搜档网
当前位置:搜档网 › 高中数学函数的奇偶性和对称性讲义及练习

高中数学函数的奇偶性和对称性讲义及练习

高中数学函数的奇偶性和对称性讲义及练习
高中数学函数的奇偶性和对称性讲义及练习

高中数学函数的奇偶性和对称性讲义及练习

题型一:判断函数奇偶性

1.判断函数奇偶性可以直接用定义,而在某些情况下判断f (x)±f (-x)是否为0是判断函数奇偶性的一个重要技巧,比较便于判断.

【例1】 判断下列函数的奇偶性:

⑴ 1y x

=; ⑵ 422y x x =++;

⑶ 3y x x =+;

⑷ 31y x =-.

【例2】 判断下列函数的奇偶性:

⑴4()f x x =; ⑵5()f x x =; ⑶1()f x x x =+

; ⑷21()f x x

=.

【例3】 判断下列函数的奇偶性并说明理由: ⑴ 221()1x

x

a f x a +=-(0a >且1)a ≠; ⑵

()f x =;

⑶ 2()5||f x x x =+.

【例4】 判别下列函数的奇偶性:

(1)31()f x x x

=-; (2)()|1||1|f x x x =-++;(3)23()f x x x =-.

典例分析

【例5】 判断函数的奇偶性.

2.由函数奇偶性的定义,有下面的结论: 在公共定义域内

(1)两个偶函数之和(积)为偶函数;

(2)两个奇函数之和为奇函数;两个奇函数之积为偶函数;

(3)一个奇函数和偶函数之积为奇函数.

【例6】 判断下列函数的奇偶性:

⑴ ()(f x x =- ⑵ 11()()(

)12

x f x F x a =+-,其中0a >且1a ≠,()F x 为奇函数.

【例7】 若函数f(x)= 3

(x x)+g(x)是偶函数,且f (x)不恒为零,判断函数g(x)的奇偶性.

【例8】 函数()y f x =与()y g x =有相同的定义域,对定义域中任何x ,有()()0f x f x +-=,

()()1g x g x -=,则2()()()()1

f x F x f x

g x =+-是( ) A .奇函数 B .偶函数

C .既是奇函数又是偶函数

D .非奇非偶函数

【例9】 已知()f x =,)

()lg g x x =.则乘积函数()()()F x f x g x =在公共定义域上的奇偶性为( ).

A .是奇函数而不是偶函数

B .是偶函数而不是奇函数

C .既是奇函数又是偶函数

D .既非奇函数又非偶函数

【例10】 已知函数()f x 是奇函数;2()(1)()21

x F x f x =+-(x ≠0)是偶函数,且()f x 不恒为0,判断()f x 的奇偶性.

题型二:求解析式与函数值

1.利用函数奇偶性可求函数解析式.

【例11】 函数()f x =a 的取值范围是( ). A .10a -<≤或01a <≤ B .1a -≤或1a ≥

C .0a >

D .0a <

【例12】 设()f x 是R 上的奇函数,且当[0,)x ∈+∞时,()(1f x x =,那么当(,0)x ∈-∞时,

()f x =_________.

【例13】 已知偶函数f (x)的定义域为R ,当x ≥0时,f (x)=2x 3x-1+,求f (x)的解析式.

设x <0,则-x >0

【例14】 已知函数()f x 为R 上的奇函数,且当0x >时()(1)f x x x =-.求函数()f x 的解析式.

【例15】 已知函数22()(1)(1)2f x m x m x n =-+-++,当,m n 为何值时,()f x 是奇函数?

【例16】 已知()f x 是偶函数,0x ≥时,2()24f x x x =-+,求0x <时()f x 的解析式.

【例17】 已知()f x 是定义域为R 的奇函数,当0x <时,2()2f x x x =+-,求()f x 的解析式.

【例18】 ()y f x =图象关于1x =对称,当1x ≤时,2()1f x x =+,求当1x >时()f x 的表达式.

【例19】 已知函数21()(,,)ax f x a b c Z bx c

+=∈+是奇函数,且(1)2,(2)3f f =<,求,,a b c 的值.

2.对于函数奇偶性有如下结论:定义域关于原点对称的任意一个函数f (x)都可表示成一个偶函数和一个奇函数之和.

即 f (x)=12

[F (x)+G(x)] 其中F (x) =f (x)+f (-x),G(x) =f (x)-f (-x) 利用这一结论,可以简捷的解决一些问题.

【例20】 定义在R 上的函数f (x)=22x x x 1

++,可表示成一个偶函数g(x)和一个奇函数h(x)之和,求g(x),h(x).

【例21】 已知()f x 是奇函数,()g x 是偶函数并且()()1f x g x x +=+,则求()f x 与()g x 的表达式.

【例22】 已知()f x 是奇函数,()g x 是偶函数,且1()()1

f x

g x x -=+,求()f x 、()g x .

3.利用函数奇偶性求函数值

【例23】 已知f (x ),.10)2(83

2=-+++=f bx ax x 且求f (2).

