搜档网
当前位置:搜档网 › 二次函数的最值问题

二次函数的最值问题

二次函数的最值问题
二次函数的最值问题

典型中考题(有关二次函数的最值)

屠园实验周前猛

一、选择题

1.已知二次函数y=a(x-1)2+b有最小值–1,则a与b之间的大小关( )

A. a

B.a=b C a>b D不能确定

答案:C

2.当-2≤x≤l时,二次函数 y=-(x-m)2+m2+1有最大值4,则实数m的值为()

A、- 7

4

B、3或-3

C、2或-3 D2或-3或-

7

4

答案:C

∵当-2≤x≤l时,二次函数 y=-(x-m)2+m2+1有最大值4,

∴二次函数在-2≤x≤l上可能的取值是x=-2或x=1或x=m.

当x=-2时,由 y=-(x-m)2+m2+1解得m= - 7

4

2

765

y x

416

??

=-++

?

??

此时,它在

-2≤x≤l的最大值是65

16

,与题意不符.

当x=1时,由y=-(x-m)2+m2+1解得m=2 ,此时y=-(x-2)2+5 ,它在-2≤x≤l的最大值是4,与题意相符.

当x= m时,由4=-(x-m)2+m2+1解得 m=3当m=3y=-(x+3)2+4 .它在-2≤x≤l

的最大值是4,与题意相符;当3,y=-(x-3)2+4它在-2≤x≤l在x=1处取得,最大值小于4,与题意不符.

综上所述,实数m的值为2或-3 .

故选C.

3.已知0≤x≤1

2

,那么函数y=-2x2+8x-6的最大值是()

A -10.5 B.2 C . -2.5 D. -6

答案:C

解:∵y=-2x2+8x-6=-2(x-2)2+2.∴该抛物线的对称轴是x=2,且在x<2上y随x的增大

而增大.又∵0≤x≤1

2

,∴当x=

1

2

时,y取最大值,y最大=-2(

1

2

-2)2+2=-2.5.故选:

C.

4、已知关于x的函数.

下列结论:

①存在函数,其图像经过(1,0)点;

②函数图像与坐标轴总有三个不同的交点;

③当时,不是y随x的增大而增大就是y随x的增大而减小;

④若函数有最大值,则最大值必为正数,若函数有最小值,则最小值必为负数。

真确的个数是()

A,1个 B、2个 C 3个 D、4个

答案:B

分析:①将(1,0)点代入函数,解出k的值即可作出判断;

②首先考虑,函数为一次函数的情况,从而可判断为假;

③根据二次函数的增减性,即可作出判断;

④当k=0时,函数为一次函数,无最大之和最小值,当k≠0时,函数为抛物线,求

出顶点的纵坐标表达式,即可作出判断.

解:①真,将(1,0)代入可得:2k-(4k+1)-k+1=0,

解得:k=0.运用方程思想;

②假,反例:k=0时,只有两个交点.运用举反例的方法;

③假,如k=1,

b5

-=

2a4

,当x>1时,先减后增;运用举反例的方法;

④真,当k=0时,函数无最大、最小值;

k≠0时,y最=

22

4ac-b24k+1

=-

4a8k

∴当k>0时,有最小值,最小值为负;

当k<0时,有最大值,最大值为正.运用分类讨论思想.

二、填空题:

1、如图,已知;边长为4的正方形截去一角成为五边形ABCDE,其中AF=2,BF=l,在AB 上的一点P,使矩形PNDM有最大面积,则矩形PNDM的面积最大值是

答案:12

2、已知直角三角形两直角边的和等于8,两直角边各为 时,这个直角三角形的面积最大,最大面积是

答案:4、4,8

解:设直角三角形得一直角边为x ,则,另一边长为8-x ;设其面积为S.∴S= x ·(8-x)(0

-8x) =- (x-4)2+8 ∴当x=4时,S 最大=8.

及两直角边长都为4时,此直角三角形的面积最大,最大面积为8.

3、函数2y=24x-x (0x 4)

-≤≤的最大值与最小值分别是

答案:2,0

24x-x 最小值为0,当4x-x 2

24x-x 最大,即x=224x-x 最大为

4,所以,当x=0时,y 最大值为2,当x=2时,y 取最小值为0

4、已知二次函数y=x 2

+2x+a (0≤x ≤1)的最大值是3,那么a 的值为 答案:0

解:二次函数y=x 2

+2x+a 对称轴为x=-1,当0≤x ≤1时y 随x 的增大而增大,当x=1时最大

值为3,代入y=x 2

+2x+a 得a=0.

5、如图,在△ABC 中,BC=5,AC=12,AB=13,在边AB 、AC 上分别取点D 、E ,使线段DE 将△ABC 分成面积相等的两部分,则这样线段的最小长度 .

三、解答题:

1某产品第一季度每件成本为50元,第二、第三季度每件产品平均降低成本

的百分率为x

⑴ 请用含x 的代数式表示第二季度每件产品的成本;

⑵ 如果第三季度该产品每件成本比第一季度少9.5元,试求x 的值

⑶ 该产品第二季度每件的销售价为60元,第三季度每件的销售价比第二季度有所下降,若下降的百分率与第二、第三季度每件产品平均降低成本的百分率相同,且第三季度每件产品的销售价不低于48元,设第三季度每件产品获得的利润为y 元,试求y 与x 的函数关系式,并利用函数图象与性质求y 的最大值(注:利润=销售价-成本)

解:(1)()x -150 ⑵

()5.9501502

-=-x 解得1.0=x (3)(),48160≥-x 解得2.0≤x 而0 x ,∴2.00≤x

而()()2

150160x x y ---=

=1040502

++-x x

=()184.0502

+--x

∵当4.0≤x 时,利用二次函数的增减性,y 随x 的增大而增大,而2.00≤x ,

∴当2.0=x 时,y 最大值=18(元)

说明:当自变量取值围为体体实数时,二次函数在抛物线顶点取得最值,而当自变量取值围为某一区间时,二次函数的最值应注意下列两种情形:

若抛物线顶点在该区间,顶点的纵坐标就是函数的最值。 若抛物线的顶点不在该区间,则区间两端点所对应的二次函数的值为该函数的最值。

2、如图,二次函数的图象经过点D(0,397),且顶点C 的横坐标为4,该图象在x 轴上截

得的线段AB 的长为6.

⑴求二次函数的解析式;

⑵在该抛物线的对称轴上找一点P ,使PA+PD 最小,求出点P 的坐标;

⑶在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由.

