搜档网
当前位置:搜档网 › 液压系统组装与调试

液压系统组装与调试

液压系统组装与调试
液压系统组装与调试

液压系统组装与调试》教学大纲

一、学习领域定位

1 、授课对象

开设本课程的专业有:机电一体化技术、机械设计与制造、模具设计与制造、数控技术。

机电、机械类专业的毕业生主要面向工业企业从事机电设备的操作、安装、调试、维修和更新改造,机械制造工艺规程的编制,工艺装备的设计与实施,产品质量分析与控制,生产技术管理等工作。

2 、课程性质

液压系统组装与调试是机电、机械类专业的一门专业主干课程,是对学生的设计能力、创新能力、工程意识进行培养训练的一门重要的技术课。本课程在为实现专业人才培养目标所设置的课程体系中处于十分重要的地位。

本课程前修课程:机械制图及测绘,机械设计及实践、电工知识与技能、电子电路应用与制作。

后续教学任务:毕业设计,顶岗实习。

3 、课程工作任务

1 )介绍液压系统的组成和工作原理等通用基础知识;

2 )培养学生液压系统的初步分析能力,为今后从事机电、液压设备的操作、安装、调试、维修和更新改造,液压产品质量分析与控制,生产技术管理等工作打基础;

3 )培养学生创新意识,为今后从事技术革新打基础。

、学习目标

1、素质教育目标

1 )培养学生自学能力;

2 )培养学生逻辑思维、分析问题解决问题能力;

3 )培养学生团队意识和合作能力;

4 )培养学生良好的职业素养和可持续发展能力;

5 )培养学生严谨的学习态度和一丝不苟的工作作风。

2 、知识目标

1 )掌握液压与气压传动的基础知识,基本计算方法;

2 )了解常用液压泵、液压缸、气缸及控制阀的工作原理、特点及应用;

3 )学习分析一般的液压系统回路和气动控制回路的方法,培养设计简单的液压系统及气动控制系统的思路;

4 )通过实训使学生读懂液压与气动控制回路图,并熟练选用元件,按照回路图正确组装并调试液压与气动控制回路。

3 、能力目标

1 )能合理选择各种元器件及对其进行基本的维护维修;

2 )能分析一般系统图,能用元器件组装基本回路并能对其进行调试;

3 )具有应用标准、规范、手册、图册和查阅有关技术资料的能力;

4 )培养学生运用专业知识解决实际问题的能力;

5 )与企业联合,进行生产现场设备改造及创新项目的设计,培养学生独立进行设

计的综合能力和创新思维能力。

三、教学内容

课程内容选取依据:根据岗位分析入手,构建培养目标,确定课程的教学目标,贯彻先进的教学理念,切实落实“够用、适用”的教学指导思想,减少烦琐的纯理论性论述,增添既先进又实用的实例,并注意突出教材的先进性,更好地满足企业用人的需要,以技能训练

为主线,相关知识为支撑,较好地处理理论教学与技能训练的关系,注重基础理论的应用与

实践能力培养的有机结合,注重培养学生的职业技能和动手能力,简练直观、深入浅出、通

俗易懂,凸显鲜明的高职教育特色。

课程结构:充分利用液压与气动实训室等实训场地,采用模块式教学,使理论与实践有

机结合,以提高教学效果。

四、学习领域设计说明

1 、学习领域设计

在课时安排和课程内容的选取上,根据机电类专业毕业生岗位工作要求,合理设置各岗

位所需的技能与知识为教学内容,以培养学生的液压系统分析能力、系统能力和创新能力为

目标,以实验室、实训中心和校办工厂等实践基地为依托,结合典型“案例”、“项目”组织教学,以工作过程为导向,采取“教、学、做”一体教学模式开展课程教学活动,学生

带着任务去学习基本知识,学完基本知识之后,进行本项目的总体设计分析,最后进行综合

训练,使学生较全面复习和应用本课程知识,学会一般液压系统组装与调试步骤,熟悉常用设计资料的查阅,培养学生综合运用知识的能力。为学习专业课和今后工作打下良好的基础。

2学习情境设计

整个课程各个环节突出应用为主线,以系统基本回路分析过程为目标,归纳出几个学习

情境,采取目标驱动任务导向教学模式,学生为主体,教师为主导,理论教学与实践教学相

辅相成,形成互动,让学生带着课题学习,实现课堂理论教学与实践技能培养融合,提高学生学习的积极性。

液压系统基本结构及工作原理

液压系统基本结构与工作原理 一、概述 液路系统主要包括主油泵,液压油箱,滤清器,减压阀,溢流阀,起升液缸,伸缩液缸,吊钳液缸,支腿液缸,液压马达,及各种液压操作阀等部件。设备出厂前溢流阀、减压阀及各种压力阀的压力已调定,确保液压系统安全运行,用户在使用中不得轻率更改。 液压系统包括主液压系统和转向液压系统,两个系统共用一液压油箱。 1、主液压系统 主液压系统为钻机车在设备调整和钻修作业时提供液压动力,配置有各种阀件,控制操作各液压机具正确安全运行。 2、转向液压系统 转向液压系统为车辆前部车桥的液压助力转向提供液压动力,配置有各种阀件,控制液压系统压力、流向和稳定最高流量,确保车辆转向轻便灵活,安全可靠。 二、结构特点 液压系统由以下组成: ?主液压系统 ?转向液压系统 1、主液压系统 由以下部件组成: 1)液压油箱:存储、冷却、沉淀和过滤液压油。油箱安装有: ●人孔盖,安装在油箱顶部,设置有两个,其中在油箱回油区的人孔盖上安 装液压空气滤清器; ●液压空气滤清器,过滤油箱流通空气,油箱加油时过滤油液; ●液位计,2个,安装在油箱的前侧面,设置有高低两个液位计,高位液位 计,显示井架降落后的油面;低位液位计,显示井架竖起后油面; ●油温表,安装在油箱的前侧面,测量油箱内油温,正常工作油温在30~ 70℃;主回油口,2个,设置在油箱的底板上,配置单向阀,分别连接主