【例24】 已知()ln(4f x ax c x =+++(a 、b 、c 为实数),且3(lglog 10)5f =.则(lg lg3)

f 的值是( ).

A .5-

B .-3

C .3

D .随a 、b 、c 而变

【例25】 ⑴ 若()f x 是定义在R 上的奇函数,则(0)f =__________;

⑵若()f x 是定义在R 上的奇函数,(3)2f =,且对一切实数x 都有(4)()f x f x +=,则(25)f =__________;

⑶设函数()y f x =(R x ∈且0x ≠)对任意非零实数12,x x 满足1212()()()f x x f x f x ?=+,则函数()y f x =是___________(指明函数的奇偶性)

【例26】 已知函数3()2f x x x =--.若1x 、2x 、3x ∈R 且120x x +>,230x x +>,310x x +>.则

123()()()f x f x f x ++( )

. A .大于零 B .小于零

C .等于零

D .大于零或小于零

【例27】 设函数322||2()2||

x x x x f x x x +++=+的最大值为M ,最小值为m ,则M 与m 满足( ). A .2M m += B .4M m +=

C .2M m -=

D .4M m -= 【例28】 函数()f x 在R 上有定义,且满足①()f x 是偶函数;②(0)2005f =;③()(1)g x f x =-是奇函

数;求(2005)f 的值.

题型三:奇偶性与对称性的其他应用

1.奇偶性与单调性

【例29】 已知函数()f x 是偶函数,而且在(0,)+∞上是减函数,判断()f x 在(,0)-∞上是增函数还是减函

数并证明你的判断.对奇函数有没有相应的结论.

【例30】 已设函数()f x 是定义在R 上的奇函数,且在区间(,0)-∞上是减函数,实数a 满足不等式

22(33)(32)f a a f a a +-<-,求实数a 的取值范围.

【例31】 已知()y f x =为()-∞+∞,上的奇函数,且在(0)+∞,上是增函数.

⑴求证:()y f x =在(0)-∞,上也是增函数;

⑵若1()12

f =,解不等式41(lo

g )0f x -<≤,

【例32】 已知函数()f x ,当,R x y ∈时恒有 ()()()f x y f x f y +=+ .

①求证:函数()f x 是奇函数;

②若(3)f a -=,试用a 表示(24)f .

③如果R x +∈时()0f x <,且(1)0.5f =-.

试判断()f x 的单调性,并求它在区间[2,6]-上的最大值与最小值.

【例33】 设函数()y f x =(x ∈R 且0)x ≠对任意非零实数12,x x ,恒有1212()()()f x x f x f x =+,

⑴求证:(1)(1)0f f =-=;

⑵求证:()y f x =是偶函数;

⑶已知()y f x =为(0,)+∞上的增函数,求适合1()()02

f x f x +-≤的x 的取值范围.

【例34】 知(),()f x g x 都是奇函数,()0f x >的解集是2

(,)a b ,()0g x >的解集是2,22a b ?? ???,22b a >,那么求()()0f x g x >的解集.

2.函数对称性

【例35】 设函数()f x 对于一切实数x 都有(2)(2)f x f x +=-,如果方程()0f x =有且只有两个不相等的

实数根,那么这两根之和等于_____.

【例36】 当实数k 取何值时,方程组?????-=-=-++1

,1||)1(224y x y x x k 有惟一实数解.

【例37】 设a 是正数,而}||2|||)},{(},1|),{(2

2a y x y x B y x y x A ≤+=≤+=是XOY 平面内的点集,则B A ?的一个充分必要条件是5≥a (1986年上海中学生竞赛题).

【例38】 试证1991)19911()19911(1990

1990--+是整数.

上例可推广为:设m 、n 为自然数,证明m m m n n )1()1(--+是整数.

最新基本初等函数讲义(全)

一、一次函数 二、二次函数 (1)二次函数解析式的三种形式 ①一般式:2()(0)f x ax bx c a =++≠ ②顶点式:2()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠ (2)求二次函数解析式的方法 ①已知三个点坐标时,宜用一般式. ②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便. (3)二次函数图象的性质

图像 定义域 (),-∞+∞ 对称轴 2b x a =- 顶点坐标 24,24b ac b a a ??-- ??? 值域 24,4ac b a ??-+∞ ??? 24,4ac b a ?? --∞ ?? ? 单调区间 ,2b a ??-∞- ??? 递减 ,2b a ?? -+∞ ??? 递增 ,2b a ? ?-∞- ??? 递增 ,2b a ?? -+∞ ??? 递减 ①.二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为 ,2b x a =-顶点坐标是24(, )24b ac b a a -- ②当0a >时,抛物线开口向上,函数在(,]2b a -∞- 上递减, 在[,)2b a -+∞上递增,当2b x a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,] 2b a -∞-上递增,在[,)2 b a -+∞上递减,当2b x a =-时,2max 4()4ac b f x a -=. 三、幂函数 (1)幂函数的定义 一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数. (2)幂函数的图象 2b x a =- 2b x a =-