解:(1)设二次函数的解析式为:y=a(x﹣h)2+k

∵顶点C的横坐标为4,且过点(0,)

∴y=a(x﹣4)2+k,=16a+k①

又∵对称轴为直线x=4,图象在x轴上截得的线段长为6

∴A(1,0),B(7,0)

∴0=9a+k②

由①②解得a=,k=﹣

∴二次函数的解析式为:y=(x﹣4)2﹣

(2)∵点A、B关于直线x=4对称

∴PA=PB

∴PA+PD=PB+PD≥DB

∴当点P在线段DB上时PA+PD取得最小值

∴DB与对称轴的交点即为所求点P

设直线x=4与x轴交于点M

∵PM∥OD,

∴∠BPM=∠BDO,

又∠PBM=∠DBO

∴△BPM∽△BDO

∴点P的坐标为(4,)

(3)由(1)知点C(4,),

又∵AM=3,

∴在Rt△AMC中,cot∠ACM=,

∴∠ACM=60°,

∵AC=BC,

∴∠ACB=120°

①当点Q在x轴上方时,过Q作QN⊥x轴于N

如果AB=BQ,由△ABC∽△ABQ有BQ=6,∠ABQ=120°,则∠QBN=60°

∴QN=3,BN=3,ON=10,

此时点Q(10,),

如果AB=AQ,由对称性知Q(﹣2,)

②当点Q在x轴下方时,△QAB就是△ACB,

此时点Q的坐标是(4,),

经检验,点(10,)与(﹣2,)都在抛物线上综上所述,存在这样的点Q,使△QAB∽△ABC 点Q的坐标为(10,)或(﹣2,)或(4,).

3、如图,抛物线经过

(40)(10)(02)

A B C-

,,,,,

三点.

(1)求出抛物线的解析式;

(2)P是抛物线上一动点,过P作PM x

⊥轴,垂足为M,是否存在P点,使得以A,P,M 为顶点的三角形与OAC

△相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;

(3)在直线AC上方的抛物线上有一点D,使得DCA

△的面积最大,求出点D的坐标.

解:(1)∵该抛物线过点C(0,-2),

∴可设该抛物线的解析式为y=ax2+bx-2,

将A(4,0),B(1,0)代入,

得,

解得,

∴此抛物线的解析式为;

(2)存在,

如图,设P点的横坐标为m,则P点的纵坐标为,

当1<m<4时,AM=4-m,,

∵∠COA=∠PMA=90°,

∴①当时,

△APM∽△ACO,

即4-m=2 ,

解得m1=2,m2=4(舍去),

∴P(2,1);

②当时,

△APM∽△CAO,

即,

解得m1=4,m2=5(均不合题意,舍去),

∴当1<m<4时,P(2,1),

类似地可求出当m>4时,P(5,-2),

当m<1时,P(-3,-14),

综上所述,符合条件的点P为(2,1)或(5,-2)或(-3,-14);

(3)如图,设D点的横坐标为t(0<t<4),则D点的纵坐标为,

过D作y 轴的平行线交AC于E,

由题意可求得直线AC的解析式为,

∴E点的坐标为,

∴当t=2时,△DAC的面积最大,

∴D(2,1)。

4如图,矩形ABCD中,AB=3,BC=4,线段EF在对角线AC上,EG⊥AD,FH⊥BC,垂足分别是G,H,且EG+FH=EF.

(1)求线段EF的长;

(2)设EG=x,△AGE与△CFH的面积和为S,写出S关于x的函数关系式及自变量x的取值围,并求出S的最小值.

二次函数最值问题及解题技巧(个人整理)

一、二次函数线段最值问题 1、平行于x轴的线段最值问题 1)首先表示出线段两个端点的坐标 2)用右侧端点的横坐标减去左侧端点的横坐标 3)得到一个线段长关于自变量的二次函数 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 2、平行于y轴的线段最值问题 1)首先表示出线段两个端点的坐标 2)用上面端点的纵坐标减去下面端点的纵坐标 3)得到一个线段长关于自变量的二次函数解析式 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 3、既不平行于x轴,又不平行于y轴的线段最值问题 1)以此线段为斜边构造一个直角三角形,并使此直角三角形的两条直角边分别平行于x轴、y轴 2)根据线段两个端点的坐标表示出直角顶点坐标 3)根据“上减下,右减左”分别表示出两直角边长 4)根据勾股定理表示出斜边的平方(即两直角边的平方和) 5)得到一个斜边的平方关于自变量的二次函数 6)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 7)根据所求得的斜边平方的最值求出斜边的最值即可 二、二次函数周长最值问题 1、矩形周长最值问题 1)一般会给出一点落在抛物线上,从这点向两坐标轴引垂线构成一个矩形,求其周长最值 2)可先设此点坐标,点p到x轴、y轴的距离和再乘以2,即为周长 3)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 2、利用两点之间线段最短求三角形周长最值 1)首先判断图形中那些边是定值,哪些边是变量 2)利用二次函数轴对称性及两点之间线段最短找到两条变化的边,并求其和的最小值3)周长最小值即为两条变化的边的和最小值加上不变的边长 三、二次函数面积最值问题 1、规则图形面积最值问题(这里规则图形指三角形必有一边平行于坐标轴,四边形必有一组对边平行于坐标轴) 1)首先表示出所需的边长及高 2)利用求面积公式表示出面积 3)得到一个面积关于自变量的二次函数 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 2、不规则图形面积最值问题 1)分割。将已有的不规则图形经过分割后得到几个规则图形 2)再分别表示出分割后的几个规则图形面积,求和 3)得到一个面积关于自变量的二次函数 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 或1)利用大减小,不规则图形的面积可由规则的图形面积减去一个或几个规则小图形的面积来得到

二次函数的几何最值问题

二次函数与几何图形结合 ---探究面积最值问题 〖方法总结〗: 在解答面积最值存在性问题时,具体方法如下: ①根据题意,结合函数关系式设出所求点的坐标,用其表示出所求图形的线段长; ②观察所求图形的面积能不能直接利用面积公式求出,若能,根据几何图形面积公式得到点的坐标或线段长关于面积的二次函数关系式,若所求图形的面积不能直接利用面积公式求出时,则需将所求图形分割成几个可直接利用面积公式计算的图形,进行求解; ③结合已知条件和函数图象性质求出面积取最大值时的点坐标或字母范围。 (2014?达州)如图,在平面直角坐标系中,己知点O(0,0),A(5,0),B(4,4). (1)求过O、B、A三点的抛物线的解析式. (2)在第一象限的抛物线上存在点M,使以O、A、B、M为顶点的四边形面积最大,求点M的坐标. (3)作直线x=m交抛物线于点P,交线段OB于点Q,当△PQB为等腰三角形时,求m的值.

