搜档网
当前位置:搜档网 › 几种常见不等式的解法

几种常见不等式的解法

几种常见不等式的解法
几种常见不等式的解法

题目高中数学复习专题讲座几种常见解不等式的解法 高考要求

不等式在生产实践和相关学科的学习中应用广泛,又是学习高等数学的重要工具,所以不等式是高考数学命题的重点,解不等式的应用非常广泛,如求函数的定义域、值域,求参数的取值范围等,高考试题中对于解不等式要求较高,往往与函数概念,特别是二次函数、指数函数、对数函数等有关概念和性质密切联系,应重视;从历年高考题目看,关于解不等式的内容年年都有,有的是直接考查解不等式,有的则是间接考查解不等式 重难点归纳

解不等式对学生的运算化简等价转化能力有较高的要求,随着高考命题原则向能力立意的进一步转化,对解不等式的考查将会更是热点,解不等式需要注意下面几个问题

(1)熟练掌握一元一次不等式(组)、一元二次不等式(组)的解法

(2)掌握用零点分段法解高次不等式和分式不等式,特别要注意因式的处理方法

(3)掌握无理不等式的三种类型的等价形式,指数和对数不等式的几种基本类型的解法

(4)掌握含绝对值不等式的几种基本类型的解法

(5)在解不等式的过程中,要充分运用自己的分析能力,把原不等式等价地转化为易解的不等式

(6)对于含字母的不等式,要能按照正确的分类标准,进行分类讨论 典型题例示范讲解

例1已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1,若m 、n ∈[-

1,1],m +n ≠0时

n

m n f m f ++)

()(>0

(1)用定义证明f (x )在[-1,1]上是增函数; (2)解不等式 f (x +

21)<f (1

1-x ); (3)若f (x )≤t 2-2at +1对所有x ∈[-1,1],a ∈[-1,1]恒成立,求

实数t 的取值范围

命题意图 本题是一道函数与不等式相结合的题目,考查学生的分析能力与化归能力

知识依托 本题主要涉及函数的单调性与奇偶性,而单调性贯穿始终,把所求问题分解转化,是函数中的热点问题;问题的要求的都是变量的取值范围,不等式的思想起到了关键作用

错解分析 (2)问中利用单调性转化为不等式时,x +

21∈[-1,1],1

1-x ∈[-1,1]必不可少,这恰好是容易忽略的地方

技巧与方法 (1)问单调性的证明,利用奇偶性灵活变通使用已知条件不等式是关键,(3)问利用单调性把f (x )转化成“1”是点睛之笔

(1)证明 任取x 1<x 2,且x 1,x 2∈[-1,1],则f (x 1)-f (x 2)=f (x 1)+f (-

x 2)=

2

121)

()(x x x f x f --+·(x 1-x 2)

∵-1≤x 1<x 2≤1, ∴x 1+(-x 2)≠0,由已知

2

121)

()(x x x f x f --+>0,又 x 1-x 2<0,

∴f (x 1)-f (x 2)<0,即f (x )在[-1,1]上为增函数 (2)解 ∵f (x )在[-1,1]上为增函数,

∴???

?

?

?

???

-<+≤-≤

-≤+≤-112111111211x x x x 解得 {x |-23≤x <-1,x ∈R } (3)解 由(1)可知f (x )在[-1,1]上为增函数,且f (1)=1, 故对x ∈[-1,1],恒有f (x )≤1,

所以要f (x )≤t 2-2at +1对所有x ∈[-1,1],a ∈[-1,1]恒成立,即要t 2-2at +1≥1成立,

故t 2-2at ≥0,记g (a )=t 2-2at ,对a ∈[-1,1],g (a )≥0,

只需g (a )在[-1,1]上的最小值大于等于0,g (-1)≥0,g (1)≥0, 解得,t ≤-2或t =0或t ≥2

∴t 的取值范围是 {t |t ≤-2或t =0或t ≥2}

例2设不等式x 2-2ax +a +2≤0的解集为M ,如果M ?[1,4],求实

数a 的取值范围

命题意图 考查二次不等式的解与系数的关系及集合与集合之间的关系

知识依托 本题主要涉及一元二次不等式根与系数的关系及集合与集合之间的关系,以及分类讨论的数学思想

错解分析 M =?是符合题设条件的情况之一,出发点是集合之间的关系考虑是否全面,易遗漏;构造关于a 的不等式要全面、合理,易出错

技巧与方法 该题实质上是二次函数的区间根问题,充分考虑二次方程、二次不等式、二次函数之间的内在联系是关键所在;数形结合的思想使题目更加明朗

解 M ?[1,4]有两种情况 其一是M =?,此时Δ<0;其二是M

≠?,此时Δ=0或Δ>0,分三种情况计算a 的取值范围

设f (x )=x 2 -2ax +a +2,有Δ=(-2a )2-(4a +2)=4(a 2-a -2) (1)当Δ<0时,-1<a <2,M =??[1,4]

(2)当Δ=0时,a =-1或2 当a =-1时M ={-1}?[1,4];当a =2时,m ={2}?[1,4]

(3)当Δ>0时,a <-1或a >2

设方程f (x )=0的两根x 1,x 2,且x 1<x 2,

那么M =[x 1,x 2],M ?[1,4]?1≤x 1<x 2≤4???>?≤≤>>?0,410

)4(,0)1(且且a f f

即????

???>-<>>->+-2

100

7180

3a a a a a 或,解得 2<a <718,

∴M ?[1,4]时,a 的取值范围是(-1,7

18) 例3解关于x 的不等式

2

)

1(--x x a >1(a ≠1) 解 原不等式可化为 2)

2()1(--+-x a x a >0,

①当a >1时,原不等式与(x -1

2

--a a )(x -2)>0同解

由于

21

11211

a a a -=-<<-- ∴原不等式的解为(-∞,

1

2

--a a )∪(2,+∞) ②当a <1时,原不等式与(x -1

2

--a a )(x -2) <0同解

由于

21

111

a a a -=---, 若a <0,211211

a a a -=-<--,解集为(12

--a a ,2);

若a =0时,

21

1211a a a -=-=--,解集为?; 若0<a <1,211211

a a a -=->--,解集为(2,12

--a a )

综上所述 当a >1时解集为(-∞,

1

2

--a a )∪(2,+∞);当0<a <1时,解集为(2,12--a a );当a =0时,解集为?;当a <0时,解集为(1

2

--a a ,

2)

学生巩固练习

1 设函数f (x )=????

???