回油管和溢流阀回油口;单向阀在维修液压管路时自动关闭,防止油箱中 的油液流失; ●排泄油口,设置在油箱的底板上,用堵头封堵;打开堵头可排放油箱液压 油; ●主油泵吸油口,设置在油箱的前侧面,安装主吸油滤清器; ●转向油泵吸油口,设置在油箱的前侧面,安装转向吸油滤清器; ●转向系统回油口,设置在油箱的底板上,配置单向阀,单向阀在维修液压 管路时自动关闭,防止油箱中的油液流失; 2)液压油泵:单联齿轮结构,2台,分别安装在两台液力变速箱取力箱上, 由变矩器泵轮驱动,发动机转动,取力箱就可驱动油泵。取力箱配置有液压离合器,当需要液压动作时,可操作司钻控制箱“液泵离合”手柄,置“油泵I合”位,油泵I结合,输出工作压力油液;手柄置“油泵II合” 位,油泵II结合,输出工作压力油液;。手柄置中位,两油泵均脱离停转。 3)溢流阀:先导式结构,2台,分别安装在主液压油泵的出油口端。调定系 统压力,防止系统过载,保护系统及元件安全。 溢流阀的结构原理:由先导阀和主滑阀组成,先导阀部分包括阀体,滑阀,调压弹簧等零件。主阀滑阀上开有一个小孔a,使进口压力油能进入滑阀上腔B,当作用在锥阀上的液压力小于弹簧的预紧力时,先导阀锥阀在弹簧力的作用下关闭,因为阀体内没有油液流动,滑阀上下两端油腔液压力相等。因此,滑阀在上端弹簧的作用下处于下端的极限位置。溢流阀的进出油口被滑阀切断,溢流阀不溢流;当作用在锥阀上的液压力因溢流阀进口压力的升高而增大到等于弹簧力时,锥阀被顶开,滑阀上腔B的油液经回油口b和滑阀中心通孔流入阀的出油口,然后溢流回油箱,这时溢流阀进油口的压力油从小孔a,向上补充到B腔,因为油液经小孔a时存在压力损失,因此B腔的压力低于进油口压力,滑阀上下两端出现压力差。 于是,在上下两端压力差的作用下滑阀克服弹簧力,滑阀自重以及摩擦力向上移动,打开溢流阀的进回油口,油液流回油箱,滑阀开启后,受液动力的影响,进口的压力P还要继续上升,滑阀继续上移,到某一位置滑阀受力平衡时,溢流阀进口压力稳定在一定值,该值称为溢流阀的调定压力。

液压系统基本原理

液压系统基本原理 图 YT4543型动力滑台液压系统图1—背压阀;2—顺序阀;3、6、13、15—单向阀;4、16—节流阀;5—压力继电器;7—液压缸; 8—行程阀;9—电磁阀;10—调速阀;11—先导阀;12—换向阀;14—液压泵 第一节液压传动的发展史 液压传动和气压传动称为流体传动,是根据17世纪帕斯卡提出的液体静压力传动原理而发展起来的一门新兴技术,1795年英国约瑟夫布拉曼(Joseph Braman,1749-1814),在伦敦用水作为工作介以水压机的形式将其应用于工业上,诞生了世界上第一台水压机。1905年将工作介质水改为油,又进一步得到改善。

第一次世界大战(1914-1918)后液压传动广泛应用,特别是1920年以后,发展更为迅速。液压元件大约在19 世纪末20 世纪初的20年间,才开始进入正规的工业生产阶段。1925 年维克斯发明了压力平衡式叶片泵,为近代液压元件工业或液压传动的逐步建立奠定了基础。20 世纪初康斯坦丁尼斯克(GConstantimsco)对能量波动传递所进行的理论及实际研究;1910年对液力传动(液力联轴节、液力变矩器等)方面的贡献,使这两方面领域得到了发展。 第二次世界大战(1941-1945)期间,在美国机床中有30%应用了液压传动。应该指出,日本液压传动的发展较欧美等国家晚了近20 多年。在1955 年前后, 日本迅速发展液压传动,1956 年成立了“液压工业会”。近20~30 年间,日本液压传动发展之快,居世界领先地位。液压传动有许多突出的优点,因此它的应用非常广泛,如一般工。业用的塑料加工机械、压力机械、机床等;行走机械中的工程机械、建筑机械、农业机械、汽车等;钢铁工业用的冶金机械、提升装置、轧辊调整装置等;土木水利工程用的防洪闸门及堤坝装置、河床升降装置、桥梁操纵机构等;发电厂涡轮机调速装置、核发电厂等等;船舶用的甲板起重机械(绞车)、船头门、舱壁阀、船尾推进器等;特殊技术用的巨型天线控制装置、测量浮标、升降旋转舞台等;军事工业用的火炮操纵装置、船舶减摇装置、飞行器仿真、飞机起落架的收放装置和方向舵控制装置等。 第二节液压系统地组成

液压系统一般调试步骤及方法

1.试压 系统的压力试验应在安装完毕组成系统,并冲洗合格后进行。 (1)试验压力在一般情况下应符合以下规定。 1)试验压力应符合规定:小于16MPa时,;16~时,; 大于时,。 2)在冲击大或压力变化剧烈的回路中,其试验压力应大于峰值压力。 (2)系统在充液前,其清洁度应符合规定。所充液压油(液)的规格、品种及特性等均应符合使用说明书的规定;充液时应多次开启排气口,把空气排除干净(当有油液从排气阀中喷出时,即可认为空气已排除干净),同时将节流阀打开。 (3)系统中的液压缸、液压马达、伺服阀、压力继电器、压力传感器以及蓄能器等均不得参加压力试验。 (4)试验压力应逐级升高,每升高一级宜稳压2~3min,达到试验压力后,持压10min,然后降至工作压力,进行全面检查,以系统所有焊缝、接口和密封处无漏油,管道无永久变形为合格。 (5)系统中出现不正常声响时,应立即停止试验。处理故障必须先卸压。如有焊缝需要重焊,必须将该管卸下,并在除净油液后方可焊接。 (6)压力试验期间,不得锤击管道,并在试验区域的5m范围内不得进行明火作业或重噪声作业。 2.调整和试运转 液压系统的调试应在相关的土建、机械、电气、仪表以及安全防护等工程确认具备试车条件后进行。 系统调试一般应按泵站调试、系统压力调试和执行元件速度调试的顺序进

行,并应配合机械的单部件调试、单机调试、区域联动、机组联动的调试顺序。 (1)泵站调试 启动液压泵,进油(液)压力应符合说明书的规定:泵进口油温不得大于60℃,且不得低于15℃;过滤器不得吸入空气,先空转10~20min,再调整溢流阀(或调压阀)逐渐分档升压(每档3~5MPa,每档时间10min)到溢流阀调节值。升压中应多次开启系统放气口将空气排除。 1)蓄能器 a.气囊式、活塞式和气液直接接触式蓄能器应按设计规定的气体介质和预充压力充气;气囊式蓄能器必须在充油(最好在安装)之前充气。充气应缓慢,充气后必须检查充气阀是否漏气;气液直接接触式和活塞式蓄能器应在充油之后,并在其液位监控装置调试完毕后充气。 b.重力式蓄能器宜在液压泵负荷试运转后进行调试,在充油升压或卸压时,应缓慢进行;配重升降导轨间隙必须一致,散装配重应均匀分布;配重的重量和液位监控装置的调试均应符合设计要求。 2)油箱附件 a.油箱的液位开关必须按设计高度定位。当液位变动超过规定高度时,应能立即发出报警信号并实现规定的联锁动作。 b.调试油温监控装置前应先检查油箱上的温度表是否完好;油温监控装置调试后应使油箱的油温控制在规定范围内。当油温超过规定范围时,应发出规定的报警信号。 泵站调试应在工作压力下运转2h后进行。要求泵壳温度不超过70℃,泵轴颈及泵体各结合面无漏油及异常的噪声和振动;如为变量泵,则其调节装置应灵活可靠。

