搜档网
当前位置:搜档网 › 合成甜味剂在食品工业中的应用概述

合成甜味剂在食品工业中的应用概述

合成甜味剂在食品工业中的应用概述
合成甜味剂在食品工业中的应用概述

合成甜味剂在食品工业中的应用概述

郝涤非 (江苏食品药品职业技术学院食品学院 淮安 223003)

摘 要 本文概述不同甜味物质的区别和联系以及合成甜味剂的常见种类、特点及安全性,并指出合成甜味剂的应用意义。关键词 合成甜味剂 种类 特点 安全性 食品工业

合成甜味剂是指人工合成的、呈甜味的食品添加剂。由于甜度大、成本低、能量小或无,合成甜味剂在当前食品工业中的应用也日益广泛,了解合成甜味剂种类、特点、安全性以及作为食品添加剂的意义显得越来越重要。

1 甜味物质的种类及其相互关系

人的基本味感有苦、甜、酸、咸,甜味能给人带来愉悦,是人们最喜好的基本味感,常用来改善产品的可口性和风味。甜味剂是指能赋予食品甜味的物质,按其来源可分为天然甜味剂和人工合成甜味剂;按其甜度分为低甜度甜味剂和高甜度甜味剂;按其营养价值分为营养性甜味剂和非营养性甜味剂;按其化学结构和性质分为糖类和非糖类甜味剂。

自然界的单糖(如葡萄糖、果糖)、低聚糖(如蔗糖、麦芽糖)虽然都是天然甜味剂,但因其是重要的营养物质,通常被视为食品原料,在我国不作为食品添加剂。

食品添加剂中的甜味剂有天然甜味剂和人工合成甜味剂。天然甜味剂有甜菊糖苷、甘草、甘草酸二钠、甘草酸三钾和甘草酸三钠等。人工合成甜味剂有糖精、环己基氨基磺酸钠(甜蜜素)、天门冬酰苯丙氨酸甲酯(阿斯巴甜)、阿力甜、安赛蜜、纽甜以及三氯蔗糖等。

一般将甜度、热值与蔗糖相近的甜味剂称为能量型甜味剂或热量型甜味剂,能量型甜味剂可为人体提供大量热能;而将与蔗糖等甜度,而热值低于蔗糖发热值2%的甜味剂称为非能量型甜味剂或无热量型甜味剂。非能量型甜味剂均为高倍强力甜味剂,但其不被人体代谢吸收,不含能量,因此非能量型甜味剂得到人们越来越多的关注。非能量型非糖类甜味剂包括甜蜜素、糖精和阿斯巴甜;非能量型糖类甜味剂包括安赛蜜、纽甜、阿力甜和三氯蔗糖。

2 合成甜味剂的常见种类、特点及安全性

2.1 糖精、糖精钠 糖精是邻苯甲酰磺酰亚胺的俗

是适应的多样性,因此这一观念可以解释多样性的来源。

在具体知识内容的教学时究竟该如何做?这个问题非常有挑战性,需要不断探索。以下案例为此提供了可资借鉴的经验。

案例:北京市育英学校侯峰老师在进行“生态系统中的能量流动”的教学时,从动植物同化、异化时能量的变化切入,再从部分与整体的关系进行分析:从个体层次能量的来源去向,归纳上升到种群的能量来源去向,由此进一步联系到食物链、食物网上的能量流动,再上升到群落内部的能量流动;并且,阐述了能量流动与个体的生长发育、种群的数量变化、群落演替的关系。同时,利用一些生产生活的实例,分析能量流动与种群、群落的变化之间的关系。例如,用养羊时粉碎草料、饲料糖化、建现代化保温羊圈等措施,将饲养措施与能量的利用和散失进行了关联。又如,用人类活动对群落的干扰,实际上是干扰了能量流动的效率和方向,从而将能量流动与群落演替结合起来。教学过程中,教师还结合建构和运用模型,将知识的学习与科学方法的运用结合起来。这样,就将对能量这一概念的理解与维持系统有序的结构、实现系统的功能有机结合,将生态系统中能量流动的学习,与细胞、个体的能量需要结合起来,又实现了和物质与能量、结构与功能、群体与共存等生命观念的关联。

主要参考文献

[1]谭永平.2016.从发展核心素养的视角探讨高中生物必修内容的变革.课程?教材?教法,(7):62~68

[2]BEDAUMA.2008.Whatislife//SARKARS,PLUTYNSKIA.ACompaniontothePhilosophyofBiology.Malden:BlackWellPublish-ing,455~468

[3]胡文耕.2002.生物学哲学.北京:中国社会科学出版社,29

[4]MAYRE.1999.看!这就是生物学.台北:天下远见出版股份公司,116~124

[5]高瑞泉.2011.观念史何为.华东师范大学学报(哲学社会科学版),(2):1~11

[6]NURSESP.2003.Thegreatideasofbiology.ClinicalMedicine,3(6):560~568

[7]WADDINGTOMCH.2008.Thebasicideasofbiology.BiologicalTheory,3(3):238~252

[8]张 华.2016.准确处理核心素养与“双基”的关系.人民教育,(19):23~26

[9]HOAGLANDM,DODSONB.李千毅译.2002.观念生物学.台北:天下远见出版股份有限公司,16槾

万方数据

名,它是最古老的甜味剂,于1878年由美国科学家发现,为白色结晶性粉末。糖精钠是邻苯甲酰磺酰亚胺的钠盐的俗名,易溶于水,稀水溶液的甜味约为蔗糖的300~500倍。不含能量,在各种食品生产过程中都很稳定。

其缺陷是风味差,食用后会有轻微的苦味和金属味残留在舌头上;浓度大于0.026%时味苦;酸性条件下加热,甜味消失。

我国的食品添加剂使用标准(GB2760-2014)规定糖精一般可用于腌制的蔬菜、冷冻饮品、复合调味料、配制酒等等食品中,最大使用量不得超过0.15g/

kg。

糖精不被人体代谢吸收,在体内不被分解,由肾排出体外。1977年,加拿大研究人员发现,大量的糖精可导致雄性大鼠患膀胱癌。为此,美国提议禁止使用糖精,但未被采纳[1]。

制造糖精的主要原料有甲苯、氯磺酸、邻甲苯胺等,均为石油化工产品。短时间内食用大量糖精,会引起血小板减少而造成急性大出血、多脏器损害等,引发恶性中毒。目前,其毒害机理尚不明确,还有待进一步研究。

世界卫生组织和联合国粮农组织规定了每天的用量(acceptabledailyintake,ADI)不得超过2.5mg/kg体重。

2.2 甜蜜素(环己基氨基磺酸钠) 甜蜜素,化学名为环己基氨基磺酸钠,其甜度是蔗糖的30~50倍。加热后略有苦味,浓度大于0.4%时带苦味。具有非吸湿性,不支持霉菌或其他细菌生长。它不产生能量,属于非能量型合成甜味剂。

而且它不像糖精那样用量稍多时有苦味,因而作为国际通用的食品添加剂,可用于清凉饮料、果汁、冰激凌、蜜饯、糕点等食品中。

我国食品添加剂使用标准规定水果罐头、冷冻饮品、配制酒、果冻、饼干、腐乳类等食品中,最大用量不得超过0.65g/kg。超标使用,对肝脏、神经系统有危害,但具体毒害机理尚待研究。甜蜜素每天的食用量不得超过11mg/kg体重。

2.3 阿斯巴甜(天门冬酰苯丙氨酸甲酯) 阿斯巴甜的化学名为天门冬酰苯丙氨酸甲酯。常温下,为白色结晶性的粉末。

阿斯巴甜的甜度约为蔗糖的200倍,又比一般蔗糖含更少的热量,一克的阿斯巴甜约有4千卡的热量。人感到甜味时所需的阿斯巴甜量非常少,以致于可忽略其所含的热量,因此也被广泛地作为蔗糖的代替品。阿斯巴甜的味道和一般蔗糖的味道有所不同。阿斯巴甜的甜味与糖相比较,可延缓及持续较长的时间。因阿斯巴甜甜味高且热量低,故主要添加于饮料、维生素含片或口香糖代替糖的使用。许多糖尿病患者、减肥人士都以阿斯巴甜作为糖的代用品。

