搜档网
当前位置:搜档网 › 初中数学 ——圆的有关性质专题

初中数学 ——圆的有关性质专题

初中数学 ——圆的有关性质专题
初中数学 ——圆的有关性质专题

圆的有关性质

一、选择题

1. 如图,平行四边形ABCD的顶点A、B、D在⊙0上,顶点C在⊙O直径BE上,连接AE,∠E=36°,则∠ADC的度数是( )

A,44°B.54°C.72°D.53°

分析:根据平行四边形的性质得到∠ABC=∠ADC,再根据圆周角定理的推论由BE为⊙O的直径得到∠BAE=90°,然后根据三角形内角和定理可计算出∠ABE的度数.

解答:∵BE为⊙O的直径,∴∠BAE=90°,∴∠ABC =90°-∠AEB=54°.

∵四边形ABCD为平行四边形,∴∠ADC=∠ABC=54°,

故选B.

2.如图,已知⊙O的直径CD垂直于弦AB,∠ACD=22.5°,若CD=6cm,则AB的长为()

A.4cm B.3cm C.2cm D.

2cm

分析:连结OA,根据圆周角定理得∠AOD=2∠ACD=45°,由于3⊙O的直径CD垂直于弦AB,根据垂径定理得AE=BE,且可判断△OAE为等腰直角三角形,所以AE=OA=,

然后利用AB=2AE进行计算.

解答:解:连结OA,如图,

∵∠ACD=22.5°,

∴∠AOD=2∠ACD=45°,

∵⊙O的直径CD垂直于弦AB,

∴AE=BE,△OAE为等腰直角三角形,

∴AE=OA,

∵CD=6,

∴OA=3,

∴AE=,

∴AB=2AE=3(cm).

故选B.

3.如图,在⊙O中,AC∥OB,∠BAO=25°,则∠BOC的度数为()

A.25°B.50°C.60°D.80°

分析:由AC∥OB,∠BAO=25°,可求得∠BAC=∠B=∠BAO=25°,又由圆周角定理,即可求得答案.

解答:解:∵OA=OB,

∴∠B=∠BAO=25°,

∵AC∥OB,

∴∠BAC=∠B=25°,

∴∠BOC=2∠BAC=50°.

故选B.

4.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的A.cm B.cm C.cm或cm D.cm或cm

分析:先根据题意画出图形,由于点C的位置不能确定,故应分两种情

况进行讨论.

解答:解:连接AC,AO,

∵⊙O的直径CD=10cm,AB⊥CD,AB=8cm,

∴AM=AB=×8=4cm,OD=OC=5cm,

当C点位置如图1所示时,

∵OA=5cm,AM=4cm,CD⊥AB,

∴OM===3cm,

∴CM=OC+OM=5+3=8cm,

∴AC===4cm;

当C点位置如图2所示时,同理可得OM=3cm,

∵OC=5cm,

∴MC=5﹣3=2cm,

在Rt△AMC中,AC===2cm.

故选C.

5.如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()

A.4B.C.D.

解答:解:作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,如图,∵⊙P的圆心坐标是(3,a),

∴OC=3,PC=a,

把x=3代入y=x得y=3,

∴D点坐标为(3,3),

∴CD=3,

∴△OCD为等腰直角三角形,

∴△PED也为等腰直角三角形,

∵PE⊥AB,

∴AE=BE=AB=×4=2,

在Rt△PBE中,PB=3,

∴PE=,

∴PD=PE=,

∴a=3+.

故选B.

6.如图,⊙O是△ABC的外接圆,∠AOB=60°,AB=AC=2,则弦BC的长为()

A.B.3C.2D.4

分析:如图,首先证得OA⊥BC;然后由圆周角定理推知∠C=30°,通过解直角△ACD可以求得CD的长度.则BC=2CD.

解答:解:如图,设AO与BC交于点D.

∵∠AOB=60°,OB=OA,

∴△OAB是等边三角形,

∴∠BAO=60°,即∠BAD=60°.

又∵AB=AC,

∴=

∴AD⊥BC,

∴BD=CD,

∴在直角△ABD中,BD=AB?sin60°=2×=,

∴BC=2CD=2.

故选:C.

7.如图,CD是⊙O的直径,弦AB⊥CD于E,连接BC、BD,下列结论中不一定正确的是()

A.A E=BE B.=C.O E=DE D.∠DBC=90°

分析:由于CD⊥AB,根据垂径定理有AE=BE,弧AD=弧BD,不能得出OE=DE,直径所对的圆周角等于90°.

解答:解:∵CD⊥AB,

∴AE=BE,=,

∵CD是⊙O的直径,

∴∠DBC=90°,

不能得出OE=DE.

故选C.

二、填空题

1. 如图,已知A、B、C三点在⊙O上,AC⊥BO于D,∠B=55°,则∠BOC的度数是.

分析:根据垂直的定义得到∠ADB=90°,再利用互余的定义计算出∠A=90°﹣∠B=35°,然后根据圆周角定理求解.

解答:∵AC⊥BO,∴∠ADB=90°,∴∠A=90°﹣∠B=90°﹣55°=35°,

∴∠BOC=2∠A=70°.故答案为70°.

2.如图,AB 、CD 是半径为5的⊙O 的两条弦,AB=8,CD=6,MN 是直径,AB ⊥MN 于点E ,CD ⊥MN 于点F ,P 为EF 上的任意一点,则PA+PC 的最小值为

分析: A 、B 两点关于MN 对称,因而PA+PC=PB+PC ,即当B 、C 、P 在一条直线上时,PA+PC

的最小,即BC 的值就是PA+PC 的最小值 解答: 解:连接OA ,OB ,OC ,作CH 垂直于AB 于H .

根据垂径定理,得到BE=AB=4,CF=CD=3,

∴OE==

=3, OF=

==4,

∴CH=OE+OF=3+4=7,

BH=BE+EH=BE+CF=4+3=7,

在直角△BCH 中根据勾股定理得到BC=7,

则PA+PC 的最小值为

3. 如图,△ABC 内接于⊙O ,∠OAB =20°,则∠C 的度数为

----------

?

70.

解析:∵OA=OB,∴∠OBA=∠OAB=20°,∴∠AOB=140°,∴∠C=1

2

∠AOB=70°

4. 在⊙O中,AB是⊙O的直径,AB=8cm,==,M是AB上一动点,CM+DM的最

小值是8cm.

分析:作点C关于AB的对称点C′,连接C′D与AB相交于点M,根据轴对称确定最短路线问题,点M为CM+DM的最小值时的位置,根据垂径定理可得=,然后求出C′D

为直径,从而得解.

解答:解:如图,作点C关于AB的对称点C′,连接C′D与AB相交于点M,

此时,点M为CM+DM的最小值时的位置,

由垂径定理,=,

∴=,

∵==,AB为直径,

∴C′D为直径,

∴CM+DM的最小值是8cm.

故答案为:8.

5.如图,两圆圆心相同,大圆的弦AB与小圆相切,AB=8,则图中阴影部分的面积是.(结果保留π)

分析:设AB于小圆切于点C,连接OC,OB,利用垂径定理即可求得BC的长,根据圆环(阴影)的面积=π?OB2﹣π?OC2=π(OB2﹣OC2),以及勾股定理即可求解.

