口向上?顶点为其最低点; ②当0

二次函数最值知识点总结典型例题及习题

必修一二次函数在闭区间上的最值 一、 知识要点: 一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。一般分为:对称轴在区间的左边,中间,右边三种情况. 设f x ax bx c a ()()=++≠2 0,求f x ()在x m n ∈[],上的最大值与最小值。 分析:将f x ()配方,得顶点为--?? ???b a ac b a 2442,、对称轴为x b a =-2 当a >0时,它的图象是开口向上的抛物线,数形结合可得在[m ,n]上f x ()的最值: (1)当[] -∈b a m n 2,时,f x ()的最小值是f b a ac b a f x -?? ???=-2442,()的最大值是f m f n ()()、中的较大者。 (2)当[]-?b a m n 2,时 若-

二次函数总结及相关典型题目

二次函数总结及相关典型题目

二次函数知识点总结及相关典型题目 第一部分 基础知识 1.定义:一般地,如果c b a c bx ax y ,,(2 ++=是常数,)0≠a , 那么y 叫做x 的二次函数. 2.二次函数2 ax y =的性质 (1)抛物线2 ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2 ax y =的图像与a 的符号关系. ①当0>a 时?抛物线开口向上?顶点为其最低点; ②当0

①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0

初三数学二次函数知识点总结及经典习题含答案77699

人教版九年级下册数学 二次函数知识点总结教案 主讲人:李霜霜

一、教学目标: (1)了解二次函数的意义,掌握二次函数的图象特征和性质,能确定函数解析式,并能解决简单的实际问题. (2)通过练习及提问,复习二次函数的基础知识;通过对典型例题的分析,培养学生分析问题、解决问题、综合运用数学知识的能力;继续渗透数学思想. 二、教学重点、难点 教学重点:二次函数的图像,性质和应用 教学难点:运用二次函数知识解决较综合性的数学问题. 三、教学过程 复习巩固 (一)二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. (二)二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。

2. 2y ax c =+的性质: 上加下减。 3. ()2 y a x h =-的性质: 左加右减。 4. ()2 y a x h k =-+的性质: (三)二次函数图象的平移 1. 平移步骤: ⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k , ; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k , 处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律

二次函数知识点总结59889

二次函数知识点 一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质: 3. ()2 y a x h =-的性质: 4. ()2 y a x h k =-+的性质: 三、二次函数图象的平移

1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k , 处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2 沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2 变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2 沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2 变成c m x b m x a y ++++=)()(2 (或 c m x b m x a y +-+-=)()(2) 四、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ?? ?,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x , (若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 六、二次函数2y ax bx c =++的性质 1. 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值244ac b a -. 2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,.当2b x a <- 时,y 随x 的增大而

相关主题