≥-<<-+-≤+)1(11

)11(22)1()1(2x x

x x x x ,已知f (a )>1,则a 的取值范围是( )

A (-∞,-2)∪(-

21

,+∞) B (-

21,2

1) C (-∞,-2)∪(-2

1

,1)

D (-2,-

2

1

)∪(1,+∞)

2 已知f (x )、g (x )都是奇函数,f (x )>0的解集是(a 2,b ),g (x )>0的解

集是(22a ,2

b ),则f (x )·g (x )>0的解集是__________

3 已知关于x 的方程sin 2x +2cos x +a =0有解,则a 的取值范围是_______

4 已知适合不等式|x 2-4x +p |+|x -3|≤5的x 的最大值为3 (1)求p 的值;

(2)若f (x )=1

1+-x x p p ,解关于x 的不等式f --

1(x )>k x p +1log (k ∈R +)

5 设f (x )=ax 2+bx +c ,若f (1)=

2

7

,问是否存在a 、b 、c ∈R ,使得不等式 x 2+

21≤f (x )≤2x 2+2x +2

3

对一切实数x 都成立,证明你的结论 6 已知函数f (x )=x 2+px +q ,对于任意θ∈R ,有f (sin θ)≤0,且f (sin θ+2)≥2

(1)求p 、q 之间的关系式; (2)求p 的取值范围;

(3)如果f (sin θ+2)的最大值是14,求p 的值 并求此时f (sin θ)的最小值

7 解不等式log a (x -

x

1

)>1 8 设函数f (x )=a x 满足条件 当x ∈(-∞,0)时,f (x )>1;当x ∈(0,

1]时,不等式f (3mx -1)>f (1+mx -x 2)>f (m +2)恒成立,求实数m 的取值范围

参考答案

1 解析 由f (x )及f (a )>1可得

???>+-≤1)1(12

a a ① 或???>+<<-12211a a ② 或???

??>-≥1111

a

a ③ 解①得a <-2,解②得-

2

1

<a <1,解③得x ∈? ∴a 的取值范围是(-∞,-2)∪(-2

1

,1)

答案 C

2 解析 由已知b >a 2∵f (x ),g (x )均为奇函数,

∴f (x )<0的解集是(-b ,-a 2

),g (x )<0的解集是(-2

,22

a b -)

由f (x )·g (x )>0可得

?????-

<<--<<-?????<<<>2222

,0)(0)(0)(0)(22

22a x b a x b b x a b x a x g x f x g x f 或即或 ∴x ∈(a 2,

2b )∪(-2b

,-a 2) 答案 (a 2,2b )∪(-2

b

,-a 2)

3 解析 原方程可化为cos 2x -2cos x -a -1=0,令t =cos x ,得t 2-2t -a -1=0,原问题转化为方程t 2-2t -a -1=0在[-1,1]上至少有一个实根 令f (t )=t 2-2t -a -1,对称轴t =1,

画图象分析可得?

??≤≥-0)1(0

)1(f f 解得a ∈[-2,2]

答案 [-2,2]

4 解 (1)∵适合不等式|x 2-4x +p |+|x -3|≤5的x 的最大值为3, ∴x -3≤0,∴|x -3|=3-x

若|x 2-4x +p |=-x 2+4x -p ,则原不等式为x 2-3x +p +2≥0, 其解集不可能为{x |x ≤3}的子集,∴|x 2-4x +p |=x 2-4x +p ∴原不等式为x 2-4x +p +3-x ≤0,即x 2-5x +p -2≤0,

令x 2-5x +p -2=(x -3)(x -m ),可得m =2,p =8

(2)f (x )=1818+-x x ,∴f --

1(x )=log 8x

x -+11 (-1<x <1),

∴有log 8

x x

-+11>log 8k

x +1,∴log 8(1-x )<log 8k ,∴1-x <k ,∴x >1-k ∵-1<x <1,k ∈R +,∴当0<k <2时,原不等式解集为{x |1-k <x <1};

当k ≥2时,原不等式的解集为{x |-1<x <1}

5 解 由f (1)=

27得a +b +c =27,令x 2+21=2x 2+2x +23

x ?=-1, 由f (x )≤2x 2+2x +23推得f (-1)23

由f (x )≥x 2+21推得f (-1)≥23,∴f (-1)=23,∴a -b +c =2

3

故2(a +c )=5,a +c =25且b =1,∴f (x )=ax 2+x +(25

-a )

依题意 ax 2+x +(25-a )≥x 2+2

1

对一切x ∈R 成立,

∴a ≠1且Δ=1-4(a -1)(2-a )≤0,得(2a -3)2≤0,

∴f (x )=

23x 2

+x +1 易验证 23x 2+x +1≤2x 2+2x +2

3

对x ∈R 都成立

∴存在实数a =23

,b =1,c =1,

使得不等式 x 2+21≤f (x )≤2x 2+2x +2

3

对一切x ∈R 都成立

6 解 (1)∵-1≤sin θ≤1,1≤sin θ+2≤3,即当x ∈[-1,1]时,f (x )≤0,当x ∈[1,3]时,f (x )≥0,∴当x =1时f (x )=0 ∴1+p +q =0,∴q =-(1+p )

(2)f (x )=x 2+px -(1+p ),

当sin θ=-1时f (-1)≤0,∴1-p -1-p ≤0,∴p ≥0 (3)注意到f (x )在[1,3]上递增,∴x =3时f (x )有最大值 即9+3p +q =14,9+3p -1-p =14,∴p =3

此时,f (x )=x 2+3x -4,即求x ∈[-1,1]时f (x )的最小值

又f (x )=(x +

23)2-4

25,显然此函数在[-1,1]上递增 ∴当x =-1时f (x )有最小值f (-1)=1-3-4=-6

7 解 (1)当a >1时,原不等式等价于不等式组???????>->-a x

x

11011

由此得1-a x 1 因为1-a <0,所以x <0,∴a

-11<x <0 (2)当0<a <1时,原不等式等价于不等式组 1

10 11 x

a x

?-> ????-

由 ①得x >1或x <0,由②得0 <x <

a -11,∴1<x a -11 综上,当a >1时,不等式的解集是{x |a

-11

<x <0},当0<a <1时,不等

式的解集为{x |1<x <a

-11

}

8 解 由已知得0<a <1,由f (3mx -1)>f (1+mx -x 2)>f (m +2),x ∈(0,1]

恒成立

?????+<-+-+<-?2

11132

2

m x mx x

mx mx 在x ∈(0,1]恒成立 整理,当x ∈(0,1)时,?????+<--<1

)1(122

2

x x m x

x 恒成立, 即当x ∈(0,1]时,???