解:设AB于小圆切于点C,连接OC,OB.∵AB于小圆切于点C,

∴OC⊥AB,∴BC=AC=AB=×8=4cm.

∵圆环(阴影)的面积=π?OB2﹣π?OC2=π(OB2﹣OC2)

又∵直角△OBC中,OB2=OC2+BC2

∴圆环(阴影)的面积=π?OB2﹣π?OC2=π(OB2﹣OC2)=π?BC2=16πcm2.故答案是:16π.

6.如图,△ABC为⊙O的内接三角形,AB为⊙O的直径,点D在⊙O上,∠ADC=54°,则∠BAC的度数等于.

分析:由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠B的度数,又由直径所对的圆周角是直角,即可求得∠ACB=90°,继而求得答案.

解答:

解:∵∠ABC与∠ADC是所对的圆周角,

∴∠ABC=∠ADC=54°,

∵AB为⊙O的直径,

∴∠ACB=90°,

∴∠BAC=90°﹣∠ABC=90°﹣54°=36°.

故答案为:36°.

三、解答题

1.如图1,已知在平行四边形ABCD中,AB=5,BC=8,cosB=4

5

,点P是边BC上的动点,

以CP为半径的圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA交于点G.

(1)当圆C经过点A时,求CP的长;

(2)联结AP,当AP∥CG时,求弦EF的长;

(3)当△AGE是等腰三角形时,求圆C的半径长.

分析:(1)当点A在⊙C上时,点E和点A重合,过点A作AH⊥BC于H,直接利用勾股定理求出AC进而得出答案;

(2)首先得出四边形APCE是菱形,进而得出CM的长,进而利用锐角三角函数关系得出CP以及EF的长;

(3)当∠AEG=∠B时,A、E、G重合,只能∠AGE=∠AEG,利用AD∥BC,得出△GAE∽△GBC,进而求出即可.

解答:解:(1)如图1,设⊙O的半径为r,

当点A在⊙C上时,点E和点A重合,过点A作AH⊥BC于H,

∴BH=AB?cosB=4,

∴AH=3,CH=4,

∴AC==5,

∴此时CP=r=5;

(2)如图2,若AP∥CE,APCE为平行四边形,

∵CE=CP,

∴四边形APCE是菱形,

连接AC、EP,则AC⊥EP,

∴AM=CM=,

由(1)知,AB=AC,则∠ACB=∠B,

∴CP=CE==,

∴EF=2=;

(3)如图3:过点C作CN⊥AD于点N,

∵cosB=4

5

∴∠B<45°,

∵∠BCG<90°,

∴∠BGC>45°,

∵∠AEG=∠BCG≥∠ACB=∠B,

∴当∠AEG=∠B时,A、E、G重合,

∴只能∠AGE=∠AEG,

∵AD∥BC,

∴△GAE∽△GBC,

∴=,即=,

解得:AE=3,EN=AN﹣AE=1,

∴CE===.

2. 如图,AB是⊙O的直径,延长AB至P,使BP=OB,BD垂直于弦BC,垂足为点B,点D 在PC上.设∠PCB=α,∠POC=β.

求证:tanα?tan=.

分析:连接AC先求出△PBD∽△P AC,再求出=,最后得到tanα?tan=.

解答:证明:连接AC,则∠A=∠POC=,

∵AB是⊙O的直径,∴∠ACB=90°,∴tanα=,BD∥AC,

∴∠BPD=∠A,∵∠P=∠P,∴△PBD∽△P AC,∴=,

∵PB=0B=OA,∴=,∴tana?tan=?==.

3.如图,直角梯形ABCD中,AB∥CD,∠DAB=90°,且∠ABC=60°,AB=BC,△ACD的外接圆⊙O交BC于E点,连接DE并延长,交AC于P点,交AB延长线于F.

(1)求证:CF=DB;

(2)当AD=时,试求E点到CF的距离.

分析:(1)连结AE,由∠ABC=60°,AB=BC可判断△ABC为等边三角形,由AB∥CD,∠DAB=90°得∠ADC=∠DAB=90°,则根据圆周角定理可得到AC为⊙O的直径,则∠AEC=90°,即AE⊥BC,根据等边三角形的性质得BE=CE,再证明△DCE≌△FBE,得到DE=FE,于是可判断四边形BDCF为平行四边形,根据平行四边形的性质得

CF=DB;

(2)作EH⊥CF于H,由△ABC为等边三角形得∠BAC=60°,则∠DAC=30°,在Rt △ADC中,根据含30度的直角三角形三边的关系得DC=AD=1,AC=2CD=2,

则AB=AC=2,BF=CD=1,AF=3,然后利用勾股定理计算出BD=,DF=2,所以CF=BD=,EF=DF=,接着根据等边三角形的性质由AE⊥BC得∠CAE=∠

BAE=30°,根据圆周角定理得∠EDC=∠CAE=30°,而∠DCA=∠BAC=60°,得到∠

DPC=90°,在Rt△DPC中,根据含30度的直角三角形三边的关系得PC=DC=,

再证明Rt△FHE∽Rt△FPC,利用相似比可计算出EH.

解答:(1)证明:连结AE,如图,

∵∠ABC=60°,AB=BC,

∴△ABC为等边三角形,

∵AB∥CD,∠DAB=90°,

∴∠ADC=∠DAB=90°,

∴AC为⊙O的直径,

∴∠AEC=90°,即AE⊥BC,

∴BE=CE,

CD∥BF,

∴∠DCE=∠FBF,

在△DCE和△FBE中,

∴△DCE≌△FBE(ASA),

∴DE=FE,

∴四边形BDCF为平行四边形,

∴CF=DB;

(2)解:作EH⊥CF于H,如图,

∵△ABC为等边三角形,

∴∠BAC=60°,

∴∠DAC=30°,

在Rt△ADC中,AD=,

∴DC=AD=1,AC=2CD=2,

∴AB=AC=2,BF=CD=1,

∴AF=3,

在Rt△ABD中,BD==,

在Rt△ADF中,DF==2,

∴CF=BD=,EF=DF=,

∵AE⊥BC,

∴∠CAE=∠BAE=30°,

∴∠EDC=∠CAE=30°,

而∠DCA=∠BAC=60°,

∴∠DPC=90°,

在Rt△DPC中,DC=1,∠CDP=30°,

∴PC=DC=,

∵∠HFE=∠PFC,

∴Rt△FHE∽Rt△FPC,

∴=,即=,

∴EH=,

即E点到CF的距离为.

4. 如图,在扇形OAB中,∠AOB=90°,点C是上的一个动点(不与A,B重合),OD⊥BC,OE⊥AC,垂足分别为D,E.若DE=1,则扇形OAB的面积为.

分析:连接AB,由OD垂直于BC,OE垂直于AC,利用垂径定理得到D、E分别为BC、AC的中点,即ED为三角形ABC的中位线,即可求出AB的长.利用勾股定理、OA=OB,且∠AOB=90°,可以求得该扇形的半径.

解答:解:连接AB,

∵OD⊥BC,OE⊥AC,

∴D、E分别为BC、AC的中点,

∴DE为△ABC的中位线,

∴AB=2DE=2.

又∵在△OAB中,∠AOB=90°,OA=OB,

∴OA=OB=AB=,

∴扇形OAB的面积为:=.

故答案是:.