(2014自贡)如图,已知抛物线c x ax y +- =232与x 轴相交于A 、B 两点,并与直线221-=x y 交于B 、C 两点,其中点C 是直线22 1-=x y 与y 轴的交点,连接AC . (1)求抛物线的解析式; (2)证明:△ABC 为直角三角形; (3)△ABC 内部能否截出面积最大的矩形DEFG ?(顶点D 、E 、F 、G 在△ABC 各边上)若能,求出最大面积;若不能,请说明理由.

(2014黔西南州)(16分)如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣3,0)、B(1,0)、C(0,3)三点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合),过点P作y轴的垂线,垂足点为E,连接AE. (1)求抛物线的函数解析式,并写出顶点D的坐标; (2)如果P点的坐标为(x,y),△PAE的面积为S,求S与x之间的函数关系式,直接写出自变量x的取值范围,并求出S的最大值; (3)在(2)的条件下,当S取到最大值时,过点P作x轴的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为点P′,求出P′的坐标,并判断P′是否在该抛物线上.

(完整版)二次函数的最值问题

典型中考题(有关二次函数的最值) 屠园实验周前猛 一、选择题 1.已知二次函数y=a(x-1)2+b有最小值–1,则a与b之间的大小关( ) A. ab D不能确定 答案:C 2.当-2≤x≤l时,二次函数 y=-(x-m)2+m2+1有最大值4,则实数m的值为() A、- 7 4 B、3或-3 C、2或-3D2或-3或- 7 4 答案:C ∵当-2≤x≤l时,二次函数 y=-(x-m)2+m2+1有最大值4,∴二次函数在-2≤x≤l上可能的取值是x=-2或x=1或x=m. 当x=-2时,由y=-(x-m)2+m2+1解得m= - 7 4 , 2 765 y x 416 ?? =-++ ? ?? 此时,它 在-2≤x≤l的最大值是65 16 ,与题意不符. 当x=1时,由y=-(x-m)2+m2+1解得m=2 ,此时y=-(x-2)2+5 ,它在-2≤x≤l的最大值是4,与题意相符. 当x= m时,由4=-(x-m)2+m2+1解得m=3m=3y=-(x+3)2+4.它在-2≤x≤l的最大值是4,与题意相符;当3,y=-(x-3)2+4它在-2≤x≤l在x=1处取得,最大值小于4,与题意不符. 综上所述,实数m的值为2或-3. 故选C. 3.已知0≤x≤1 2 ,那么函数y=-2x2+8x-6的最大值是() A -10.5 B.2 C . -2.5 D. -6 答案:C

解:∵y=-2x2+8x-6=-2(x-2)2+2.∴该抛物线的对称轴是x=2,且在x<2上y随x的增大而 增大.又∵0≤x≤1 2 ,∴当x= 1 2 时,y取最大值,y最大=-2( 1 2 -2)2+2=-2.5.故选:C. 4、已知关于x的函数. 下列结论: ①存在函数,其图像经过(1,0)点; ②函数图像与坐标轴总有三个不同的交点; ③当时,不是y随x的增大而增大就是y随x的增大而减小; ④若函数有最大值,则最大值必为正数,若函数有最小值,则最小值必为负数。 真确的个数是() A,1个B、2个 C 3个D、4个 答案:B 分析:①将(1,0)点代入函数,解出k的值即可作出判断; ②首先考虑,函数为一次函数的情况,从而可判断为假; ③根据二次函数的增减性,即可作出判断; ④当k=0时,函数为一次函数,无最大之和最小值,当k≠0时,函数为抛物线,求 出顶点的纵坐标表达式,即可作出判断. 解:①真,将(1,0)代入可得:2k-(4k+1)-k+1=0, 解得:k=0.运用方程思想; ②假,反例:k=0时,只有两个交点.运用举反例的方法; ③假,如k=1, b5 -= 2a4 ,当x>1时,先减后增;运用举反例的方法; ④真,当k=0时,函数无最大、最小值; k≠0时,y最= 22 4ac-b24k+1 =- 4a8k , ∴当k>0时,有最小值,最小值为负; 当k<0时,有最大值,最大值为正.运用分类讨论思想. 二、填空题: 1、如图,已知;边长为4的正方形截去一角成为五边形ABCDE,其中AF=2,BF=l,在AB 上的一点P,使矩形PNDM有最大面积,则矩形PNDM的面积最大值是

二次函数最值问题解答题专项练习60题(有答案)

二次函数最值专项练习60题 1.画出抛物线y=4(x﹣3)2+2的大致图象,写出它的最值和增减性. 2.如图,二次函数y=ax2+bx+c的图象经过A(﹣1,0)、B(2,3)两点,求出此二次函数的解析式;并通过配方法求出此抛物线的对称轴和二次函数的最大值. 3.已知二次函数y=x2﹣x﹣2及实数a>﹣2,求 (1)函数在一2<x≤a的最小值; (2)函数在a≤x≤a+2的最小值. 4.已知函数y=x2+2ax+a2﹣1在0≤x≤3范围内有最大值24最小值3,求实数a的值. 5.我们知道任何实数的平方一定是一个非负数,即:(a+b)2≥0,且﹣(a+b)2≤0.据此,我们可以得到下面的推理: ∵x2+2x+3=(x2+2x+1)+2=(x+1)2+2,而(x+1)2≥0 ∴(x+1)2+2≥2,故x2+2x+3的最小值是2. 试根据以上方法判断代数式3y2﹣6y+11是否存在最大值或最小值?若有,请求出它的最大值或最小值.

6.如图所示,已知平行四边形ABCD的周长为8cm,∠B=30°,若边长AB=x(cm). (1)写出?ABCD的面积y(cm2)与x的函数关系式,并求自变量x的取值范围. (2)当x取什么值时,y的值最大?并求最大值. 7.求函数y=2x2﹣ax+1当0≤x≤1时的最小值. 8.已知m,n是关于x的方程x2﹣2ax+a+6=0的两实根,求y=(m﹣1)2+(n﹣1)2的最小值. 9.当﹣1≤x≤2时,求函数y=f(x)=2x2﹣4ax+a2+2a+2的最小值,并求最小值为﹣1时,a的所有可能的值.10.已知二次函数y=x2﹣6x+m的最小值为1,求m的值.