????-+>-<11212

2x x m x

x m 恒成立, 且x =1时,?????+<--<1

)1(122

2

x x m x

mx 恒成立, ∵2121212-=-x x x 在x ∈(0,1]上为减函数,∴x x 212-<-1, ∴m <x

x 212

-恒成立?m <0

又∵2112)1(112+-+-=-+x x x x ,在x ∈(0,1]上是减函数,∴11

2-+x x <-1 ∴m >1

12-+x x 恒成立?m >-1

当x ∈(0,1)时,???

????-+>-<11212

2x x m x

x m 恒成立?m ∈(-1,0) ① 当x =1时,?????+<--<1

)1(122

2

x x m x

mx ,即是???<<100m ∴m <0 ②

∴①、②两式求交集m ∈(-1,0),使x ∈(0,1]时,

f (3mx -1)>f (1+mx -x 2)>f (m +2)恒成立,m 的取值范围是(-1,0)

课前后备注

一元一次不等式组的解法常考题型讲解

一元一次不等式组的解法 一、知识点复习 1.一元一次不等式组的概念: 几个 一元一次不等式 合在一起就组成一个一元一次不等式组. 2.一元一次不等式组的解集: 一般地,几个不等式的解集的 公共部分 ,叫做由它们组成的不等式组的解集. 2.一元一次不等式组解集四种类型如下表: 二、经典题型分类讲解 题型1:考察一元一次不等式组的概念 1. (2017春雁塔区校级月考)下列不等式组:①???<->32x x ,②???>+>420 x x ,③???>+<+4 2122x x x , ④???-<>+703x x ,⑤? ??<->+010 1y x 。其中一元一次不等式组的个数是( ) A 、2个 B 、3个 C 、4个 D 、5个

题型2:考察一元一次不等式组的解法 2.(2018春天心区校级期末)不等式组?? ???>+≤-6 1213312 x x 的解集在数轴上表示正确的是( ) 3.解下列不等式组,并在数轴上表示解集: ! (1)?? ? ??<--+->++-021331215)1(2)5(7x x x x (2)?????≥-+->-154245 3312x x x x (3)?????≤--+<--+-1213128)3()1(3x x x x (4)?? ? ??< -+≤+321)2(352x x x x —

(5)?????-<+-<-2322125.05.7x x x x (6)?????->≥----62410 2.05.05.04 .073x x x x x ! 4. 解下列不等式21 153 x --< ≤ \

一元一次不等式及其解法常考题型讲解

一元一次不等式及其解法 一、知识点复习 1.一元一次不等式的概念: 只含有一个未知数,且未知数的次数是1且系数不为0的不等式,称为一 元一次不等式。 2.解一元一次不等式的一般步骤: 去分母、去括号、移项、合并同类项、系数化为1. 3. 注意事项: ①去分母时各项都要乘各分母的最小公倍数,去分母后分子是多项式时,分子要加括号。 ②系数化为1时,注意系数的正负情况。 二、经典题型分类讲解 题型1:考察一元一次不等式的概念 1. (2017春昭通期末)下列各式:①5≥-x ;②03<-x y ;③05<+πx ;④ 32≠+x x ; ⑤x x 333≤+;⑥02<+x 是一元一次不等式的有( ) A 、2个 B 、3个 C 、4个 D 、5个 2.(2017春启东市校级月考)下列不等式是一元一次不等式的是( ) A 、 67922-+≥-x x x x B 、01=+x C 、0>+y x D 、092≥++x x 3.(2017春寿光市期中)若03)1(2>-+m x m 是关于x 的一元一次不等式,则m 的值为( ) A 、1± B 、1 C 、1- D 、0 题型2:考察一元一次不等式的解法 4. (2016秋太仓市校级期末)解不等式,并把解集在数轴上表示出来: (1))21(3)35(2x x x --≤+ (2)2 2531-->+ x x

5.解不等式 10 1.0)39.1(10 2.06.035.05.12?->---x x x 。 6.(2016秋相城区期末)若代数式 123-+x 的值不大于6 34+x 的值时,求x 的取值范围。 7. (2017春开江县期末)请阅读求绝对值不等式3x 的解集的过程: 因为3x ,从如图2所示的数轴上看:小于3-的数和大于3的数的绝对值是大于3,所以3>x 的解集是3-x 。 解答下列问题: (1)不等式a x <(0>a )的解集为, 不等式a x >(0>a )的解集为; (2)解不等式42<-x ; (3)解不等式75>-x 。

含参不等式解法举例

含参不等式专题(淮阳中学) 编写:孙宜俊 当在一个不等式中含有了字母,则称这一不等式为含参数的不等式,那么此时的参数可以从以下两个方面来影响不等式的求解,首先是对不等式的类型(即是那一种不等式)的影响,其次是字母对这个不等式的解的大小的影响。我们必须通过分类讨论才可解决上述两个问题,同时还要注意是参数的选取确定了不等式的解,而不是不等式的解来区分参数的讨论。解参数不等式一直是高考所考查的重点内容,也是同学们在学习中经常遇到但又难以顺利解决的问题。下面举例说明,以供同学们学习。 解含参的一元二次方程的解法,在具体问题里面,按分类的需要有讨论如下四种情况: (1) 二次项的系数;(2)判别式;(3)不等号方向(4)根的大小。 一、含参数的一元二次不等式的解法: 1.二次项系数为常数(能分解因式先分解因式,不能得先考虑0≥?) 例1、解关于x 的不等式0)1(2>++-a x a x 。 解:0)1)((2>--x a x 1,0)1)((==?=--x a x x a x 令 为方程的两个根 (因为a 与1的大小关系不知,所以要分类讨论) (1)当1或 (2)当1>a 时,不等式的解集为}1|{<>x a x x 或 (3)当1=a 时,不等式的解集为}1|{≠x x 综上所述: (1)当1或 (2)当1>a 时,不等式的解集为}1|{<>x a x x 或 (3)当1=a 时,不等式的解集为}1|{≠x x 变题1、解不等式0)1(2>++-a x a x ; 2、解不等式0)(322>++-a x a a x 。

