搜档网
当前位置:搜档网 › 中药代谢组学研究中生物样品前处理方法

中药代谢组学研究中生物样品前处理方法

中药代谢组学研究中生物样品前处理方法
中药代谢组学研究中生物样品前处理方法

中药代谢组学研究中生物样品前处理方

(作者:___________单位: ___________邮编: ___________)

作者:邹忠杰,梁生旺,袁经权,龚梦鹃

【摘要】总结中药代谢组学研究中生物样品(尿液、血液)的前处理方法,主要包括:尿液中加入缓冲液提供相同的pH值和离子强度,保持代谢物化学位移的恒定。利用有机溶剂沉淀法除去血液中的大分子物质,增加色谱柱的性能和使用寿命。血液和尿液样品在进行GC MS分析前要进行衍生化处理。同时,对尿液和血液的采集与储存方法进行了总结。

【关键词】中药;代谢组学;样品前处理

Abstract: In order to reduce the chemical shift variation,the pH and the consistency of ionic strength were controlled by adding buffer to urine samples. In analysis of blood,efficient removal of macromolecules such as proteins by organic solvent precipitation before injection into an analytical LC column was important in enhancing the performance and extending column lifetime. Sample derivatization of blood

sample and urine sample before GC MS analysis was needed. And methods of collection and storage of urine and blood samples were also reviewed.

Key words:traditional Chinese medicine; metabonomics; pretreatment

代谢组学(metabonomics)是继基因组学、转录组学和蛋白质组学后新兴的一种组学方法,是系统生物学的重要组成部分。中药“多组分、多靶点、整合调节作用”的特点与代谢组学整体性、系统性、综合性相吻合。因此,以代谢组学为主体的系统生物学研究方法可能是现代科学中可以概括中医药抽象整体观思想的重要途径。王广基等对代谢组学技术在中医药关键科学问题研究中的应用前景进行了分析[1]。作者综述了代谢组学技术在中药整体疗效、作用机制及安全性等研究中的应用[2]。

代谢组学研究中的分析手段主要包括核磁共振谱(NMR)、气相色谱质谱(GC MS)和液相色谱质谱(LC MS)等各种高通量、高分辨、高灵敏度的谱学技术[3]。 NMR由于其具有很高的重现性、一次实验中实现对各种化合物的同时测定、信号强度与其摩尔浓度成正比,可以很容易进行定量分析、借助各种2D NMR技术可以在对复杂样品不进行进一步分离的前提下实现结构鉴定等诸多优点而被广泛应用[4]。高分辨魔角旋转核磁共振技术(high resolution magic angle spinning NMR spectroscopy)可以使研究者不经过提取等繁琐的步骤直接对完整的组织进行测定[5]。LC MS特别是

UPLC Q TOF/MS以其灵敏度高、分析速度快、样品无需衍生化等优点,受到众多研究者的关注[6]。GC MS作为一种经典成熟的分析技术在很多领域中应用广泛,其最大的优势是可以检索多个大型化合物库进行代谢物的结构鉴定,而且这也是代谢组学研究中关键的一个环节。气相色谱飞行时间质谱(GC TOF MS)由于提供了比四级杆质谱更快的分析速度、更高的分辨率和更准确的分子量应用日益广泛[7]。

可用于代谢组学研究的生物样品包括尿液、血液、脑脊液、组织和培养液等,最容易获取和应用最广泛的是尿液和血液。人类尿液的pH值一般在5.5~6.5,但在个别情况下可达4.6~8.0。尿液的成分主要是极性低分子量代谢物,其中包括羧酸类如柠檬酸、马尿酸;有机胺类如二甲胺(DMA)、三甲胺(TMA);氨基酸类如甘氨酸、牛磺酸。NMR测定时,不同pH值尿液中这些代谢物由于氨基或羧基的解离程度不同,化学位移将发生显著的变化。尿液中还含有一定数量的离子如Na+ (90~240 mmol/L)、 K+ (34~68 mmol/L)等,可能产生不同的离子强度和络合作用,同样对代谢物的化学位移产生影响[8]。血液成分比尿液复杂的多,既包括低分子量成分也包括高分子量物质如蛋白和脂蛋白,LC MS分析中,蛋白质的存在会严重降低色谱柱的性能和使用寿命[9]。因此,十分有必要在分析前利用适当的方法对样品进行前处理以消除不利因素的影响。本文总结了基于NMR、LC MS 和GC MS技术代谢组学研究中对尿液和血液样品的前处理方法,希望能为此领域的研究者提供一定的参考。

1 尿液和血液的采集与储存

1.1 尿液的采集与储存

一般采集于置于冰上同时加入叠氮化钠(NaN3,质量浓度至少为0.05%)作防腐剂的容器中,冷冻储存于-40 ℃的环境中[10]。另有研究报道尿液保存在低于-25℃的环境中,26周之内基本不会发生任何改变,而且不需要加入防腐剂,尽管NaN3不会对代谢物产生任何影响。如果要短期(少于1周)储存于4 ℃的环境中,必须加入NaN3作防腐剂,理想质量浓度为0.1%(终浓度)[11-12]。

1.2 血液的采集与储存

收集血液于含有肝素的试管中来制备血浆;收集血液于不含肝素的试管中,冰上凝集来制备血清,离心(1 600 g,15 min,4 ℃),上清液冷冻储存于-40 ℃的环境中[10]。Teahan等报道血浆和血清必须尽快与血细胞分离,距离血液采集时间最好不要超过30 min,以降低血细胞代谢发生的可能性,但是收集血清时凝集时间必须足够长,建议最好不要超过35 min,于冰上凝集可以降低时间延长带来的影响。血浆和血清所含有的代谢物成分基本相同[13]。

2 尿液的前处理

2.1 NMR分析中尿液的前处理

如前所述,尿液pH值和离子强度的变化引起化学位移的变化是NMR测定中的首要问题。加入缓冲液一方面提供尽可能相同的pH环境,另一方面减少离子强度不同带来的化学位移的变化,文献[10]报道了尿液详细的预处理方法。首先配制pH7.4磷酸缓冲液:称取

28.85 g Na2HPO4、5.25 g NaH2PO4、1 mmol/L TSP d4 和3 mmol/L NaN3置于1 L容量瓶中,加入200 mL D2O,然后用水稀释至1 L,强烈震摇使盐全部溶解。400 μL尿液中加入200 μL磷酸缓冲液,离心(12 000 g,5 min,4 ℃),上清液550 μL转移至5 mm核磁管中。雄黄的安全性评价中采用了类似的方法:400 μL尿液中加入200 μL磷酸缓冲液(0.2 mol/L Na2HPO4/0.2 mol/L NaH2PO4,pH7.4),静置20 min,离心(3 500 g,5 min,4 ℃)。上清液500 μL加入50 μL TSP d4/D2O(1 mmol/L终浓度)[14]。Lauridsen等[11]报道对于一般的尿液样品缓冲液终浓度要达到0.3 mol/L,对于浓缩的样品要达到1 mol/L,才能较好地保持代谢物化学位移的一致性。上述磷酸缓冲液中,由于Na2HPO4·12H2O较低的水溶性(4.2 g/100 g,20 ℃),因此不可能实现高浓度的缓冲,缓冲液与尿样的比例为1∶2,这必然对样品进行了一定的稀释,从而降低了测定中的信噪比(SNR),而且低温储存时,Na2HPO4·12H2O容易析出。Xiao等报道了一种改进的缓冲体系:K2HPO4/NaH2PO4(pH 7.4,1.5 mol/L),缓冲液与尿样的比例为1∶10,可更好保持化学位移一致性,提高信噪比,减少样品稀释,并且可低温储存[8]。