挖掘机液压系统原理

一、主液压回路系统的构成 日立挖掘机主液压回路系统是由主液压系统和先导回路系统构成。主液压回路将泵的液压油供给各操作机能的促动器。 二、先导回路液压操作系统的组成 液压系统是由发动机、主泵、先导泵、控制阀各1台和四个液压缸、1台旋转马达及2台行走马达组合而成、泵通过输入轴由发动机所驱动。主泵的液压油通过控制阀流到各促动器。先导泵的液压油流入先导回路内。 三、主回路 1、主液压回路 主液压回路系由吸引回路、输出回路、回油路及牌友回路所构成。液压系统由主泵、控制阀、行走马达各一台及四个液压缸。 主泵是斜轴式排量可变型轴向活塞泵,是由发动机驱动的(发动机转速比为1.0) 2、吸引回路和输出回路 泵通过吸引滤油器吸引液压油箱的油,油从泵流入控制阀,然后由油箱口放出,主泵放出的油通过控制阀流至各促动器。 控制阀控制各种液压机能,从各促动器流出的回油通过控制阀和液压油冷却器流回液压油箱。 3、回油路 每个促动器放出的油全部通过控制阀流回液压油箱内。回油路内有旁道单向阀,其设定压力分别为9.8×10^4pa及4×9.8×10^4pa。通常回油通过液压油冷却器及左侧控制阀流回液压油箱, 油温低时,粘度变高,通过油冷却器时的阻力也随着增大。 油压超过9.8×10^4pa时,回油直接流回液压油箱,可在短时间内把油温提高到适当的高度。 油冷却器被阻塞时,回油通过旁道单向阀直接流回液压油箱。 旁道单向阀被阻塞时设在冷却器和液压油箱之间,其设定压力为4×9.8×10^4pa。 液压箱内设有直流式滤油器,从左右两侧的控制阀流出的油合流后经直流式滤油器过滤,直流式滤油器内有旁道安全阀。当滤芯阻塞使差压达9.8×10^4pa时,旁道安全阀就打开,油直接流回液压油箱。 4、排油回路 马达及刹车阀等内部漏的油以及润滑油回路内的油,全部都积蓄起来,经过排油回路流回操作油箱。 5、行走马达排油回路 左右两行走马达漏的油由各个马达壳的排油口排出,合流后通过中心接头,经过直流式滤油器流回液压油箱。 6、旋转马达排油回路 旋转马达漏的油排出后,与行走回路排出的油一起通过直流式滤油器流回液压油箱。 7、输出压控制 控制阀内的卸载安全阀控制泵的输出压力保持一定。全部操作均在330×9.8×10^4Pa设定压力操作。 在挖掘操作时,设定压力变为370×9.8×10^4Pa。 狼涌截止安全阀把高压油释放到液压油箱内,以免油压系统及发动机承受过负荷。 8、先导回路 先导回路是由吸引、出油回路构成的。先导系统有先导泵、换冲阀、保险阀、2个高速电

液压泵工作原理及控制方式

现在的挖掘机多为斜盘式变量双液压泵,所谓变量泵就是泵的排量可以改变,它是通过改变斜盘的摆角来改变柱塞的行程从而实现泵排出油液容积的变化。变量泵的优点是在调节范围之内,可以充分利用发动机的功率,达到高效节能的效果,但其结构和制造工艺复杂,成本高,安装调试比较负责。按照变量方式可分为手动变量、电子油流变量、负压油流变量、压力补偿变量、恒压变量、液压变量等多种方式。现在的挖掘机多采用川崎交叉恒功率调节系统,多为反向流控制,功率控制,工作模式控制(电磁比例减压阀控制)这三种控制方式复合控制。

调节器代码对应的调节方式

调节器内部结构 各种控制都是通过调节伺服活塞来控制斜盘角度,达到调节液压泵流量的效果。

大家知道在压强相等的情况下,受力面积的受到的作用力就大。 调节器就是运用这一原理,通过控制伺服活塞的大小头与液压泵出油口的联通关闭来控制伺服活塞的行程。在伺服活塞大小头腔都有限位螺丝,所以通过调节限位螺丝可以调节伺服活塞最大或最小行程,达到调节液压泵的最大流量或者最小流量的效果。

向内调整限制伺服活塞最大和最小行程及限制最大流量和最小流量 要谈谈反向流控制,就必须要弄明白反向流是如何产生的。在主控阀中有一条中心油道,当主控阀各阀芯处于中位时(及手柄无操作时)或者阀芯微动时(及手柄微操作时)液压泵的液压油通过中心油道到达主控阀底部溢流阀,经过底部溢流阀的增压产生方向流(注当

发动机启动后无动作时液压回路是直通油箱,液压系统无压力)。 所以方向流控制的功能是减少操作控制阀在中位时,泵的流量,使泵流量随司机操作所属流量变化,改善调速性能,避免了无用能耗。