因高温会使其分解而失去甜味,所以阿斯巴甜不适合用于烹煮和热饮。

阿斯巴甜包含三大组成部分:甲醇、苯丙氨酸、天门冬氨酸。阿斯巴甜中含有苯丙氨酸,苯丙酮尿症患者不适合使用,因其会造成苯丙氨酸无法代谢,从而导致智能弱化的危险。

我国食品添加剂使用标准规定腌制的蔬菜、水产品罐头、盐渍水果等食品中,最大用量不得超过0.3g/

kg,水果罐头、冷冻饮品、果冻等食品中,最大用量不得超过1.0g/kg。

阿斯巴甜每天的食用量不得超过40mg/kg体重。2.4 安赛蜜 安赛蜜的化学名为乙酰磺胺酸钾。它易溶于水,没有营养,口感好,无热量,在人体内不代谢、不吸收;安赛蜜具有强烈的甜味,甜度约为蔗糖的200~250倍;呈味性质与糖精相似,高浓度时有苦味;安赛蜜对光、热(能耐225℃高温)稳定,pH适用范围较广(pH3~7)。它是目前世界上稳定性最好的甜味剂之一,适用于焙烤食品和酸性饮料。

安赛蜜的安全性高,甜味纯正而强烈,甜味持续时间长,与阿斯巴甜1∶1混合使用有明显增效作用。安赛蜜的生产工艺不复杂、价格便宜、性能优于阿斯巴甜,被认为是最有前途的甜味剂之一。

我国食品添加剂使用标准规定水果罐头、冷冻饮品、果冻等食品中,最大用量不得超过0.3g/kg。超标使用,对肝脏和神经系统造成危害;如果短时间内大量食用,会引起血小板减少导致急性大出血。其毒害机理尚不明确,还需进一步研究。

联合国FAO/WHO食品添加剂联合专家委员会(JECFA)同意安赛蜜用作A级食品添加剂,并推荐日均摄入量不得超过15mg/kg。

2.5 阿力甜 阿力甜是一种二肽类甜味剂,化学名为L-天冬氨酰-N-(2,2,4,4-四甲基-3-硫化三亚甲基)-D-丙氨酰胺。甜度为蔗糖的2000倍以上,在酸、热等条件下均十分稳定,室温下pH为5~8的水溶液贮存半衰期为5年,5%的水溶液pH为5.6。阿力甜无后苦味和金属碱味、涩味,且口感与蔗糖接近,甜味迅速、持久、安全。

阿力甜甜味清爽、耐热耐酸耐碱,具有优越的贮存和加工稳定性,可广泛用于食品工业。我国食品添加剂使用标准规定饮料、果冻、冷饮、餐桌甜味剂等食品中,最大用量不得超过0.1g/kg,餐桌甜味料最大用量

万方数据

不得超过0.15g/份。

其缺点是因分子结构中含有硫原子而稍带硫味。不可与氧化还原物质及强酸强碱配伍。1996年JECFA确定的ADI值为1mg/kg。

2.6 纽甜 纽甜的化学名称是:N-[N-(3,3一二甲基丁基)-L-α-天冬氨酰]-L-苯丙氨酸-1-甲酯,是白色结晶粉末,含约4.5%的结晶水。具有纯正的甜味,没有苦味和金属味。甜度是蔗糖的8000~12000倍,是阿斯巴甜的40~60倍。能量值几乎为零。可在瞬时高温的条件下保持稳定,可用于蛋糕等焙烤食品生产,耐高温。

纽甜对人体健康无不良影响,起有益的调节或促进作用。适用于包括儿童、孕妇、哺乳期妇女和糖尿病患者以及苯酮尿症患者在内的所有人群。2002年纽甜通过美国食品添加物审核,允许其应用在所有食品及饮料。欧盟也于2010年批准其应用。我国食品添加剂使用标准规定水果罐头、果蔬汁类饮料、加工蔬菜、干酪类似品等食品中,最大用量不得超过0.033g/

kg。

不同于甜蜜素、糖精和安赛蜜,纽甜适用于所有人群。因此纽甜被认为是当前市面上最安全的甜味剂之一。

需要注意的是,纽甜粉末直径非常小,在处理时要避免吸入。

2.7 三氯蔗糖 三氯蔗糖又名蔗糖素,化学名为4,1,6,-三氯-4,1,6,-三脱氧半乳型蔗糖。它是唯一以蔗糖为原料的功能性甜味剂。具有无能量,甜度高,甜味纯正,高度安全等特点。

在不同条件下甜度为蔗糖的400~800倍,甜味纯正,甜感呈现速度、最大甜味的感受强度、甜味持续时间、后味等甜味特性十分类似蔗糖,没有任何后苦味。ADI值为15mg/kg。

它通常为白色粉末状产品。物化性质比较接近蔗糖。耐高温、耐酸碱,温度和pH对它几乎无影响,适于食品加工中的高温灭菌、喷雾干燥、焙烤、挤压等工艺。无热量、不致龋。pH适应性广,适用于酸性至中性食品,对涩、苦等不愉快味道有掩盖效果。易溶于水,溶解时不容易产生起泡现象,适用于碳酸饮料的高速灌装生产线。

我国食品添加剂使用标准规定水果干类、煮熟的或油炸的水果中,最大用量不得超过0.15g/kg,餐桌甜味料最大用量不得超过0.05g/份。每天的食用量不得超过15mg/kg体重。

经过长时间的毒理试验证明其安全性极高,是目前最优秀的功能性甜味剂。

3 甜味剂的应用意义

3.1 蔗糖的替代品 合成甜味剂是无能量或低热的蔗糖替代品,在经济最发达的欧美地区被广泛使用。例如:安赛蜜口感好,无热量,在人体内不代谢、不吸收,是中老年人、肥胖病人、糖尿病患者理想的甜味剂;甜蜜素甜度高、热量低、不易发生龋齿,由于它是非糖类物质,在代谢过程中不受胰岛素的控制,不会引起肥胖症和血压升高,适合糖尿病、肥胖症患者作为蔗糖等糖类的替代品[2];纽甜是一种无热量的糖类物质,对人体健康无不良影响,它参与代谢过程,但不会引起肥胖症和血压升高。

食品添加剂在应用的时候,最重要的是不能超量添加,而大多合成甜味剂如糖精、安赛蜜在浓度稍高时就有苦味或味道欠佳,这实际在客观上利于避免这一情形。

3.2 成本低廉 合成甜味剂在生产加工中降低成本的效益十分显著。因此,包括中国在内的许多发展中国家,一个较长的时期内,食品、饮料行业对其有比较浓厚的兴趣。例如,甜蜜素甜度是蔗糖的30~50倍,价格仅为蔗糖的三分之一;三氯蔗糖价廉物美,售价只相当于等甜度下蔗糖的1/3~1/2左右,并且通过适当的复配,还能增加甜度,从而进一步为用户节省使用费用。

4 结语

综上所述,食品添加剂有助于改善人们的饮食结构,提高生活质量。合成甜味剂在食品工业上的应用具有重要意义,合理使用有益无害。随着全民饮食文化素质的提高,合成甜味剂将和其他家用调味品一样,将逐步进入千家万户。

(基金项目:国家级教学资源库枟食品加工技术枠项目,No.2013-7;国家级精品资源共享课程枟食品生物化学枠项目No.131;江苏高校品牌专业建设工程资助项目,No.PPY2015B19)