5.如图,已知AB是⊙O的直径,BP是⊙O的弦,弦CD⊥AB于点F,交BP于点G,E在CD的延长线上,EP=EG,

(1)求证:直线EP为⊙O的切线;

(2)点P在劣弧AC上运动,其他条件不变,若BG2=BF?BO.试证明BG=PG;

(3)在满足(2)的条件下,已知⊙O的半径为3,sinB=.求弦CD的长.

分析:(1)连接OP,先由EP=EG,证出∠EPG=∠BGF,再由∠BFG=∠BGF+∠OBP=90°,推出∠EPG+∠OPB=90°来求证,

(2)连接OG,由BG2=BF?BO,得出△BFG∽△BGO,得出∠BGO=∠BFG=90°得出结论.(3)连接AC、BC、OG,由sinB=,求出r,由(2)得出∠B=∠OGF,求出OF,再求出BF,F A,利用直角三角形来求斜边上的高,再乘以2得出CD长度.

(1)证明:连接OP,∵EP=EG,∴∠EPG=∠EGP,

又∵∠EPG=∠BGF,∴∠EPG=∠BGF,∵OP=OB,

∴∠OPB=∠OBP,∵CD⊥AB,∴∠BFG=∠BGF+∠OBP=90°,∴∠EPG+∠OPB=90°,

∴直线EP为⊙O的切线;

(2)证明:如图,连接OG,

∵BG2=BF?BO,∴=,∴△BFG∽△BGO,

∴∠BGO=∠BFG=90°,∴BG=PG;

(3)解:如图,连接AC、BC、OG,

∵sinB=,∴=,∵OB=r=3,∴OG=,

由(2)得∠EPG+∠OPB=90°,

∠B+∠BGF=∠OGF+∠BGO=90°,∴∠B=∠OGF,

∴sin∠OGF==∴OF=1,

∴BF=BO﹣OF=3﹣1=2,F A=OF+OA=1+3=4,

在RT△BCA中,

CF2=BF?F A,∴CF===2.∴CD=2CF=4.

点评:本题主要考查了圆的综合题,解题的关键是通过作辅助线,找准角之间的关系,灵活运用直角三角形中的正弦值.

=,点D为BA延长线上的一点,且6.如图,在△ABC中,∠B=45°,∠ACB=60°,AB32

∠D=∠ACB,⊙O为△ABC的外接圆.

(1)求BC的长;

(2)求⊙O的半径.

=+

∴BC33

(2)由(1)得,在R t△ACE中,∵∠EAC=30°,EC=3,∴AC=23.

∵∠D=∠ACB,∠B=∠B,∴△BAC∽△BCD. ∴AB AC

CB CD

=,即

3223

33

=

+

.

∴DM=4.

∴⊙O的半径为2.

7、如图6,中,,.

(1)动手操作:利用尺规作以为直径的,并标出与的交点,与的交点

(保留作图痕迹,不写作法):

(2)综合应用:在你所作的圆中,

①求证:;

②求点到的距离.

【分析】(1)先做出中点,再以为圆心,为半径画圆.

(2)①要求,根据圆心角定理,同圆中圆心角相等所对的弧也相等,只需证出即可,再根据等腰三角形中的边角关系转化.

②首先根据已知条件可求出,依题意作出高,求高则用勾股定理

或面积法,注意到为直径,所以想到连接,构造直角三角形,进而

用勾股定理可求出,的长度,那么在中,求其高,就只需

用面积法即可求出高.

【答案】(1)如图所示,圆为所求

(2)①如图连接,设,

②连接,过作于,过作于

cosC=, 又

,

又为直径

设,则,

在和中,

解得:

又即

初中数学分类讨论专题

分类讨论专题 在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查.这种分类 思考的方法就是一种重要的数学思想方法,同时也就是一种解题策略. 分类就是按照数学对象的相同点与差异点,将数学对象区分为不同种类的思想方法,掌握 分类的方法,领会其实质,对于加深基础知识的理解.提高分析问题、解决问题的能力就是十分 重要的.正确的分类必须就是周全的,既不重复、也不遗漏. 分类的原则: (1)分类中的每一部分就是相互独立的; (2)一次分类按一个标准; (3)分类讨论应逐级有序进行. (4)以性质、公式、定理的使用条件为标准分类的题型、 综合中考的复习规律,分类讨论的知识点可分为三大类: 1. 代数类:代数有绝对值、方程及根的定义,函数的定义以及点(坐标未给定)所在象限等、 2. 几何类:几何有各种图形的位置关系,未明确对应关系的全等或相似的可能对应情况等、 3. 综合类:代数与几何类分类情况的综合运用、 代数类 考点1 与数与式有关的分类讨论 1. 化简:|x-1|+|x-2| 2. 已知α、β就是关于x 的方程x 2+x+a=0的两个实根。 (1)求a 的取值范围; (2)试用a 表示|α|+|β|。 3. 代数式a a b b ab ab |||||| ++的所有可能的值有( ) A 、 2个 B 、 3个 C 、 4个 D 、 无数个 考点2 与方程有关的分类讨论 4. 解方程:①(a -2)x =b -1 ②试解关于x 的方程111=--x ) x ( 5. 关于x 的方程22(21)10k x k x +-+=有实数根,则k 的取值范围就是()

A .4k ≤ B 、104 k k ≤≠或 C 、k<14 D 、 k ≥14 6. 已知关于x 的方程22(4)(4)0kx k x k +++-= (1)若方程有实数根,求k 的取值范围 (2)若等腰三角形ABC 的边长a=3,另两边b 与c 恰好就是这个方程的两个根,求ΔABC 的周 长、 考点3 函数部分 7. 一次函数y kx b x =+-≤≤,当31时,对应的y 值为19≤≤x ,则kb 的值就是( )。 A 、 14 B 、 -6 C 、 -4或21 D 、 -6或14 8. 设一次函数21y ax a =-+-的图象不经过第一象限,求a 的取值范围。 9. 比较一次函数12y x =与二次函数2212y x = 的函数值y 1与y 2的大小。 10. 图9就是二次函数k m x y ++=2)(的图象,其顶点坐标为M(1,-4)、 (1)求出图象与x 轴的交点A,B 的坐标; (2)将二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变, 得到一个新的图象,请您结合这个新的图象回答:当直线)1(<+=b b x y 与此图象有两个公 共点时,b 的取值范围、 【变式】就b 的取值范围,讨论、直线)1(<+=b b x y 与此图象有公共点的个数 图9

初中数学圆的全部详细公式

1过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理三角形两边的和大于第三边 16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理有两角和它们的夹边对应相等的两个三角形全等 24 推论有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理有三边对应相等的两个三角形全等 26 斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合

30 等腰三角形的性质定理等腰三角形的两个底角相等 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1 关于某条直线对称的两个图形是全等形 43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c 47勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形 48定理四边形的内角和等于360° 49四边形的外角和等于360° 50多边形内角和定理n边形的内角的和等于(n-2)×180° 51推论任意多边的外角和等于360° 52平行四边形性质定理1 平行四边形的对角相等 53平行四边形性质定理2 平行四边形的对边相等 54推论夹在两条平行线间的平行线段相等