液压系统的工作原理

液压系统的工作原理 1.快进 按下启动按钮,电磁铁1Y A通电,电液换向阀4左位接入系统,顺序阀13因系统压力较侗而处于关闭状态。这时液压缸5两腔连通,实现差动快进,变量泵2则输出最大流量,其油路为: 进油路:过滤器1一变量泵2一单向阀3一换向阀4左位一行程阀6一液压缸5左腔; 回油路:液压缸5右腔一换向阀4左位一单向阀12一行程阀6一液压缸5左腔。 2.第一次工作进给 当滑台快进终了时,液压挡块压下行程阀6而切断快进油路,电磁铁1YA继续通电,电沼换向阀4仍以左位接入系统。这时泵2输出的液压油只能经调速阀11和二位二通换向阀9而进入液压缸5左腔。 由于工进时系统压力升高,变量泵2便自动减小其输出流量,顺序阀13此时打开,单向晒12关闭,液压缸5右腔的回油最终经背压阀14流回油箱,这样就使滑台切换为第一次工作过给运动。其油路是: 进油路:过滤器1一变量泵2一单向阀3一换向阀4左位一调速阀11一换向阀()一液压缸 5左腔; 回油路:液压缸5右腔一换向阀4左位一顺序阀13一背压阀14一油箱。 第一次工作进给量大小由调速阀11控制。 3.第二次工作进给 第二次工作进给油路和第一次工作进给油路基本上是相同的,不同之处是当第·次工作进给到预定位置时,滑台上挡块压下相应的电气行程开关,发出电信号使阀9电磁铁3YA通电.使其油路关闭。这时液压油须通过调速阀11和10进入液压缸左腔。液压缸右腔的回油路线和第一次工作进给时相同。因调速阀10的通流面积比调速阀11的小,故滑台工作进给运动速度降低为第二次工作进给,其速度由调速阀10求凋节确定。 4.死挡铁停留 当滑台完成第二次工作进给碰上死挡铁后,滑台即停止前进。这时液压缸5左腔的压力 升高,使压力继电器8动作,发出电信号给时间继电器,停留时间由时间继电器控制。设置死挡铁可以提高滑台加工进给的位置精度。 5.快速退回 滑台停留时间结束后,时间继电器发出信号,使电磁铁1 YA、3YA断电,2YA通电.这时阀4的先导阀右位接入系统。控制油路为: 进油路:过滤器1一变量泵2一阀4的先导阀一阀4的右单向阀一阀4的液动阀右端; 回油路:阀4的液动阀左端一阀4的左节流阀一阀4的先导阀一油箱。 在控制油液压力作用下阀4的液动阀右位接人系统,主油路为: 进油路:过滤器1一泵2一单向阀3一换向阀4一液压缸5右腔; 回油路:液压缸5左腔一单向阀7一换向阀4一油箱。 因滑台返回时负载小,系统压力低,变量泵2输出流量又自动恢复到最大,则滑台快速退回。 6.原位停止 当滑台快速退回到原位,其挡块压下原位行程开关(图中未示出)而发出信号,使电磁铁2YA断电,至此全部电磁铁皆断电,阀4的先导阀和液动阀都处于中位,液压缸两腔油路均被切断.滑台原位停止。这时变量泵2输出的液压油经阀4中位直接回油箱,实现低压卸荷。

液压系统原理

一、概述 由电机、进口叶片泵、单向阀、溢流阀、耐震压力表,精滤器、冷却器、空气滤清器等元件组成。油箱额定容积125L,电机功率2.2KW(或3KW),其流量Q=14升/分,P=7MPa,调压范围4~6MPa。 二、液压系统工作原理 参见《液压系统原理图》,油液由油泵从油箱内吸入,经单向阀后分为二路,一路经电磁阀(用于自动手动转换)向电液伺服阀供油,另一路流向手动电磁阀,当伺服阀被脏物所堵时即可用手动方法对油缸进行操控,油缸速度由双单向节流阀调定。油泵的出油同时经压力表和溢流阀,系统的压力由溢流阀调定,压力表上可反映所调定的工作压力。溢流阀、伺服阀的回油经冷却器、精滤器后回油箱。 精滤器由滤油器和电接点压差表组成,过滤精度为20μ。电接点压差表是防止纸质滤芯被堵后背压升高而造成其破裂的保护装置。当滤油器进出油口压差达到0.35MPa时其表针指示会进入红色报警区域,并会接通触点。用户可通过触点自接报警装置,触点容量为24V1A。 油液温度由温度计显示。当油温达到50℃时应接通冷却水,使其进入冷却器进行循环冷却。系统正常运行时,油温应控制在50℃以下。

常闭式盘式制动器液压站液压回路分析 盘式制动器具有结构紧凑、可调性好、动作灵敏、重量轻、惯性小、安全程度高、通用性好等优点,而且盘式制动器成对使用,制动时主轴不承受轴向附加力。在正常制动时,可以将制动器分成两组,先投入一组工作,间隔一定时间后,投入第二组,即实现了二级制动,二级制动使制动时产生的制动减速度不致过大。只有在安全制动时才考虑二组同时投入制动,产生最大的制动力矩。如果有一组产生故障时,也仍然还有一组制动器在工作,不致使制动器的作用完全失效。 由于盘式制动器的上述优点,它被广泛地应用于矿井提升设备的制动系统中。例如,多绳摩擦式提升机和单绳缠绕式提升机采用的都是这种常闭式的盘式制动器。

《液压系统安装与调试》考试大纲

《液压系统安装与调试》考试大纲 一、课程基本信息 二、课程内容、设计思路、项目设计 《液压系统安装与调试》是机械类专业的一门重要的专业核心课程。无论对学生的思维素质、创新能力、科学精神以及培养在工作中解决实际问题的能力,都具有十分重要的作用。本课程研究的主要内容是液压与气压传动的基本理论基础和简单应用。这门技术与其它传动形式有不可比拟的优势,以优良的静态、动态性能成为一种重要的控制手段,对注塑机、工程机械、机械制造、自动化等都有广泛的实际应用价值。它不仅是机电类及近机类有关专业一门专业必修课,而且也是一门能直接用于工程实际技术学科。 本课程在完成对机械大类学生就业岗位进行调研与分析的基础上,采取基于工作过程的课程开发方法,以企业用人标准为导向,校企共同设计与开发教学参考案例;采取项目导向、任务驱动的教学方法,训练学生工作任务分析、认识简单液压系统回路、液压元件识别、简单液压系统回路组装、简单液压系统回路基本调试的能力,使学生初步掌握液压系统基本理论基础、简单液压系统回路安装、简单液压系统回路调试的基本理论与技能,具备从机械行业液压与气压系统装配工、机修工向装配车间工艺员、检验员和生产调度等岗位迁移的能力。 设计思路 本课程教学遵循适当综合化与适当实施化。 适当综合化就是打破原来的相互独立的课程体系,适当地呈现与本课程相关联的其它基础课程内容,让学生更全面地了解企业生产大背景下的本课程核心内容。适当实施化就是课程内容要按培养从事机械装配车间工

艺员、检验员、机械设备维修人员和机械装配车间操作员及未来有望从事液压系统设计、维修的技术人员的职业能力来阐述,将必需的知识支撑点溶入能力培养的过程中,注重实践性教学。 以学生职业能力培养为中心,以工作过程导向,设计课程内容。采用典型的产品(部件)为载体,选择常见工作任务作为教学参考案例,按照液压系统实际生产,规划实施过程,设计了9个教学任务,在任务引领下 能力训练项目设计