主要参考文献

[1]杨双春,刘慧芳,王 健,等.2013.国内外人工合成的非能量型甜味剂研究现状.食品工业,34(4):181~184

[2]牛列琴.2015.环己基氨基磺酸钠在食品中的使用现状和检测方法.疾病监测与控制杂志,9(6):396~398槾

万方数据

柠檬酸在食品中的应用

柠檬酸在食品中的应用 陆英杰 摘要柠檬酸以其独特的性质在食品加工业中具有广泛应用,是一种用量相当大的食品添加剂,文章概述柠檬酸的性状及在食品工业中的主要用途。 关键词柠檬酸食品应用 一、前言 柠檬酸是水果、蔬菜中分布最广的有机酸,也是食品中应用最广泛的酸味剂。柠檬酸是一种重要的有机酸,又称枸橼酸,无色晶体,常含一分子结晶水,无臭,有很强的酸味,易溶于水。其钙盐在冷水中比热水中易溶解,此性质常用来鉴定和分离柠檬酸。结晶时控制适宜的温度可获得无水柠檬酸。柠檬酸分无水柠檬酸和一水柠檬酸。同时柠檬酸还有许多其他用途,如作为抗氧化剂增效剂、漂白剂增效剂、果酱凝结剂、水果护色剂、增香剂及鱼类、羊奶的除臭剂等。 自然界中柠檬酸广泛存在于柠檬、橙、桔子等水果中。工业生产主要采用合成法和发酵法,而工业上使用的柠檬酸多由黑曲霉发酵法生产。 二、性状特点 柠檬酸易溶于水、乙醇,溶于乙醚。无水柠檬酸在水中的溶解度溶解性好1. 很大,100℃为84%。25℃时政乙醇中的溶解度为58.9%。此外,柠檬酸和其衍生物的丙二醇溶液还可溶于油脂。由于水溶性和脂溶性较好,柠檬酸

易于均匀地分散于各类食品中。 温和芳香,在所有有机酸中是最可口的,并能与多种香料混合产酸味纯正2. 生清爽的酸味,故事用于许多食品。同时由于柠檬酸的弱酸性,在一定pH 范围内能抑制细菌繁殖,起到防腐作用。. 柠檬酸由于含有三个羧基故可形成三种形式的盐,但除碱金属盐螯合力强3. 外,其他盐大多不溶或难溶于水。它还有一种奇特的性质,就是在冷水中比在热水中易溶。 如与磷酸氢二钠以不同比例混合,可得到2~8的系能与碱或盐组成缓冲剂4. 列缓冲液。 在人体内柠檬酸为三羧酸循环的重要中间体,毒性小。毒性小5. 三、应用 广泛应用于各种饮料、果汁、罐头、糖果、果酱、果冻柠檬酸作为酸味剂1. 的生产,使产品的酸味清爽可口,并有果味的香甜。柠檬酸本身是果汁的天然成分之一,不仅赋予饮料水果风味,而且具有增溶、缓冲、抗氧化等作用,能使饮料中的糖、香精、色素等成分交融协调,形成适宜的口味和风味。 在蔗糖液中添加适量柠檬酸可使其转化为糖,以提高蔗柠檬酸作蔗糖转化剂2.

甜味剂的应用现状及发展前景

甜味剂的应用现状及发展前景 摘要: 甜味剂对世界的食品有着重要的影响,从1900年产量的8百万吨到1970年的7千万吨[10].本文介绍了目前国内外常用的甜味剂基本性质和应用情况,概述了符合人体健康的功能性甜味剂的特点和好处。阐述了功能性甜味剂既能够满足人们对甜食的偏爱又不会引起副作用,并能增强人体的免疫力,对肝病、糖尿病具有一定的辅助治疗作用。因此功能性甜味剂将成为市场主要甜味剂品种之一。 关键词: 甜味剂; 应用现状; 发展前景 Abstract : Sweetness is one the most important taste sensation for humans and for many animal species as well .There is scarcely any area of food habits today tha does not in some way invole the sweet taste.The importance of sweetness is reflected in the world production of sugar,which rose from 8 million tons in 1900 to 70 million tons in 1970[10] .No other agricultural product has show a similar increase in production during the same period.The sweetness of individual sweetnener is usually measured in model systems and compared to that of sucrose.Some sweetening agents and their main application and characteristic are introduced at home and abroad. There is contain Cane suger , Sodium soccharin , Sodium cyclamate, Aspartame, Trichlorosucrose, Stevioside, Acesulfame k and so on.Features and advantages of functional sweetening agents conforming with human heath are summarized. Functional sweeteningagent can satisfy people’favor to sweet , but can’t result in side effect. Functional sweetening agent can strengthen immuneto disease and have supplementary treatment for disease of liver and diabetes. So functional sweetening agent will be one ofmain sweetening agents. Key words : Sweetening agents; application; c urrent situation; prospect; 1 前言 甜味剂[2] 是指能赋于食品甜味的调味剂,他的使用可以追溯到史前蜂蜜的发现。科学研究已经表明,人类对甜味剂的需求是先天的, 而不是后天对环境要求的一种客观反应。甜味剂对食品、饮料风格的调整起关键作用。甜味剂对世界的食品有重要的影响,从1900年产量的8百万吨到1970年的7千万吨[10].随着人们对健康的要求越来越高对甜味剂的要求也越来越苛刻,希望甜味剂的能量尽可能低甚至能量值为零,口感好,价位比较合适。五、六十年代以前的近一个世纪, 食品工业中所用的甜味剂多半是蔗糖和来自石油化工产品的糖精。五、六十年代以后, 在美国、欧洲及日本等国相继出现了甜蜜素、二肽甜味剂、甜蛋白、乙酰磺胺酸钾以及阿力甜等甜味剂[7]。由于人们对低热量减肥食品的需求日益高涨, 使得高甜度甜味剂在毒性、生产方法及应用研究等方面继续深入, 人们已经开始对能产生甜味的分子结构进行研究, 以期发现新的超高甜度甜味剂。甜味剂的种类很多, 本文就一些常用和新型的甜味剂的特点和应用情况以及甜味剂的发展趋势作一概述。 2 国内外常使用的甜味剂 2. 1 蔗糖( Cane suger) 蔗糖是从植物中提取的天然甜味剂,是一种非还原性二糖,由α2D2吡喃葡萄糖基和β2D 呋喃果糖及经分子内糖苷键连接而成,蔗糖安全性高、价格低廉、味质好且符合人们传统的饮食习惯,将长期是最主要的甜味剂品种之一。但由于受耕地的限制,蔗糖的产量不

淀粉在食品工业中的应用

淀粉在食品工业中的应用 高分子092 陈冰200911024206 前言 淀粉是一种来源丰富的可再生资源。近年石油价格一路上扬,使得以石油为原料的高分子类产品价格也随之上涨。淀粉作为一种来源丰富的可再生资源,其改性产品在某些方而可以替代普通塑料,而有着优良的生物降解性,可以有效地解决白色污染问题。改性淀粉以人然淀粉为原料,在其原有性质基础上,经过特定的化学物理处理改良其原有性能被广泛应用于皮革、造纸、石汕、纺织、食品、医药等行业,并且有望以改性淀粉制备纤维,从而大大地扩大了改性淀粉的应用范围。 【摘要】:本文通过介绍淀粉的改性方法及应用,进一步讲述了当今淀粉改性在食品工业及食品包装上的应用。 【Abstract】:This paper introduces the method for modification of starch and its application, further describes the modified starch in food industry and food packaging applications. 【关键词】:淀粉改性食品环保 【Key words】: starch modified food environmental protection 天然淀粉资源十分丰富,如土豆、玉米、木薯、菱角、小麦等均有高含量的淀粉,据统计,自然界中含淀 粉的天然碳水化合物年产量 达5000亿,是人类可以取用 的最丰富的有机资源。淀粉及 其衍生物是一种多功能的天 然高分子化合物,具有无毒、 可生活降解等优点。它是一种 六元环状天然高分子,含有许 多羟基,通过这些羟基的化学 反应生产改性淀粉,另外,淀