《函数的奇偶性与周期性》教案

教学过程 一、课堂导入 我们生活在美的世界中,有过许多对美的感受,请想一下有哪些美? 对于对称美,请想一下哪些事物给过你对称美的感觉呢? 生活中的美引入我们的数学领域中,它又是怎样的情况呢?若给它适当地建立直角坐标系,那么会发现什么特点? 数学中对称的形式也很多,这节课我们就来复习在坐标系中对称的函数

二、复习预习 1、复习单调性的概念 2、复习初中的轴对称和中心对称 3、预习奇偶性的概念 4、预习奇偶性的应用

三、知识讲解 考点1 函数的奇偶性 [探究] 1. 提示:定义域关于原点对称,必要不充分条件. 2.若f(x)是奇函数且在x=0处有定义,是否有f(0)=0?如果是偶函数呢? 提示:如果f(x)是奇函数时,f(0)=-f(0),则f(0)=0;如果f(x)是偶函数时,f(0)不一定为0,如f(x)=x2+1. 3.是否存在既是奇函数又是偶函数的函数?若有,有多少个? 提示:存在,如f(x)=0,定义域是关于原点对称的任意一个数集,这样的函数有无穷多个.

考点2 周期性 (1)周期函数: 对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y =f(x)为周期函数,称T为这个函数的周期. (2)最小正周期: 如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.

四、例题精析 【例题1】 【题干】判断下列函数的奇偶性 (1)f(x)=lg 1-x 1+x ;(2)f(x)= ? ? ?x2+x(x>0), x2-x(x<0); (3)f(x)= lg(1-x2) |x2-2|-2 .

函数的单调性和奇偶性精品讲义

第三讲 函数的单调性、奇偶性 一、知识点归纳 函数的单调性 (1)定义:设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1f (x 2)),那么就说f (x )在区间D 上是增函数(减函数),区间D 为函数y =f (x )的增区间(减区间)概括起来,即 12 12121212121212()()()()()()()()x x x x f x f x f x f x x x x x f x f x f x f x ??<>????? <>???? ? ?<>??? ???>

2高一数学函数的奇偶性(1对1)

师:什么是函数的奇偶性呢? 生:回答 师:我们在函数奇偶性的知识点上重点考察的题型有哪些呢? 生:回答 师:我们通过今天的学习一起来回顾一下函数奇偶性的重点题目。 一、函数奇偶性定义 1、图形描述: 函数()f x 的图像关于y 轴对称?()f x 为偶函数; 函数()f x 的图像关于原点轴对称?()f x 为奇函数 定量描述 一般地,如果对于函数()f x 的定义域内任意一个x ,都有()()f x f x -=,则称()f x 为偶函数;如果都有()()--f x f x =,则称()f x 为奇函数;如果()()f x f x -= 与 函数的奇偶性

()()--f x f x =同时成立,那么函数()f x 既是奇函数又是偶函数;如果()()f x f x -=与()()--f x f x =都不能成立,那么函数()f x 既不是奇函数又不是偶函数,称为非奇非偶函 数。 如果函数()f x 是奇函数或偶函数,则称函数()y f x =具有奇偶性。 特别提醒: 1、函数具有奇偶性的必要条件是:函数的定义域在数轴上所表示的区间关于原点对称。换言之,若所给函数的定义域不关于原点对称,则这个函数一定不具备奇偶性。2、用函数奇偶性的定义判断函数是否具有奇偶性的一般步骤:(1)考察函数的定义域是否关于原点对称。若不对称,可直接判定该函数不具有奇偶性;若对称,则进入第二步;(2)判断 ()()f x f x -=与()()f x f x -=-这两个等式的成立情况,根据定义来判定该函数的奇偶 性。 二、函数具有奇偶性的几个结论 1、()y f x =是偶函数?()y f x =的图像关于y 轴对称;()y f x =是奇函数? ()y f x =的图像关于原点对称。 2、奇函数()f x 在0x =有定义,必有()00f =。 3、偶函数在定义域内关于原点对称的两个区间上单调性相反;奇函数在定义域内关于原点对称的两个区间上单调性相同。 4、()(),f x g x 是定义域为12,D D 且1 2D D 要关于原点对称,那么就有以下结论: 奇±奇=奇 偶±偶=偶 奇?奇=偶 偶?偶=偶 奇?偶=奇 5、复合函数的奇偶性特点是:“内偶则偶,内奇同外”。 6、多项整式函数1 10()n n n n P x a x a x a --=++ +的奇偶性 多项式函数()P x 是奇函数?()P x 的偶次项的系数和常数项全为零; 多项式函数()P x 是偶函数?()P x 的奇次项的系数全为零。 (20-40分钟) 类型一 函数奇偶性的判断 例1:判断下列函数是否具有奇偶性: (1)f (x )=2x 4+3x 2 ; (2)f (x )=1x +x ; 练习1:判断下列函数的奇偶性: (1)f (x )=x 2 +1; 考点