液压系统安装、调试与故障处理

概述 概述 随着科技步伐的加快,液压技术在各个领域中得到了广泛应用,液压系统已成为主机设备中最关键的部分之一。但是,由于设计、制造、安装、使用和维护等方面的因素,影响了液压系统的正常运行。因此,了解系统工作原理,懂得一些设计、制造、安装、使用和维护等方面的知识,是保证液压系统能正常运行并极大发挥液压技术优势的先决条件。 液压系统的安装 液压系统的安装 液压系统安装质量的好坏是关系到液压系统能否可靠工作的关键。必须科学、正常、合理地完成安装过程中的每个环节,才能使液压系统能够正常运行;充分发挥其效能。 2.1 安装前的准备工作 1)明确安装现场施工程序及施工进度方案。 2)熟悉安装图样,掌握设备分布及设备基础情况。 3)落实好安装所需人员、机械、物资材料的准备工作。 4)做好液压设备的现场交货验收工作,根据设备清单进行验收。通过验收掌握设备名称、数量、随机备件、外观质量等情况,发现问题及时处理。 5)根据设计图纸对设备基础和预埋件进行曲检查,对液压设备地脚尺寸进行复核,对不符合要求的地方进行处理,防止影响施工进度。 2.2 液压设备的就位 1)液压设备应根据平面布置图对号吊装就位,大型成套液压设备,应由里向外依次进行吊装。 2)根据平面布置图测量调整设备安装中心线及标高点,可通过调整安装螺栓旁的垫板达到将设备调平找正,达到图纸要求。 3)由于设备基础相关尺寸存在误差,需在设备就位后进行微调,保证泵吸油管处于水平、正直对接状态, 4)油箱放油口及各装置集油盘放污口应在设备微调时给予考虑,应是设备水平状态时的最低点。 5)应对安装好的设备做适当防护,防止现场脏物污染系统。 6)设备就位调整完成后,一般需对设备底座下面进行混凝土浇灌,即二次灌浆。 2.3 液压配管 (1)管材选择 应根据系统压力及使用场合来选择管材。必须注意管子的强度是否足够,管径和壁厚是否符合图纸要求,所选用的无缝钢管内壁必须光洁、无锈蚀、无氧化皮、无夹皮等缺陷。若发现下列情况不能使用:管子内外壁已严重锈蚀。管体划痕深度为壁厚的10%以上;管体表面凹入达管径的20%以上;管断面壁厚不均、椭圆度比较明显等。 中、高压系统配管一般采用无缝钢管,因其具有强度高、价格低、易于实现无泄漏连接等优点,在液压系统中被广泛使用。普通液压系统常采用冷拔低碳钢10、15、20号无缝管,此钢号配管时能可靠地与各种标准管件焊接。液压伺服系统及航空液压系统常采用普通不锈钢管,具有耐腐蚀,内、外表面光洁,尺寸精确,但价格较高。低压系统也可采用紫铜管、

液压系统一般调试步骤及方法

液压系统一般调试步骤及方法 (总4页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

1.试压 系统的压力试验应在安装完毕组成系统,并冲洗合格后进行。 (1)试验压力在一般情况下应符合以下规定。 1)试验压力应符合规定:小于16M P a时,1.5P;16~31.5M P a时,1.25P; 大于31.5M P a时,1.15P。 2)在冲击大或压力变化剧烈的回路中,其试验压力应大于峰值压力。 (2)系统在充液前,其清洁度应符合规定。所充液压油(液)的规格、品种及特性等均应符合使用说明书的规定;充液时应多次开启排气口,把空气排除干净(当有油液从排气阀中喷出时,即可认为空气已排除干净),同时将节流阀打开。 (3)系统中的液压缸、液压马达、伺服阀、压力继电器、压力传感器以及蓄能器等均不得参加压力试验。 (4)试验压力应逐级升高,每升高一级宜稳压2~3m i n,达到试验压力后,持压10m i n,然后降至工作压力,进行全面检查,以系统所有焊缝、接口和密封处无漏油,管道无永久变形为合格。 (5)系统中出现不正常声响时,应立即停止试验。处理故障必须先卸压。如有焊缝需要重焊,必须将该管卸下,并在除净油液后方可焊接。 (6)压力试验期间,不得锤击管道,并在试验区域的5m范围内不得进行明火作业或重噪声作业。 2.调整和试运转 液压系统的调试应在相关的土建、机械、电气、仪表以及安全防护等工程确认具备试车条件后进行。

系统调试一般应按泵站调试、系统压力调试和执行元件速度调试的顺序进行,并应配合机械的单部件调试、单机调试、区域联动、机组联动的调试顺序。 (1)泵站调试 启动液压泵,进油(液)压力应符合说明书的规定:泵进口油温不得大于60℃,且不得低于15℃;过滤器不得吸入空气,先空转10~20m i n,再调整溢流阀(或调压阀)逐渐分档升压(每档3~5M P a,每档时间10m i n)到溢流阀调节值。升压中应多次开启系统放气口将空气排除。 1)蓄能器 a.气囊式、活塞式和气液直接接触式蓄能器应按设计规定的气体介质和预充压力充气;气囊式蓄能器必须在充油(最好在安装)之前充气。充气应缓慢,充气后必须检查充气阀是否漏气;气液直接接触式和活塞式蓄能器应在充油之后,并在其液位监控装置调试完毕后充气。 b.重力式蓄能器宜在液压泵负荷试运转后进行调试,在充油升压或卸压时,应缓慢进行;配重升降导轨间隙必须一致,散装配重应均匀分布;配重的重量和液位监控装置的调试均应符合设计要求。 2)油箱附件 a.油箱的液位开关必须按设计高度定位。当液位变动超过规定高度时,应能立即发出报警信号并实现规定的联锁动作。 b.调试油温监控装置前应先检查油箱上的温度表是否完好;油温监控装置调试后应使油箱的油温控制在规定范围内。当油温超过规定范围时,应发出规定的报警信号。

液压系统工作原理

液压系统工作原理 1) 启动 电磁铁全部不得电,主泵输出油液通过阀6、21中位卸载。 2) 主缸快速下行 电磁铁1Y、5Y 得电,阀6 处于右位,控制油经阀8 使液控单向阀9 开启。 进油路:泵1-阀6右位-阀13-主缸上腔。 回油路:主缸下腔-阀9-阀6右位-阀21中位-油箱。 主缸滑块在自重作用下迅速下降,泵1 虽处于最大流量状态,仍不能满足其需要,因此主缸上腔形成负压,