酶制剂在食品工业中的应用 论文

酶制剂在食品工业中的应用 摘要:酶制剂是一类特殊的食品添加剂,具有催化高效性,专一性等显著特点。文章综述了食品工业中酶制剂利用及新动向,包括淀粉糖、油脂、蛋白质加工、面包、啤酒、饮料工业以及改善苦味的酶类的应用。并介绍了酶与食品的关系、酶制剂在食品生产中用于保藏、改善质量和增加营养价值、增加品种种类、提高便捷性和提高食品生产效率等作用。并对酶制剂在食品工业中的发展方向和安全问题进行了讨论。 关键词:酶制剂;食品工业;应用 酶是一类具有专一性生物催化能力的蛋白质。而从生物体中提取的具有酶活力的制品,称为酶制剂。酶制剂主要用于食品加工和制造业方面,它在对提高食品生产效率和产量、改进产品风味和质量等方面有着其它催化剂所无法替代的作用。另外,酶制剂在日化、纺织、环境保护和饲料等行业也有着较广泛的应用。 随着发酵工业的发展,酶制剂的主要来源已被微生物所取代,它具有不受季节、地区和数量等因素影响的特性,还具有种类多、繁殖快、质量稳定和成本低等特点。随着微生物育种技术的发展,酶制剂的种类越来越多,分类也越来越细。目前我国已工业化生产的、且用于食品工业的酶制剂主要有:淀粉酶、异淀粉酶、果胶酶和蛋白酶等,它们在食品加工中都起着十分重要的作用。当然,尽管目前我国酶制剂行业的发展已有了长足进步,但与发达国家相比,还有很大差距。为进一步加快酶制剂产业技术的进步,今后应注重在调整产品结构、增加新品种、提高产品质量和竞争力、实现规模化经营和拓宽应用领域等方面作深入的研究。 1.酶与食品的关系 在食品生产加工中,为了保持食物原有的色、香、味和结构,就要尽量避免引起剧烈的化学反应。酶是一类具有专一性生物催化能力的蛋白质,因此作用条件非常温和。许多酶所催化的反应从动植物最初生长时就开始了,当它被作为食品时,其体内酶的催化作用仍然继续进行着。如动物体死后,其合成代谢停止,而分解代谢加快,因此就会导致组织腐败,但这可能也会改善某些食品原料的风味。在大多数成熟的水果中,由于某些酶的增加,会使得其呼吸速度加快,淀粉转变为糖,叶绿素发生降解,细胞体积快速增加。这些变化,对于水果风味的改善是有益的;而对蔬菜来讲,叶绿素的降解则是有害的。 2.与食品生产有关的酶制剂 2.1与淀粉糖和甜味剂生产有关的酶制剂 淀粉酶工业上应用酶制剂已有数十年的历史,淀粉加工用酶所占比例达到15%,是酶制剂最大的市场。近年来淀粉酶类耐热性大大提高,并已通过基因工程技术改善其品质。特别要提到的是一系列新的酶制剂的发现和应用,如在1995年已经工业化的酶转化淀粉生产海藻糖,改变了先前从酵母等食物中抽提的生产方法,生产成本大大下降。这种糖不仅耐酸、耐热、防龋齿,还可抑制蛋白质变性和油脂酸败,市场日益扩大。 2.2与油脂生产有关的酶制剂 油脂是人类食品的主要营养成分之一,有赋予食品不可缺少的风味,而且用酶法生产有益健康的油脂的正逐步应用成熟,如用DNA等高度不饱和脂肪酸作为食品的原材料所制作的食品销售额已达400亿日元。 2.3与蛋白质有关的酶制剂 蛋白质在食品加工中,不仅具有营养的功能还具有各种物理功能,提高这类功能将会增加其附加值,要达到这个目的需要利用蛋白酶类。为了以蛋白质水解后的产物作为生产氨基酸系列的调味品,就必须把蛋白质彻底分解为氨基酸。 2..4与面包生产有关的酶制剂

食品添加剂 着色剂

1.什么是食品着色剂?着色剂有哪几种类型? 答:以给食品着色为主要目的的添加剂称着色剂,也称食用色素。食用色素使食品有悦目的色泽,对增加食品的嗜好性及刺激食欲有重要意义。 着色剂按来源可分为人工合成着色剂和天然着色剂。按结构,人工合成着色剂又可分类偶氮类、氧蒽类和二苯甲烷类等;天然着色剂又可分为吡咯类、多烯类、酮类、醌类和多酚类等。按着色剂的溶解性可分为脂溶性着色剂和水溶性着色剂。 2.简述着色剂显色的基本原理 答:自然光是由不同波长的电磁波组成的,波长在400~800nm之内为可见光,在该光区内不同波长的光显示不同的颜色。任何物体能形成一定的颜色,主要是因为其色素分子吸收了自然光中的部分波长的光,它呈现出来的颜色是由反射或透过未被吸收的光所组成的综合色,也称为被吸收光波组成颜色的互补色。例如,如果物体吸收了绝大部分可见光,那么物体反射的可见光非常少,物体就呈现出黑色或接近黑色;如某种物质选择吸收了波长为510nto的绿色光,而人们看见它呈现的颜色是紫色,因为紫色是绿色光的互补色。 3.常用的合成着色剂有哪些?各有何特点? 答:常用的合成着色剂有以下十种: (1)苋菜红(Amaranth)又称杨梅红、鸡冠紫红、蓝光酸性红、食用红色2号。 化学名称为1一(47一磺基一17一萘偶氮)一2一萘酚一3,6一二磺酸三钠盐,为水溶性偶氮类着色剂。其为红褐色或紫色均匀粉末或颗粒,无臭。易溶于水,可溶于甘油及丙二醇,微溶于乙醇,不溶于油脂等其他有机溶剂。水溶液带紫色,耐光、耐热性强,耐细菌性差,对氧化还原敏感,对柠檬酸、酒石酸稳定,而遇碱则变为暗红色。其与铜、铁等金属接触易褪色,易被细菌分解,耐氧化、还原性差,不适用于发酵食品及含还原性物质的食品。着色性能着色力较弱,在浓硫酸中呈紫色,在浓硝酸中呈亮红色,在盐酸中为黑色沉淀,而色素粉末有带黑的倾向。由于对氧化一还原作用敏感,故不适合于发酵食品中使用。 (2)胭脂红(Ponceau)又称丽春红4R、大红、亮猩红、食用红色102号。 化学名称为1一(4,_磺基一1,_萘偶氮)一2一萘酚-6,8一二磺酸三钠盐,为水溶性偶氮类着色素。其为红色至深红色均匀粉末或颗粒,无臭。易溶于水,水溶液呈红色;溶于甘油,微溶于乙醇,不溶于油脂。胭脂红稀释性强,耐光、耐酸性、耐盐性较好,耐热性强,但耐还原性差,耐细菌性也较弱,遇碱变为褐色。对柠檬酸、酒石酸稳定。着色性能因胭脂红耐还原性差,不适合在发酵食品中使用,其着色力较弱。0.1%的胭脂红水溶液为呈红色的澄清液,在盐酸中呈棕色,并会发生黑色沉淀。 (3)赤藓红(Erythrosine)又称樱桃红、四碘荧光素、新品酸性红、食用色素红3号。 化学名称为9一(邻羧苯基)-6一羧基一2,4,5,7一四碘一3一异氧杂蒽酮二钠盐,为水溶性非偶氮类着色剂。其为红至红褐色均匀粉末或颗粒,无臭。吸湿性强,易溶于水,可溶于乙醇、甘油和丙二醇,不溶于油脂。0.1%水溶液呈微蓝的红色,酸性时生成黄棕色沉淀,碱性时产生红色沉淀,耐热、耐还原性强,但耐光、耐酸性差。着色性能具有良好的染色性,尤其对蛋白质的染色。根

甜味剂是一类十分重要的食品添加剂

甜味剂是一类十分重要的食品添加剂,在应用中需要满足食品生产的四项要求--安全标准的要求、口感品质的要求、符合工艺的要求、成本低廉的要求。随着消费水平的提高,吃的更营养、吃的更健康逐步成为消费者关心的重点。低脂肪低热量的食品添加剂将成为主要发展趋势,另外由于近期砂糖价格持续走高也加剧了甜味剂市场的升温。现有的各种单体甜味剂,由于都有各自的优点和缺陷,无论哪种单体甜味剂,都不能同时满足安全、口感、工艺、成本四项要求。只有对单体甜味剂各自的优点进行利用和发挥,对其缺点进行弥补和改造,用科学合理的方法进行复配和改造,才能接近和达到同时满足四项要求的目标。 ? 1. 复配甜味剂的功能目的 由于每一种甜味剂的口感和质感与蔗糖都有区别,且用量大时往往产生不良风味和后味,用复合甜味剂就克服这些不良之处。甜味剂经复合后有协同增效作用,不仅可以消除苦味涩味,同时也提高甜度。利用二种以上单体甜味剂和其它物质产生增效作用,提高甜度,矫正和提升口感风味。根据各种不同食品的安全标准,选择允许使用的甜味剂。根据各种不同食品工艺,选择和改造成符合工艺要求的甜味剂。 ? 2. 主要甜味剂的甜度 甜味剂的评定可粗略分为四个方面:甜度数值的评价:细微差别测试;评定者对甜味敏感度的测试及描述性分析。另外心理物理学家还发展了许多方法用于感官评价和消费者的测试,必须注意的是这些方法具有不同的测试目的,选用时应给予注意。甜味剂替代蔗糖时,大多数是在等甜度条件下进行替换。参见[表1] 表1 相对甜度对比表(蔗糖=1)[1]