初中数学圆的经典测试题及解析

初中数学圆的经典测试题及解析 一、选择题 1.如图,有一个边长为2cm 的正六边形纸片,若在该纸片上沿虚线剪一个最大圆形纸片,则这个圆形纸片的半径是( ) A .3cm B .2cm C .23cm D .4cm 【答案】A 【解析】 【分析】 根据题意画出图形,再根据正多边形圆心角的求法求出∠AOB 的度数,最后根据等腰三角形及直角三角形的性质解答即可. 【详解】 解:如图所示,正六边形的边长为2cm ,OG ⊥BC , ∵六边形ABCDEF 是正六边形, ∴∠BOC=360°÷6=60°, ∵OB=OC ,OG ⊥BC , ∴∠BOG=∠COG= 12 ∠BOC =30°, ∵OG ⊥BC ,OB=OC ,BC=2cm , ∴BG= 12BC=12×2=1cm , ∴OB=sin 30 BG o =2cm , ∴OG=2222213OB BG -=-=, ∴圆形纸片的半径为3cm , 故选:A . 【点睛】

本题考查的是正多边形和圆,根据题意画出图形,利用直角三角形的性质及正六边形的性质解答是解答此题的关键. 2.如图,正方形ABCD内接于⊙O,AB=22,则?AB的长是() A.πB.3 2 πC.2πD. 1 2 π 【答案】A 【解析】 【分析】连接OA、OB,求出∠AOB=90°,根据勾股定理求出AO,根据弧长公式求出即可. 【详解】连接OA、OB, ∵正方形ABCD内接于⊙O, ∴AB=BC=DC=AD, ∴???? AB BC CD DA ===, ∴∠AOB=1 4 ×360°=90°, 在Rt△AOB中,由勾股定理得:2AO2=(2)2,解得:AO=2, ∴?AB的长为902 180 π′ =π, 故选A. 【点睛】本题考查了弧长公式和正方形的性质,求出∠AOB的度数和OA的长是解此题的关键. 3.如图,在平面直角坐标系中,点P是以C271为半径的⊙C上的一个动点,已知A(﹣1,0),B(1,0),连接PA,PB,则PA2+PB2的最小值是()

中考数学专题训练圆的证明与计算(含答案)

圆的证明与计算 1.如图,已知△ABC 内接于△O , P 是圆外一点,P A 为△O 的切线,且P A =PB ,连接 OP ,线段 AB 与线段 OP 相交于点D . (1)求证:PB 为△O 的切线; (2)若P A =4 5PO ,△O 的半径为10,求线段 PD 的长. 第1题图 (1)证明:△△△△△△OA △OB △ 第1题解图 △P A △PB △OA △OB △OP △OP △ △△OAP △△OBP (SSS)△ △△OAP △△OBP △ △P A △△O △△△△ △△OAP △90°△ △△OBP △90°△ △OB △△O △△△△ △PB △△O △△△△

△△Rt△AOP △△OA △PO 2 △△4 5PO △2△10△ △△PO △50 3△ △cos△AOP △AO OP △OD AO △ △OD △6△ △PD △PO △OD △32 3. 2. △△△△△ABC △△AB △AC △△D △BC △△△△△AD △DC △△A △B △D △△△△O △AE △△O △△△△△△DE . △1△△△△AC △△O △△△△ △2△△cos C △3 5△AC △24△△△△AE △△. 第2题图 (1)证明:△AB △AC △AD △DC △ △△C △△B △△DAC △△C △ △△DAC △△B △ △△△E △△B △ △△DAC △△E △ △AE △△O △△△△ △△ADE △90°△ △△E △△EAD △90°△ △△DAC △△EAD △90°△ △△EAC △90°△

△OA △△O △△△△ △AC △△O △△△△ (2)解:△△△△△△D △DF △AC △△F △ 第2题解图 △DA △DC △ △CF △1 2AC △12△ △Rt△CDF △△△cos C △CF CD △3 5△ △DC △20△ △AD △20△ △Rt△CDF △△△△△△△△1622==CF CD DF -△ △△ADE △△DFC △90°△△E △△C △ △△ADE △△DFC △ △AE DC △AD DF △ △AE 20△1620 △△△AE △25△ △△O △△△AE △25. 3.如图,在△ABC 中,AB =BC ,以AB 为直径作△O ,交BC 于点D ,交AC 于点E ,过点E 作△O 的切线EF ,交BC 于点F . (1)求证:EF △BC ; (2)若CD =2,tan C =2,求△O 的半径.

初中数学专题“分类讨论”专题练习(含答案)

“分类讨论”专题练习 1.已知AB 是圆的直径,AC 是弦,AB =2,AC =2,弦AD =1,则∠CAD = . 2. 若(x 2-x -1)x +2=1,则x =___________. 3. 已知等腰三角形一腰上的中线将它的周长分为9和12两部分,则腰长为,底边长为_______. 4.若⊙O 所在平面内一点P 到⊙O 上的点的最大距离为a ,最小距离为b(a>b),则此圆的半径为( ) A. 2 a b + B. 2 a b - C. 2a b +或2 a b - D. a+b 或a-b 5.同一平面上的四个点,过每两点画一直线,则直线的条数是( ) A.1 B.4 C.6 D.1或4或6 6. 若||3,||2,,( )a b a b a b ==>+=且则 A .5或-1 B .-5或1 C .5或1 D .-5或-1 7.已知抛物线y =ax 2+bx +c 经过点(1,2). (1)若a =1,抛物线顶点为A ,它与x 轴交于两点B 、C ,且△ABC 为等边三角形,求b 的值. (2)若abc =4,且a ≥b ≥c ,求|a |+|b |+|c |的最小值.

8.长宽都为整数的矩形,可以分成边长都为整数的小正方形。 例如一个边长2?4的矩形: 可以分成三种情况: (1) (2) 一个长宽为3?6的矩形,可以怎样分成小正方形,请画出你的不同分法。 9.已知(1 )A m -, 与(2B m +,是反比例函数k y x =图象上的两个点. (1)求k 的值; ( 2)若点(1 0)C -,,则在反比例函数k y x =图象上是否存在点D , 使得以A B C D ,,,四点为顶点的四边形为梯形?若存在,求出点D 的坐标;若不存在,请说明理由. 分成两个正方形,面积分别为4,4 分成8个正方形,面积每个都是1 分成5个正方形,1个面积为4,4 个面积是1

最新九年级数学下册圆的知识点整理

最新九年级数学下册圆的知识点整理 九年级数学下册《圆》知识点整理 第十章圆 ★重点★①圆的重要性质;②直线与圆、圆与圆的位置关系;③与圆有关的角的定理;④与圆有关的比例线段定理。 ☆内容提要☆ 一、圆的基本性质 1.圆的定义(两种) 2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。 3."三点定圆"定理 4.垂径定理及其推论

5."等对等"定理及其推论 5. 与圆有关的角:⑴圆心角定义(等对等定理) ⑵圆周角定义(圆周角定理,与圆心角的关系) ⑶弦切角定义(弦切角定理) 二、直线和圆的位置关系 1.三种位置及判定与性质: 初中数学复习提纲 2.切线的性质(重点) 3.切线的判定定理(重点)。圆的切线的判定有⑴…⑵… 4.切线长定理 三、圆换圆的位置关系

初中数学复习提纲1.五种位置关系及判定与性质:(重点:相切) 2.相切(交)两圆连心线的性质定理 3.两圆的公切线:⑴定义⑵性质 四、与圆有关的比例线段 初中数学复习提纲1.相交弦定理 2.切割线定理 五、与和正多边形 1.圆的内接、外切多边形(三角形、四边形) 2.三角形的外接圆、内切圆及性质 3.圆的外切四边形、内接四边形的性质 4.正多边形及计算