上位油箱15 的油液经充液阀14 进入主缸上腔。 3) 主缸慢速接近工件、加压 当主缸滑块降至一定位置触动行程开关2S 后,5Y 失电,阀9 关闭,主缸下腔油液经背压阀10、阀6 右位、阀21 中位回油箱。这时,主缸上腔压力升高,阀14 关闭,主缸在泵1 供给的压力油作用下慢速接近工件。接触工件后阻力急剧增加,压力进一步提高,泵1 的输出流量自动减小。 4) 保压 当主缸上腔压力达到预定值时,压力继电器7发信号,使1Y失电,阀6回中位,主缸上下腔封闭,单向阀13 和充液阀14 的锥面保证了良好的密封性,使主缸保压。保压时间由时间继电器调整。保压期间,泵经阀6、21的中位卸载。 5) 泄压,主缸回程保压结束,时间继电器发出信号,2Y 得电,阀6 处于左位。由于主缸上腔压力很高,液动滑阀12 处于上位,压力油使外控顺序阀11 开启,泵1输出油液经阀11 回油箱。泵1 在低压下工作,此压力不足以打开充液阀14 的主阀芯,而是先打开该阀的卸载阀芯,使主缸上腔油液经此卸载阀芯开口泄回上位油箱,压力逐渐降低。 当主缸上腔压力泄到一定值后,阀12 回到下位,阀11关闭,泵1 压力升高,阀14完全打开,此时进油路:泵1-阀6左位-阀9-主缸下腔。回油路:主缸上腔-阀14-上位油箱15。实现主缸快速回程。 6) 主缸原位停止 当主缸滑块上升至触动行程开关1S,2Y失电,阀6 处于中位,液控单向阀9将主缸下腔封闭,主缸原位停止不动。泵1 输出油液经阀6、21中位卸载。 7) 下缸顶出及退回 3Y得电,阀21 处于左位。进油路:泵1-阀6中位-阀21左位-下缸下腔。回油路:下缸上腔-阀21 左位-油箱。下缸活塞上升,顶出。 3Y失电,4Y得电,阀21 处于右位,下缸活塞下行,退回。 8) 浮动压边

我司液压伺服控制系统的控制原理

概述 随着国内经济的高速发展,塑料制品行业对高速,高精密注塑机的需 求量与日剧增,而液压机高速,精密成型的保证,就是一必须拥有合 理而高刚性的锁模和射胶机构,二它必须拥有强劲的动力和反应灵敏 而精确的液控系统。其中,液压伺服控制系统是使执行元件以一定的 精度自动地按照输入信号的变化规律而动作的一种自动控制系统。其 可从不同的角度加以分类,按输出的物理量分类,有位置伺服系统, 速度伺服系统,力(或压力)伺服系统等;按控制信号分类,有机液 伺服系统,电液伺服系统,气液伺服系统;按控制元件分类,有阀控 系统和泵控系统两大类。下面,我们讨论阀控伺服系统。阀控伺服系 统主要由压力传感器,位置传感器,控制器和伺服阀等构成一个闭环 的系统,按系统的需求来分别做到或按序做到速度伺服控制,位置伺 服控制和压力伺服控制。最终,达到系统的要求和重复精度。 如图,传感器与控制卡(也可集成在塑机工控电脑中),伺服阀的有 机组合,就形成了一个闭环控制系统,随着系统工作情况要求的不同,来实现不同的伺服控制。在注射过程,注射到终点前,注射速度较为 重要,则此系统以速度闭环控制为主,控制器对位置传感器高频采样,测出活塞的瞬时速度与塑机电脑要求的速度对比,再发出调整后的信 号给伺服阀。最终,使活塞的运动速度达到塑机电脑要求的速度。进 入快到射胶终点,保压和熔胶背压阶段,这时压力较为重要,则此系 统以压力闭环控制为主,装在射胶油缸两侧的压力传感器传回的信号 起主要作用,控制卡将其与塑机电脑给出的压力信号对比,来调整给 伺服阀的信号,最终,使注射腔的压力值与设定值相同。在塑机电脑

没有发出任何指令的情况下,此时位置保持就比较重要,所以,系统 这时会主要进行位置闭环的控制。同理,在锁模油缸伺服控制的情形下,也是如此按顺序控制,锁模开始,快速移模可作速度闭环控制, 模具快合上时,切换到位置控制,有快速锁模到锁模油缸活塞停止的 位置之间的转换也是可控的,最后,模具合上时,切换的压力控制。 上述只是某种工艺要求下的伺服控制逻辑,随着不同的要求,控制的 逻辑,种类也都不尽相同,但是,其控制理念,是相同的。最终的目的,都是为了精确,迅速的达到塑机电脑的指令要求和保证动作的重 复精度。 下面对伺服闭环控制系统各组成部分作简单介绍。 传感器 任何好的系统,都必须具有迅捷,准确的感知部件,只有及时,准确 的监测执行机构当前所处的状态,控制器才能主动地发出新的指令, 来调整执行机构的运动,使之接近控制电脑所要求的运动状态。因此,全方位的了解执行机构,是伺服系统的必备条件。主要由压力,位置 等传感器来共同构成准确,及时的跟踪监测系统。传感器的固有特性,包括线性,最大采样频率,抗干扰能力等都对准确,及时地感知有重 要影响。 伺服阀 伺服系统中最重要,最基本的组成部分,它起着信号转换,功率放大 及反馈等控制作用。常见的伺服阀有直动式阀(滑阀),射流管先导 级伺服比例阀喷嘴挡板阀伺服电磁阀等。下面简单介绍它们的结构原 理及特点。 *直动式阀 将一与所期望的阀芯位移成正比的电信号输入阀内放大电路,此信号 将转换成一个脉宽调制电流作用在线性马达上,力马达产生推力推动 阀芯产生一定的位移。同时激励器激励阀芯位移传感器产生一个与阀 芯实际位移成正比的电信号,解调后的阀芯位移信号与输入指令信号 进行比较,比较后得到的偏差信号将改变输入至力马达的电流大小; 直到阀芯位移达到所需值。阀芯位移的偏差信号为零。最后得到的阀

3.《液压气动系统安装与调试》练习题3

《液压气动系统安装与调试》练习题3 班级姓名得分 一、填空(42分) 1.液压传动是以为工作介质进行能量传递的一种形式。 2.液压传动是由、、、、和五部分组成。 3.液体粘性的物理意义是既反映,又反 映。 4.液体的压力是指,国际单位制压力单位是,液压中还常用和。 5.液压系统的压力是在状态下产生的,压力大小决定于。6.液压泵是通过的变化完成吸油和压油的,其排油量的大小取决于。 7.机床液压系统常用的液压泵有、、三大类。8.液压泵效率包含和两部分。 9.定量叶片泵属于,变量叶片泵属于(单作用式、双作用式) 10.液压缸是液压系统的,活塞固定式液压缸的工作台运动范围略大于缸有效行程的。 11.液压控制阀按用途不同分为、、三大类。12.三位换向阀的常态为是,按其各油口连通方式不同常用的有、、、、五种机能。 13.顺序阀是利用油路中控制阀口启闭,以实现执行元件顺序动作的。 14.节流阀在定量泵的液压系统中与溢流阀组合,组成节流调速回路, 即、、三种形式节流调速回路。 15.流量阀有两类:一类没有压力补偿,即抗负载变化的能力,如;另一类采取压力补偿措施,有很好的抗干扰能力,典型的如