常见不等式通用解法

常见不等式通用解法总结 一、基础的一元二次不等式,可化为类似一元二次不等式的不等式 ①基础一元二次不等式 如2260x x --<,2210x x -->,对于这样能够直接配方或者因式分解的基础一元二次不等式,重点关注解区间的“形状”。 当二次项系数大于0,不等号为小于(或小于等于号)时,解区间为两根的中间。 2260x x --<的解为3 (,2)2 - 当二次项系数大于0,不等号为大于(或大于等于号)时,解区间为两根的两边。 2210x x --> 的解为(,1(1)-∞?+∞ 当二次项系数小于0时,化成二次项系数大于0的情况考虑。 ②可化为类似一元二次不等式的不等式(换元) 如1392x x +->,令3x t =,原不等式就变为2320t t -+<,再算出t 的范围,进而算出x 的范围 又如243 2 x ax >+ ,令2t x =,再对a 进行分类讨论来确定不等式的解集 ③含参数的一元二次不等式 解法步骤总结: 如不等式210x ax ++>,首先发现二次项系数大于0,而且此不等式无法直接看出两根,所以,讨论24a ?=-的正负性即可。 此不等式的解集为0,0,{|}20,()R a x R x ? ??-∞?+∞? 又如不等式223()0x a a x a -++>,发现其可以通过因式分解化为2()()0x a x a -->,所 以只需要判定2a 和a 的大小即可。 此不等式的解集为22 01,{|}01,(,)(,)01,(,)(,) a or a x R x a a a a a or a a a ==∈≠?? <<-∞?+∞??<>-∞?+∞?

3.3 几种常见的磁场

高中物理选修3-1《3.3 几种常见的磁场》测试卷 一.选择题(共35小题) 1.条形磁铁内部和外部分别有一小磁针,小磁针平衡时如图所示,则() A.磁铁c端是N极B.磁铁d端是N极 C.小磁针a端是N极D.小磁针b端是S极 2.信鸽爱好者都知道如果把鸽子放飞到数百公里以外它们还会自动归巢.但有时候它们也会迷失方向如果遇到下列哪种情况会迷失方向() A.飞到大海上空B.在黑夜飞行 C.鸽子头部戴上磁性帽D.蒙上鸽子的眼睛 3.如图所示,小磁针所指方向正确的是() A.B. C.D. 4.下列四幅图中,小磁针静止时,其指向正确的是() A.B. C.D. 5.如图所示是几种常见磁场的磁感线分布示意图,下列说法正确的是() ①甲图中a端是磁铁的S极,b端是磁铁的N极 ②甲图中a端是磁铁的N极,b端是磁铁的S极 ③乙图是两异名磁极的磁感线分布图,c端是N极,d端是S极

④乙图是两异名磁极的磁感线分布图,c端是S极,d端是N极. A.①③B.①④C.②③D.②④ 6.相隔一定距离的电荷或磁体间的相互作用是怎样发生的?这是一个曾经使人感到困惑、引起猜想且有过长期争论的科学问题.19世纪以前,不少物理学家支持超距作用的观点.英国的迈克尔?法拉第于1837年提出了电场和磁场的概念,解释了电荷之间以及磁体之间相互作用的传递方式,打破了超距作用的传统观念.1838年,他用电力线(即电场线)和磁力线(即磁感线)形象地描述电场和磁场,并解释电和磁的各种现象.下列对电场和磁场的认识,正确的是() A.法拉第提出的磁场和电场以及电力线和磁力线都是客观存在的 B.在电场中由静止释放的带正电粒子,一定会沿着电场线运动 C.磁感线上某点的切线方向跟放在该点的通电导线的受力方向一致 D.通电导体与通电导体之间的相互作用是通过磁场发生的 8.关于磁场和磁感线,下列说法正确的是() A.单根磁感线可以描述各点磁场的方向和强弱 B.磁体之间的相互作用是通过磁场发生的 C.磁感线是磁场中客观真实存在的线 D.磁感线总是从磁体的北极出发,到南极终止 9.关于磁场和磁感线的描述,正确的说法是() A.磁感线可以相交 B.小磁针静止时S极指向即为该点的磁场方向 C.磁感线的疏密程度反映了磁场的强弱 D.地球磁场的N极与地理北极重合 10.下列关于磁场的说法正确的是() A.磁场只存在于磁极周围 B.磁场中的任意一条磁感线都是闭合的 C.磁场中任意一条磁感线都可以表示磁场的强弱和方向

高中数学 考前归纳总结 常见基本不等式的解法

常见基本不等式的解法 一、简单的一元高次不等式的解法:标根法: 其步骤是: (1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正; (2)将每个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意 奇穿过偶弹回; (3)根据曲线显现()f x 的符号变化规律,写出不等式的解集。 如(1)解不等式2 (1)(2)0x x -+≥。(答:{}|12x x x ≥=-或); (2)不等式(0x -的解集是____(答:{}|31x x x ≥=-或); (3)设函数()()f x x ,g 的定义域都是R ,且()0f x ≥的解集为{}|12x x ≤<, ()0g x ≥的解集为?,则不等式()()0f x g x ?>的解集为______ (答:()[),12,-∞+∞U ; (4)要使满足关于x 的不等式2290x x a -+<(解集非空)的每一个x 的值至少满足 不等式2430x x -+<和2680x x -+<中的一个,则实数a 的取值范围是______. (答:81[7,)8 ) 二、分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子 分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。解分式 不等式时,一般不能去分母,但分母恒为正或恒为负时可去分母。 如(1)解不等式25123 x x x -<---(答:()()1,12,3-U ); (2)关于x 的不等式0ax b ->的解集为()1,+∞,则关于x 的不等式 02ax b x +>-的 解集为____________(答:()(),12,-∞-+∞U ). 三、绝对值不等式的解法: (1)零点分段讨论法(最后结果应取各段的并集): 如解不等式312242 x x -++≥(答:x R ∈); (2)利用绝对值的定义;(3)数形结合; 如解不等式13x x +->(答:()(),12,-∞-+∞U ) (4)两边平方:如若不等式322x x a +≥+对x R ∈恒成立,则实数a 的取值范围