中心角:初中数学复习提纲 内角的一半:初中数学复习提纲(右图) (解Rt△OAM可求出相关元素, 初中数学复习提纲、初中数学复习提纲等) 六、一组计算公式 1.圆周长公式 2.圆面积公式 3.扇形面积公式 初中数学复习提纲4.弧长公式 5.弓形面积的计算方法 6.圆柱、圆锥的侧面展开图及相关计算

七、点的轨迹 六条基本轨迹 八、有关作图 1.作三角形的外接圆、内切圆 2.平分已知弧 3.作已知两线段的比例中项 4.等分圆周:4、8;6、3等分 九、基本图形 十、重要辅助线 1.作半径 2.见弦往往作弦心距

最新初中数学分类讨论问题专题

中考数学专题复习——分类讨论问题 一、教学目标 使学生养成分类讨论思想,并掌握一定的分类技巧,以及常见题型的分类方法。形成一定的分类体系,对待问题能有更严谨、缜密的思维。 二、教学重点 对常见题型分类方法的掌握;能够灵活运用一般的分类技巧。 三、教学难点 对于分类的“界点”、“标准”把握不准确,容易出现重复解、漏解等现象。 四、板书设计 1:分式方程无解的分类讨论问题; 2:“一元二次”方程系数的分类讨论问题; 3:三角形、圆等几何图形相关量求解的分类讨论问题; 4:分类问题在动点问题中的应用; 4.1常见平面问题中动点问题的分类讨论; 4.2组合图形(二次函数、一次函数、平面图形等组合)中动点问题的分 类。 五、教学用具 打印互动背景资料、三角板、多媒体。 六、作业布置 附后 1:分式方程无解的分类讨论问题

例题1:(2011武汉) =+=-+-a 3 49332无解,求x x ax x 解:去分母,得: 1 .6,801a 31 -a 21-31-a 21-211-a )3(4)3(3=-==∴=-=-=-=?-=++a a a x x ax x 或者或或由已知)( 猜想:把“无解”改为“有增根”如何解? 68-==a a 或 例题2:(2011郴州) ==--+a 21 12无解,求x a x 2:“一元二次”方程系数的分类讨论问题 例题3:(2010上海)已知方程01)12(22=+++x m x m 有实数根,求m 的取值范围。 (1) 当02 =m 时,即m=0时,方程为一元一次方程x+1=0,有实数根x=1- (2) 当02≠m 时,方程为一元二次方程,根据有实数根的条件得:4 1-m ,0144)12(22≥≥+=-+=?即m m m ,且02≠m 综(1)(2)得,4 1-≥m 常见病症:(很多同学会从(2)直接开始而且会忽略02≠m 的条件) 总结:字母系数的取值范围是否要讨论,要看清题目的条件。一般设置问题的方式有两种(1)前置式,即“二次方程”;(2)后置式,即“两实数根”。这都是表明是二次方程,不需要讨论,但切不可忽视二次项系数不为零的要求,本题是根据二次项系数是否为零进行讨论的。 例题4:(2011益阳)当m 是什么整数时,关于x 的一元二次方程0442=+-x mx 与0544422=--+-m m mx x 的根都是整数。

初中数学.圆的概念及性质.教师版

中考内容 中考要求 A B C 圆的有关概念理解圆及其有关概 念 会过不在同一直线 上的三点作圆;能利 用圆的有关概念解 决简单问题 圆的性质知道圆的对称性,了 解弧、弦、圆心角的 关系 能用弧、弦、圆心角 的关系解决简单问 题 能运用圆的性质解 决有关问题 圆周角了解圆周角与圆心 角的关系;知道直径 所对的圆周角是直 角 会求圆周角的度数, 能用圆周角的知识 解决与角有关的简 单问题 能综合运用几何知 识解决与圆周角有 关的问题 垂径定理会在相应的图形中 确定垂径定理的条 件和结论 能用垂径定理解决 有关问题 点与圆的位置关系了解点与圆的位置关系 直线与圆的位置关系了解直线与圆的位 置关系;了解切线的 概念,理解切线与过 切点的半径之间的 关系;会过圆上一点 画圆的切线;了解切 线长的概念 能判定直线和圆的 位置关系;会根据切 线长的知识解决简 单的问题;能利用直 线和圆的位置关系 解决简单问题 能解决与切线有关 的问题 圆与圆的位置关系了解圆与圆的位置 关系 能利用圆与圆的位 置关系解决简单问 题 中考内容与要求 圆的概念及性质

弧长会计算弧长能利用弧长解决有关问题 扇形会计算扇形面积能利用扇形面积解决有关问题 圆锥的侧面积和全面积会求圆锥的侧面积 和全面积 能解决与圆锥有关 的简单实际问题 圆是北京中考的必考内容,主要考查圆的有关性质与圆的有关计算,每年的第20题都会考查,第1小题一般是切线的证明,第2小题运用圆与三角形相似、解直角三角形等知识求线段长度问题,有时也以阅读理解、条件开放、结论开放探索题作为新的题型。 要求同学们重点掌握圆的有关性质,掌握求线段、角的方法,理解概念之间的相互联系和知识之间的相互转化,理解直线和圆的三种位置关系,掌握切线的性质和判定方法,会根据条件解决圆中的动态问题。 年份2010年2011年2012年 题号11,20 20,25 8,20,25 分值9分13分17分 考点垂径定理的应用; 切线判定、圆与解 直角三角形综合 圆的有关证明,计 算(圆周角定理、 切线、等腰三角形、 相似、解直角三角 形);直线与圆的 位置关系 圆的基本性质,圆 的切线证明,圆同 相似和三角函数的 结合;直线与圆的 位置关系 中考考点分析

(专题精选)初中数学圆的易错题汇编及答案

(专题精选)初中数学圆的易错题汇编及答案 一、选择题 1.“直角”在几何学中无处不在,下列作图作出的AOB ∠不一定... 是直角的是( ) A . B . C . D . 【答案】C 【解析】 【分析】 根据作图痕迹,分别探究各选项所做的几何图形问题可解. 【详解】 解:选项A 中,做出了点A 关于直线BC 的对称点,则AOB ∠是直角. 选项B 中,AO 为BC 边上的高,则AOB ∠是直角. 选项D 中,AOB ∠是直径AB 作对的圆周角,故AOB ∠是直角. 故应选C 【点睛】 本题考查了尺规作图的相关知识,根据基本作图得到的结论,应用于几何证明是解题关键. 2.如图,在平行四边形ABCD 中,BD ⊥AD ,以BD 为直径作圆,交于AB 于E ,交CD 于F ,若BD=12,AD :AB=1:2,则图中阴影部分的面积为( ) A .3 B .36ππ C .312π D .48336ππ 【答案】C 【解析】 【分析】 易得AD 长,利用相应的三角函数可求得∠ABD 的度数,进而求得∠EOD 的度数,那么一个阴影部分的面积=S △ABD -S 扇形DOE -S △BOE ,算出后乘2即可.