2.2 LC MS分析中尿液的前处理

尿液中的成分主要是极性低分子量代谢物,同时含有少量的各种细胞、微量的大分子物质及磷酸盐、硫酸盐等各种盐类物质,这些都有可能对LC MS分析产生一定的影响。最简单的尿液处理方式是仅用0.22 μm分析滤膜过滤,这可以最大限度保留尿液中的代谢物

[15]。为降低尿液基质的干扰,也可以用蒸馏水进行稀释(1∶1~1∶4,体积比)[16-17],但有可能降低信号强度,部分低含量的代谢物可能检测不到[15]。综合考虑检测到的代谢物的数量、重现性及除去微量蛋白质和各种盐类物质的能力,Wong等建议尿液用甲醇(1∶1,体积比)进行稀释[18]。尿液可以先冷冻干燥然后用有机溶剂如甲醇进行提取,这种方法可以获得重现性比较高的结果,而且操作简单[19]。但是这种方法可能会改变尿液的代谢指纹,一方面是由于很难完全溶解冻干产品,另一方面是由于挥发性成分的丢失[11]。

2.3 GC MS分析中尿液的前处理

尿液中的大部分成分极性比较大而且没有挥发性,因此在进行GC MS分析前首先要对尿液进行衍生化处理。三甲基硅烷试剂只能用于非水系统,贾伟课题组采用氯甲酸乙酯(ECF))衍生化 GC MS方法测定大鼠尿液中的内源性代谢物,该方法经多次检验,重复性好、灵敏度高,适用于代谢组学研究的高通量尿液样本检测[20-22]。

3 血液的前处理

3.1 NMR分析中血液的前处理

文献[10,23,24]报道了血液详细的预处理方法。首先配制质量浓度0.9%的生理盐水:称取9 g NaCl置于1 L容量瓶中,加入100 mL D2O,然后用水稀释至1 L,强烈振摇使盐全部溶解。200 μL血液中加入400 μL生理盐水,离心(12 000 g, 5 min, 4 ℃),上清液550 μL转移至5 mm核磁管中。雄黄的安全性评价中采用了与尿液类似的处理方法:400 μL血液中加入50 μL磷酸缓冲液(0.2 mol/L

Na2HPO4/0.2 mol/L NaH2PO4,pH7.4)和50 μL D2O [14]。

3.2 LC MS分析中血液的前处理

首要的问题是除去血液中的蛋白质等大分子物质,一般常用有机溶剂沉淀法如甲醇或乙腈(3∶1,体积比),Bruce等利用一种全新的两步实验设计法,首先确定了最佳的沉淀剂为甲醇/乙醇(1∶1,体积比)、甲醇/乙腈/丙酮(1∶1∶1,体积比),与血液样品的体积比为4∶1,然后确定了最佳的旋涡温度和时间分别为 4 ℃、15 min[9]。Michopoulos等发展了一种适合于高通量分析的固相萃取(SPE)除蛋白质的方法,在代谢组学研究中其效果优于有机溶剂沉淀法[25]。

3.3 GC MS分析中血液的前处理

如同尿液一样在进行GC MS分析前首先要对血液进行衍生化处理。黄欣等采用N甲基(三甲基硅烷基)三氟乙酰胺(MSTFA)和三甲基氯硅烷(TMCS)(100∶1,体积比)作为衍生化试剂[26]。

4 讨论

代谢组学的最终目标是对特定生物样品中所有代谢组分进行定性和定量分析,目前看来还是不可完成的任务。尿液和血液因为其固有的性质,必然会对NMR和LC MS的分析产生各种不利的影响,因此,在分析前利用适当的方法对样品进行预处理以消除不利因素的影响就显得十分有必要,这也为后续的多变量数据分析、标记物识别和代谢途径分析等奠定了良好的基础。系统生物学尤其是代谢组学的出现,为利用现代生物学“语言”阐释传统中医药理论提供了可能,以系统“整体性”观念为出发点,采用近乎无创伤的实验手段和代表整

体功能状态的实验对象(采集尿液和血液),结合现代分析技术和多变量统计分析方法,必将搭建传统中医药和现代医学之间的“桥梁”,推动中药现代化进程,并让国际社会逐渐接受和认同中医药理论体系,最终建立兼容中西医之长的现代生物医学模式。

【参考文献】

[1] 王广基,查伟斌,郝海平,等. 代谢组学技术在中医药关键科学问题研究中的应用前景分析[J]. 中国天然药物,2008,6(2):89-97.

[2] 邹忠杰,袁经权,龚梦鹃,等. 代谢组学技术在中药研究中的应用. 广东药学院学报,2009,25(4): 424-428.

[3] LAO Yongming,JIANG Jianguo,YAN Lu. Application of metabonomic analytical techniques in the modernization and toxicology research of traditional Chinese medicine[J]. Br J Pharmacol,2009,157(7):1 128-1 141.

[4] KIM H K,CHOI Y H,VERPOORTE R. NMR based metabolomic analysis of plants[J]. Nat Protoc,2010,5(3):536-549.

[5] BECKONERT O,COEN M,KEUN H C,et al.

High resolution magic angle spinning NMR spectroscopy for metabolic profiling of intact tissues[J]. Nat Protoc,2010,5(6):1019-1032.

[6] LINDON J C,NICHOLSON J K. Spectroscopic and statistical techniques for information recovery in metabonomics and metabolomics[J]. Annu Rev Anal Chem,2008,1:45-69.

[7] LISEC J,SCHAUER N,KOPKA J,et al. Gas chroma tography mass spectrometry based metabolite profiling in plants[J]. Nat Protoc,2006,1(1):387-396.

[8] XIAO Chaoni,HAO Fuhua,QIN Xiaorong,et al. An optimized buffer system for NMR based urinary metabonomics with effective pH control,chemical shift consistency and dilution minimization[J]. Analyst,2009,134(5):916-925.

[9] BRUCE S J,TAVAZZI I,PARISOD V,et al. Investigation of human blood plasma sample preparation for performing metabolomics using ultrahigh performance liquid chromatography/mass mpectrometry[J]. Anal Chem,2009,81(9):3

285-3 296.

[10] BECKONERT O,KEUN H C,EBBELS T M,et al. Metabolic profiling,metabolomic and metabonomic procedures for NMR spectroscopy of urine,plasma,serum and tissue extracts[J]. Nat Protoc,2007,2(11):2692-2703.

[11] LAURIDSEN M,HANSEN S H,JAROSZEWSKI J W,et al. Human urine as test material in 1H NMR based metabonomics: recommendations for sample preparation and storage[J]. Anal Chem, 2007,79(3):1181-1186.

[12] MAHER A D,ZIRAH S F M,HOLMES E,et al. Experimental and analytical variation in human urine in 1H NMR spectroscopy based metabolic phenotyping studies[J]. Anal Chem,2007,79(14):5204-5211.

[13] TEAHAN O,GAMBLE S,HOLMES E,et al. Impact of analytical bias in metabonomic studies of human blood serum and plasma[J]. Anal Chem,2006,78(13):4307-4318.

[14] WEI Lai,LIAO Peiqiu,WU Huifeng,et al. Metabolic

profiling studies on the toxicological effects of realgar in rats by 1H NMR spectroscopy[J]. Toxicol Appl Pharmacol,2009,234(3):314-325.

[15] WAYBRIGHT T J,VAN Q N,MUSCHIK G M,et al. LC MS in metabonomics: Optimization of experimental conditions for the analysis of metabolites in human urine[J]. J Liq Chromatogr Relat Technol,2006,29(17-20):2475-2497.