*系两种文献值 3. 影响甜味强度的因素 甜味剂甜度受很多因素的影响,主要包括浓度、粒度、温度、介质和构型等;同时,将不同甜味剂混合使用,有时会互相提高甜度,这称为协同增效作用。

实验二 高效液相色谱法检测饮料中甜味剂

实验二高效液相色谱法检测饮料中甜味剂 一、实验目的 学习高效液相色谱仪的基本操作,分析测定汽水、可乐型饮料、果汁、果茶等食品中乙酰磺胺酸钾、糖精钠的色谱条件选择。 二、实验原理 试样中乙酰磺胺酸钾、糖精钠经高效液相反相C18柱分离后,根据保留时间定性,外标峰高或峰面积定量。 三、实验器材 1、试剂 1.1 甲醇:色谱纯。 1.2 乙腈:色谱纯。 1.3 0.02 mol/L硫酸铵溶液,称取硫酸铵 2.642 g,加水溶解至1000mL。 1.4 10%硫酸溶液。 1.5 中性氧化铝层析用,100目~200目。 1.6 乙酰磺胺酸钾、糖精钠标准储备液:精密称取乙酰磺胺酸钾、糖精钠各 0.1000g,用流动相溶解后移入100mL容量瓶中,并用流动相稀释至刻度,即含乙酰磺胺酸钾、糖精钠各1mg/mL的溶液。 3.7 乙酰磺胺酸钾、糖精钠标准使用溶液:吸取乙酰磺胺酸钾、糖精钠标准储备液2mL于50mL容量瓶,加流动相至刻度,然后分别吸取此液1mL、2mL、3mL、4mL、5mL于10mL容量瓶中,各加流动相至刻度,即得各含乙酰磺胺酸钾、糖精钠4μg/mL、8μg/mL、12μg/mL、16μg/mL、20μg/mL的混合标准液系列。 3.8 流动相:0.02mol/L硫酸铵(740~800)+甲醇(170~150)+乙腈(90~50)+10%硫酸(1mL)。 2、仪器 高效液相色谱仪(配有紫外检测器);超声清洗仪(溶剂脱气用);离心机;抽滤瓶;G3耐酸漏斗;微孔滤膜0.45μm;层析柱,可用10ml注射器筒代替,内装3cm高的中性氧化铝。 四、实验步骤 1、试样处理

1.1 汽水:将试样温热,搅拌除去二氧化碳或超声脱气。吸取试样 2.5mL于25mL 容量瓶中。加流动相至刻度,摇匀后,溶液通过微孔滤膜过滤,滤液作HPLC分析用。 1.2 可乐型饮料:将试样温热,搅拌除去二氧化碳或超声脱气,吸取已除去二氧化碳的试样 2.5mL,通过中性氧化铝柱,待试样液流至柱表面时,用流动相洗脱,收集25mL洗脱液,摇匀后超声脱气,此液作HPLC分析用。 1.3 果茶、果汁类食品:吸取 2.5mL试样,加水约20mL混匀后,离心15min (4000r/min),上清液全部转入中性氧化铝柱,待水溶液流至柱表面时,用流动相洗脱。收集洗脱液25mL,混匀后,超声脱气,此液作HPLC分析用。 2、色谱测定 2.1 HPLC参考条件 分析柱:Spherisorb C18、4.6mm×150mm。粒度5μm。 流动相:0.02mol/L硫酸铵(740mL~800mL)+甲醇(170mL~150mL)+乙腈(90mL~50mL)+10%H2SO4(1mL)。 波长:214nm。 流速:0.7mL/min。 2.2 标准曲线:分别进样含乙酰磺胺酸钾、糖精钠4μg/mL、8μg/mL、12μg/mL、16μg/mL、20μg/mL混合标准溶液各10μL,进行HPLC分析,然后以峰面积为纵坐标,以乙酰磺胺酸钾、糖精钠的含量为横坐标,绘制标准曲线。 2.3 试样测定:吸取处理后的试样溶液10μL进行HPLC分析,测定其峰面积,从标准曲线查得测定液中乙酰磺胺酸钾、糖精钠的含量。 HPLC色谱图见图1:

甜味剂应用

有关食品中甜味剂应用的调查有关食品中甜味剂应用的调查为了解各种甜味剂在饮料和甜食中的应用情况,从而深入理解甜味剂的原理、效果、营养价值和在食品中应用的现状。暑假期间到学院路超市发超时进行了有关饮料中添加的甜味剂的调查。产品调查记录产品调查记录: ::: 表1含有不同甜味剂的甜味产品的数目和比例 调查产品类别产品数目占同类产品的百分率 调查产品总数84 含有蔗糖的产品数目 6071.4 含有果葡糖浆的产品数目12 含有葡萄糖浆的产品数目0 含有其他糖浆的产品数目0 含有蜂蜜的产品数目6 含有xx的产品数目0 含有xx的产品数目6 含有木糖醇的产品数目9 含有其他糖醇的产品数目2 含有低聚糖的产品数目60 含有甘草糖或甜菊糖的数目0 含有甜蜜素的产品数目4

含有xx的产品数目19 含有甜蜜素的产品数目4 含有糖精的产品数目0 含有其他合成甜味剂的产品4 表2含有多种甜味剂的甜味产品的数目和比例调查产品类别产品数目 调查产品总数84 含有1种甜味剂的产品数目35 含有2种甜味剂的产品数目26 含有3种甜味剂的产品数目11 含有4种或更多甜味剂的产品数目1 添加含能量甜味剂的产品总数64 添加糖醇类甜味剂的产品总数10 添加低聚糖甜味剂的产品总数60 添加糖浆类甜味剂的产品总数12 添加天然甜味甙类的产品总数1 添加合成甜味剂的产品总数 2014.300 7.10 7.1 10.7

2.4 71.40 4.8 22.6 4.80 4.8 在同类产品中的比例 41.7 31.0 13.1 1.2 76.2 11.9 71.4 14.3 7.2 23 产品名称添加甜味剂的名称是否标为低糖食品是否标为无糖食品雪碧碳酸饮料果葡糖浆,白砂糖 七喜碳酸饮料白砂糖 芬达果味汽水果葡糖浆,白砂糖 美年达果味汽水白砂糖

网络技术在食品工业中的应用分析

网络技术在食品工业中的应用分析

网络技术在食品工业中的应用分析 智研数据研究中心网讯: 内容提要:运用高新技术和信息网络技术对现有食品加工装置和生产工艺进行改造, 是技术进步的重要手段。大力推广电子计算机进入生产领域, 根据生产工艺特点, 编制控制软件, 由电脑自动控制各个环节的生产工艺要求, 自动协调控制阀门。使人工操作、经验判断为主的加工过程逐步过渡到以电脑自动控制为主。既避免了操作失误、经验失误、减轻工人的劳动强度, 又能保证和提高产品的内在、外观的各项综合指标。 智研数据研究中心发布的:2012-2016年中国农副食品加工业市场监测与投资前景分析报告 1采用高新技术, 将为发展食品工业大展宏图。 充满希望的21 世纪, 以信息技术为中心, 包括生物技术和网络技术为重要内容的高新技术的发展, 对食品工业的发展将起着极大的推动作用。我国是农业大国, 食品工业技术发展制约着农业的发展。 面对国内外日益激烈的市场竟争, 我国的可利用资源减少, 人口却在增加, 生存与发展始终是头等大事, 所以食品工业一直是我国政府十分重视的支柱产 业之一。要发展食品工业, 首先要重视其技术的发展, 尤其是食品工业中的新型制造技术的应用, 唯有如此, 方能兴旺食品工业, 使之对农业产生导向作用。 1. 1 生物技术在食品工业中的应用。生物技术在其发展过程中始终与食品工业有着密不可分的关系。现代生物技术的飞速发展及其在食品工业中应用是近代食品工业取得非凡成就的重要因素, 它为解决人类食品、营养、保健、环境、资源等问题开辟了崭新的途径。目前国际市场上以生物技术为基础的食品工业