【详解】 连接OE ,OF . ∵BD=12,AD :AB=1:2, ∴AD=43 ,AB=83,∠ABD=30°, ∴S △ABD =×43×12=243,S 扇形= 603616,633933602OEB S ππ?==??=V ∵两个阴影的面积相等, ∴阴影面积=() 224369330312ππ?--=- . 故选:C 【点睛】 本题主要是理解阴影面积等于三角形面积减扇形面积和三角形面积. 3.如图,在平面直角坐标系中,点P 是以C (﹣2,7)为圆心,1为半径的⊙C 上的一个动点,已知A (﹣1,0),B (1,0),连接PA ,PB ,则PA 2+PB 2的最小值是( ) A .6 B .8 C .10 D .12 【答案】C 【解析】 【分析】 设点P (x ,y ),表示出PA 2+PB 2的值,从而转化为求OP 的最值,画出图形后可直观得出OP 的最值,代入求解即可. 【详解】 设P (x ,y ), ∵PA 2=(x +1)2+y 2,PB 2=(x ﹣1)2+y 2, ∴PA 2+PB 2=2x 2+2y 2+2=2(x 2+y 2)+2, ∵OP 2=x 2+y 2, ∴PA 2+PB 2=2OP 2+2, 当点P 处于OC 与圆的交点上时,OP 取得最值,

初中数学圆专题训练

初中数学圆专题训练 This model paper was revised by LINDA on December 15, 2012.

初中数学圆专题训练(一) (一)选择题 1.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有()(A)4个(B)3个(C)2个 (D)1个 2.下列判断中正确的是() (A)平分弦的直线垂直于弦(B)平分弦的直线也必平分弦所对的两条弧 (C)弦的垂直平分线必平分弦所对的两条弧(D)平分一条弧的直线必平分这条弧所对的弦 3.如图,在两半径不同的同心圆中,∠AOB=∠A′OB′=60°,则()(A)=(B)> (C)的度数=的度数 (D)的长度=的长度 4.如图,已知⊙O的弦AB、CD相交于点E,的度数为60°,的度数为100°,则∠AEC等于()

(A )60° (B )100° (C )80° (D )130° 5.圆内接四边形ABCD 中,∠A 、∠B 、∠C 的度数比是2︰3︰6,则∠D 的度数是 ( ) (A )67.5° (B )135° (C )112.5° (D )110° 6.OA 平分∠BOC ,P 是OA 上任一点,C 不与点O 重合,且以P 为圆心的圆与OC 相离,那 么圆P 与OB 的位置关系是 ( ) (A )相离 (B )相切 (C )相交 (D )不确定 7.△ABC 的三边长分别为a 、b 、c ,它的内切圆的半径为r ,则△ABC 的面积为( ) (A )21(a +b +c )r (B )2(a +b +c ) (C )3 1(a +b +c )r (D )(a +b +c )r 8.如图,已知四边形ABCD 为圆内接四边形,AD 为圆的直径,直线MN 切圆于点B ,DC 的延长线交MN 于G ,且cos ∠ABM =2 3,则tan ∠BCG 的值为……( ) (A )33 (B )2 3 (C )1 (D )3

初中数学分类讨论问题专题.

” = 无解,求 a = 由已知 - = -3或 - = 3或a - 1 = 0 - = 2无解,求a = 中考数学专题复习——分类讨论问题 一、教学目标 使学生养成分类讨论思想,并掌握一定的分类技巧,以及常见题型的分类方法。形成一定 的分类体系,对待问题能有更严谨、缜密的思维。 二、教学重点 对常见题型分类方法的掌握;能够灵活运用一般的分类技巧。 三、教学难点 对于分类的“界点”、“标准”把握不准确,容易出现重复解、漏解等现象。 四、板书设计 1:分式方程无解的分类讨论问题; 2:“一元二次 方程系数的分类讨论问题; 3:三角形、圆等几何图形相关量求解的分类讨论问题; 4:分类问题在动点问题中的应用; 4.1 常见平面问题中动点问题的分类讨论; 4.2 组合图形(二次函数、一次函数、平面图形等组合)中动点问题的分类。 1:分式方程无解的分类讨论问题 例题 1:(2011 武汉) 3 ax 4 + x - 3 x 2 - 9 x + 3 解:去分母,得: 3( x + 3) + ax = 4( x - 3) ?(a -1)x = -21 21 21 a -1 a -1 ∴ a = 8, a = -6.或者a = 1 猜想:把“无解”改为“有增根”如何解? a = 8或a = -6 例题 2:(2011 郴州) 2 a x + 1 x - 1 2:“一元二次”方程系数的分类讨论问题 例题 3:(2010 上海)已知方程 m 2 x 2 + (2m + 1) x + 1 = 0 有实数根,求 m 的取值范围。 (1) 当 m 2 = 0 时,即 m=0 时,方程为一元一次方程 x+1=0,有实数根 x= - 1

20年苏教版初中数学《圆有关的最值问题》专题

圆有关的最值问题 一、求解方法: 1.根据“三角形三边关系”求解: -≤≤+ a b c a b 2.动中有静,抓住不变量求解. 3.旋转必产生圆,很多情况在相切位置产生最值. 4.四点共圆(补充). 五个基本判断方法: (1)若四个点到一个定点的距离相等,则这四个点共圆. (2)若一个四边形的一组对角互补(和为180。),则这个四边形的四个点共圆. (3)若一个四边形的外角等于它的内对角,则这个四边形的四个点共圆. (4)若两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线的两个端点共圆. (5)同斜边的直角三角形的顶点共圆, 二、解题策略 1.直观感觉,画出图形; 2.特殊位置,比较结果; 3.理性分析动点过程中所维系的不变条件,通过几何构建,寻找动量与定量(常量)之间的关系,建立等式,进行转化.

三、中考展望与题型训练 例一、圆外一点与圆的最近点、最远点 1.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D是平面内的一个动点,且AD=2,M为BD的中点,在D点运动过程中,线段CM长度的取值范围是. 例二、正弦定理 2.如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=4,D是线段BC上的一个动点,以AD为直径作⊙O分别交AB、AC于E、F,连结EF,则线段EF长度的最小值为. 3.如图,定长弦CD在以AB为直径的⊙O上滑动(点C、D与点A、B不重合),M是CD的中点,过点C作CP⊥AB于点P,若CD=3,AB=8,PM=l,则l的最大值是.例三、不等式、配方法 4.如图,已知半径为2的⊙O与直线l相切于点A,点P是直径AB左侧半圆上的动点,过点P作直线l的垂线,垂足为C,PC与⊙O交于点D,连接PA、PB,设PC的长为x (2<x<4).当x为何值时,PD?CD的值最大?最大值是多少?