函数奇偶性经典讲义-新

Ⅰ复习提问 (一)奇偶函数的定义 (二)、函数按奇偶分类:奇函数、偶函数、既是奇函数又是偶函数、既不是奇函数也不是偶函数(非奇非偶) (三)、奇偶函数的性质: 1、奇函数的反函数也是奇函数 2、奇偶函数的加减:±±±奇奇=奇,偶偶=偶,奇偶=非奇非偶;奇偶函数的乘除:同偶异奇 3、奇函数在关于原点对称的区间上单调性相同,偶函数在关于原点对称的区间上单调性相反。 4、定义在R 上的任意函数()f x 都可以唯一表示成一个奇函数与一个偶函数之和 ()()()()()() ()22 f x f x f x f x f x --+-= +奇偶 (四)、函数奇偶性的做题方法与步骤。 第一步,判断函数的定义域是否关于原点对称;第二步,求出()f x -的表达式;第三步, 比较()()f x f x -与的关系()()()()f x f x f x f x -???-?? 与相等,函数为偶 与互为相反数,函数为奇函数 Ⅱ 题型与方法归纳 题型与方法()()()()()0,0,020,===f x f x f x f x ?+-=??→?? --=????±±±?? ?? ??则是奇函数 定义法:1)看定义域是否关于对称,)若则是偶函数奇偶加减:奇奇奇,偶偶偶,奇偶非奇非偶快速判定奇偶乘除:同偶异奇。 一、判定奇偶性 例1:判断下列函数的奇偶性

1) ()()21f x x x =+ 2)()112 log x x f x -?? ?+?? = 3)( )f x =4)( )f x =)()2 2110 2 110 2x x f x x x ?+>??=? ?--即11x -<<,关于原点对称()()()11112 2 log log x x x x f x ?? --+?? ? ? ?+--?? ?? -== ()21log 1x f x x -?? =-=- ?+?? ,所以原函数为奇函数。 3) ()f x 的定义域为2 210 10 x x ?-≥??-≥??即1x =±,关于原点对称,又()()110f f -==即 ()()()()1111f f f f -=-=-且 ,所以原函数既是奇函数又是偶函数。 4)()f x 的定义域为20 20x x -≥??-≥? 即2x =,定义域不关于原点对称,所以原函数既不是奇函数又不是偶 函数。 5)分段函数()f x 的定义域为()(),00,-∞?+∞关于原点对称, 当0x >时,0x -<,()()()2 22111111222f x x x x f x ??-=- --=--=-+=- ??? 当0x <时,0x -> ,()()()2 22111111222f x x x x f x ??-= -+=+=---=- ??? 综上所述,在()(),00,-∞?+∞上总有()()f x f x -=- 所以原函数为奇函数。 注意:在判断分段函数的奇偶性时,要对x 在各个区间上分别讨论,应注意由x 的取值范围确定应用相应的函数表达式。 练习1:判断下列函数的奇偶性 1)()()()() 2616x x f x x x -+=- 2)( )22 f x x = +- 3)( )f x = 4)()22f x x x =++- 5)()22 00 x x x f x x x x ?+?? 二、利用奇偶性求函数解析式:

高一数学函数奇偶性练习题及答案解析

高一数学函数奇偶性练习题及答案解析 数学函数奇偶性练习题及答案解析 1.下列命题中,真命题是() A.函数y=1x是奇函数,且在定义域内为减函数 B.函数y=x3(x-1)0是奇函数,且在定义域内为增函数 C.函数y=x2是偶函数,且在(-3,0)上为减函数 D.函数y=ax2+c(ac≠0)是偶函数,且在(0,2)上为增函数 解析:选C.选项A中,y=1x在定义域内不具有单调性;B中,函数的定义域不关于原点对称;D中,当a<0时,y=ax2+c(ac≠0)在(0,2)上为减函数,故选C. 2.奇函数f(x)在区间[3,7]上是增函数,在区间[3,6]上的最大值为8,最小值为-1,则2f(-6)+f(-3)的值为() A.10 B.-10 C.-15 D.15 解析:选C.f(x)在[3,6]上为增函数,f(x)max=f(6)=8, f(x)min=f(3)=-1.∴2f(-6)+f(-3)=-2f(6)-f(3)=-2×8+1=-15. 3.f(x)=x3+1x的图象关于() A.原点对称 B.y轴对称 C.y=x对称 D.y=-x对称 解析:选A.x≠0,f(-x)=(-x)3+1-x=-f(x),f(x)为奇函数,关于原点对称. 4.如果定义在区间[3-a,5]上的函数f(x)为奇函数,那么 a=________.