二次函数的最值问题(典型例题)

二次函数的最值问题 【例题精讲】 题面:当1≤x ≤2时,函数y =2x 24ax +a 2+2a +2有最小值2, 求a 的所有可能取值. 【拓展练习】 如图,在平面直角坐标系xOy 中,二次函数23y x bx c = ++的图象与x 轴交于A (1,0)、B (3,0)两点, 顶点为C . (1)求此二次函数解析式; (2)点D 为点C 关于x 轴的对称点,过点A 作直线l :3333 y x =+交BD 于点E ,过点B 作直线BK AD l K :在四边形ABKD 的内部是否存在点P ,使得它到四边形ABKD 四边的距离都相等,若存在,请求出点P 的坐标;若不存在,请说明理由; (3)在(2)的条件下,若M 、N 分别为直线AD 和直线l 上的两个动点,连结DN 、NM 、MK ,求DN NM MK ++和的最小值.

练习一 【例题精讲】 若函数y=4x24ax+a2+1(0≤x≤2)的最小值为3,求a的值. 【拓展练习】 题面:已知:y关于x的函数y=(k1)x22kx+k+2的图象与x轴有交点. (1)求k的取值范围; (2)若x1,x2是函数图象与x轴两个交点的横坐标,且满足(k1)x12+2kx2+k+2= 4x1x2. ①求k的值;②当k≤x≤k+2时,请结合函数图象确定y的最大值和最小值. 练习二 金题精讲 题面:已知函数y=x2+2ax+a21在0≤x≤3范围内有最大值24,最小值3,求实数a的值. 【拓展练习】 题面:当k分别取1,1,2时,函数y=(k1)x2 4x+5k都有最大值吗请写出你的判断,并说明理由;若有,请求出最大值.

二次函数最值问题(含答案)

二次函数最值问题 一.选择题(共8小题) 1.如果多项式P=a2+4a+2014,则P的最小值是() A.2010 B.2011 C.2012 D.2013 2.已知二次函数y=x2﹣6x+m的最小值是﹣3,那么m的值等于()A.10 B.4 C.5 D.6 3.若二次函数y=ax2+bx+c的图象开口向下、顶点坐标为(2,﹣3),则此函数有() A.最小值2 B.最小值﹣3 C.最大值2 D.最大值﹣3 4.设x≥0,y≥0,2x+y=6,则u=4x2+3xy+y2﹣6x﹣3y的最大值是()A.B.18 C.20 D.不存在 5.二次函数的图象如图所示,当﹣1≤x≤0时,该函数的最大值是() A.3.125 B.4 C.2 D.0 6.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为() A.1或﹣5 B.﹣1或5 C.1或﹣3 D.1或3 7.二次函数y=﹣(x﹣1)2+5,当m≤x≤n且mn<0时,y的最小值为2m,最大值为2n,则m+n的值为() A.B.2 C.D. 8.如图,抛物线经过A(1,0),B(4,0),C(0,﹣4)三点,点D是直线BC 上方的抛物线上的一个动点,连结DC,DB,则△BCD的面积的最大值是()

A.7 B.7.5 C.8 D.9 二.填空题(共2小题) 9.已知二次函数y=2(x+1)2+1,﹣2≤x≤1,则函数y的最小值是,最大值是. 10.如图,在直角坐标系中,点A(0,a2﹣a)和点B(0,﹣3a﹣5)在y轴上, =6.当线段OM最长时,点M的坐标为. 点M在x轴负半轴上,S △ABM 三.解答题(共3小题) 11.在平面直角坐标系中,O为原点,直线l:x=1,点A(2,0),点E,点F,点M都在直线l上,且点E和点F关于点M对称,直线EA与直线OF交于点P.(Ⅰ)若点M的坐标为(1,﹣1), ①当点F的坐标为(1,1)时,如图,求点P的坐标; ②当点F为直线l上的动点时,记点P(x,y),求y关于x的函数解析式.(Ⅱ)若点M(1,m),点F(1,t),其中t≠0,过点P作PQ⊥l于点Q,当OQ=PQ时,试用含t的式子表示m.

二次函数中几何图形的最值问题

二次函数中几何图形的最值问题 教情分析: 二次函数中与几何图形的结合题变化多端,关于几何图形的最值问题只是这些变化中的一类,在教学中如何引导学生在复杂的变化中发现解题的路径,关键是训练学生在题目中寻找不变的已知元素,运用“两点间的线段最短”“垂线段最短”“二次函数的最值”“三角形中的三边关系”等知识点,来实现问题的转化与解决。 教学目标: 引导学生掌握处理二次函数中的最值问题,明确解决最值问题的思考方向。 思想方法: 由于这类问题有一定的综合性和探索性,解题中需要运用数形结合、转化和化归、动态思维、特殊与一般等数学思想。 教学过程: 问题:在平面直角坐标系中,抛物线y=ax2+2x+c的图象 A的坐标为(3,0),B的坐标为(0,3), (1)求直线AB和抛物线的解析式; (2)点E是线段AB上的动点,过E作x 交抛物线于点F,设点E的横坐标为t, 求线段EF的最大值,并求出此时点E 点F的坐标呢?

(3)在直线AB上方的抛物线上有一动点P使得 ?ABP的面积最大?若存在求出点P的坐标及最大面积;若不存在请说明理由解题思路: (1)求出直线AB的解析式; (2)若直线AB上有一动点E的横坐标为t,那么它的纵坐标如何表示? (3)已知抛物线y=ax2+2x+c的图象与x轴交于点A和点C,与y轴交于点B,求此抛物线的解析式; (4)若在上题中的抛物线上有一动点P的横坐标为m,那么它的纵坐标如何表示? 已知抛物线y=-x2+2x+3经过A(3,0)、B(0,3)两点; (5)点E是线段AB上的动点,过E作x轴的垂线交抛物线于点F,设点E的横坐标为t,求线段EP的最大值,并求出此时点E的坐标;点P的坐标呢?(6)在直线AB上方的抛物线上有一动点P使得?ABP的面积最大?若存在求出点P的坐标及最大面积;若不存在请说明理由. 小结: 练习:在直线AB上方(6)题中的抛物线上有一动点G,当G到直线AB的距离最大时,求G点的坐标及距离最大值

二次函数和最值问题总结

二次函数的最值问题 二次函数y ax2bx c ( a 0) 是初中函数的主要内容,也是高中学习的重要基 础.在初中阶段大家已经知道:二次函数在自变量x 取任意实数时的最值情 况(当 a 时, 函数在 x b处取得最小值4ac b2,无最大值;当 a 0时,函数在 x b处取得 2a 4a 2a 4ac b2,无最小 值. 最大值 4a 本节我们将在这个基础上继续学习当自变 量x 在某个范围内取值时,函数的最值问 题.同时还将学习二次函数的最值问题在实际生活中的简单应 用. 二次函数求最值(一般范围类) 例 1.当 2 x 2 时,求函数 y x22x 3 的最大值和最小值. 分析:作出函数在所给范围的及其对称轴的草 图,观察图象的最高点和最低点,由此得到函数的最大值、最小值及函数取到最值时相应自变 量x 的值. 解:作出函数的图象.当x 1时, y min 4 ,当 x 2 时, y max 5. 例 2.当 1 x 2 时,求函数yx2x 1的最大值和最小值. 解:作出函数的图象.当 x 1 时, y min1,当 x 2 时, y max5 . 由上述两例可以看到,二次函数在自变量 x 的给定范围内,对应的图象是抛物线上的一段.那么最高点的纵坐标即为函数的最大值,最低点的纵坐标即为函数的最小值.根据二次函数对称轴的位置,函数在所给自变量 x 的范围的图象形状各异.下面给出一些常见情况: 例 3.当 x 0 时,求函数y x(2 x) 的取值范围.