[16] ZHAO Xinjie,ZHANG Yi,MENG Xianli,et al. Effect of

a traditional Chinese medicine preparation Xindi soft capsule on rat model of acute blood stasis: a urinary metabonomics study based on liquid chromatography mass spectrometry[J]. J Chromatogr B,2008,873(2):151-158.

[17] GIRI S,KRAUSZ K W,IDLE J R,et al. The metabolomics of (+/-)arecoline 1oxide in the mouse and its formation by human flavin containing monooxygenases[J]. Biochem Pharmacol, 2007,73(4):561-573.

[18] WONG M C Y,LEEA W T K,WONG J S Y,et al. An approach towards method development for untargeted urinary metabolite

profiling in metabonomic research using UPLC/QToF MS[J]. J Chromatogr B,2008,871(2):341-348.

[19] XIE Baogang,GONG Tao,GAO Rong,et al.Development of rat urinary HPLC UV profiling for metabonomic study on Liuwei Dihuang Pills[J]. J Pharm Biomed Anal, 2009,49(2):492-497.

[20] QIU Y,SU M,LIU Y,et al. Application of ethyl chloroformate derivatization for gas chromatography mass spectrometry based metabonomic profiling[J]. Anal Chim Acta,2007,583(2):277-283.

[21] DAI Yuntao,LI Zhenyu,XUE Liming,et al. Metabolomics study on the anti depression effect of xiaoyaosan on rat model of chronic unpredictable mild stress[J]. J Ethnopharmacol, 2010,128(2):482-489.

[22] WANG Xiaoyan,ZHAO Tie,QIU Yunping,et al. Metabonomics approach to understanding acute and chronic stress in rat models[J]. J Proteome Res,2009,8(5):2511-2518.

[23] BRINDLE J T,ANTTI H,HOLMES E,et al. Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H NMR based metabonomics[J]. Nat Med, 2002,8(12):1439-1444.

[24] DING Lina,HAO Fuhua,SHI Zhimin,et al. Systems biological responses to chronic perfluorododecanoic acid exposure by integrated metabonomic and transcriptomic studies[J]. J Proteome Res, 2009,8(6):2882-2891.

[25] MICHOPOULOS F,LAI L,GIKA H,et al. UPLC MS based analysis of human plasma for metabonomics using solvent precipitation or solid phase extraction[J]. J Proteome Res,2009,8(4):2114-2121.

[26] 黄欣,龚益飞,虞科,等. 基于气相气谱质谱的代谢组学方法研究四氯化碳致小鼠急性肝损伤[J]. 分析化学,2007,35(12):1736-1740.

生物样品定量分析方法验证指导原则

9012 生物样品定量分析方法验证指导原则
1. 范围
准确测定生物基质(如全血、血清、血浆、尿)中的药物浓度,对于药物和 制剂研发非常重要。这些数据可被用于支持药品的安全性和有效性,或根据毒动 学、药动学和生物等效性试验的结果做出关键性决定。因此,必须完整地验证和 记录应用的生物分析方法,以获得可靠的结果。
本指导原则提供生物分析方法验证的要求,也涉及非临床或临床试验样品实 际分析的基本要求,以及何时可以使用部分验证或交叉验证,来替代完整验证。
生物样品定量分析方法验证和试验样品分析应符合本指导原则的技术要求。 应该在相应的生物样品分析中遵守 GLP 原则或 GCP 原则。
2. 生物分析方法验证
2.1 分析方法的完整验证
分析方法验证的主要目的是,证明特定方法对于测定在某种生物基质中分析 物浓度的可靠性。此外,方法验证应采用与试验样品相同的抗凝剂。一般应对每 个物种和每种基质进行完整验证。当难于获得相同的基质时,可以采用适当基质 替代,但要说明理由。
一个生物分析方法的主要特征包括:选择性、定量下限、响应函数和校正范 围(标准曲线性能)、准确度、精密度、基质效应、分析物在生物基质以及溶液 中储存和处理全过程中的稳定性。
有时可能需要测定多个分析物。这可能涉及两种不同的药物,也可能涉及一 个母体药物及其代谢物,或一个药物的对映体或异构体。在这些情况下,验证和 分析的原则适用于所有涉及的分析物。
对照标准物质 在方法验证中,含有分析物对照标准物质的溶液将被加入到空白生物基质 中。此外,色谱方法通常使用适当的内标。 应该从可追溯的来源获得对照标准物质。应该科学论证对照标准物质的适用 性。分析证书应该确认对照标准物质的纯度,并提供储存条件、失效日期和批号。 对于内标,只要能证明其适用性即可,例如显示该物质本身或其相关的任何杂质 不产生干扰。 当在生物分析方法中使用质谱检测时,推荐尽可能使用稳定同位素标记的内 标。它们必须具有足够高的同位素纯度,并且不发生同位素交换反应,以避免结 果的偏差。
1

代谢组学的研究方法和研究流程

代谢组学的研究方法和研究流程分子微生物学112300003林兵 随着人类基因组计划等重大科学项目的实施,基因组学、转录组学及蛋白质组学在研究人类生命科学的过程中发挥了重要的作用,与此同时, 代谢组学(metabolomics)在20世纪90年代中期产生并迅速地发展起来,与基因组学、转录组学、蛋白质组学共同组成系统生物学。基因组学、转录组学、蛋白质组学和代谢组学等各种组学0在生命科学领域中发挥了重要的作用,它们分别从调控生命过程的不同层面进行研究, 使人们能够从分子水平研究生命现象, 探讨生命的本质, 逐步系统地认识生命发展的规律.这些组学手段加上生物信息学, 成为系统生物学的重要组成部分。 代谢组学的出现和发展是必要的, 同时也是必须的。对于基因组学和蛋白质组学在生命科学研究中的缺点和不足, 代谢组学正好可以进行弥补。代谢组学研究的是生命个体对外源性物质(药物或毒物)的刺激、环境变化或遗传修饰所做出的所有代谢应答, 并且检测这种应答的全貌及其动态变化。代谢组学方法为生命科学的发展提供了有力的现代化实验技术手段, 同时也为新药临床前安全性评价与实践提供了新的技术支持与保障. 1 代谢组学的概念及发展 代谢组学最初是由英国帝国理工大学Jeremy N icholson教授提出的,他认为代谢组学是将人体作为一个完整的系统,机体的生理病理过程作为一个动态的系统来研究, 并且将代谢组学定义为生物体对病理生理或基因修饰等刺激产生的代谢物质动态应答的定量测定。2000年,德国马普所的Fiehn等提出了代谢组学的概念,但是与N ichols on提出的代谢组学不同, 他是将代谢组学定位为一个静态的过程,也可以称为/代谢物组学, 即对限定条件下的特定生物样品中所有代谢产物的定性定量分析。同时Fiehn还将代谢组学按照研究目的的不同分为4类: 代谢物靶标分析,代谢轮廓(谱)分析, 代谢组学,代谢指纹分析。现在代谢组学在国内外的研究都在迅速地发展, 科学家们对代谢组学这一概念也进行了完善, 作出了科学的定义: 代谢组学是对一个生物系统的细胞在给定时间和条件下所有小分子代谢物质的定性定量分析,从而定量描述生物内源性代谢物质的整体及其对内因和外因变化应答规律的科学。 与基因组学、转录组学、蛋白质组学相同, 代谢组学的主要研究思想是全局观点。与传统的代谢研究相比, 代谢组学融合了物理学、生物学及分析化学等多学科知识, 利用现代化的先进的仪器联用分析技术对机体在特定的条件下整个代谢产物谱的变化进行检测,并通过特殊的多元统计分析方法研究整体的生物学功能状况。由于代谢组学的研究对象是人体或动物体的所有代谢产物, 而这些代谢产物的产生都是由机体的内源性物质发生反应生成的,因此,代谢产物的变化也就揭示了内源性物质或是基因水平的变化,这使研究对象从微观的基因变为宏观的代谢物,宏观代谢表型的研究使得科学研究的对象范围缩小而且更加直观,易于理解, 这点也是代谢组学研究的优势之一. 代谢组学的优势主要包括:对机体损伤小,所得到的信息量大,相对于基因组学和蛋白质组学检测更加容易。由于代谢组学发展的时间较短, 并且由于代谢组学的分析对象是无偏向性的样品中所有的小分子物质,因此对分析手段的要求比较高, 在数据处理和模式识别上也不成熟,存在一些不足之处。同时生物体代谢物组变化快, 稳定性较难控制,当机体的生理和药理效应超敏时,受试物即使没有相关毒性,也可能引起明显的代谢变化,导致假阳性结果。 代谢组学应用领域大致可以分为以下7个方面:

代谢组学的数据分析技术

代谢组学的数据分析技术 摘要:代谢组学是效仿基因组学和蛋白质组学的研究思想,对生物体内所有代谢物进行定量分析,并寻找代谢物与生理病理变化的相对关系的研究方式,是系统生物学的组成部分。其研究对象大都是相对分子质量1000以内的小分子物质。先进分析检测技术结合模式识别和专家系统等计算分析方法是代谢组学研究的基本方法。文章主要综述了将代谢组学中的图谱、数据信息转换为相应的参数所采用的分析方法。 关键词:代谢组学;数据分析方法 代谢组学是以代谢物分析的整体方法来研究功能蛋白如何产生能量和处理体内物质,评价细胞和体液内源性和外源性代谢物浓度及功能关系的新兴学科,是系统生物学的重要组成部分,其相应的研究能反映基因组、转录组和蛋白组受内外环境影响后相互协调作用的最终结果,更接近反映细胞或生物的表型,因此被越来越广泛地应用。而代谢组学的数据分析包括预处理和统计分析方法,多元统计分析方法主要分为两大类:非监督和监督方法,非监督方法包括主成分分析PCA;聚类分析CA等;监督方法包括显著性分析、偏最小二乘法等,本文就是主要综述代谢组学图谱信息转化为参数信息所采用的数据分析方法。 1预处理 数据的预处理过程包括以下:谱图的处理;生成原始的数据矩阵;数据的归一化以及标准化处理过程。针对实验性质、条件以及样品等因素采用不同的预处理方法。在实际应用过程中,预处理可以通过实验系统自带的软件如XCMS软件。进行,因此一般较容易获得所需的数据形式。 2数据分析方法 2.1 主成分分析PCA是多元统计中最常用的一种方法,它是在最大程度上提取原始信息的同时对数据进行降维处理的过程,其目的是将分散的信息集中到几个综合指标即主成分上,有助于简化分析和多维数据的可视化,进而通过主成分来描述机体代谢变化的情况。PCA 的具体过程是通过一种空间转换,形成新的样本集,按照贡献率的大小进行排序,贡献率最大的称为第一主成分,依次类推。经验指出,当累计贡献率大于85%时所提取的主成分就能代表原始数据的绝大多数信息,可停止提取主成分。在代谢组数据处理中,PCA是最早且广泛使用的多变量模式识别方法之一。,具有不损失样品基本信息、对原始数据进行降维处理的同时避免原始数据的共线性问题等优点,但在实际应用过程中,PCA存在着自身的缺点[1]:离群样本点的存在严重影响其生物标志物的寻找;非保守性的代谢组分扰乱正确的分类以及尺度的差异影响小浓度组分的表现等,其他的问题之前也有讨论[2]。针对PCA 的缺陷采用了不同的改进措施,与此同时,为了简化计算,侯咏佳等[3]。提出了一种主成分分析算法的FPGA实现方案,通过Givens算法和CORD IC算法的矢量旋转,用简单的移位和加法操作来实现协方差矩阵的特征分析,只需计算上三角元素,因此计算复杂度小、迭代收敛速度快。 2.2 聚类分析CA是用多元统计技术进行分类的一种方法。其主要原理是:利用同类样本应彼此相似,相类似的样本在多维空间里的彼此距离应较小,而不同类的样本在多维空间里的

生物等效性实验生物样品处理注意事项(严)知识讲解

生物等效性实验生物样品处理注意事项(严)

生物等效性实验生物样品处理注意事项一、样品采集后的的处理和贮存 鉴于生物样本的特点,为了避免样品中被测药物发生分解或产生其他化学变化,取样后最好立即进行分析测定,但实际工作中几乎无法做到,常需将收集到的样品冷藏、冰冻,临用前再融化并放至室温后使用。在样本冷冻贮藏前,需及时进行处理。 1.1血液样本处理注意事项 1.1.1. 在肌肉注射或静脉输含有葡萄糖或电解质(含钾、钠、氯离子)的液体时,建议3小时以后采集静脉血样本进行这些项目的检验,以防止上述检验项目因输液引起的假性升高。 1.1.2保定非麻醉状态的动物时应尽量避免用力挤压动物头颈和胸腹,以免引起血液淤滞,局部组织缺氧,造成血液某些成分的改变,特别是测定乳酸,血液含氧量等指标时。 1.1.3血液中红细胞内外成分有很大差异,溶血可造成红细胞内的物质向细胞外转移,如K+、Mg2+和某些酶类(LD、AST、ALT、ACP);另外,溶血还可干扰某些化学项目(TBil、DBil、TC等)的测定,严重影响结果的准确性,血样本应防止溶血。引起溶血的原因有:注射器采血时抽吸力太大;血液与抗凝剂比例失调;混匀样本时过度振荡;注射器或采血容器带水或容器污染;全血放置时间长或突然受冷或受热;注射器中的血沫注入采血容器;真空采血时如未

采满至相应刻度,残存负压造成红细胞破裂;不拔针头直接注入采血容器;样本离心时离心力过大等。为避免溶血,取血时应注意: ①、抽拉注射器时应尽量避免注射器内产生大量真空; ②、添加抗凝剂后的容器在除必要干燥流程后应及时密封; ③、混匀样本时避免用力过度,切勿产生泡沫; ④、避免重复使用注射器、针头、采血管、毛细玻璃管等一次性用品,手术刀片和剪刀等器材取材时尽量洗去残留血液; ⑤、采血时的室温应控制在22℃至25℃,采取的血液容器在需要放入冰盒时,切勿紧贴冰袋,冰水; ⑥、当注射器内因吸入空气产生血沫时,注意弃掉血沫,在将血液注入采血容器时勿将血沫一并注入; ⑦、使用真空采血管需抽取负压时切勿过量; ⑧、将血液注入采血容器时要除去针头,轻柔推入; ⑨、离心带有血细胞的血样时,按照规格设定离心参数; 1.1.4. 正确选择采集管。通常情况下多采用血清为样本(不抗凝),部分检测项目需注意样本属性为血清或血浆,两者不可替代。一些特殊检验项目需要使用抗凝剂时,应注意选择合适的抗凝剂并注意抗凝剂与血液的比例,以防止样本凝血或红细胞形态的改变;抗凝血样本采集后立即轻轻摇匀至少上下颠倒8次,以防凝血发生。 1.1.5. 多项化验采血顺序:血培养瓶(厌氧瓶优先)→蓝帽管→黑帽管→红/黄帽管→绿帽管→紫帽管→灰帽管→其他。