产值为2 500 亿美元。生物技术在国内食品工业中已得到广泛的应用, 例如基因工程技术在食品品质改良方面, 以高产、优质、抗病虫害、高蛋白含量为主要目标; 利用微生物发酵及酶工程技术, 可生产出门类众多的传统发酵食品等, 还可利用生物技术对传统食品加工工艺进行改造。现代食品新型制造技术随着科学技术进步而不断发展, 日趋成熟。而且各种现代食品新型制造技术相互组合使用, 将会产生更佳的经济效益。 1. 2网络技术在食品工业中的应用。运用高新技术和信息网络技术对现有食品加工装置和生产工艺进行改造, 是技术进步的重要手段。大力推广电子计算机进入生产领域, 根据生产工艺特点, 编制控制软件, 由电脑自动控制各个环节的生产工艺要求, 自动协调控制阀门。使人工操作、经验判断为主的加工过程逐步过渡到以电脑自动控制为主。既避免了操作失误、经验失误、减轻工人的劳动强度, 又能保证和提高产品的内在、外观的各项综合指标。建立在高新技术基础上的食品工业, 将不断创新和加大综合利用广度和深度、节约资源、节约能源, 增加经济效益,使食品工业尽早成为无污染、保持生态环境的绿色行业。 2重视人才培养与人才引进, 向国际水平靠拢。 以前, 我们的国门没打开, 长期以来产供销全都是计划经济运行, 所以市 场经济商品意识淡薄。参加世贸组织后国门打开了, 情况发生突变。外国食品已大批量涌入中国市场, 且产品质量上乘、款式新颖、口味新奇、包装精美, 对我们的传统食品引起了不小的冲击。 食品行业的生产、管理、营销是一个庞大的系统工程, 要求不同层次的人员来运作, 尤其是决策指导的高层面人员, 具备素质全面、精通国际贸易规则。 教育部门要开设食品专业, 培养适应新时代的食品行业管理人才, 同时高校、高职、中职、技工学校也要培养不同层面的生产、管理人员。市场竞争的深层次是人才竞争。

增稠剂介绍

第20章增稠剂(Thickening agents) 20.1 概述 20.1.1 食品增稠剂的定义 食品增稠剂通常指能溶解于水中,并在一定条件下充分水化形成黏稠、滑腻溶液的大分子物质,又称食品胶。它是在食品工业中有广泛用途的一类重要的食品添加剂,被用于充当胶凝剂,增稠剂,乳化剂,成膜剂,泡沫稳定剂,润滑剂等。增稠剂在食品中添加量通常为千分之几,但却能有效地改善食品的品质和性能。其化学成分除明胶、酪朊酸钠等为蛋白质外,其它大多是天然多糖及其衍生物,广泛分布于自然界。 20.1.2食品增稠剂的分类 迄今世界上用于食品工业的食品增稠剂已有40余种,根据其来源,可分为五大类。 (1)由海藻制取的增稠剂海藻胶是从海藻中提取的一类食品胶,.地球上各海域水温变化及盐含量不同。海洋中藻品种多达15000多种,分为红藻、褐藻、蓝藻和绿藻四大类。重要的商品海藻胶主要来自褐藻。不同的海藻品种所含的亲水胶体其结构,成分各不相同,功能、性质及用途也不尽相同。 (2)由植物种子、植物溶出液制取的增稠剂由植物及其种子制取的增稠剂,在许多情况下,其中的水溶性多糖类似于植物受到刺激后的渗出液。它们是经过精细的专门技术而制得的,包括选择、种植和布局。种子收集和处理都具有一套科学方法。正如动植物渗出液一样,这样增稠剂都是多糖酸的盐。其分子结构复杂,常用的这类增稠剂有瓜尔胶、卡拉胶、海藻胶等。 (3)由微生物代谢生成的增稠剂真菌或细菌与淀粉类物质作用产生的另一类用途广泛的食品增稠剂,如黄原胶等,这是将淀粉全部分解成单糖,紧接着这些单糖又发生缩聚反应再缩合成新的分子。这种新分子的大分子链具有以下的特点:每一个葡萄糖残基除了四个碳原子仍保留原有的结构之外,部分或全部地发生羧基部位的部分氧化,大分子或链的交联,羟基上的氧原子被新的化学基取代等反应。由不同植物表皮损伤的渗出液制得的增稠剂的功能是人工合成产品所达不到的,其成分是一种由葡萄糖和其他单糖缩合的多糖衍生物,在它们的多羟基分子中,穿插一定数量对其性质有一定影响的氧化基团,这些氧化基团,在许多情况下,羟基占很大的比例。这些羟基常以钙、镁或钾盐的形式存在,而不以自由羟基的形式存在。阿拉伯胶、黄原胶均属于此类增稠剂。 (4)由动物性原料制取的增稠剂这类增稠剂是从动物的皮、骨、筋、乳等提取的。其主要成分是蛋白质。品种有明胶、酪蛋白等。 (5)以纤维素、淀粉等天然物质制成的糖类衍生物这类增稠剂按其加工工艺可以分为两类:以纤维素、淀粉等为原料,在酸、碱、盐等化学原料作用下经过水解、缩合、化学修饰等工艺制得。其代表的品种有羧甲基纤维素钠、变性淀粉、藻酸丙二醇酯等。 20.2 海藻胶 由于海藻胶在增稠性、稳定性、胶凝性、保形性、薄膜成形性等方面具有显著的优点,加上其独特的保健功能,使之在食品工业中得到了广泛的应用,成为产销量最大的增稠剂之一。本节重点介绍海藻酸及其盐、琼脂、卡拉胶的组成结构、理化性质及其在食品工业中的应用。 20.2.1海藻酸钠(Sodium Algimate ) 别名:褐藻酸钠、藻胶。化学结构:海藻酸和海藻酸盐是直链糖醛酸聚糖。由两种分子