资料

解: 作出函数 y x(2 x ) x 2 2x 在 x 0 内的图 象. 可以看出: 当 x 1 时, y min 1,无最大值. 所以,当 x 0 时,函数的取值范围 是 y 1 . 例 4. 当 t x t 1 时,求函数 y 1 x 2 x 5 的最小值 (其中 t 为常 数 ). 2 2 分析: 由于 x 所给的范围随着 t 的变化而变化,所以需要比较对称轴与其范围的相 对位 置. 解: 函数 y 1 x 2 x 5 的对称轴为 x 1 .画出其草图. 2 2 1 5 (1 ) 当对称轴在所给范围左侧.即 t 1 时: 当 x t 时, y min t 2 t ; t 1 t 1 0 t 1 2 2 (2 ) 当对称轴在所给范围之间.即 时: 当 x 1时, y min 1 12 1 5 3; 2 2 (3 ) 当对称轴在所给范围右侧.即 t 1 1 t 0 时: 当 x t 1 时, y min 1 (t 1)2 (t 1) 5 1 t 2 3. 2 2 2 1 t 2 3, t 0 2 综上所述: y3,0 t 1 1 t 2 t 5 , t 1 2 2 在实际生活中,我们也会遇到一些与二次函数有关的问题: 二次函数求最值 ( 经济类问题 ) 例 1.为了扩大内需,让惠于农民,丰富农民的业余生活,鼓励送彩电下乡,国家决定 对购买彩电的农户实行政府补贴. 规定每购买一台彩电, 政府补贴若干元, 经调查某商场销售彩电台数 y (台)与补贴款额 x (元)之间大致满足如图①所示的一次函数关系.随着补 贴款额 x 的不断增大, 销售量也不断增加, 但每台彩电的收益 Z (元)会相应降低且 Z 与 x 之间也大致满足如图②所示的一次函数关系.

中考数学题型专项训练:二次函数与最值问题(含答案)

二次函数与最值问题 1.如图,二次函数y=-x2+2(m-2)x+3的图象与x、y轴交于 A、B、C三点,其中A(3,0),抛物线的顶点为D. (Ⅰ)求m的值及顶点D的坐标; (Ⅱ)当a≤x≤b时,函数y的最小值为7 4 ,最大值为4,求a,b应 满足的条件; (Ⅲ)在y轴右侧的抛物线上是否存在点P,使得△PDC是等腰三角形?如果存在,求出符合条件的点P的坐标;如果不存在,请说明理由. 解:(Ⅰ)把A(3,0)代入y=-x2+2(m-2)x+3, 得-9+6(m-2)+3=0, 解得m=3, 则二次函数为y=-x2+2x+3,

∵y=-x2+2x+3=-(x-1)2+4, ∴顶点D的坐标为(1,4); (Ⅱ)把y=7 4 代入y=-x2+2x+3中, 得7 4 =-x2+2x+3, 解得x1=-1 2,x2= 2 5 , 又∵函数y的最大值为4,顶点D的坐标为(1,4), 结合图象知-1 2 ≤a≤1. 当a=-1 2时,1≤b≤ 2 5 , 当-1 2<a≤1时,b= 2 5 ; (Ⅲ)存在点P,使得△PDC是等腰三角形, 当x=0时,y=3,

∴点C坐标为(0,3). 当△PDC是等腰三角形时,分三种情况: ①如解图①,当DC=DP时, 由抛物线的对称性知:点P与点C关于抛物线的对称轴x=1对称, ∴点P坐标为(2,3); ②如解图②,当PC=PD时,则线段CD的垂直平分线l与抛物线的交点即为所求的点P, 过点D作x轴的平行线交y轴于点H, 过点P作PM⊥y轴于点M,PN⊥DH的延长线于点N, ∵HD=HC=1,PC=PD, ∴HP是线段CD的垂直平分线. ∵HD=HC,HP⊥CD, ∴HP平分∠MHN,

二次函数的最值问题举例(附练习、答案)

二次函数的最值问题举例(附练习、答案) 二次函数2 (0)y ax bx c a =++≠是初中函数的主要内容,也是高中学习的重要基础.在初中阶段大家已经知道:二次函数在自变量x 取任意实数时的最值情况(当0a >时,函数在 本节我们将在这个基础上继续学习当自变量x 在某个范围内取值时,函数的最值问题.同时还将学习二次函数的最值问题在实际生活中的简单应用. 【例1】当22x -≤≤时,求函数223y x x =--的最大值和最小值. 分析:作出函数在所给范围的及其对称轴的草图,观察图象的最高点和最低点,由此得到函数的最大值、最小值及函数取到最值时相应自变量x 的值. 解:作出函数的图象.当1x =时,min 4y =-,当2x =-时,max 5y =. 【例2】当12x ≤≤时,求函数21y x x =--+的最大值和最小值. 解:作出函数的图象.当1x =时,min 1y =-,当2x =时,max 5y =-. 由上述两例可以看到,二次函数在自变量x 的给定范围内,对应的图象是抛物线上的一段.那么最高点的纵坐标即为函数的最大值,最低点的纵坐标即为函数的最小值. 根据二次函数对称轴的位置,函数在所给自变量x 的范围的图象形状各异.下面给出一些常见情况: 【例3】当0x ≥时,求函数(2)y x x =--的取值范围. 解:作出函数2(2)2y x x x x =--=-在0x ≥内的图象.