药用植物代谢组学的研究进展

药用植物代谢组学的研究进展 【摘要】从技术步骤、分析方法以及实际应用三个方面对当前药用植物代谢组学研究领域的一些理论问题和实践中面临的挑战进行综述。 【关键词】药用植物;代谢组学;功能基因组学 代谢组学是对生物体内代谢物进行大规模分析的一项技术[1],它是系统生物学的重要组成部分(如图1所示),药用植物代谢组学主要研究外界因素变化对植物所造成的影响,如气候变化、营养胁迫、生物胁迫,以及基因的突变和重组等引起的微小变化,是物种表型分析最强有力的工具之一。在现代中药研究中,代谢组学在药物有效性和安全性、中药资源和质量控制研究等方面具有重要理论意义和应用价值。另外,在对模式植物突变体文库或转基因文库进行分析之前,代谢组学往往是首先考虑采用的研究方法之一。目前,国外已有成功利用代谢组学技术对拟南芥突变株进行大规模基因筛选的例子,这为与重要性状相关基因功能的阐明和选育可供商业化利用的转基因作物奠定了基础 目前,还有许多经济作物的全基因组测序计划尚未完成,由于代谢组学研究并不要求对基因组信息的了解,所以在与这些作物有关的研究领域具有更大的利用价值,这也是其与转录组学和蛋白组学研究相比的优势之一。代谢组学研究涉及与生物技术、分析化学、有机化学、化学计量学和信息学相关的大量知识,Fiehn[2]对代谢组学有关的研究方向进行了分类(见表1)。 1代谢组学研究的技术步骤 代谢组学研究涉及的技术步骤主要包括植物栽培、样本制备、衍生化、分离纯化和数据分析5个方面(见图2)。 1.1植物栽培 对研究对象进行培育的目的是为了对样本的稳定性进行控制,相对于微生物和动物而言,植物的人工栽培需要考 表1代谢组学的分类及定义略 虑更多的问题,如中药材在不同年龄、不同发育阶段、不同部位以及光照、水肥、耕作等环境因素的微小差异都可引起生理状态的变化,而这些非可控及可控双重因素的影响很难进行精确的控制,从而影响药用植物代谢组研究的重复性。为了解决以上问题,推荐使用大容量的培养箱[3],定时更换培养箱中栽培对象的位置,以及使用无土栽培技术等,Fukusaki E[4]利用无土栽培系统将水和养分直接引入植物根部,并且对供给量进行精确地控制,大大提高了实验的重复性。 1.2样本制备 为了获得稳定的实验结果,样本制备需要考虑样本的生长、取样的时间和地点、取样量以及样本的处理方法等问题,并根据分析对象的分子结构、溶解性、极性等理化性质及其相对含量大小对提取和分离的方法进行选择,逐一优化试验方案。Maharjan RP等[5]用6种方法分别对大肠杆菌中代谢产物进行提取,发现用-40℃甲醇进行提取的效果最好。现阶段代谢组学的分析对象主要集中在亲水性小分子,尤其是初级代谢产物,气相色谱 质谱联用(GC MS)和毛细管电泳 质谱(CE MS)联用都是分析亲水小分子的重要技术。Fiehn O等[6]使用GC MS 对拟南芥叶片中的亲水小分子进行了分析,发现酒石酸半缩醛、柠苹酸、别苏氨酸、羟基乙酸等15种植物代谢物。 1.3衍生化处理 对目标代谢产物的衍生化处理取决于所使用的分析设备,GC MS系统只适

代谢组学在医药领域的应用与进展

代谢组学在医药领域的应用与进展 一、学习指导 1.学习代谢组学的概念及内涵,掌握代谢组学的研究对象与分析方法。 2.熟悉代谢组学数据分析技术手段 3.了解代谢组学优势特点 4.了解代谢组学在医药领域的应用 5.了解代谢组学发展趋势 二、正文 基因组功能解析是后基因组时代生命科学研究的热点之一,由于基因功能的复杂性和生物系统的完整性,必然要从“整体”层面上来理解构成生物体系的各个模块功能。随着新的测量技术、高通量的分析方法、先进的信息科学和系统科学新理论的发展,加上生物学研究的深入和生物信息的大量积累,使得在系统水平上研究由分子生物学发现的组件所构成的生命体系成为可能[1]。系统生物学家们认为,将生命科学上升为“综合”科学的时机已经成熟,生命科学再次回到整合性研究的新高度,逐步由分子生物学时代进入到系统生物学时代[2]。系统生物学不同以往的实验生物学仅关注个别基因和蛋白质,它要研究所有基因、蛋白质,代谢物等组分间的所有相互关系,通过整合各组成成分的信息,以数学方法建立模型描述系统结构[3,4]。 (一)代谢组学的概念及内涵 代谢组学是继基因组学、转录组学和蛋白质组学之后,系统生物学的重要组成部分,也是目前组学领域研究的热点之一。代谢组学术语在国际上有两个英文名,即metabolomics 和metabonomics。Metabolomics是由德国的植物学家Fiehn等通过对植物代谢物研究提出来的,认为代谢组学(metabolomics)是定性和定量分析单个细胞或单一类型细胞的代谢调控和代谢流中所有低分子量代谢产物,从而监测机体或活细胞中化学变化的一门科学[5]。英国Nicholson研究小组从毒理学角度分析大鼠尿液成份时提出了代谢组学(Metabonomics)的概念,认为代谢组学是通过考察生物体系受扰动或刺激后(如某个特定基因变异或环境变化后),其代谢产物的变化或代谢产物随时间的变化来研究生物体系的代谢途径的一种技术[6]。国内的代谢组学研究小组基本用metabonomics一词来表示“代谢组学”。严格地说,代谢组学所研究的对象应该包括生物系统中所有的代谢产物。但由于实际分析手段的局限性,只对各种代谢路径底物和产物的小分子物质(MW<1Kd)进行测定和分析。 (二)代谢组学优势特点 代谢组学作为系统生物学的一个重要组成部分,代谢组可以更好地反映体系表型生物机体是一个动态的、多因素综合调控的复杂体系,在从基因到性状的生物信息传递链中,机体需通过不断调节自身复杂的代谢网络来维持系统内部以及与外界环境的正常动态平衡[7]。