和,即抗干扰能力强。 16.溢流阀安装在液压系统的液压泵出口处,其作用是维持系统压力,液压系统过载时。 二、是非题 (10分) 1、液压泵的理论流量与输出压力有关。() 2、限压式变量叶片泵根据负载大小变化能自动调节输出流量() 3、液压马达输出转矩与机械效率有关,而与容积效率无关。() 4、单杆式液压缸差动连接时,活塞的推力与活塞杆的截面积成比,而活塞的运动速度与活塞杆的截面积成反比。() 5、单向阀只允许油液朝某一方向流动,故不能作背压阀用。() 6、溢流阀在工作中阀口常开的是作调压溢流阀用,阀口常闭的是作安全阀用。() 7、节流阀和调速阀均能使通过其流量不受负载变化的影响。() 8、节流阀的进、回油节流调速回路是属于恒推力调速。() 9、在液压传动系统中采用密封装置的主要目的是为了防止灰尘的进入。() 10、三种调速回路的共同缺点是执行元件的速度随负载的变化而发生较大的变化。() 三、出下列名称的图形符号(10分) 1、单向阀 2、先导式减压阀 3、二位二通常断型电磁换向阀 4、三位四通常弹簧复位“Y”型电磁换向阀 5、三位四通常弹簧复位“H”型电磁换向阀

PC220LC-7型液压挖掘机液压系统控制原理与检测

主要论述了小松PC220LC-7型液压挖掘机液压系统控制原理,并介绍了液压系统检测方法和技术参数。关键词液压挖掘机液压系统控制原理检测 1 概述 PC220LC-7型履带式液压挖掘机是日本小松制作所与中国山推公司合资制造的最新款式的挖掘机,该机的反铲斗容量为0.8m3。采用小松SA6D102E-2型四冲程、直列、立式、水冷、直喷式、带有涡轮增压器的柴油机,额定功率为107KW/2200r/min。其液压系统采用闭式中心负荷传感系统(CLSS),CLSS是采用控制斜盘式变量柱塞泵斜盘角度的方法,实现恒功率控制,并且该机装配有GPS(全球卫星定位系统)管理系统。公司管理中心可通过网络随时对机器跟踪服务,使管理人员对机械的工作状态了如指掌;对柴油机和液压系统的保养情况、故障情况及时向操作人员提出建议,并可对故障原因分析,使故障排除工作准备更充分,缩短故障排除时间。同时,可以根据需求进行特定时间段或者完全的远程锁车控制,从而有效防止机械被盗和使用者的无意破坏行为。 2 液压系统工作原理 2.1 组成 CLSS由主泵(两个主泵)、操作阀和工作装置用油缸等构成。其中的主泵包括液压油泵、PC阀、LS阀等。 2.2 功能和作用 1)液压泵为双联轴向柱塞泵,根据斜盘角度的变化改变压力油的输出流量。 2) LS阀是感知负荷,对输出流量进行控制的阀,LS阀依据主泵压力Pp与操作阀输出压力 Pls的压差

△Pls=Pp-Pls,控制主泵输出流量Q,当LS阀的压差 △Pls比LS阀的设定压力低时(设定压力为:2.2Mpa),油泵斜盘角度朝增大方向变化;当比设定压力高时,油泵斜盘朝减小方向变化, △Pls的大小依据分配阀杆的行程而定。 3 )PC阀的作用是适合发动机不同级别功率的设定,使泵的驱动功率不超过发动机的功率,实现恒功率控制。 4 )减压阀是由顺序阀、减压阀、溢流阀组成,其功能是减小主泵的输出压力,此压力可作为电磁阀、PPC阀等的控制压力,可减少一个先导油泵。 2.3工作原理 图1泵控制原理 1、PC-EPC电磁阀 2、活塞 3、滑阀 4、6、弹簧 5、阀座 7、活塞 8、滑块 9、伺服活塞 A、B、 C、D、E、F、G、J、油孔 1 )泵控制器正常(见图1)。①当执行元件负荷小,油泵压力Pp1(左泵压力)和Pp2(右泵压力)低时,在PC-EPC电磁阀1中,有从泵控制器传来的指令电流。指令电流X的大小,取决于作业内容(操纵操作杆)、作业方式的选择、发动机转速设定以及实际转速。指令电流X的大小可以改变活塞2的推力。活塞2的推力、油泵压力Pp1、 Pp2与弹簧4、6的预紧力组成推动滑阀3的全力,在平衡位置使滑阀3停止。位置不同,从PC阀输出的压力(C孔的压力)不同。依靠伺服阀9的移动,连接在滑块8上的活塞7左右移动,活塞7向左移动时弹簧6被压缩。弹簧6被固定之后,只

液压站组成及工作原理

液压站又称液压泵站,是独立的液压装置,它按驱动装置(主机)要求供油,并控制油流的方向、压力和流量,它适用于主机与液压装置可分离的各种液压机械下。用户购买后只要将液压站与主机上的执行机构(油缸和油马达)用油管相连,液压机械即可实现各种规定的动作、工作循环。 液压站是由泵装置、集成块或阀组合、油箱、电气盒组合而成。各部件功用如下: 泵装置——上装有电机和油泵,它是液压站的动力源,将机械能转化为液压油的动力能。 集成块——是由液压阀及通道体组合而成。它对液压油实行方向、压力、流量调节。 阀组合——是板式阀装在立板上,板后管连接,与集成块功能相同。 油箱——是钢板焊的半封闭容器,上还装有滤油网、空气滤清器等,它用来储油、油的冷却及过滤。 电器盒——分两种形式。一种设置外接引线的端子板;一种是配置了全套控制电器。 液压站的工作原理如下: 电机带动油泵旋转,泵从油泵中吸油后打油,将机械能转化为液压油的压力能,液压油通过集成块(或阀组合)被液压阀实现了方向、压力、流量调节后经外接管路传输到液压机械的油缸或油马达中,从而控制了液动机方向的变换、力量的大小及速度的快慢,推动各种液压机械做功。 二、液压站结构形式及主要技术参数: 液压站的结构形式,主要以泵装置的结构形式、安装位置及冷却方式来区分,按泵装置的机构形式安装位置可分三种: 1、上置立式:泵装置立式安装在油箱盖板上,主要用于定量泵系统一思想。 2、上置卧式:泵装置卧式安装在油箱盖板上,主要用于变量泵系统,以便于流量调节。 3、旁置式:泵装置卧式安装在油箱旁单独的基础上,旁置式可装备备用泵,主要用于油箱容量大250升,电机功率7.5千瓦以上的系统。 按站的冷却方式可分为两种: 1、自然冷却:靠油箱本身与空气热交换冷却,一般用于油箱容量小于250升的系统一思想。 2、强迫冷却:采取冷却器进行强制冷却,一般用于油箱容量大于250升的系统