可以看出:当1x =时,min 1y =-,无最大值. 所以,当0x ≥时,函数的取值范围是1y ≥-. 【例4】当1t x t ≤≤+时,求函数21522 y x x =--的最小值(其中t 为常数). 分析:由于x 所给的范围随着t 的变化而变化,所以需要比较对称轴与其范围的相对位置. 解:函数21522 y x x =--的对称轴为1x =.画出其草图. (1) 当对称轴在所给范围左侧.即1t >时: 当x t =时,2min 1522y t t = --; (2) 当对称轴在所给范围之间.即1101t t t ≤≤+?≤≤时: 当1x =时,2min 1511322 y = ?--=-; (3) 当对称轴在所给范围右侧.即110t t +? 在实际生活中,我们也会遇到一些与二次函数有关的问题: 【例5】某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m (件)与每件的销售价x (元)满足一次函数1623,3054m x x =-≤≤. (1) 写出商场卖这种商品每天的销售利润y 与每件销售价x 之间的函数关系式; (2) 若商场要想每天获得最大销售利润,每件商品的售价定为多少最合适?最大销售利润为多少? 解:(1) 由已知得每件商品的销售利润为(30)x -元, 那么m 件的销售利润为(30)y m x =-,又1623m x =-. 2 (30)(1623)32524860,3054y x x x x x ∴=--=-+-≤≤ (2) 由(1)知对称轴为42x =,位于x 的范围内,另抛物线开口向下 ∴当42x =时,2max 342252424860432y =-?+?-=

一元二次函数的最值问题

一元二次函数的最值问题 一元二次函数的最值问题是高一知识中的一个重点、热点,也是同学们在学习过程中普遍感到困惑的一个难点,它考查了函数的单调性,以及数形结合、分类讨论等数学思想和方法。下面对这一知识点进行简单总结。 一、一元二次函数在[m,n]上的最值 1. 设函数 (1)求函数f(x)在区间[m,n]上的最小值。 ①当。 ②当。 ③当。 (2)求函数f(x)在区间[m,n]上的最大值。 ①当 ②当。 2. 设函数 (1)求函数f(x)在区间[m,n]上的最大值。 ①当 ②当 ③当 (2)求函数f(x)在区间[m,n]上的最小值。 ①当。

②当。 二、典型例题 1. 确定所给区间的单调性 例1 已知二次函数f(x)满足,且f(0)=0,f(1)=1,且在区间[m,n]上的值域是[m,n],求实数m,n的值。 解:∵二次函数f(x)满足 ∴函数的对称轴为x=1 又因为,可设。把f(0)=0代入得到a=-1,即 由题意知函数值域为 因此,函数在区间[m,n]上单调递增 ∴或1,n=0或1 综合题意可得m=0,n=1 2. 已知二次函数图象开口方向,需要讨论函数对称轴。 例2 已知函数在区间[-1,2]上的最大值为4,求a的值。 解:函数,对称轴为x=-a。 ①当时, ②当,即时, 综上所述, 3. 二次函数的解析式确定,但所给区间需要讨论。 例3 设函数的定义域为[t-2,t-1],,求函数的最小值的解析式。 解:(1) ①当

②当[t-2,t-1],即。 ③,即3时, 4. 二次项系数的讨论。 例4 已知函数上的最大值为1,求a的值。 解:(1)当a=0时,,函数在区间上单调递减, ,不符合题意,所以舍去。 (2)当a>0时, ①当,符合题意。 ②当(舍去)。 (3)当a<0时,。 ①矛盾。 ②时, =(舍去)

二次函数的应用(最值问题)

二次函数的应用(最值问题) 教学目标: 知识与技能:利用二次函数y=ax2+bx+c(a≠0)的图象与性质解决简单的实际问题。能理解函数图象的顶点、端点与最值的关系,并能应用这些关系解决实际问题。 过程与方法: 1、能将实际问题转化为二次函数问题,进而建立数学模型解决,从中体会数学建模的思想和数学来源于生活又服务于生活。 2、从“数”(解析式)和“形”(图象)的角度理解二次函数与实际生活中“最值“问题之间的联系,体会”数形结合“的思想。 情感态度:通过用二次函数解决实际生活中的问题,体验函数知识的实际应用价值,感受数学与人类生活的密切联系。 重点:应用二次函数解决实际生活及几何图形中有关的最值问题。 难点: 1、正确构建数学模型。 2、对函数图象顶点、端点与最值关系的理解与应用。 教学方法与手段: 由于本节课是应用问题,重在通过学习总结解决问题的方法,故而本节课以“启 发探究式“为主线开展教学活动,解决问题。以学生动手动脑探究为主,必要时加以 小组合作讨论,充分调动学生学习积极性和主动性,突出学生的主体地位,达到”不 但使学生学会,而且使学生会学“的目的。为了提高课堂效率,展示学生的学习效果,适当地辅以电脑多媒体技术。 教学过程: 一、复习导入: 1、二次函数y=ax2+bx+c(a≠0)的图象是一条___,他的对称轴是﹍﹍,顶点坐标是﹍﹍。 2、当a>0时,抛物线开口向﹍,有最﹍点,当x=﹍时,函数有最﹍值是﹍﹍;当a<0时,抛物线开口向﹍,有最﹍点,当x=﹍时,函数有最﹍值,是﹍﹍。

二、探究问题 问题一:利润最值问题 提问:利润公式?利润=(售价-进价)×销售量 出示问题: 小丽、小强和小红到某超市参加社会实践活动,在活动中他们参与了某种水果的销售工作。已知该水果的进价为8元/千克,下面是他们在活动结束后的对话。 小丽:如果以10元/千克的价格销售,那么每天可售出300千克。 小强:如果每千克的利润为3元,那么每天可售出250千克。 小红:如果以13元/千克的价格销售,那么每天可获取利润750元。 (1)请根据他们的对话填写下表 (2)请你根据表格中的信息判断每天的销售量y(千克)与销售单价x(元)之间存在怎样的函数关系?并求y(千克)与x(元)的函数关系式。 (3)设该超市销售这种水果每天获取的利润为W元,求W与x之间的函数关系式。当销售单价为何值时,每天可获得的利润最大?最大利润是多少元? (4)若物价部门规定,这种水果的售价不能高于11元/千克,当销售单价为何值时,每天可获得的利润最大?最大利润是多少元? 让学生小组活动,并让学生说出每一个信息是由哪一句话得出的?如何想的?然后独立求出解析式并小组订正,最后独立求出最值,集体板演订正。最后一问教师引导得出。 小结:对于二次函数求最值问题应设一个量为自变量x,所求问题为函数,建立二次函数模型,写出函数关系式。要注意自变量的取值范围,在取值范围内利用顶点或端点求最值。 问题二:线段长度最值问题 如图,抛物线y=-5/4x2+17/4x+1与y轴交于A点,过点A的直线与抛物线交于 另一点B,过点B作BC⊥x轴,垂足为点 C(3,0)。