中考数学综合题专题【圆】专题训练含答案

中考数学综合题专题【圆】专题训练含答案 一、选择题 1.(北京市西城区)如图,BC 是⊙O 的直径,P 是CB 延长线上一点,PA 切⊙O 于点A ,如果PA =3,PB =1,那么∠APC 等于 ( ) (A ) 15 (B ) 30 (C ) 45 (D ) 60 2.(北京市西城区)如果圆柱的高为20厘米,底面半径是高的 41,那么这个圆柱的侧面积是 ( ) (A )100π平方厘米 (B )200π平方厘米 (C )500π平方厘米 (D )200平方厘米 3.(北京市西城区)“圆材埋壁”是我国古代著名的数学菱《九章算术》中的一个问题,“今在圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”用 现在的数学语言表述是:“如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为E ,CE =1寸,AB =寸,求直径CD 的长”.依题意,CD 长为 ( ) (A )2 25寸 (B )13寸 (C )25寸 (D )26寸 4.(北京市朝阳区)已知:如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,那么PC 的长等于 ( ) (A )6 (B )25 (C )210 (D )214 5.(北京市朝阳区)如果圆锥的侧面积为20π平方厘米,它的母线长为5厘 米,那么此圆锥的底面半径的长等于 ( ) (A )2厘米 (B )22厘米 (C )4厘米 (D )8厘米 6.(天津市)相交两圆的公共弦长为16厘米,若两圆的半径长分别为10厘 米和17厘米,则这两圆的圆心距为 ( ) (A )7厘米 (B )16厘米 (C )21厘米 (D )27厘米 7.(重庆市)如图,⊙O 为△ABC 的内切圆,∠C = 90,AO 的延长线交BC 于点D ,AC =4,DC =1,,则⊙O 的半径等于 ( )

中考数学分类讨论题专题

分类讨论题 类型之二圆中的分类讨论 圆既是轴对称图形,又是中心对称图形,在解决圆的有关问题时,特别是无图的情况下,有时会以偏盖全、造成漏解,其主要原因是对问题思考不周、思维定势、忽视了分类讨论等. 4.(湖北罗田)在Rt△ABC中,∠C=900,AC=3,BC=4。若以C点为圆心, r为半径所作的圆与斜边AB只有一个公共点,则r的取值范围是___ __. 5。(上海市)在△ABC中,AB=AC=5, 3 cos 5 B .如果圆O的半径为10,且经过 点B、C,那么线段AO的长等于. 6.(?威海市)如图,点A,B在直线MN上,AB=11厘米,⊙A,⊙B的半径均为1 厘米.⊙A以每秒2厘米的速度自左向右运动,与此同时,⊙B的半径也不断增大,其半径r(厘米)与时间t(秒)之间的关系式为r=1+t(t≥0). (1)试写出点A,B之间的距离d(厘米)与时间t(秒)之间的函数表达式; (2)问点A出发后多少秒两圆相切? 类型之三方程、函数中的分类讨论 方程、函数的分类讨论主要是通过变量之间的关系建立函数关系式,然后根据实际情况进行分类讨论或在有实际意义的情况下的讨论,在讨论问题的时候要注意特殊点的情况. 7.(上海市)已知AB=2,AD=4,∠DAB=90°,AD∥BC(如图).E是射线BC上的动点(点E与点B不重合),M是线段DE的中点. (1)设BE=x,△ABM的面积为y,求y关于x的函数解析式,并写出函数的定义域; (2)如果以线段AB为直径的圆与以线段DE为直径的圆外切,求线段BE的长; (3)联结BD,交线段AM于点N,如果以A、N、D为顶点的三角形与△BME相似,求线段BE的长. 8.(福州市)如图,以矩形OABC的顶点O为原点,OA所在的 直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已 知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA 沿BD翻折,使点A落在BC边上的点F处. (1)直接写出点E、F的坐标;

圆的有关性质

圆的有关性质 本章重点 1.圆的定义: (1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆. (2)圆是到定点的距离等于定长的点的集合. 2.判定一个点P是否在⊙O上. 设⊙O的半径为R,OP=d,则有 d>r点P在⊙O 外; d=r点P在⊙O 上; d

⑤圆内接四边形的对角互补;外角等于它的内对角. (3)弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角叫弦切角. 弦切角的性质:弦切角等于它夹的弧所对的圆周角. 弦切角的度数等于它夹的弧的度数的一半. 4.圆的性质: (1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心. 在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等. (2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.垂径定理及推论: (1)垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. (2)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. (3)弦的垂直平分线过圆心,且平分弦对的两条弧. (4)平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦. (5)平行弦夹的弧相等. 5.三角形的内心、外心、重心、垂心 (1)三角形的内心:是三角形三个角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.

(完整)初中数学“最值问题”_集锦

“最值问题”集锦 ●平面几何中的最值问题 (01) ●几何的定值与最值 (07) ●最短路线问题 (14) ●对称问题 (18) ●巧作“对称点”妙解最值题 (22) ●数学最值题的常用解法 (26) ●求最值问题 (29) ●有理数的一题多解 (34) ●4道经典题 (37) ●平面几何中的最值问题 在平面几何中,我们常常遇到各种求最大值和最小值的问题,有时它和不等式联系在一起,统称最值问题.如果把最值问题和生活中的经济问题联系起来,可以达到最经济、最节约和最高效率.下面介绍几个简例. 在平面几何问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的面积、角的度数)的最大值或最小值问题,称为最值问题。 最值问题的解决方法通常有两种: (1)应用几何性质: ①三角形的三边关系:两边之和大于第三边,两边之差小于第三边; ②两点间线段最短; ③连结直线外一点和直线上各点的所有线段中,垂线段最短; ④定圆中的所有弦中,直径最长。 ⑵运用代数证法: ①运用配方法求二次三项式的最值; ②运用一元二次方程根的判别式。 例1、A、B两点在直线l的同侧,在直线L上取一点P,使PA+PB最小。 分析:在直线L上任取一点P’,连结A P’,BP’,

在△ABP’中AP’+BP’>AB,如果AP’+BP’=AB,则P’必在线段AB上,而线段AB 与直线L无交点,所以这种思路错误。 取点A关于直线L的对称点A’,则AP’= AP, 在△A’BP中A’P’+B’P’>A’B,当P’移到A’B与直线L的交点处P点时 A’P’+B’P’=A’B,所以这时PA+PB最小。 1 已知AB是半圆的直径,如果这个半圆是一块铁皮,ABDC是内接半圆的梯形,试问怎样剪这个梯形,才能使梯形ABDC的周长最大(图3-91)? 分析本例是求半圆AB的内接梯形的最大周长,可设半圆半径为R.由于AB∥CD,必有AC=BD.若设CD=2y,AC=x,那么只须求梯形ABDC的半周长u=x+y+R的最大值即可.解作DE⊥AB于E,则x2=BD2=AB·BE=2R·(R-y)=2R2-2Ry, 所以 所以求u的最大值,只须求-x2+2Rx+2R2最大值即可. -x2+2Rx+2R2=3R2-(x-R)2≤3R2, 上式只有当x=R时取等号,这时有 所以2y=R=x. 所以把半圆三等分,便可得到梯形两个顶点C,D, 这时,梯形的底角恰为60°和120°. 2 .如图3-92是半圆与矩形结合而成的窗户,如果窗户的周长为8米(m),怎样才能得出 最大面积,使得窗户透光最好? 分析与解设x表示半圆半径,y表示矩形边长AD,则必有2x+2y+πx=8,

初中数学圆的难题汇编附答案解析

初中数学圆的难题汇编附答案解析 一、选择题 1.如图,在Rt ABC △中,90ACB ∠=?,30A ∠=?,2BC =.将ABC V 绕点C 按顺时针方向旋转n 度后得到EDC △,此时点D 在AB 边上,斜边DE 交AC 边于点F ,则n 的大小和图中阴影部分的面积分别为( ) A .302, B .602, C .3602 , D .603, 【答案】C 【解析】 试题分析:∵△ABC 是直角三角形,∠ACB=90°,∠A=30°,BC=2, ∴∠B=60°,AC=BC×cot ∠33AB=2BC=4, ∵△EDC 是△ABC 旋转而成, ∴BC=CD=BD= 12AB=2, ∵∠B=60°, ∴△BCD 是等边三角形, ∴∠BCD=60°, ∴∠DCF=30°,∠DFC=90°,即DE ⊥AC , ∴DE ∥BC , ∵BD=12 AB=2, ∴DF 是△ABC 的中位线, ∴DF=12BC=12×2=1,CF=12AC=1233 ∴S 阴影= 12DF×CF=1233