浅析代谢组学技术在中药研究中的应用

浅析代谢组学技术在中药研究中的应用 摘要:人类对复杂生命体的认识循着从器官/组织、细胞到基因的方式,现在又回到了以整体性研究为特点的系统生物学(system Biology)的时代,其鲜明的特征是各种“组学”(-omics)研究的繁荣。代谢组学(metabonomics)是继基因组学(genomics)、转录组学(transcriptomics)和蛋白质组学(proteomics)后新兴的一种组学方法,是系统生物学的重要组成部分,由Nicholson于1999年首次提出。代谢组学研究的核心思想在于利用现代分析技术定量测定生物体液(如尿液、血浆、组织提取液等)中的内源性代谢产物,考察生物体在不同状态下(生理病理状态、给药前后等)其代谢产物的变化,通过代谢物图的整体分析直接认识生理病理及生化状态,结合化学信息学分析方法确定内源性小分子代谢物成分的变化模式,获得相应的生物标记物群(biomarkers),表征或揭示生物体在特定时间、环境下整体的功能状态[1,2]。其后又出现了针对植物的代谢组学研究(metabolomics)。如今代谢组学已在药物毒性及安全性评价、疑难疾病诊断、新药研发及药物作用机制研究等生命科学的多个领域展示了广阔的应用前景[4,5]。 关键词:代谢组学技术;中药研究;应用 完整的代谢组学分析流程应包括样品的采集、预处理、仪器分析与鉴定、数据分析及生物标记物意义解读,最终认识机体生化反应机理和生命现象。主要研究手段包括核磁共振谱(NMR)、气相色谱-质谱和液相色谱-质谱等各种高通量、高分辨、高灵敏度的谱学技术,特别是 以其灵敏度高、分析速度快、样品无需衍生化等优点,受到众多研究者的关注。主成分分析(PCA) 及偏最小二乘法判别分析等多元模式识别方法 是代谢组学常用的数据降维和信息挖掘方法。 中药“多组分、多靶点、整合调节作用”的特点及中医药理论的“整体观、动态观、辨证观”与代谢组学整体性、系统性、综合性相吻合。因此,以代谢组学为主体的系统生物学研究方法可能是现代科学中可以概括中医药抽象整体观 思想的重要途径。作者遴选了近年来国内外学者在中药代谢组学研究领域颇具代表性的论文作一综述,希望能够为读者提供一定参考。 1 代谢组学技术在现代中药研究中的应用 代谢组学与中医证候模型的研究 辨证论治是中医药的特色与精华,“证”是机体在疾病发展过程中某一阶段的病理概括。建立中医“证”动物模型是开展符合中医药理论药效评价的重要

中药代谢组学研究中生物样品前处理方法

中药代谢组学研究中生物样品前处理方 法 (作者:_________ 单位:___________ 邮编:___________ ) 作者:邹忠杰,梁生旺,袁经权,龚梦鹃 【摘要】总结中药代谢组学研究中生物样品(尿液、血液)的前处理 方法,主要包括:尿液中加入缓冲液提供相同的pH值和离子强度, 保持代谢物化学位移的恒定。利用有机溶剂沉淀法除去血液中的大分子物质,增加色谱柱的性能和使用寿命。血液和尿液样品在进行GC'MS分析前要进行衍生化处理。同时,对尿液和血液的采集与储存方法进行了总结。 【关键词】中药;代谢组学;样品前处理 Abstract: In order to reduce the chemical shift variati on ,the pH and the con siste ncy of io nic stre ngth were con trolled by add ing buffer to uri ne samples. In an alysis of blood,efficie nt removal of macromolecules such as protei ns by orga nic solve nt precipitatio n before injectio n in to an analytical LC column was important in enhancing the performanee and extending column lifetime. Sample derivatization of blood

sample and urine sample before GC:MSanalysis was needed. And methods of collecti on and storage of urine and blood samples were also reviewed. Key words:traditional Chinese medicine; metabonomics; pretreatme nt 代谢组学(metabonomics)是继基因组学、转录组学和蛋白质组学后新兴的一种组学方法,是系统生物学的重要组成部分。中药“多组分、多靶点、整合调节作用”的特点与代谢组学整体性、系统性、综合性相吻合。因此,以代谢组学为主体的系统生物学研究方法可能是现代科学中可以概括中医药抽象整体观思想的重要途径。王广基等对 代谢组学技术在中医药关键科学问题研究中的应用前景进行了分析[1]。作者综述了代谢组学技术在中药整体疗效、作用机制及安全性等研究中的应用[2]。 代谢组学研究中的分析手段主要包括核磁共振谱(NMR)气相色谱拟质谱(GC以MS和液相色谱拟质谱(LC拟MS)等各种高通量、高分辨、高灵敏度的谱学技术[3]。NMR由于其具有很高的重现性、一次实验中实现对各种化合物的同时测定、信号强度与其摩尔浓度成正比,可以很容易进行定量分析、借助各种2D A N MR技术可以在对复杂样品不进行进一步分离的前提下实现结构鉴定等诸多优点而被广泛应用[4]。高分辨魔角旋转核磁共振技术(high拟resolution magic拟angle拟spinning NMF^pectroscopy)可以使研究者不经过提取等繁琐的步骤直接对完整的组织进行测定[5]。L C):MS特

代谢组学综述

代谢组学综述 摘要:代谢组学是20世纪90年代中期发展起来的对某一生物或细胞所有低相对分子质量代谢产物进行定性和定量分析的一门新学科,由于其广泛的应用前景,目前已成为系统生物学的重要组成部分。现简要介绍了代谢组学的含义、代谢组学研究的历史沿革、当前代谢组学研究中的分析技术、数据解析方法,综述了代谢组学在药物毒理学研究、疾病诊断、植物和中药等领域的应用情况,并对当前代谢组学研究中存在的问题及发展趋势进行探讨。 关键词:代谢组学研究技术 随着人类基因组计划等重大科学项目的实施,基因组学、转录组学及蛋白质组学在研究人类生命科学的过程中发挥了重要的作用, 与此同时, 代谢组学(metabolomics)在20世纪90年代中期产生并迅速地发展起来, 与基因组学、转录组学、蛋白质组学共同组成系统生物学。基因组学、转录组学、蛋白质组学和代谢组学等各种组学0在生命科学领域中发挥了重要的作用, 它们分别从调控生命过程的不同层面进行研究, 使人们能够从分子水平研究生命现象, 探讨生命的本质, 逐步系统地认识生命发展的规律。这些组学手段加上生物信息学, 成为系统生物学的重要组成部分。 代谢组学的出现和发展是必要的, 同时也是必须的。对于基因组学和蛋白质组学在生命科学研究中的缺点和不足, 代谢组学正好可以进行弥补。代谢组学研究的是生命个体对外源性物质(药物或毒物)的刺激、环境变化或遗传修饰所做出的所有代谢应答, 并且检测这种应答的全貌及其动态变化。代谢组学方法为生命科学的发展提供了有力的现代化实验技术手段, 同时也为新药临床前安全性评价与实践提供了新的技术支持与保障。 1 代谢组学的概念及发展 代谢组学最初是由英国帝国理工大学Jeremy N icholson教授提出的, 他认为代谢组学是将人体作为一个完整的系统, 机体的生理病理过程作为一个动态的系统来研究, 并且将代谢组学定义为生物体对病理生理或基因修饰等刺激产生的代谢物质动态应答的定量测定。2000年, 德国马普所的Fiehn等提出了代谢组学的概念, 但是与N icholson提出的代谢组学不同, 他是将代谢组学定位为一个静态的过程, 也可以称为/代谢物组学, 即对限定条件下的特定生物样品中所有代