二次函数最值问题复习专题

二次函数之最值问题研究 成都市天府新区籍田中学 吴磊 【教学目标】 建立二次函数数学模型,并用数学模型求最值; 【教学重点】 根据题意建立数学模型运用适当的数学思想方法解决问题; 【教学难点】 建立二次函数的数学模型,运用数学思想方法解决问题; 一、知识回顾 求最值问题的基本解题步骤: 1.审题.读懂问题,分析问题各个量之间的关系; 2.列数学表达式.用数学方法表示它们之间的关系,即建立二次函数关系式; 3.求值.利用顶点坐标公式24,24b ac b a a ??-- ??? (对称轴法)或配方法求得最值; 对称轴法:(1)把2b x a =- 代入2y ax bx c =++即可求出其最值; (2)自变量不能够取得2b x a =-时, ①当0a >时,离对称轴越远函数值越大,离对称轴越近,函数值越小; ②当0a <时,离对称轴越远函数值越小,离对称轴越近,函数值越大. 配方法:将二次函数2y ax bx c =++转化为2()y a x h k =-+的形式,对称轴为x h =. (1)当0a >时,y 有最小值,即当x =h 时,=y k 最小值; (2)当0a <时,y 有最大值,即当x =h 时,=y k 最大值. 4.检验.检验结果的合理性.(函数求最值需考虑实际问题的自变量的取值范围) 二、分类问题处理: 第一类 常规求最值问题 【例1】(1) 抛物线y=23 x 2-4x +21的最小值是( ) A.21 B.-21 C. 15 D.-15 (2)二次函数281y x x k =++-的最小值是5,则k 的值是( ) A.22 B -22 C.21 D.-21 〖变式训练〗 (1)抛物线21432 y x x =--+的最大值是( ) A.3 B.-3 C. -11 D.11 (2)抛物线24y x ax =--的最大值是( ) A.24a B.2 4a - C.4 D.-4 第二类 含自变量取值限制的求最值问题 【例2】(1)二次函数245y x x =-++,求当61x -≤≤的最值。 练习:1、二次函数2614y x x =--,求当19x -≤≤的最值。

二次函数中线段和差最值问题

二次函数中线段和、差最值问题 姓名: 1、如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).(1)求抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由;并求出周长的最小值;(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标.

2、如图,△ABC的三个顶点坐标分别为A(-2,0)、B(6,0)、C(0,3 2 -),抛物线y=ax2+bx+c (a≠0)经过A、B、C三点。(1)求直线AC的解析式;(2)求抛物线的解析式;(3)若抛物线的顶点为D,在直线AC上是否存一点P,使得△BDP的周长最小,若存在,求出P点的坐标;若不存在,请说明理由。 3、如图,已知直线 1 1 2 y x =+与y轴交于点A,与x轴交于点D,抛物线2 1 2 y x bx c =++与直 线交于A、E两点,与x轴交于B、C两点,且B点坐标为(1,0)。⑴求该抛物线的解析式; ⑵动点P在x轴上移动,当△PAE是直角三角形时,求点P的坐标P。⑶在抛物线的对称轴上找一点M,使|| AM MC -的值最大,求出点M的坐标。

4、如图8,对称轴为直线x =2的抛物线经过点A (-1,0),C (0,5)两点,与x 轴另一交点为B ,已知M (0,1),E (a ,0),F (a +1,0),点P 是第一象限内的抛物线上的动点.(1)求此抛物线的解析式.(2)当a =1时,求四边形MEFP 面积的最大值,并求此时点P 的坐标.(3)若△PCM 是以点P 为顶点的等腰三角形,求a 为何值时,四边形PMEF 周长最小?请说明理由. 图8 O A E F B M C P x y 备用图 A O M C E F x B y P

二次函数最值问题(含标准答案)

二次函数最值问题(含答案)

————————————————————————————————作者:————————————————————————————————日期:

二次函数最值问题 一.选择题(共8小题) 1.如果多项式P=a2+4a+2014,则P的最小值是() A.2010 B.2011 C.2012 D.2013 2.已知二次函数y=x2﹣6x+m的最小值是﹣3,那么m的值等于()A.10 B.4 C.5 D.6 3.若二次函数y=ax2+bx+c的图象开口向下、顶点坐标为(2,﹣3),则此函数有() A.最小值2 B.最小值﹣3 C.最大值2 D.最大值﹣3 4.设x≥0,y≥0,2x+y=6,则u=4x2+3xy+y2﹣6x﹣3y的最大值是()A.B.18 C.20 D.不存在 5.二次函数的图象如图所示,当﹣1≤x≤0时,该函数的最大值是() A.3.125 B.4 C.2 D.0 6.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为() A.1或﹣5 B.﹣1或5 C.1或﹣3 D.1或3 7.二次函数y=﹣(x﹣1)2+5,当m≤x≤n且mn<0时,y的最小值为2m,最大值为2n,则m+n的值为() A.B.2 C.D. 8.如图,抛物线经过A(1,0),B(4,0),C(0,﹣4)三点,点D是直线BC 上方的抛物线上的一个动点,连结DC,DB,则△BCD的面积的最大值是()

A.7 B.7.5 C.8 D.9 二.填空题(共2小题) 9.已知二次函数y=2(x+1)2+1,﹣2≤x≤1,则函数y的最小值是,最大值是. 10.如图,在直角坐标系中,点A(0,a2﹣a)和点B(0,﹣3a﹣5)在y轴上, =6.当线段OM最长时,点M的坐标为. 点M在x轴负半轴上,S △ABM 三.解答题(共3小题) 11.在平面直角坐标系中,O为原点,直线l:x=1,点A(2,0),点E,点F,点M都在直线l上,且点E和点F关于点M对称,直线EA与直线OF交于点P.(Ⅰ)若点M的坐标为(1,﹣1), ①当点F的坐标为(1,1)时,如图,求点P的坐标; ②当点F为直线l上的动点时,记点P(x,y),求y关于x的函数解析式.(Ⅱ)若点M(1,m),点F(1,t),其中t≠0,过点P作PQ⊥l于点Q,当OQ=PQ时,试用含t的式子表示m.