故选C. 考点:1.旋转的性质2.含30度角的直角三角形. 2.在Rt△ABC中,∠ACB=90°.AC=8,BC=3,点D是BC边上动点,连接AD交以CD为直径的圆于点E,则线段BE长度的最小值为( ) A.1 B.3 2 C.3D. 5 2 【答案】A 【解析】 【分析】 根据直径所对的圆周角为直角可知∠CED=90°,则∠AEC=90°,设以AC为直径的圆的圆心为O,若BE最短,则OB最短,根据直角三角形斜边上的中线等于斜边的一半可得 OE=1 2 AC=4,在Rt△OBC中,根据勾股定理可求得OB=5,即可得解. 【详解】 解:连接CE, ∵E点在以CD为直径的圆上, ∴∠CED=90°, ∴∠AEC=180°-∠CED=90°, ∴E点也在以AC为直径的圆上, 设以AC为直径的圆的圆心为O,若BE最短,则OB最短,∵AC=8, ∴OC=1 2 AC=4, ∵BC=3,∠ACB=90°, ∴22 OC BC ,∵OE=OC=4, ∴BE=OB-OE=5-4=1.

初中数学教程圆的有关性质

24.1圆的有关性质 第1课时 教学内容 1.圆的有关概念. 2.垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧及其它们的应用. 教学目标 了解圆的有关概念,理解垂径定理并灵活运用垂径定理及圆的概念解决一些实际问题. 从感受圆在生活中大量存在到圆形及圆的形成过程,讲授圆的有关概念.利用操作几何的方法,理解圆是轴对称图形,过圆心的直线都是它的对称轴.通过复合图形的折叠方法得出猜想垂径定理,并辅以逻辑证明加予理解. 重难点、关键 1.重点:垂径定理及其运用. 2.难点与关键:探索并证明垂径定理及利用垂径定理解决一些实际问题. 教学过程 一、复习引入 (学生活动)请同学口答下面两个问题(提问一、两个同学) 1.举出生活中的圆三、四个. 2.你能讲出形成圆的方法有多少种? 老师点评(口答):(1)如车轮、杯口、时针等.(2)圆规:固定一个定点,固定一个长度,绕定点拉紧运动就形成一个圆. 二、探索新知 从以上圆的形成过程,我们可以得出: 在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径. 以点O为圆心的圆,记作“⊙O”,读作“圆O”. 学生四人一组讨论下面的两个问题:

问题1:图上各点到定点(圆心O )的距离有什么规律? 问题2:到定点的距离等于定长的点又有什么特点? 老师提问几名学生并点评总结. (1)图上各点到定点(圆心O )的距离都等于定长(半径r ); (2)到定点的距离等于定长的点都在同一个圆上. 因此,我们可以得到圆的新定义:圆心为O ,半径为r 的圆可以看成是所有到定点O 的距离等于定长r 的点组成的图形. 同时,我们又把 ①连接圆上任意两点的线段叫做弦,如图线段AC ,AB ; ②经过圆心的弦叫做直径,如图24-1线段AB ; ③圆上任意两点间的部分叫做圆弧,简称弧,“以A 、C 为端点的弧记作”,读作“圆弧”或“弧AC ”.大于半圆的弧(如图所示叫做优弧,小于半圆的弧(如图所示)或叫做劣弧. ④圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆. (学生活动)请同学们回答下面两个问题. 1.圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴? 2.你是用什么方法解决上述问题的?与同伴进行交流. (老师点评)1.圆是轴对称图形,它的对称轴是直径,我能找到无数多条直径. 3.我是利用沿着圆的任意一条直径折叠的方法解决圆的对称轴问题的. (学生活动)请同学按下面要求完成下题: 如图,AB 是⊙O 的一条弦,作直径CD ,使CD ⊥AB ,垂足为M . (1)如图是轴对称图形吗?如果是,其对称轴是什么? (2)你能发现图中有哪些等量关系?说一说你理由. (老师点评)(1)是轴对称图形,其对称轴是CD . (2)AM=BM ,,,即直径CD 平分弦AB ,并且平分及. ?AC ? AC ?ABC ?AC ?BC ??AC BC =??AD BD =? AB ?ADB

人教版初中数学九年级上册17.圆中的最值问题

人教版初中数学 重点知识精选 掌握知识点,多做练习题,基础知识很重要!人教版初中数学和你一起共同进步学业有成!

拔高专题 圆中的最值问题 一、基本模型构建 常见模型 图(1) 图(2) 思考 图(1)两点之间线段 最短 ; 图(2)垂线段 最短 。 .在直线L 上的同侧有两个点A 、B ,在直线L 上有到A 、B 的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L 的 对称 点,对称点与另一点的连线与直线L 的交点就是所要找的点. 二、拔高精讲精练 探究点一:点与圆上的点的距离的最值问题 例1:如图,A 点是⊙O 上直径MN 所分的半圆的一个三等分点,B 点是弧AN 的中点,P 点是MN 上一动点,⊙O 的半径为3,求AP+BP 的最小值。 解:作点A 关于MN 的对称点A ′,连接A ′B ,交MN 于点P ,连接OA ′,AA ′. ∵点A 与A ′关于MN 对称,点A 是半圆上的一个三等分点, ∴∠A ′ON=∠AON=60°,PA=PA ′,∵点B 是弧AN 的中点, ∴∠BON=30°,∴∠A ′OB=∠A ′ON+∠BON=90°,又∵OA=OA ′=3, ∴A ′.∵两点之间线段最短,∴PA+PB=PA ′+PB=A ′. 【教师总结】解决此题的关键是确定点P 的位置.根据轴对称和两点之间线段最短的知

识,把两条线段的和转化为一条线段,即可计算。 探究点二:直线与圆上点的距离的最值问题 例2:如图,在Rt △AOB 中,,⊙O 的半径为1,点P 是AB 边上的动点,过点P 作⊙O 的一条切线PQ (点Q 为切点),求切线PQ 的最小值 解:连接OP 、OQ .∵PQ 是⊙O 的切线,∴OQ ⊥PQ ;根据勾股定理知PQ 2=OP 2-OQ 2, ∴当PO ⊥AB 时,线段PQ 最短,∵在Rt △AOB 中,OA=OB=3 , ∴OA=6,∴OP= =3,∴. ?OA OB AB 【变式训练】如图,在平面直角坐标系中,以坐标原点O 为圆心,2为半径画⊙O ,P 是⊙O 是一动点且P 在第一象限内,过P 作⊙O 切线与x 轴相交于点A ,与y 轴相交于点B .求线段AB 的最小值. 解:(1)线段AB 长度的最小值为4, 理由如下: 连接OP , ∵AB 切⊙O 于P , ∴OP ⊥AB , 取AB 的中点C , ∴AB=2OC ; 当OC=OP 时,OC 最短, 即AB 最短, 此时AB=4.

相关主题