代谢组学研究中数据处理新方法的应用

代谢组学研究中数据处理新方法的应用 李 晶1 ,吴晓健1 ,刘昌孝 1,23 ,元英进 1 (1.天津大学化工学院制药工程系,天津300072; 2.天津药物研究院药物动力学与药效动力学省部共建国家重点实验室,天津300193) 摘要:目的 探索代谢组学研究中数据处理的新方法。方法 本文提出了在代谢组学数据预处理中,用稳健 PCA 的方法进行离群样品点的诊断,用变量的类内差异和类间差异的比较来判断非保守性代谢组分,用尺度同一化 的方法进行数据预处理来消除数据的尺度差异。并以A rabidopsis thaliana 属的四个基因型的植株代谢组学的数据为例,用以上的方法进行数据预处理后再用PC A 的方法分析。结果与结论 研究表明这三种数据预处理方法的应用会明显的改善代谢组学生物信息学分析中聚类分析的结果和生物标志物识别的准确性及全面性。 关键词:代谢组学;离群样本点诊断;非保守性代谢组分;数据尺度同一化;主成分分析法中图分类号:R969.1 文献标识码:A 文章编号:0513-4870(2006)01-0047-07 收稿日期:2005203220. 基金项目:科技部国家重点基础研究发展计划(973计划)资助 项目(2004CB518902);国家高技术研究发展计划(863计划)资助项目(2003AA2Z347D ). 3 通讯作者 Tel:86-22-23006863,Fax:86-22-23006860, E 2mail:liuchangxiao@https://www.sodocs.net/doc/fc17682224.html, Appli cati on of new method for dat a processi n g i n met abono m i c studi es L I J ing 1 ,WU Xiao 2jian 1 ,L I U Chang 2xiao 1,23 ,Y UAN Ying 2jin 1 (1.D epart m ent of Phar m aceutical Engineering,Institute of Che m ical Engineering,Tianjin U niversity,Tianjin 300072,China;2.S tate Key L aboratory of Phar m acokinetics and Phar m acodynam ics,T ianjin Institute of Phar m aceutical R esearch,Tianjin 300193,China ) Abstract:A i m T o search f or and app licati on of ne w method for data p r ocessing in metabonom ic studies .M ethods The paper p r oposed that in the p r ocessing of metabonom ic data,r obust PCA method can be used t o diagnose outliers;and unstable variables judged by comparis on bet w een difference within class and difference a mong classes should be excluded bef ore data analysis;moreover,the data should be p r operly scaled before further p r ocessing .The p r oposed methods were used t o p rep r ocess metabol om ic data of four genoty pes of the A rabidopsis tha liana p lants .Results and Conclusi on The outcome de monstrated that the app licati on of these methods can obvi ously i m p r ove clustering and bi omarker identifying results . Key words:metabol om ics;outlier diagnosis;unstable metabolite;data p re 2scaling;p rinci p le component analysis 代谢物组学是以代谢物分析的整体方法来研究功能蛋白如何产生能量和处理体内物质,其代谢物则以生化活性直接体现作用的结果,也就是说代谢物组学是评价细胞和体液的内源性和外源代谢物浓度与功能关系的学科[1~4] 。代谢物组学的出现,特别在药物安全性研究中的应用,认为该新兴的学科分支会对药物安全性研究产生革命性的影响。它与 药物的药效和毒性筛选和评价研究、作用机制研究和合理治疗用药密切相关。代谢物组是反应机体状况的分子集合,所有对机体健康影响的因素均可反映在代谢物组中,基因、环境、营养、药物(外源物)和时间(年龄)最终通过代谢物组对表达施加影响。代谢物组是评价健康和治疗的合适的分子集合。因 此研究代谢物组学对药物治疗有直接意义[4~9] 。 代谢组学是定量分析生物系统对机体反应或基因改变所产生的动态的、多参数应答的一项新发展 的技术[10] 。它可有效地应用于生物系统的机制研究及生物系统的生产优化研究中,代谢组学与代谢工程方法的联合在生物工程中的应用已显示出巨大 的潜力[11,12] 。代谢组学通常以核磁共振光谱 ? 74?药学学报Acta Phar maceutica Sinica 2006,41(1):47-53

生物样品分析方法验证指导原则- 欧洲

European Medicines Agency 7 Westferry Circus, Canary Wharf, London, E14 4HB, UK 1 2 3 London, 19 November 2009 Doc. Ref: EMEA/CHMP/EWP/192217/2009 COMMITTEE FOR MEDICINAL PRODUCTS FOR HUMAN USE 4 (CHMP) 5 6 DRAFT GUIDELINE ON VALIDATION OF BIOANALYTICAL METHODS 7 8 DRAFT AGREED BY THE EFFICACY WORKING PARTY September 2009 ADOPTION BY CHMP FOR RELEASE FOR CONSULTATION 19 November 2009 END OF CONSULTATION (DEADLINE FOR COMMENTS) 31 May 2010 9 Comments should be provided using this template to EWPSecretariat@emea.europa.eu 10 KEYWORDS CHMP, EMEA, Guideline, validation, bioanalytical method, analyses

GUIDELINE ON VALIDATION OF BIOANALYTICAL METHODS 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 TABLE OF CONTENTS 1.INTRODUCTION (BACKGROUND) (3) 2.SCOPE (3) 3.LEGAL BASIS (3) 4.METHOD VALIDATION (4) 4.1C OMPLETE VALIDATION OF AN ANALYTICAL METHOD (4) 4.1.1Selectivity (4) 4.1.2Carry-over (5) 4.1.3Lower limit of quantitation (5) 4.1.4Calibration curve (5) 4.1.5Accuracy (6) 4.1.6Precision (7) 4.1.7Dilution integrity (7) 4.1.8Matrix effect (7) 4.1.9Stability (8) 4.2P ARTIAL VALIDATION (9) 4.3C ROSS VALIDATION (9) 4.4L IGAND-BINDING ASSAYS (9) 5.ANALYSIS OF STUDY SAMPLES (10) 5.1A NALYTICAL RUN (11) 5.2A CCEPTANCE CRITERIA OF AN ANALYTICAL RUN (11) 5.3C ALIBRATION RANGE (12) 5.4R EANALYSIS OF STUDY SAMPLES (12) 5.5I NTEGRATION (13) 6.INCURRED SAMPLES REANALYSIS (13) 7.STUDY REPORT (13) DEFINITIONS (16)

代谢组学在中药药理研究中的应用

【摘要】笔者结合多年的工作经验,针对代谢组学在中药药理研究中的应用进行研究讨论,具体介绍了这种组学方法的特点,并得出以下相关结论,以供参考。 【关键词】代谢组学;中药药理;研究应用 0.引言 代谢组学当今一种全新的生物系统研究方法,其主要是对生物体系中的数量、代谢物质种类等进行研究分析。这种中医学方法在我国中药药理研究中得到了十分广泛的应用。通过采用先进的检测技术,以及相关专业的计算方法,以此来判断中药体内代谢组的变化规律,从而对中药的疗效和安全性进行评价。因此,本文针对代谢组学在中药药理研究中的应用进行探讨阐释,从而总结出一些自身的看法与观点。 1.在中药药效物质基础研究中的应用 随着药学技术的不断进步与发展,相关的组学方法也取得了较大的完善与改革。而代谢组学正是在这一发展过程中所累积的产物。自从其被提出以来,受到了我国中药医学界的高度关注,并对其进行了实质性的科研研究,尤其是在对中药药效物质基础方面,很多医学学者进行了深入的探索,并得到了十分显著的成果。在早期的医学研究过程中,已经有部分学者利用代谢组学法,以及先进的分析仪器来对黄芩苷体进行了实验研究,从中发现了三种不同的代谢产物,这就说明这三种化学结构在分解吸收后分别形成了代谢物质,而黄芩甘体则是代谢产物中的主体结构,从而共同组成了该中药的药效物质。 在对钩藤多动合剂的生物化学机制研究中,发现了具有疗效的生物标志物,并证明这种药物是通过调节单胺类神经递质的失衡而发挥作用。有学者对肾虚证的大鼠给予淫羊藿治疗,运用超高效液相色谱质谱结合主成分分析的方法研究发现淫羊藿苷和朝藿定可能为淫羊藿的主要药效物质基础。一些实验结果表明,尖萼耧斗菜的作用靶标与其他9种常用抗菌素一样都是作用于蛋白质的合成,发挥抗菌作用的主要活性物质可能是木兰碱。还有学者实验比较了款冬的花蕾和叶轴水提液对氨诱导的小鼠咳嗽的药效,通过对代谢物的lh―nmr光谱和多远数据分析发现,款冬花蕾的止咳和化痰功效可能与其高浓度的绿原酸、3,5咖啡酰奎宁酸及芸香苷相关。 2.在中药及中药复方作用机制研究中的应用 通常情况下,对于一些药效成分复杂的中药复方进行研究时,代谢组学方法反而能发挥更好的研究作用。因此,针对这一问题,我国某个药学学者就进行了相关的实验研究,通过利用先进的快速液相色谱串联离子阱飞行时间质谱技术对研究物的血液代谢物进行探索研究,从中发现研究物中的胆固醇代谢、氨基酸代谢、等代谢发生了较大的变化。 运用代谢组学的方法结合气相色谱一质谱(gc―ms)的检测手段探讨了下淤血汤对cc1诱导的肝纤维化大鼠的治疗作用机理,通过主成分分析(pca)、最小偏二乘法(pls-da)等模式识别方法,证明了cc1所致的代谢紊乱在下淤血汤的干预下得到恢复,鉴定了10个与调节能量代谢、微生物菌群、氨基酸及脂肪酸代谢相关的生物标志物。下淤血汤的作用机理可能包括这些过程。另外,对心气不足证的代谢组学特征和温心方对其治疗作用进行了实验研究,采用uplc―ms联用技术、多变量分析和数据库检索等方法,鉴定出了17个生物标志物,通路分析提示心气不足证的糖酵解、糖异生代谢,不饱和脂肪酸、脂肪酸及嘌呤的生物合成代谢网络被严重扰乱,而温心方通过调节多个通路紊乱至正常水平而具有潜在的药理作用。运用代谢组学方法对逍遥散抗抑郁的作用机制进行了实验研究,以核磁共振(nmr)结合多变量分析的方法对血浆代谢物组进行鉴定和分析,发现了11个潜在的生物标志物,且与对照组比较抑郁治疗组的氧化三甲胺、丙氨酸、羟基丁酸、缬氨酸、亮氨酸/异亮氨酸、低密度/极低密度脂蛋白和脂肪含量降低,卵磷脂、高密度脂蛋白、胆碱。 3.在中药安全性和毒性研究中的应用