《液压系统安装与调试》教案-项目1 认识液压传动系统

项目一认识液压传动系统 一、教学目标 了解液压传动的基本概念。 掌握液压传动的工作原理。 了解液压传动的优缺点及应用。 二、课时分配 本章共3个任务,本章安排9课时。 三、教学重点 通过本章的学习,能正确选择液压油的牌号、正确合理使用液压油并学会液压设备的换油和维护保养。 四、教学难点 认识液压千斤顶的组成。 学会使用手动分离式液压千斤顶。 学会液压千斤顶的拆装。 五、课后作业 完成课后习题。 六、教学过程和组织 任务一液压传动基础知识 知识储备 一、液压传动原理 液压传动是用液体作为工作介质来传递能量和进行控制的传动方式。液压传动和气压传动称为流体传动,是根据17世纪帕斯卡提出的液体静压力传动原理而发展起来的一门新兴技术,是工农业生产中广为应用的一门技术。如今,流体传动技术水平的高低已成为一个国家工业发展水平的重要标志。 液压系统利用液压泵将原动机的机械能转换为液体的压力能,通过液体压力能的变化来传递能量,经过各种控制阀和管路的传递,借助于液压执行元件(液压缸或马达)把液体压力能转换为机械能,从而驱动工作机构,实现直线往复运动和回转运动。

1.组成 液压千斤顶由手动柱塞液压泵(杠杆、泵体、小活塞)和液压缸(大活塞、缸体)组成。 2.泵吸油过程 向上提起杠杆,小活塞带动上行,泵体中工作容积增多,形成了部分真空,在大气压的作用下,油箱中的油液经油管打开单向阀并流入泵体中。 3.泵压油和重物举升过程 压下杠杆,带动小活塞下移,泵体中工作容积减小,便把其中的油液挤出,推开单向阀,油液经油管进入液压缸。液压缸也是一个密封的工作容积,进入的油液因受挤压而产生的作用力就会推动大活塞上升,并将重物顶起做功。 4.重物落下过程 需要大活塞下移时,将放油阀开启,在重物自重的作用下,液压缸的油液流回油箱,大活塞下降到原位。 5.工作原理 以油液作为工作介质,通过密封容积的变化来传递运动,通过油液内部的压力来传递动力。 二、液压传动系统的组成 液压千斤顶是一种简单的液压传动装置。下面分析一种驱动工作台的液压传动系统。如图所示,它由油箱、滤油器、液压泵、溢流阀、开停阀、节流阀、换向阀、液压缸以及连接这些元件的油管、接头组成。工作原理如下:液压泵由电动机驱动后,从油箱中吸油。油液经滤油器进入液压泵,在泵腔中从入口低压到泵出口高压,在图所示状态下,通过开停阀、节流阀、换向阀进

液压基础、原理

液压基础.

第1部分液压传原理 动力装置:柴油机、汽油机、电动机 传动装置:改变速度、方向、力矩 工作装置:铲刀、挖掘斗、… 动力装置---------传动装置----------工作装置 一传动的分类与特点 1.机械传动 优点:古典、成熟、可靠、不易受负载影响 缺点:笨重、体积大、自由度小、结构复杂、不好实现自动控制 2.电气传动 优点:远距离控制、无污染、信号传递迅速、易于实现自动化等 缺点:体积重量偏大、惯性大、调速范围小、易受外界负载的影响,受环境影响较大; 3.气体传动 优点:结构简单、成本低,易实现无级变速;气体粕性小,阻力损失小,流速可以很高,能防火、防爆,可在高温下工作。 缺点:空气易压缩,负载对传动特性的影响较大,不宜在低温下工作,只适于小功率传动。 二液压传动的工作原理 1.液压传动:以液体作为工作介质来实现能量的传递和转换。 机械能---液压能----机械能 压力相等:p1=p2 F1/A1=F2/A2 ,或:F1/F2=A1/A2 容积相等:W1=W2 A1L1=A2L2 或: L1/L2=A2/A1 2.力比和速比 等压特性:帕斯卡定律“平衡液体内某一点的液体压力等值地传递到液体内各.

处” 等体积特性:假设液压缸1让出的液体体积等于液压缸2吸纳的体积。 液压传动可传递力:力比等于二活塞面积之比 液压传动可传递速度:速比等于二活塞面积之反比 v2/v1=A1/A2可写成: A1v1=A2v2=Q(流量) 这在流体力学中称为液流连续性原理,它反映了物理学中质量守恒这一现实。F1v1=F2v2=N=pQ(功率) 说明能量守恒。 综上所述,可归纳出液压传动的基本特征是: 以液体为传动介质,靠处于密闭容器内的液体静压力来传递动力,其静压力的大小取决于外负载;负载速度的传递是按液体容积变化相等的原则进行的,其速度大小取决于流量。 因此采用液压传动可达到传递动力,增力,改变速比等目的,并在不考虑损失的情况下保持功率不变。 三液压传动的优点: (1)体积小、重量轻、惯性小、响应速度快 (2)能够实现无级调速,调速范围广 (3)可缓和冲击,运动平稳 (4)容易实现过载保护 (5)液压元件有自我润滑作用,使用寿命较长 (6)容易实现自动控制 液压传动的缺点: (1)泄露问题(可通过工艺克服) (2)控制复杂一些:非线性因素多、难于精确建模 (3)能量经过两次转换,效率比其它两种传动方式低 (4)液压元件的制造和维护要求均较高 四液压技术的发展概况 1650年帕斯卡提出了静止液体中的压力传播规律——帕斯卡原理,1686年牛顿揭示了粘性液体的内摩擦定律,18世纪流体力学的两个重要原理——连续性方程和伯努利能量方程相继建立,为液压技术的发展奠定了基础。 1795年英国制成世界上第一台水压机,液压传动开始进入工程领域, 1900年:德国科学家研制出第一台液压传动装置。 二次世界大战前后,液压传动在大型军事武器装备上得到 广泛应用。二战结束后,液压技术很快进入民用领域。 工程机械发展历程:1951年,法国波克兰——第一台全液 压挖掘机 日本:1966年:32%,1972年:72% 我国:60年代引进,抚顺挖掘机厂,未成功,70年底:探 索 .

相关主题