不等式解法举例

不等式解法举例 ?教学重点:不等式求解. ?教学难点:将已知不等式等价转化成合理变形式子. ?教学方法:创造教学法 为使问题得到解决,关键在于合理地将已知不等式变形,变形的过程也是一个创造的过程,只有这一过程完成好,本节课的难点也就突破. ?教学过程: 一、课题导入 1、由一元一次不等式、一元二次不等式、和简单的绝对值不等式式子,导出其不等式 解法. 2、一元二次不等式的解法. 3、数形结合思想运用. 二、新课讲授 例1:解不等式|x2-5x+5|<1 分析:不等式|x|0)的解集是{x|-a-1 解这个不等式组,其解集就是原不等式的解集. 解:原不等式可化为 -1< x2-5x+5<1 即 x2-5x+5< 1 ①

x 2-5x +5>-1 ② 解不等式①由 x 2-5x +5< 1 得 (x -1)(x -4)< 0 解集为{x |1- 1 得 (x -2)(x -3)> 0 解集为{x |x < 2或x >3}. 原不等式的解集是不等式①和不等式②的解集的交集,即 {x|13}={x|10 x2-2x-3<0 或 x2-3x+2<0 x2-2x-3>0 因此,原不等式的解集就是上面两个不等式组的解集的并集. 解:这个不等式的解集是下面个不等组(Ⅰ)、(Ⅱ)的解集的并集: x 2-3x +2>0 ① x 2-2x -3<0 ② x 2-3x +2<0 ③ x 2-2x -3>0 ④ 先解不等式(Ⅰ). 解不等式① x 2-3x +2>0, 得解集 {x |x <1,或x >2} 解不等式② x 2-2x -3<0, 得解集 {x |x <1,或x >2} 因此,不等式组(Ⅰ)的解集是 {x |x <1,或x >2}∩{x |x <1,或x >2}. 不等式解集在数轴上表示如下: 再解不等式(Ⅱ). x 2-3x +2 x 2-2x -3 (Ⅰ) (Ⅱ)

基本不等式求最值的类型与方法,经典大全

专题:基本不等式求最值的类型及方法 一、几个重要的基本不等式: ①,、)(2 22 22 2 R b a b a a b ab b a ∈+≤ ?≥+当且仅当a = b 时,“=”号成立; ②, 、)(222 + ∈?? ? ??+≤?≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③, 、、)(3 33 333 3 3 +∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立; ④)(333 3+ ∈?? ? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立. 注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”; ② 熟悉一个重要的不等式链: b a 11 2 +2 a b +≤≤≤2 2 2b a +。 二、函数()(0)b f x ax a b x =+ >、图象及性质 (1)函数()0)(>+ =b a x b ax x f 、图象如图: (2)函数()0)(>+=b a x b ax x f 、性质: ①值域:),2[]2,(+∞--∞ab ab ; ②单调递增区间:(,-∞ ,)+∞ ;单调递减区间:(0, ,[0). 三、用均值不等式求最值的常见类型 类型Ⅰ:求几个正数和的最小值。 例1、求函数2 1 (1)2(1) y x x x =+ >-的最小值。 解析:21(1)2(1)y x x x =+ >-21(1)1(1)2(1)x x x =-++>-2 111 1(1)222(1)x x x x --=+++>- 1≥312≥+52=, 当且仅当 2 11 (1) 22(1)x x x -=>-即2x =时,“=”号成立,故此函数最小值是52。 评析:利用均值不等式求几个正数和的最小值时,关键在于构造条件,使其积为常数。通常要通过添加常数、拆项(常常是拆底次的式子)等方式进行构造。 类型Ⅱ:求几个正数积的最大值。 例2、求下列函数的最大值: ①2 3 (32)(0)2 y x x x =-<< ②2sin cos (0)2y x x x π=<< 解析:① 3 0,3202 x x <<->∴, ∴2 3(32)(0)(32)2y x x x x x x =-<<=??-3(32)[ ]13 x x x ++-≤=, 当且仅当32x x =-即1x =时,“=”号成立,故此函数最大值是1。 ② 0,sin 0,cos 02 x x x π << >>∴,则0y >,欲求y 的最大值,可先求2y 的最大值。 2 4 2 sin cos y x x =?2 2 2 sin sin cos x x x =??222 1(sin sin 2cos )2x x x =??22231sin sin 2cos 4( )2327 x x x ++≤?=, 当且仅当22 sin 2cos x x =(0)2 x π < < tan x ?=tan x arc =时 “=”号成立,故 评析:利用均值不等式求几个正数积的最大值,关键在于构造条件,使其和为常数。通常要 通过乘以或除以常数、拆因式(常常是拆高次的式子)、平方等方式进行构造。 类型Ⅲ:用均值不等式求最值等号不成立。 例3、若x 、y + ∈R ,求4 ()f x x x =+ )10(≤、图象及性质知,当(0,1]x ∈时,函数 4 ()f x x x =+是减函数。证明:任取12,(0,1]x x ∈且1201x x <<≤,则

几种常见的磁场教案完美版

[选修3-1第三章磁场教案] 第三节几种常见的磁场(2课时) 一、教学目标 (一)知识与技能 1.知道什么叫磁感线。 2.知道几种常见的磁场(条形、蹄形,直线电流、环形电流、通电螺线管)及磁感线分布的情况 3.会用安培定则判断直线电流、环形电流和通电螺线管的磁场方向。 4.知道安培分子电流假说,并能解释有关现象 5.理解匀强磁场的概念,明确两种情形的匀强磁场 6.理解磁通量的概念并能进行有关计算 (二)过程与方法 通过实验和学生动手(运用安培定则)、类比的方法加深对本节基础知识的认识。 (三)情感态度与价值观 1.进一步培养学生的实验观察、分析的能力. 2.培养学生的空间想象能力. 二、重点与难点: 1.会用安培定则判定直线电流、环形电流及通电螺线管的磁场方向. 2.正确理解磁通量的概念并能进行有关计算 三、教具:多媒体、条形磁铁、直导线、环形电流、通电螺线管、小磁针若干、投影仪、展示台、学生电源 四、教学过程: (一)复习引入 要点:磁感应强度B的大小和方向。 [启发学生思考]电场可以用电场线形象地描述,磁场可以用什么来描述呢? [学生答]磁场可以用磁感线形象地描述.----- 引入新课 (老师)类比电场线可以很好地描述电场强度的大小和方向,同样,也可以用磁感线来描述磁感应强度的大小和方向 (二)新课讲解 【板书】1.磁感线 (1)磁感线的定义

在磁场中画出一些曲线,使曲线上每一点的切线方向都跟这点的磁感应强度的方向一致,这样的曲线叫做磁感线。 (2)特点: A 、磁感线是闭合曲线,磁铁外部的磁感线是从北极出来,回到磁铁的南极,内部是从南极到北极. B 、每条磁感线都是闭合曲线,任意两条磁感线不相交。 C 、磁感线上每一点的切线方向都表示该点的磁场方向。 D 、磁感线的疏密程度表示磁感应强度的大小 【演示】用铁屑模拟磁感线的形状,加深对磁感线的认识。同时与电场线加以类比。 【注意】①磁场中并没有磁感线客观存在,而是人们为了研究问题的方便而假想的。 ②区别电场线和磁感线的不同之处:电场线是不闭合的,而磁感线则是闭合曲线。 2.几种常见的磁场 【演示】 ①用铁屑模拟磁感线的演示实验,使学生直观地明确条形磁铁、蹄形磁铁、通电直导线、通电环形电流、通电螺线管以及地磁场(简化为一个大的条形磁铁)各自的磁感线的分布情况(磁感线的走向及疏密分布)。 ②用投影片逐一展示:条形磁铁(图1)、蹄形磁铁(图2)、通电直导线(图3)、通电环形电流(图4)、通电螺线管以及地磁场(简化为一个大的条形磁铁) (图5)、※辐向磁场(图 6)、还有二同名磁极和二异名磁极的磁场。 (1)条形、蹄形磁铁,同名、异名磁极的磁场周围磁感线的分布情况(图1、图2) (2)电流的磁场与安培定则 ①直线电流周围的磁场