代谢组学及其发展

代谢组学及其发展 摘要:代谢组学是上世纪九十年代中期发展起来的一门新兴学科,是系统 生物学的重要组成部分。它是关于生物体系内源代谢物质种类、数量及其变化规律的科学,研究生物整体、系统或器官的内源性代谢物质及其所受内在或外在因素的影响。 关键词:代谢组学,研究方法,组学运用,中药学 1 代谢组学 代谢组学(metabonomics/metabolomics)是效仿基因组学和蛋白质组学的研究思想,对生物体内所有代谢物进行定量分析,并寻找代谢物与生理病理变化的相对关系的研究方式,是系统生物学的组成部分。其研究对象大都是相对分子质量1000以内的小分子物质。先进分析检测技术结合模式识别和专家系统等计算分析方法是代谢组学研究的基本方法。 2代谢组学的研究方法 2.1研究范围 代谢组学主要研究的是作为各种代谢路径的底物和产物的小分子代谢物(MW<1000)。在食品安全领域,利用代谢组学工具发现农兽药等在动植物体内的相关生物标志物也是一个热点领。其样品主要是动植物的细胞和组织的提取液。 2.2常用的分析技术 主要技术手段是代谢组学以液相色谱一质谱(LC.MS)、气相色谱-质谱(GC.Ms)、核磁共振谱(NMR)等方法为主要研究手段[1.2.3],其中以NMR为主。通过检测一系列样品的NMR 谱图,再结合模式识别方法,可以判断出生物体的病理生理状态,并有可能找出与之相关的生物标志物(biomarker)。为相关预警信号提供一个预知平台。 据不同的研究对象和研究目的,Fiehn 将生物体系的代谢产物分析分为4个层次:(1)代谢物靶标分析对某个或某几个特定组分的分析。在这个层次中,需要采取一定的预处理技术除掉干扰物,以提高检测的灵敏度。(2)代谢轮廓(谱)分析对少数所预设的一些代谢产物的定量分析。如某一类结构、性质相关的化合物,某一代谢途径的所有中间产物或多条代谢途径的标志性组分。进行代谢轮廓(谱)分析时,可以充分利用这一类化合物的特有的化学性质,在样品的预处理和检测过程中,采用特定的技术来完成。(3)代谢组学是在限定条件下对特定生物样品中所有内源性代谢组分的定性和定量分析。进行代谢组学研究时,样品的预处理和检测技术必须满足对所有的代谢组分具有高灵敏度、高选择性、高通量的要求,而且基体干扰要小。代谢组学涉及的数据量非常大,因此需要有能对其数据进行解析的化学计量学技术。代谢组学的最终目标是解析所有的可见峰。(4)代谢指纹分析不具体鉴定单一组分,而是通过比较代谢物指纹图谱的差异对样品进行快速分类。 2.3数据处理平台 应用NMR或MS得到的代谢组学数据是海量的多变量数据信息,需要利用模式识别(PR,pattern recognition)技术进行多元数据分析,将数据降维,然后对样本分类或寻找生物标志物(biomarker),用来解释代谢表型(metabolic phenotypes)

代谢组学小常识

代谢组学小常识 概念: ?代谢组:指一个细胞、组织或器官中所有代谢物的集合, 包含一系列不同类型的小分子(通常分子量<1000), 比如肽、碳水化合物、脂类、核酸等。 ?代谢组学:通过考察生物体系(细胞、组织或生物体)受刺激或扰动后,其代谢产物的变化或其随时间的变化,来研究生物体系的一门科学。 实验流程:(以液质联用为基础的代谢组学为例) ?样本前处理:在保证小分子代谢物完整的前提下,处理的步骤越简单越好,以保证操作容易重复,也为大批量样本的处理节约时间。 ?数据采集:依据实验目的有所不同。 o非目标代谢组学:选用高分辨质谱仪(TOF,Orbitrap等),有助于检测到尽可能多的化合物,另外高分辨的质核比数据也有助于数据库检索以及化合物的鉴定。 o目标代谢组学:通常使用三重四极其杆质谱,提高检测的灵敏度以及定量的准确性。 ?数据预处理:峰提取,排列,归一化。 o多数质谱商家都提供了配套的预处理软件,例如安捷伦公司的MassHunter,热电的Sieve,沃特世的MarkerLynx以及Progenisis QI。 o同时也有一些基于网络的可以免费获取的软件。建议使用配套的软件,因为不需要额外的数据转换,不需要上传数据,节省时间。 ?数据分析:多元统计分析包括主成份分析(PCA),偏最小二乘判别分析(PLS-DA),正交偏最小二乘判别分析(OPLS-DA),聚类分析(HCA)等。各个厂商也提供了相应的统计分析软件,比如安捷伦的MPP,热电的Sieve,沃特世的Ezinfor。目前常用的第三方软件是Simca-p,同时也有一些网络的开源软件可以使用。 ?化合物鉴定:数据库检索,标准品对比,二级质谱对比。 代谢组学文章中常见的统计图(一) 主成分分析(PCA) PCA得分图(score plot),用来看样本天然的分组情况,在分析时不加任何分组信息。图中每一个点代表一个样本,样本在空间中所处的位置由其中所含有的代谢物的差异决定。 PCA载荷图(loading plot),用来寻找差异变量。同种的每一个点代表样本中还有的一个代谢物物,距离原点越远的代谢物被认为对样本的分类贡献越大。 偏最小二乘判别分析(PLS-DA) 得分图和载荷图的解释同PCA。区别在于,PLS-DA在分析时提前赋予每个样本分组信息,简单说,就是在分

相关主题