二次函数的最值问题的教案

二次函数的最值问题 例1求下列函数的最值 (1) y=3x 2+6x+8 (2)y=2(x-3)(1-x) (3)y= 12x 2+4x+3 (4) y=-7x 232 2、商场销售一批衬衫,每天可售出 20 件,每件盈利 40 元,为了扩大销售,减少库存, 决定采取适当的降价措施,经调查发现,如果一件衬衫每降价 1 元,每天可多售出 2 件。 ① 设每件降价 x 元,每天盈利 y 元,列出 y 与 x 之间的函数关系式; ② 若商场每天要盈利 1200 元,每件应降价多少元? ③ 每件降价多少元时,商场每天的盈利达到最大?盈利最大是多少元? 3.如图所示,?公园要建造圆形的喷水池,?水池中央垂直于水面处安装一个柱子OA ,O 恰在水面中心,OA=1.25m ,由柱子顶端A 处喷头向外喷水,水流在各个方向沿形状相同的抛物线落下,为使水流形状较为漂亮,要求设计成水流在OA 距离为1m 处达到距水面最大高度 2.25m . (1)若不计其他因素,那么水池的半径至少要多少米,?才能使喷出的水流不能落到池外? (2)若水流喷出的抛物线形状与(1)相同,水池的半径为3.5m ,要使水流不落到池外,此时水流最大高度应达多少米? .

4.某化工材料经销公司购进一种化工原料共7000千克,购进价格为每千克30元,物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价定为70元时,日均销售60千克;单价每降低1元,日均多售出2千克,在销售过程中,?每天还要支出其他费用500元(天数不足一天时,按整天计算),设销售单价为x 元,?日均获利为y 元. (1)求y 关于x 的二次函数关系式,并注明x 的取值范围. (2)将(1)中所求出的二次函数配方成y=a (x+2b a )2+2 44ac b a 的形式,写出顶点坐标,画出草图,观察图象,指出单价定为多少元时日均获利最多,是多少? (3)若将这种化工原料全部售出,比较日均获利最多和销售单价最高这两种销售方式,哪一种获总利较多?多多少? 5.有一种螃蟹,从海上捕获后不放养,最多只能存活两天.如果放养在塘内,可以长存活时间,但每天也有一定数量的蟹死去.假设放养期内蟹的个体质量基本保持不变,现有一经销商,按市场价收购这种活蟹1000 kg 放养在塘内,此时市场价为每千克30元,据测算,此后每千克活蟹的市场价每天可上升1元,但是,放养一天需支出各种费用为400元,且平均每天还有10 kg 蟹死去,假定死蟹均于当天全部销售出,售价都是每千克20元. (1)设x 天后每千克活蟹的市场价为p 元,写出p 关于x 的函数关系式; (2)如果放养x 天后将活蟹一次性出售,并记1000 kg 蟹的销售总额为Q 元,写出Q 关于x 的函数关系式. (3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=Q -收购总额)? 6.一合资企业生产某种产品,每件产品成本为3元,售价是4元,年销售量为10万件,为了获得更好的效益,公司准备拿出一定的资金做广告,根据经验,每年投入的广告费是x (万 元)时,产品的年销售量将是原销售量的y 倍,且y=-102x +107x+10 7,如果把利润看作是 销售总额减去成本费和广告费,试写出年利润S (万元)与广告费x (万元)之间的函数关系式,并计算广告费是多少万元时,公司获得的年利润最大?最大年利润是多少万元?

二次函数中几何的最值问题

二次函数中几何的最值 问题 CKBOOD was revised in the early morning of December 17, 2020.

二次函数中几何的最值问题 一、解答题 1、如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(-2,0)、B(6,0)、C(0,-2),抛物线y=a+bx+c(a≠0)经过A、B、C三点。 (1)求直线AC的解析式; (2)求此抛物线的解析式; (3)若抛物线的顶点为D,试探究在直线AC上是否存在一点P,使得△BPD的周长最小,若存在,求出P点的坐标;若不存在,请说明理由。 2、如图,已知抛物线y=-+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)。 (1)求m的值及抛物线的顶点坐标; (2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标。

3、如图,二次函数y=a+bx的图象经过点A(2,4)与B(6,0). (1)求a,b的值; (2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值。

4、如图,抛物线y=+bx+c(a、b、c为常数,a≠0)经过点A(﹣1,0),B(5,﹣6),C(6,0). (1)求抛物线的解析式; (2)如图,在直线AB下方的抛物线上是否存在点P使四边形PACB的面积最大?若存在,请求出点P的坐标;若不存在,请说明理由; (3)若点Q为抛物线的对称轴上的一个动点,试指出△QAB为等腰三角形的点Q一共有几个?并请求出其中某一个点Q的坐标. 5、如图,长方形OABC的OA边在x轴的正半轴上,OC在y轴的正半轴上,抛物线 y=+bx经过点B(1,4)和点E(3,0)两点. (1)求抛物线的解析式; (2)若点D在线段OC上,且BD⊥DE,BD=DE,求D点的坐标;

二次函数动点与最值问题

一、二次函数中的最值问题: 例1:在平面直角坐标系中,全等的两个三角形Rt⊿AOB与Rt A’OC’如图放置,点B、C’的坐标分别为(1,3),(0,1),BO 与A’ C’相交于D,若⊿A’OC’绕点O旋转90°至⊿AOC,如图所示(1)若抛物线过C、A、A’,求此抛物线的解析式及对称轴;∴y=-x2+2x+3 (2)、若点P是第一象限内抛物线线上的一动点,问P在何处时△AP A’的面积最大?最大面积是多少?并求出此时的点P的坐标。 (3)、设抛物线的顶点为N,在抛物线上是否存在点P,使△A’AN与△A’AP的面积相等?,若存在, 请求出此时点P的坐标,若不存在,请说明理由。

例2、(2012攀枝花)如图,在平面直角坐标系xOy中,四边形ABCD是菱形,顶点A.C.D均在坐标轴上, 且AB=5,sinB=. (1)求过A.C.D三点的抛物线的解析式; (2)记直线AB的解析式为y1=mx+n,(1)中抛物线的解析式为y2=ax2+bx+c,求当y1<y2时,自变量x的取值范围; (3)设直线AB与(1)中抛物线的另一个交点为E,P点为抛物线上A.E两点之间的一个动点,当P点在何处时,△PAE的面积最大?并求出面积的最大值. 解答:解:(1)∵四边形ABCD是菱形, ∴AB=AD=CD=BC=5,sinB=sinD=; Rt△OCD中,OC=CD?sinD=4,OD=3; OA=AD﹣OD=2,即: A(﹣2,0)、B(﹣5,4)、C(0,4)、D(3,0); 设抛物线的解析式为:y=a(x+2)(x﹣3),得: 2×(﹣3)a=4,a=﹣; ∴抛物线:y=﹣x2+x+4. (2)由A(﹣2,0)、B(﹣5,4)得直线AB:y1=﹣x﹣; 由(1)得:y2=﹣x2+x+4,则: , 解得:,; 由图可知:当y1<y2时,﹣2<x<5. (3)∵S△APE=AE?h, ∴当P到直线AB的距离最远时,S△ABC最大;

相关主题