高二数学课件-《不等式的解法举例》

高二数学课件:《不等式的解法举例》 过去的一切会离你越来越远,直到淡出人们的视野,而空白却会越放越大,直至铺成一段苍白的人生。下面为您推荐高二数学课件:《不等式的解法举例》。 (1)能熟练运用不等式的基本性质来解不等式; (2)在巩固一元一次不等式和一元一次不等式组、一元二次不等式的解法基础上,掌握分式不等式、高次不等式的解法; (3)能将较复杂的绝对值不等式转化为简单的绝对值不等式、一元二次不等式(组)来解; (4)通过解不等式,要向学生渗透转化、数形结合、换元、分类讨论等数学思想; (5)通过解各种类型的不等式,培养学生的观察、比较及概括能力,培养学生的勇于探索、敢于创新的精神,培养学生的学习兴趣.【教学建议】一、知识结构 本节内容是在高一研究了一元一次不等式,一元二次不等式,简单的绝对值不等式及分式不等式的解法基础上,进一步深入研究较为复杂的绝对值不等式及分式不等式的解法.求解的基本思路是运用不等式的性质和有关定理、法则,将这些不等式等价转化为一次不等式(组)或二次不等式的求解,具体地说就是含有绝对值符号的不等式去掉绝对值符号,无理不等式有理化,分式不等式整式化,高次不等式一次化.其基本模式为: ; ; ;

二、重点、难点分析 本节的重点和一个难点是不等式的等价转化.解不等式与解方程有类似之处,但其二者的区别更要加以重视.解方程所产生的增根是可以通过检验加以排除的,由于不等式的解集一般都是无限集,如果产生了增根却是无法检验加以排除的,所以解不等式的过程一定要保证同解,所涉及的变换一定是等价变换.在学生学习过程中另一个难点是不等式的求解.这个不等式其实是一个不等式组的简化形式,当为一元一次式时,可直接解这个不等式组,但当为一元二次式时,就必须将其改写成两个一元二次不等式的形式,分别求解在求交集. 三、教学建议 (1)在学习新课之前一定要复习旧知识,包括一元二次不等式的解法,简单的绝对值不等式的解法,简单的分式不等式的解法,不等式的性质,实数运算的符号法则等.特别是对于基础比较差的学生,这一环节不可忽视. (2)在研究不等式的解法之前,应先复习解不等式组的基本思路以及不等式的解法,然后提出如何求不等式的解集,启发学生运用换元思想将替换成,从而转化一元二次不等式组的求解. (3)在教学中一定让学生充分讨论,明确不等式组中的两个不等式的解集间的交并关系,两个不等式的解集间的交并关系. (4)建议表述解不等式的过程中运用符号 . (5)建议在研究分式不等式的解法之前,先研究简单高次不等式(一端为0,另一端是若干个一次因式乘积形式的整式)的解法.可由学生讨论不同解法,师生共同比较诸法的优劣,最后落实到区间法. (6)分式不等式与高次不等式的等价原因,可以认为是不等式两端同乘

不等式的解法典型例题及详细答案

不等式的解法·典型例题 【例1】?(x+4)(x+5)2(2-x)3<0. 【例2】?解下列不等式: 【例3】?解下列不等式 【例4】?解下列不等式: 【例5】?|x 2-4|<x+2. 【例6】?解不等式1)123(log 2122<-+-x x x . 不等式·典型例题参考答案 【例1】?(x+4)(x+5)2(2-x)3<0. 【分析】?如果多项式f(x)可分解为n 个一次式的积,则一元高次不等式f(x)>0(或f(x)<0)可用“区间法”求解,但要注意处理好有重根的情况. 原不等式等价于(x+4)(x+5)2(x-2)3>0 ∴原不等式解集为{x|x <-5或-5<x <-4或x >2}. 【说明】?用“穿针引线法”解不等式时应注意: ①各一次项中x 的系数必为正; ②但注意“奇穿偶不穿”.其法如图(5-2). 【例2】?解下列不等式: 解:(1)原不等式等价于 用“穿针引线法” ∴原不等式解集为(-∞,-2)∪〔-1,2)∪〔6,+∞). (2) 【例3】?解下列不等式 解:(1)原不等式等价于 ∴原不等式解集为{x|x ≥5}. (2)原不等式等价于 【说明】?解无理不等式需从两方面考虑:一是要使根式有意义,即偶次根号下被开数大于或等于零;二是要注意只有两边都是非负时,两边同时平方后不等号方向才不变. 【例4】?解下列不等式: 解:(1)原不等式等价于 令2x =t(t >0),则原不等式可化为 (2)原不等式等价于 ∴原不等式解集为(-1,2〕∪〔3,6). 【例5】?|x 2-4|<x+2. 解:原不等式等价于-(x+2)<x 2-4<x+2. 故原不等式解集为(1,3). 这是解含绝对值不等式常用方法. 【例6】?解不等式1)123(log 2122<-+-x x x . 解:原不等式等价于 (1)当a >1时,①式等价于 ② (2)当0<a <1时,②等价于 ③

高中数学常见题型解法归纳 不等式的解法

高中数学常见题型解法归纳 不等式的解法 【知识要点】 一、一元一次不等式的解法 任何一个一元一次不等式经过不等式的同解变形后,都可以化为(0)ax b a >≠的形式. 当0a >时,不等式的解集为b x x a ? ?>????;当0a <时,不等式的解集为b x x a ??)的解法:最好的方法是图像法,充分体现了数形结合 的思想.也可以利用口诀(大于取两边,小于取中间)解答. 2、当二次不等式()f x =2 0(0)ax bx c a ++≥<时,可以画图,解不等式,也可以把二次项的系数a 变成正数,再利用上面的方法解答. 3、温馨提示 (1)不要把不等式20ax bx c ++>看成了一元二次不等式,一定邀注意观察分析2x 的系数. (2)对于含有参数的不等式注意考虑是否要分类讨论. (3)如果运用口诀解一元二次不等式,一定要注意使用口诀必须满足的前提条件. (4)不等式的解集必须用集合或区间,不能用不等式,注意结果的规范性. 三、指数不等式和对数不等式的解法 解指数不等式和对数不等式一般有以下两种方法 (1)同底法:如果两边能化为同底的指数或对数,先化为同底,再根据指数、对数的单调性转化为代数不等式,底数是参数时要注意观察分析是否要对其进行讨论,并注意到对数真数大于零的限制条件. ①当1a >时, ()()()()f x g x a a f x g x >?>; ()0log ()log ()()0 ()()a a f x f x g x g x f x g x >??>?>??>? ②当01a <<时, ()()()()f x g x a a f x g x >?<; ()0log ()log ()()0 ()()a a f x f x g x g x f x g x >??>?>??