解析:∵f(x)是[3-a,5]上的奇函数, ∴区间[3-a,5]关于原点对称, ∴3-a=-5,a=8. 答案:8 1.函数f(x)=x的奇偶性为() A.奇函数 B.偶函数 C.既是奇函数又是偶函数 D.非奇非偶函数 解析:选D.定义域为{x|x≥0},不关于原点对称. 2.下列函数为偶函数的是() A.f(x)=|x|+x B.f(x)=x2+1x C.f(x)=x2+x D.f(x)=|x|x2 解析:选D.只有D符合偶函数定义. 3.设f(x)是R上的任意函数,则下列叙述正确的是() A.f(x)f(-x)是奇函数 B.f(x)|f(-x)|是奇函数 C.f(x)-f(-x)是偶函数 D.f(x)+f(-x)是偶函数 解析:选D.设F(x)=f(x)f(-x) 则F(-x)=F(x)为偶函数. 设G(x)=f(x)|f(-x)|, 则G(-x)=f(-x)|f(x)|. ∴G(x)与G(-x)关系不定. 设M(x)=f(x)-f(-x),

函数的奇偶性与周期性练习题

函数的奇偶性与周期性 1.奇函数f (x )的定义域为R ,若f (x +2)为偶函数,则f (1)=1,则f (8)+f (9)= ( ) A. -2 B.-1 C. 0 D. 1 2.在函数①|2|cos x y =,②|cos |x y = ,③)62cos(π +=x y ,④)42tan(π -=x y 中,最小正周期为π的所有函数为 A.①②③ B. ①③④ C. ②④ D. ①③ 3.设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是 A. )()(x g x f 是偶函数 B. )(|)(|x g x f 是奇函数 C. |)(|)(x g x f 是奇函数 D. |)()(|x g x f 是奇函数 4.已知()f x 是定义在R 上的奇函数,且是以2为周期的周期函数,若当(]0,1x ∈时 2()1f x x =-,则7()2 f 的值为 A 34- B 34 C 12- D 12 5.下列函数为偶函数的是 A. sin y x = B. 3y x = C. x y e = D. y = 6.设()f x 是周期为2的奇函数,当0≤x ≤1时,()f x =2(1)x x -,则5 ()2f -= (A) -12 (B)1 4- (C)14 (D)12 7.下列函数中,既是偶函数又在()0,+∞单调递增的函数是 (A )3y x = (B) 1y x =+ (C )21y x =-+ (D) 2x y -= 8.下列函数为偶函数的是() A.()1f x x =- B.()2f x x x =+ C.()22x x f x -=- D.()22x x f x -=+ 9.偶函数y=f(x)的图像关于直线x=2对称,f(3)=3,则f(-1)=_______. 10.函数)4)(()(-+=x a x x f 为偶函数,则实数a = . 11.已知()f x 为奇函数,()()9,(2)3,(2)g x f x g f =+-==则 .

函数的奇偶性与周期性 知识点与题型归纳

1.结合具体函数,了解函数奇偶性的含义. 2.会运用函数的图象理解和研究函数的奇偶性. 3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性. ★备考知考情 1.对函数奇偶性的考查,主要涉及函数奇偶性的判断,利用奇偶函数图象的特点解决相关问题,利用函数奇偶性求函数值,根据函数奇偶性求参数值等. 2.常与函数的求值及其图象、单调性、对称性、零点等知识交汇命题. 3.多以选择题、填空题的形式出现. 一、知识梳理《名师一号》P18 注意: 研究函数奇偶性必须先求函数的定义域 知识点一函数的奇偶性的概念与图象特征 1.一般地,如果对于函数f(x)的定义域内任意一个x, 都有f(-x)=f(x),那么函数f(x)就叫做偶函数. 2.一般地,如果对于函数f(x)的定义域内任意一个x, 都有f(-x)=-f(x),那么函数f(x)就叫做奇函数. 1

2 3.奇函数的图象关于原点对称; 偶函数的图象关于y 轴对称. 知识点二 奇函数、偶函数的性质 1.奇函数在关于原点对称的区间上的单调性相同, 偶函数在关于原点对称的区间上的单调性相反. 2. 若f (x )是奇函数,且在x =0处有定义,则(0)0=f . 3. 若f (x )为偶函数,则()()(||)f x f x f x =-=. 《名师一号》P19 问题探究 问题1 奇函数与偶函数的定义域有什么特点? (1)判断函数的奇偶性,易忽视判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件. (2)判断函数f (x )的奇偶性时,必须对定义域内的 每一个x , 均有f (-x )=-f (x )、f (-x )=f (x ), 而不能说存在x 0使f (-x 0)=-f (x 0)、f (-x 0)=f (x 0). (补充) 1、若奇函数()f x 的定义域包含0,则(0)0=f . (0)0=f 是()f x 为奇函数的 既不充分也不必要条件 2.判断函数的奇偶性的方法 (1)定义法: 1)首先要研究函数的定义域,