食品甜味剂

题目食品甜味剂 姓名范浩 学号201307003104 院(系)化学与生命科学学院专业、年级食品质量与安全专业1301班指导教师刘小文 2015年 1月1日

食品甜味剂 【摘要】甜味是各类食品风味的基础,是由具有甜味的成分赋予的。蔗糖、葡萄糖、果糖、麦芽糖和乳糖等甜味物质,被人类食用的历史久远,而且还是人类维持生命活动的重要的营养素,因此通常被视为食品配料。人们常说的食品甜味剂是赋予食品以甜味的物质,但是不是只要能赋予食品甜味的物质都是食品甜味剂呢?只要知道了食品甜味剂的性质我们就能判断。 【关键词】甜味营养素食品甜味剂 1甜味与甜味特性 人们最喜好的基本味感就是甜味。甜味是调整和协调平衡风味、掩蔽异味、增加适口性的重要因素。甜味是甜味剂分子刺激味蕾产生的一种复杂的物理、化学和生理过程。甜味的高低称为甜度,是甜味剂的重要指标。甜度不能用物理、化学的方法定量测定,只能凭借人们的味觉进行感官判断。为比较甜味剂的甜度,一般是选择蔗糖作为标准,其他甜味剂的甜度是与它比较而得出的相对甜度。测定相对甜度有两种方法:一种是将甜味剂配成可被感觉出甜味的最低浓度,称为极限浓度法;另一种是将甜味剂配成与蔗糖浓度相同的溶液,然后以蔗糖溶液为标准比较该甜味剂的甜度,称为相对甜度法。 呈甜味的物质很多,由于组成和结构的不同,产生的甜感也有很大的不同,主要表现在甜味强度和甜感特色两个方面。天然糖类一般是随碳链增长甜味减弱,单糖、双糖类都有甜味,但乳糖的甜味较弱,多糖大多无甜味。蔗糖的甜味纯,且甜度的高低适当,刺激舌尖味蕾1s内产生甜味感觉,很快达到最高甜度,约30s后甜味消失,这种甜味的感觉是愉快的,因而成为确定不同甜味剂甜度和甜感特征的标准物。 一般而言,糖的甜度随浓度的增加而提高,但各种糖的甜度提高程度不同,大多数糖其甜度随浓度增高的程度都比蔗糖大,尤其以葡萄糖最为明显,如葡萄糖含量在8%时甜度为0.53,35%时为0.88,一般讲葡萄糖的甜度比蔗糖低,是指在较低浓度情况下。另外当蔗糖的含量在小于40%的范围内,其甜度比葡萄糖大;但当两者的含量大于40%时,甜味却几乎没有差别。 在较低的温度范围内,大多数糖的甜度受温度影响并不明显,尤其对蔗糖和葡萄糖的影响很小;但果糖的甜度受温度的影响却十分显著。在浓度相同的情况下,当温度低于40℃时,果糖的甜度较蔗糖大,在0℃时果糖比蔗糖甜1.4倍;在于大约50℃时,其甜度反比蔗糖小,在60℃时则只是蔗糖甜度的0.8倍。这

增稠剂在食品中的应用之欧阳光明创编

增稠剂在食品中的应用 欧阳光明(2021.03.07) 摘要:增稠剂在食品加工中应用广泛,本文介绍了增稠剂特性、食品增稠剂的来源、添加到食品中的作用、在食品中的应用以今后的发展前景。 1增稠剂 增稠剂又称胶凝是一种流变助剂,在日常工作和生活经常接触的到,广泛用于食品、涂料、胶黏剂、化妆品、洗涤剂、印染、橡胶、医药等领域。其中用于食品时又称糊料或食品胶。增稠剂大多属于亲水性高分子化合物,一般都采用物理吸水膨胀化学反应两种原理起到增稠增粘的效果。增稠剂分子中含有许多亲水基团,例如羟基、羧基、氨基和羧酸根等,能与水分子发生水化作用。通常,食品增稠剂都是高分子亲水的胶体物质,大部分是从天然动植物中提取或加工而成。 追溯增稠剂的历史,最早的渊源就在食品。在很早以前,我国便有人在烹调菜肴时用淀粉来勾芡,使得菜肴的汤汁更为浓厚、黏稠,这其实就是最早的“增稠剂”。现代,仍然有些国家,把淀粉划归为食品添加剂中的增稠剂。GB 2760- 2011食品添加剂使用卫生标准明确规定了39种允许限量使用的增稠剂,允许添加增稠剂的食品种类大致有乳与乳制品、脂肪、油和乳化脂肪制品、冷冻饮品、水果制品、糖果类、淀粉制品、糕点类、肉与肉制品、水产品

制品、糖浆类、调味品、特殊膳食用食品、饮料类、酒类等16大类。可见增稠剂在食品工艺中地位斐然。 2食品增稠剂的来源 增稠剂在食品工程中添加量很微小,通常只占到制品总重的千分之几,但却能既有效又科学健康地改善食品体系的稳定性。食品增稠剂的化学成分大多是天然多糖或者其衍生物,在自然界分布广泛。现今可查到的用于食品工业的增稠剂来源大致可分为两类即天然增稠剂级、人工合成增稠剂。 2.1 天然增稠剂 由天然动植物提取而成的增稠剂。海藻类产生的胶及其盐类,如海藻酸、琼脂、卡拉胶等;树木渗出液形成的胶,如阿拉伯胶;植物种子制成的胶,如瓜尔胶、槐豆胶等;植物某些组织制成的胶,如淀粉、果胶、魔芋胶等;动物分泌或其组织制成的胶,如明胶、酪蛋白;微生物繁殖分泌的胶,如黄原胶、结冷胶等。 2.2 人工合成增稠剂 人工采用化学方法合成的食品增稠剂。以天然增稠剂进行改性制得的物质及纯人工合成增稠剂。如:海藻酸丙二醇酯、羟甲基纤维素钙、羟甲基纤维素钠、磷酸淀粉钠、乙醇酸淀粉钠。纯化学合成:聚丙烯酸钠、羧甲基纤维素钠等。 3增稠剂在食品中的作用 增稠剂在食品中的作用主要是为了提高食品的粘度或着形成凝胶、保持体系相对稳定性的亲水性物质,从而改变食品的物理性状、赋予食品粘润、适宜的口感,并兼有乳化、稳定或使呈悬浮状

甜味剂检测标准

甜味剂检测标准 (13-05-17)根据《食品添加剂手册》描述:甜味剂(Sweeteners)是指赋予食品或饲料以甜味的食物添加剂。目前世界上使用的甜味剂很多,有几种不同的分类方法:按其来源可分为天然甜味剂和人工合成甜味剂;按其营养价值分为营养性甜味剂和非营养性甜味剂;按其化学结构和性质分为糖类和非糖类甜味剂。糖醇类甜味剂多由人工合成,其甜度与蔗糖差不多。因其热值较低,或因其与葡萄糖有不同的代谢过程,尚可有某些特殊的用途。非糖类甜味剂甜度很高,用量少,热值很小,多不参与代谢过程。常称为非营养性或低热值甜味剂,称高甜度甜味剂,是甜味剂的重要品种。(001发布) 主要有以下几种: 1、功能性单糖:高果糖浆、结晶果糖、L-糖等; 2、功能性低聚糖:异麦芽酮糖、乳酮糖、棉子糖、大豆低聚糖、低聚果糖、低聚乳果糖、低聚乳糖、低聚异麦芽糖等; 3、多元糖醇:赤藓糖醇、木糖醇、山梨糖醇、甘露糖醇、麦芽糖醇、异麦芽糖醇、氢化淀粉水解物等; 4、糖苷:甜菊苷、甜菊双糖苷、二氢查耳酮、甘草甜素等; 5、二肽类:甜味素(阿斯巴甜)、阿力甜等; 6、蛋白质:索马甜、莫奈林、奇异果素等; 7、蔗糖衍生物:三氯蔗糖(又叫蔗糖精)等; 8、人工合成甜味剂:糖精、甜蜜素、安塞蜜、纽甜 美国临床营养学杂志2009年1月刊登的一篇相关论文表示,目前没有任何证据能证明吃加了高效甜味剂的食品对控制体重有好处。很多研究证明,这些甜味剂本身虽然能量很低,但是它们却会增强人的食欲,因而在食物不限量的前提下,喝添加甜味剂的饮料反而有诱发人饮食过量的危险。因此,从长期角度来说,它们会增大肥胖的危险。 的确,有研究发现,在不控制饲料数量的情况下,用含有三氯蔗糖的饲料饲喂小鼠12周后,小鼠的体重比饲喂正常饲料的要明显地重。也就是说,让小鼠放开来吃的话,那么三氯蔗糖令他们感觉饲料更好吃,因此胃口变得更大,身体长得更胖。研究者建议消费者,不要把减肥的希望寄托在什么甜味剂上。 有研究者推测,实际上甜味剂是在愚弄我们的大脑和消化系统。它的甜味让人体感觉到吃了含有糖的食物,刺激胰岛素的产生,从而阻碍了脂肪的分解,促进脂肪的合成。然而