不等式解法举例

第一课时 知识清单: 1、解含绝对值的不等式,关键是去掉绝对值符号,进而转化为不含绝对值的不等式求解。 2、去绝对值得方法主要有: (1)公式法: x a a x a ?<-或x a > (2)平方法:当0a >时,22x a x a ?>. (3)零点分段法. 3、含绝对值不等式的等价变形: (1)()(0)()f x a a f x a >>?>或()f x a <-;()a f x a -<< (2)()(0)f x a a <>?()a f x a -<<; (3)[][]22()()()()()()()()f x g x f x g x f x g x f x g x >?>?+-g ; (4)()()()()f x g x f x g x >?>或()()f x g x <-; (5)()()()()()f x g x g x f x g x ; 2、解不等式213x +>; 3、解不等式317x +<; 4、解不等式3110x +>; 5、解不等式211x -≤; 6、解不等式2311x x -+>; 7、解不等式113x x ++->; 8、解不等式234x x --+>; 9、解不等式211x x +>-; 10、解不等式233x x x ++>4+; 11、解不等式 2341x x x --<+;

第二课时 知识清单: 1、解分式不等式,首先要把它等价变形为整式不等式.共有如下几种类型: (1)()0()()0()f x f x g x g x >?>g ; (2)()0()()0() f x f x g x g x ?≠?g g 或()0f x =; (4) ()()0()0()()0,()0()0()f x g x f x f x g x f x g x g x ≤?≤??<=?≠?g g . 2、数轴穿根法解不等式的步骤是: (1)等价变形后的不等式一边是零,一边是各因式的积(未知数系数一定是正数); (2)把各因式的根标在数轴上; (3)用曲线“从上往下同时从左向右”穿根(奇次根穿透,偶次根不穿透); (4)看图象写出解集. 简记为:变形、标根、穿根、写解集. 习题: 1、解不等式 201x x +<-; 2、解不等式122 x x +≤-; 3、解不等式21031 x x ->+; 4、解不等式2301 x x +<-; 5、解不等式23901 x x +>+; 6、解不等式121 x x ->0+; 7、解不等式107 x x -<-; 8、解不等式112 x x -<+; 9、解不等式123x x +>-; 10、已知0a <,解关于x 的不等式 12 ax x >-;

几种常见不等式的解法

题目高中数学复习专题讲座几种常见解不等式的解法 高考要求 不等式在生产实践和相关学科的学习中应用广泛,又是学习高等数学的重要工具,所以不等式是高考数学命题的重点,解不等式的应用非常广泛,如求函数的定义域、值域,求参数的取值范围等,高考试题中对于解不等式要求较高,往往与函数概念,特别是二次函数、指数函数、对数函数等有关概念和性质密切联系,应重视;从历年高考题目看,关于解不等式的内容年年都有,有的是直接考查解不等式,有的则是间接考查解不等式 重难点归纳 解不等式对学生的运算化简等价转化能力有较高的要求,随着高考命题原则向能力立意的进一步转化,对解不等式的考查将会更是热点,解不等式需要注意下面几个问题 (1)熟练掌握一元一次不等式(组)、一元二次不等式(组)的解法 (2)掌握用零点分段法解高次不等式和分式不等式,特别要注意因式的处理方法 (3)掌握无理不等式的三种类型的等价形式,指数和对数不等式的几种基本类型的解法 (4)掌握含绝对值不等式的几种基本类型的解法 (5)在解不等式的过程中,要充分运用自己的分析能力,把原不等式等价地转化为易解的不等式 (6)对于含字母的不等式,要能按照正确的分类标准,进行分类讨论 典型题例示范讲解 例1已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1,若m 、n ∈[- 1,1],m +n ≠0时 n m n f m f ++) ()(>0 (1)用定义证明f (x )在[-1,1]上是增函数; (2)解不等式 f (x + 21)<f (1 1-x ); (3)若f (x )≤t 2-2at +1对所有x ∈[-1,1],a ∈[-1,1]恒成立,求 实数t 的取值范围 命题意图 本题是一道函数与不等式相结合的题目,考查学生的分析能力与化归能力 知识依托 本题主要涉及函数的单调性与奇偶性,而单调性贯穿始终,把所求问题分解转化,是函数中的热点问题;问题的要求的都是变量的取值范围,不等式的思想起到了关键作用 错解分析 (2)问中利用单调性转化为不等式时,x + 21∈[-1,1],1 1-x ∈[-1,1]必不可少,这恰好是容易忽略的地方

常见不等式的解法归纳总结

常见不等式的解法归纳总结 知识点精讲 一.一元一次不等式(ax b >) (1)若0a >,解集为|b x x a ??> ????. (2) 若0a <,解集为|b x x a ??< ??? ? (3)若0a =,当0b ≥时,解集为?;当0b <时,解集为R 二、一元一次不等式组(αβ<) (1)x x αβ>??>?,解集为{}|x x β>.(2)x x αβ?? ??≠,其中24b ac ?=-,12,x x 是方程2 0(0)ax bx c a ++>≠的两个根,且12x x < (1)当0a >时,二次函数图象开口向上. (2)①若0?>,解集为{} 21|x x x x x ><或. ②若0?=,解集为|2b x x R x a ??∈≠- ???? 且. ③若0?<,解集为R . (2) 当0a <时,二次函数图象开口向下. ①若0?>,解集为{}12|x x x x << ②若0?≤,解集为? 四、简单的一元高次不等式的解法 简单的一元高次不等式常用“穿根法”求解,其具体步骤如下. 例如,解一元高次不等式()0f x > (1)将()f x 最高次项系数化为正数 (2)将()f x 分解为若干个一次因式或二次不可分因式(0?<) (3)将每一个一次因式的根标在数轴上,从右上方依次通过每一点画曲线(注意重根情况,偶次方根切而不过,奇次方根既穿又过,简称“奇穿偶切”).