函数的奇偶性及周期性综合运用

函数的奇偶性及周期性 1. 已知定义在 R 上的奇函数 f(x) 满足 f(x+2)= -f(x) f(6) 的值为 ( ) A.-1 B.0 C.1 D.2 【答案】 B 【解析】 ∵ f(x+2)=-f(x), ∴ f(6)=f(4+2)=-f(4)=f(2)= -f(0) 又 f(x) 为R 上的奇函数 , ∴ f(0)=0. ∴ f(6)=0. 2. 函数 f ( x) x 3 sin x 1( x R), 若 f(a)=2, 则 f(-a) 的值为 ( ) A.3 B.0 C.-1 D.-2 【答案】 B 【解析】 设 g ( x) 3 sinx, 很明显 g(x) 是一个奇函数 . x ∴ f(x)=g(x)+1. ∵ f(a)=g(a)+1=2, ∴ g(a)=1. ∴ g(-a)=-1. ∴ f(-a)=g(-a)+1=-1+1=0. 3. 已知 f(x) 是定义在 R 上的偶函数 , 并满足 f(x+2)= 1 1 x 2 时 ,f(x)=x-2, 则 f ( x) f(6.5) 等于?? ( ) A.4.5 B.-4.5 C.0.5 D.-0.5 【答案】 D 【 解 析 】 由 f(x 2) 1 得 f(x 4) 1 f ( x ) f ( x 2) f(6.5)=f(2.5). 因为 f(x) 是偶函数 , 得 f(2.5)=f(-2.5)=f(1.5), 而 1 x 2 时 ,f(x)=x-2, 所以 f(1.5)=-0.5. 综上 , 知f(6.5)=-0.5. 4. 已知函数 f(x) 是定义在 R 上的奇函数 , 当 x>0时 ,f(x)= - 是 ( ) A. ( 1) B. ( 1] C. (1 ) D. [1 ) 【答案】 A 【解析】 当 x>0时 f ( x ) 1 2 x 1 1 x 2 当 x<0时,-x>0, ∴ f( x ) 1 2 x . 又∵ f(x) 为 R 上的奇函数 , ∴ f(-x)=-f(x). ∴ f ( x ) 1 2 x . ∴ f ( x ) 2 x 1 . ∴ f ( x) 2 1 1 即 2 x 1 . x ∴ x<-1. 2 2 ∴不等式 f ( x ) 1 的解集是 ( 1) . 2 5. 设 g(x) 是定义在 R 上、以 1为周期的函数 . 若函数 f(x)=x+g(x) 则f(x) 在区间 [0,3] . f ( x) 那 么 f(x) 的 周 期 是 4, 得 2 x 则不等式 f ( x) 1 的解集 2 1 2 在区间 [0,1] 上的值域为 [-2,5],

艺术生高考数学专题讲义:考点5 函数的性质——单调性、奇偶性与周期性

考点五函数的性质——单调性、奇偶性、周期性 知识梳理 1.函数的单调性 (1) 单调函数的定义 一般地,设函数f(x)的定义域为I: 如果对于定义域I内某个区间D上的任意两个自变量的值x1、x2,当x1f(x2),那么就说函数f(x)在区间D上是单调减函数. 从图象来看,增函数图象从左到右是上升的,减函数图象从左到右是下降的,如图所示: (2)单调性与单调区间 如果一个函数在某个区间M上是单调增函数或是单调减函数,就说这个函数在这个区间M 上具有单调性(区间M称为单调区间). 2.函数的奇偶性 (1) 奇函数、偶函数的概念 一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数. 一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数. 奇函数的图象关于原点对称,偶函数的图象关于y轴对称. (2) 判断函数的奇偶性的步骤与方法 判断函数的奇偶性,一般都按照定义严格进行,一般步骤是: ①考察定义域是否关于原点对称. ②考察表达式f(-x)是否等于f(x)或-f(x): 若f(-x)=-f(x),则f(x)为奇函数; 若f(-x)=f(x),则f(x)为偶函数; 若f(-x)=-f(x)且f(-x)=f(x),则f(x)既是奇函数又是偶函数; 若f(-x)≠-f(x)且f(-x)≠f(x),则f(x)既不是奇函数又不是偶函数,既非奇非偶函数.3.函数的周期性