增稠剂在食品中的作用

增稠剂在食品中的作用 稠剂在食品中的作用主要是为了提高食品的粘度或着形成凝胶、保持体系相对稳定性的亲水性物质,从而改变食品的物理性状、赋予食品粘润、适宜的口感,并兼有乳化、稳定或使呈悬浮状态作用的物质。 1、稳定作用 稳定作用指增稠剂加入到食品中,可使食品组织趋于稳定、不易变动、不易改变品质如:①在冰淇淋中有抑制冰晶生长②糖果中有防止糖结晶3在饮料、调味品和乳化香精中具乳化稳定作用;4在啤酒、汽酒中有泡沫稳定作用。 2、增稠作用 增稠剂在食品中主要是赋予食品所要求的流变特性:改变食品的质构和外观,将液体、浆状食品形成特定形态;并使其稳定、均匀,提高食品质量,以使食品具有黏滑适口的感觉。 3、凝胶作用 食品增稠剂是果冻、奶冻、果酱、软糖和人造营养食品等的胶凝剂和赋犁剂。作为食用凝胶的增稠剂,它们各具特长,彼此难以取代,琼脂是目前较好的胶凝形成剂,其凝胶坚实、硬度较高,但弹性较小。明胶凝胶坚韧而富有弹性,能承受一定的压力。海藻酸钠胶凝条件低,其热不可逆性特别适用于人造营养食品。果胶在胶凝时能释放出一种较好的香味,

适用于果味食品。 4、保水作用 保水作用则指增稠剂有强亲水作用能吸收几十倍乃至上百倍于自身质量的水分,并有持水性,这个特性可改善面团的吸水量,使产品的质量增大。 5、成膜作用 在食品表面形成非常光润的薄膜,可以防止冰冻食品、固体粉末食品表面吸湿而导致的质量下降。作被膜用的有醇溶性蛋白、明胶、琼脂、海藻酸等当前,可食用包装膜是增稠剂发展的方向之一。 6、矫味作用 对不良气味有掩蔽作用。其中环糊精效果较好,可消除食品中的异味。例如, 在豆奶中加入2-5%可显著减少豆腥味。 7、其它作用 除上述作用外,增稠剂还可作为果汁、酒和某些调味品的澄清剂,烘烤食品品质改良剂;在食品加工中还可作起泡剂和脱膜剂等。

护色剂在食品中的应用

护色剂在食品加工中的影响 摘要:本文综述了护色剂在肉制品中的作用及其应用现状。除此以为还为大家阐述了护色剂在现在工业领域的应用,以及它在未来食品工业中的前景和存在的经济价值。 关键词:护色剂食品;应用;工业。 Color protection agent in meat products application Ding Liping ) Abstract:This article reviews the color protecting agent application in meat products and its application. In addition to this thought also to the color protecting agent in industrial applications, as well as in the future it's food industry and the prospects for the existence of economic value. Key words: color fixative food; industrial application 目录 前言、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、1 1、护色剂价值与机理、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、1 1、1护色剂的价值、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、1 护色剂的护色机理、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、1 2、护色剂的作用、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、2 3、护色剂的分类、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、3 3、1一般与护色助剂共同使用、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、..、、、、、、、、、、、、、、、、3 3、2护色剂的种类、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、..、、、、、、、、4 4护色剂的应用、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、4 4、1护色剂在肉制品中的应用、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、5 4、2护色剂在果蔬中应用、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、.、、、、、、、、、、、、、、、、、、、、5 5、护色剂的毒副性、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、6 6、护色剂的安全使用、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、7 6、1 控制用量、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、……..…………、、、、、、、、、、、、、8 6、2使用条件、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、.、、、、、、、、、、8 6、3新产品的研究、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、.、、、、、、、、、、、9

试论食品工业中合成甜味剂的应用

试论食品工业中合成甜味剂的应用 发表时间:2019-07-26T10:05:24.167Z 来源:《建筑细部》2018年第27期作者:朱秀杰 [导读] 本文概述不同甜味物质的区别和联系以及合成甜味剂的常见种类、特点及安全性,并指出合成甜味剂的发展趋势。 佛山市海天(高明)调味食品有限公司广东佛山 528000 摘要:甜味剂是-种食品添加剂,人工合成甜味剂有高甜度、低热量、非营养性等特点,容易通过化学合成手段得到,在食品工业中被广泛使用。本文概述不同甜味物质的区别和联系以及合成甜味剂的常见种类、特点及安全性,并指出合成甜味剂的发展趋势。 关键词:食品工业;合成甜味剂;甜味剂的应用 引言 甜味剂是食品添加剂,能增加食物的甜味。根据其来源,可分为天然甜味剂和合成甜味剂。其中合成甜味剂也可分为磺胺类、蔗糖类以及二肽类。人造甜味剂也被称为非营养性甜味剂或高甜味剂,因为它们不被代谢和吸收,不提供热量,或提供较少的热量,因为它们的剂量极低,但是甜度却是数万倍甜比蔗糖。目前,我国已被国家食品添加剂标准化技术委员会批准。卫生部批准的食品添加剂卫生标准 GB2760中允许使用七种合成甜味剂。其中有糖精钠、三氯蔗糖、斯巴达甜、甜蜜素以及安赛蜜。这些也是在市场上较为常见的甜味剂。 1食品中常见的人造甜味剂 1.1糖精钠(Sodium Soccharin) 糖精钠又称邻苯甲酰磺酰亚胺钠是一种白色结晶性粉末,耐热,耐碱性不良,余味苦,不具有良好的风味。美国科学家研究中发现,它是最古老的甜味剂,并且也是目前使用最多的甜味剂。甲苯和氯磺酸为其主要原材的糖精钠的甜味是蔗糖的400-700倍。 1.2甜蜜素(Sodium Cyclamate) 甜蜜素又称环己基氨基磺酸钠是一种白色针状,片状或粉状晶体,耐热,耐光,具有有良好的大气稳定性,加热后微苦。以氨基磺酸钠和环己胺为原料,经反应精制而成。它比蔗糖甜30-80倍。是可以代替蔗糖或结合其他甜味剂使用的甜味剂。 1.3安赛蜜(Acesulfame) 安赛蜜又称乙酰磺胺酸钾是一种含氧硫杂环丙二酮化合物,状态为白色结晶粉末,遇水则无,热酸稳定性好,不吸水,但是随着浓度提高味道变苦。经常被当作钾盐使用,所以它被称为乙酰磺胺-K(A-K糖)。它是由二丙酮与氨基磺酸反应,SO3环化,KOH中和结晶而成。可以媲美蔗糖甜味的200倍。 1.4阿斯巴甜(Aspartame) 阿斯巴甜的化学名称是L-天冬氨酞-L-苯丙氨酸甲基(APM),对外贸易名称是Nutra Sweet,别称有很多例如人们常听说的甜味素、蛋白糖、天苯糖等。1981年,它被FDA批准用于干食品,1983年被批准用于软饮料。在世界上100多个国家和地区使用,是蔗糖甜味的20倍。 1.5阿力甜(Alitame) Alitame的化学名称是L-A-天冬酰胺-N-(2,2,4,4-四甲基-3-三甲基硫醚)-D-丙氨酸邻苯二甲酸胺,也称为天胺甜精。1979年,它由辉瑞公司开发。它比蔗糖甜2000倍。阿力甜具有清爽、耐热、耐酸、耐碱,具有优异的存放和制作稳定性的优点,在食品工业被广泛使用。中国在1994年批准了这种用法,在饮料、果冻、冷饮、甜食等中常用。缺点是分子结构中含有硫原子,有轻微的硫味。 1.6氯蔗糖(Sucralose) 蔗糖(Sucralose)是蔗糖分子中选择三个轻基取代氯原子而得到的一种高甜味剂。1991年,它首次被批准用于加拿大食品,甜度是蔗糖的60-650倍。 1.7纽甜(Neotame) Neotame的化学名称是N-[N-3,3-二甲基丁基]-L-α-天冬氨酸-L-苯丙氨酸1-甲基酯。它是一种3,3-二甲基丁基化合物,有的别称是乐甜。2001年首次获得澳大利亚和新西兰的批准。具有蔗糖甜味的700-1300倍,也被称为最甜的甜味剂。 图1 各种甜味剂结构式 2对健康的危害 根据《食品安全法》规范要求,食品添加剂在被纳入许可使用范围之前,必须经过技术上的必要性和风险评估证明其安全可靠。因此,严格按照国家食品安全规范和使用生产甜味剂,保证不会对消费者健康造成危害。针对环己基苯甲酸钠、糖精钠、环己基苯甲酸钠等

相关主题