不等式知识点大全一

不等式知识点大全一 考试内容: 不等式.不等式的基本性质.不等式的证明.不等式的解法.含绝对值的不等式.考试要求: (1)理解不等式的性质及其证明. (2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用. (3)掌握分析法、综合法、比较法证明简单的不等式. (4)掌握简单不等式的解法. (5)理解不等式│a│-│b│≤│a+b│≤│a│+│b│ §06. 不等式知识要点 1.不等式的基本概念 (1)不等(等)号的定义:. < = ? a< b ? = > - ? > - a - ; a ; b b 0b a b a b a (2)不等式的分类:绝对不等式;条件不等式;矛盾不等式. (3)同向不等式与异向不等式. (4)同解不等式与不等式的同解变形. 2.不等式的基本性质 (1)a >(对称性) ? b b a< (2)c ? > >,(传递性) a> a c b b (3)c + > ? >(加法单调性) a b c b a+ (4)d > + a+ > >,(同向不等式相加) ? c b a d c b (5)d - > ? a- < >,(异向不等式相减) a b c d c b (6)bc ac , . > >0 ? b c a> (7)bc < ,(乘法单调性) >0 ? ac c b a< (8)bd > > > >0 ,0(同向不等式相乘) c ac d b a> ?

(9)0,0a b a b c d c d >><(异向不等式相除) 11(10),0a b ab a b >>?<(倒数关系) (11))1,(0>∈>?>>n Z n b a b a n n 且(平方法则) (12))1,(0>∈>?>>n Z n b a b a n n 且(开方法则) 3.几个重要不等式 (1)0,0||,2≥≥∈a a R a 则若 (2))2||2(2,2222ab ab b a ab b a R b a ≥≥+≥+∈+或则、若(当仅当a=b 时取等号) (3)如果a ,b 都是正数,那么 .2 a b +(当仅当a=b 时取等号) 极值定理:若,,,,x y R x y S xy P +∈+==则: ○ 1如果P 是定值, 那么当x=y 时,S 的值最小; ○ 2如果S 是定值, 那么当x =y 时,P 的值最大. 利用极值定理求最值的必要条件: 一正、二定、三相等. ,3a b c a b c R +++∈(4)若、、则a=b=c 时取等号) 0,2b a ab a b >+≥(5)若则(当仅当a=b 时取等号) 2222(6)0||;||a x a x a x a x a x a x a a x a >>?>?<->

基本不等式解题方法

基本不等式应用 1.若0x >,则12x x + ≥ (当且仅当1x =时取“=” );若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 2.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 3.若R b a ∈,,则2 )2(2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们 的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x --g 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->Q ,11425434554y x x x x ??∴=-+=--++ ?--?? 231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。

一元二次不等式的参数问题举例

一元二次不等式的参数问题解法举例 求不等式恒成立的参数的取值范围,是中学数学的难点之一,也是高考、数学竞赛的热点。 例 1 已知不等式22(45)4(1)30m m x m x +---+>对一切实数x 恒成立,求参数m 的取值范围。 解:要使22(45)4(1)30m m x m x +---+>对一切实数x 恒成立,则只需满足: (1)2 22 450 [4(1)]4(45)30 m m m m m ?+->???=--+-?++对任意的x R ∈恒成立。 解:∵2x +x +1=2 13()24 x + + >0 ∴原不等式可化为2(1)()()0a m x a m x a m -++-+-> 要使上述不等式对任意的x R ∈恒成立的充要条件是: (1)10()(334)0a m a m m a -+>???=---? (2)显然无解。 在(1)中,当a -m +1>0时,有3a -3m +4=3(a -m +1)+1>0 ∴a -m >0 即m 0对一切实数恒成立的充要条件是 2 040a b ac >???=-? 例3 若2()(1)61f x x m xm x =--++在区间[0,1]上恒为正值,求实数m 的取值范围。 解析:此题考查关于x 的一次函数2 2 ()(61)1f x m m x m =-++-恒为正值的充要条件。 显然,当2 m -6m +1=0时,()f x >0不成立,所以2 m -6m +1≠0 依一次函数的性质可知,只要2610(0)0m m f ?-+>?>?或2610 (1)0m m f ?-+? 即可 解得 -10的m 的取值范围是(-1, 13 ) 例4 对任意a ∈[-1,1],函数2()(4)42f x x a x a =+-+-的值总大于0,求x 的取值范围。 解析:()f x 可变形为2 ()(2)44g a x a x x =-+-+ 于是该题就变成:当a 在[-1,1]内任意取值时,()g a 总大于0,求x 的取值范围。 ∵()g a 是一次函数,所以()g a 在[-1,1]上恒为正,只要2 2 (1)560 (1)320 g x x g x x ?-=-+>??=-+>?? 解得x <1或x >3 故x 的取值范围是{x |x <1或x >3}

高中数学 考前归纳总结 常见基本不等式的解法

一、简单的一元高次不等式的解法:标根法: 其步骤是: (1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正; (2)将每个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意 奇穿过偶弹回; (3)根据曲线显现()f x 的符号变化规律,写出不等式的解集。 如(1)解不等式2 (1)(2)0x x -+≥。(答:{}|12x x x ≥=-或); (2)不等式(0x -的解集是____(答:{}|31x x x ≥=-或); (3)设函数()()f x x ,g 的定义域都是R ,且()0f x ≥的解集为{}|12x x ≤<, ()0g x ≥的解集为?,则不等式()()0f x g x ?>的解集为______ (答:()[),12,-∞+∞; (4)要使满足关于x 的不等式2290x x a -+<(解集非空)的每一个x 的值至少满足 不等式2430x x -+<和2680x x -+<中的一个,则实数a 的取值范围是______. (答:81[7,)8 ) 二、分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子 分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。解分式 不 等式时,一般不能去分母,但分母恒为正或恒为负时可去分母。 如(1)解不等式25123x x x -<---(答:()()1,12,3-) ; (2)关于x 的不等式0ax b ->的解集为()1,+∞,则关于x 的不等式 02ax b x +>-的 解集为____________(答:()(),12,-∞-+∞). 三、绝对值不等式的解法: (1)零点分段讨论法(最后结果应取各段的并集): 如解不等式312242 x x -++≥(答:x R ∈); (2)利用绝对值的定义;(3)数形结合; 如解不等式13x x +->(答:()(),12,-∞-+∞) (4)两边平方:如若不等式322x x a +≥+对x R ∈恒成立,则实数a 的取值范围 为______。(答:4 {}3 )

相关主题