高一数学(必修1)专题复习一函数的单调性和奇偶性

高一数学(必修1)专题复习一 函数的单调性和奇偶性 一.基础知识复习 1.函数单调性的定义: 如果函数)(x f 对定义域内的区间I 内的任意21,x x ,当21x x <时都有 ()()21x f x f <,则()x f 在I 内是增函数;当21x x <时都有()()21x f x f >,则()x f 在I 内时减函数. 2.单调性的定义①的等价形式:设[]b a x x ,,21∈,那么()()()x f x x x f x f ?>--02 121在 [],a b 是增函数; ()()()x f x x x f x f ?<--02 121在[],a b 是减函数;()()()12120x x f x f x --(1x ,I x ∈2). ① 比较函数值的大小; ② 可用来解不等式; ③ 求函数的值域或最值等. 4.证明或判断函数单调性的方法:讨论函数单调性必须在其定义域内进行,因此要研究 函数单调性必须先求函数的定义域,函数的单调区间是定义域的子集. (1)用定义. (2)用已知函数的单调性. (3)图象法. (4)如果()f x 在区间I 上是增(减)函数,那么()f x 在I 的任一非空子区间上也是增(减)函数 (5)复合函数的单调性结论:“同增异减” . (6)奇函数在对称的单调区间内有相同的单调性,偶函数在对称的单调区间内具有相反的单调性. (7)在公共定义域内,增函数+)(x f 增函数)(x g 是增函数;减函数+)(x f 减函数)(x g 是减函数;增函数-)(x f 减函数)(x g 是增函数;减函数-)(x f 增函数)(x g 是减函数. (8)函数)0,0(>>+ =b a x b ax y 在,??-∞+∞ ? ??? 或上单调递增;在 0???? ?? ??? 或上是单调递减. 5.函数的奇偶性的定义:设()y f x =,x A ∈,如果对于任意x A ∈,都有()()f x f x -=-,则称函数()y f x =为奇函数;如果对于任意x A ∈,都有()()f x f x -=,则称函数()y f x =为偶函数. 6.奇偶函数的性质: (1)函数具有奇偶性的必要条件是其定义域关于原点对称. (2)()f x 是偶函数?()f x 的图象关于y 轴对称;()f x 是奇函数?()f x 的图象关于原点对称.(3)()f x 为偶函数()()(||)f x f x f x ?=-=. (4)若奇函数()f x 的定义域包含0,则(0)0f =.

1.10基本初等函数奇偶性和周期性

1.10基本初等函数奇偶性和周期性 姓名___________ 本节重点:①能够正确判断函数的奇偶性和周期性;②运用基本初等函数的性质解题。 一.基础练习 1. 写出下列函数中,奇函数是________;偶函数是________;非奇非偶函数是________ ①sin 2y x = ②2cos y x = ③4221y x x =++ ④2(1)y x =- ⑤()x x f x e e -=- ⑥1()1 x f x x -=+ ⑦1()lg 1 x f x x -=+ ⑧23 ()f x x -= 2. 已知多项式函数32()f x ax bx cx d =+++,系数,,,a b c d 满足__________时,()f x 是奇函数; 满足___________时,它是偶函数. 3. 定义在R 上的奇函数()f x 满足(2)()f x f x +=-,则(2)f =________. 4. 函数sin 2y x =的周期是________;tan y x π=的周期是________. 5. 已知函数()f x 是定义在(-3,3)上的奇函数,当03x << ()f x 图象如右,则不等式 ()0f x x >的解集是____________. 二、例题讲解 例1:判断下列函数的奇偶性 (1)2 ()2||3f x x x =-- (2)22 2,0 ()2,0 x x x f x x x x ?-≥?=?--,实数a 的范围是____________.

(通用版)202x高考数学一轮复习 2.3 函数的奇偶性与周期性讲义 理

第三节函数的奇偶性与周期性 1.函数的奇偶性 奇偶性定义图象特点 偶函数如果对于函数f(x)的定义域内任意一个x,都有f(- x)=f(x),那么函数f(x)就叫做偶函数 关于y轴对称 奇函数如果对于函数f(x)的定义域内任意一个x,都有f(- x)=-f(x),那么函数f(x)就叫做奇函数 关于原点对称 口诀记忆 奇偶性有特征,定义域要对称; 奇函数,有中心,偶函数,有对称. (1)周期函数 对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x +T)=f(x),那么就称函数f(x)为周期函数,称T为这个函数的周期. (2)最小正周期 如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期. 并不是所有周期函数都有最小正周期,如f(x)=5. [熟记常用结论] 1.奇偶性的5个重要结论 (1)如果一个奇函数f(x)在原点处有定义,即f(0)有意义,那么一定有f(0)=0. (2)如果函数f(x)是偶函数,那么f(x)=f(-x)=f(|x|). (3)既是奇函数又是偶函数的函数只有一种类型,即f(x)=0,x∈D,其中定义域D是关于原点对称的非空数集. (4)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性. (5)偶函数在关于原点对称的区间上有相同的最大(小)值,取最值时的自变量互为相反数;奇函数在关于原点对称的区间上的最值互为相反数,取最值时的自变量也互为相反数.2.周期性的4个常用结论 设函数y=f(x),x∈R,a>0. (1)若f(x+a)=f(x-a),则函数的周期为2a; (2)若f(x+a)=-f(x),则函数的周期为2a;

高中数学 函数的奇偶性

当前形势 函数概念与指数函数、对数函数、幂函数在近五年北京卷(理)中考查5~15分 高考 要求 内容 要求层次 具体要求 A B C 奇偶性 √ 结合具体函数,了解奇偶性的含义. 北京 高考 解读 2008年 2009年 2010年(新课标) 2011年(新课标) 2012年(新课标) 第2题 5分 第13题 5分 第3题5分 第13题5分 第6题 5分 第14题 5分 第6题 5分 第8题 5分 第13题 5分 第14题5分 今天我们再学一个新的函数性质——奇偶性,我们按照从直观到数学表达的顺序进行讲解.因为奇偶性的判定比较容易,所以常见函数的奇偶性以及复合函数的奇偶性都直接结合例题适当拓展总结即可,不再单独作为考点给出. 奇偶性的引入(直观) 直观:特殊的对称性.初中学过中心对称和轴对称,奇偶性正是反映这两个对称的问题的. 有些函数关于y 轴对称: ①2y x = ②y x =- ③21 y x = O x y x y O y O x 像这样的关于y 轴对称的函数叫做偶函数. 4.1函数奇偶性的定义与判别 新课标剖析 函数的奇偶性

还有一类函数呈现标准的中心对称,即关于原点的中心对称: ①y x =:② 1 y x =③3 y x = ④y 象这样的关于原点中心对称的函数叫做奇函数. 例:根据图象判断以下函数的奇偶性: ①②③④⑤ 注意③不是偶函数,偶函数中y轴相当于一个镜子.对着镜子照,发现你有钮扣,镜子里没有;或者你带着手表,一照镜子,镜子里没有,像这种情况只有在《大家来找茬》里才有. 下面我们要从直观中寻找数学表达,先通过一些例子来总结总结规律. 例:直观判断下列函数的奇偶性(可以利用图象,或取值代入等方式) ⑴()4 f x x =;⑵()1 f x x =;⑶( )3 f x=;⑷()0 f x=;⑸() f x=⑹()2 f x x =-. 答案:⑴偶;⑵偶;⑶偶;⑷既奇又偶;⑸非奇非偶;⑹奇. 先看偶函数的数学表达: 总结:可以用数字验证,取一对相反数,若它们的值总是一样的,大概猜它是一个偶函数,这就是我们总结出来的规律.那么怎么判断一个函数是偶函数呢?换言之,我们看什么情况下这个函数是偶函数? 任取x,在它对称的地方取x -,看它们函数值是否相等,若相等就是偶函数, 从而得到偶函数的数学表达:() y f x =定义域为D, ①D关于原点对称(?任意x D ∈,有x D -∈);(如上面的图形③对应的函数就不可能是偶函数)②任意x D ∈,()() f x f x =-,称() f x为偶函数. 再看奇函数的数学表达: 任取一点x,存在另x -,使() f x与() f x -互为相反数.(这就是关于原点中心对称) ∴对于奇函数有()() f x f x -=-. 如果()() f x f x ≠-,()() f x f x -≠-,则是非奇非偶函数.

函数的奇偶性与周期性试题(答案)

函数的奇偶性与周期性 一、选择题 1.(2015·四川绵阳诊断性考试)下列函数中定义域为R ,且是奇函数的是( ) A .f(x)=x2+x B .f(x)=tan x C .f(x)=x +sin x D .f(x)=lg 1-x 1+x 2.(2014·新课标全国卷Ⅰ)设函数f(x),g(x)的定义域都为R ,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是( ) A .f(x)g(x)是偶函数 B .|f(x)|g(x)是奇函数 C .f(x)|g(x)|是奇函数 D .|f(x)g(x)|是奇函数 3.(2015·长春调研)已知函数f(x)=x2+x +1x2+1,若f(a)=23 ,则f(-a)=( ) A.23 B .-23 C.43 D .-43 4.已知f(x)在R 上是奇函数,且满足f(x +4)=f(x),当x ∈(0,2)时,f(x)=2x2,则f(7)等于( ) A .-2 B .2 C .-98 D .98 5.函数f(x)是周期为4的偶函数,当x ∈[0,2]时,f(x)=x -1,则不等式xf(x)>0在[-1,3]上的解集为( ) A .(1,3) B .(-1,1) C .(-1,0)∪(1,3) D .(-1,0)∪(0,1) 6.设奇函数f(x)的定义域为R ,最小正周期T =3,若f(1)≥1,f(2)=2a -3a +1 ,则a 的取值范围是( ) A .a<-1或a≥23 B .a<-1 C .-1

函数的奇偶性(讲义).docx

函数的奇偶性 【知识要点】 1.函数奇偶性的定义:一般地,对于函数 f (x) 定义域内的任意一个x,都有 f (x) f (x), 那么函数f ( x)f (x) f ( x) 叫偶函数(, 那么函数 even function).如果对于函数定义域内的任意一个 f ( x) 叫奇函数( odd function). x,都有 2.奇函数的图象关于原点对称,偶函数的图象关于y 轴对称,反之亦真.由此,可由函数图象的对称性判断函数的奇偶性,也可由函数的奇偶性作函数的图象. 3.判别方法:先考察定义域是否关于原点对称,再用比较法、计算和差、比商法等判别 f (x)与 f ( x) 的关系; (1)奇函数 f (x) 1( f (x) 0) ; f ( x)f (x)f ( x) f (x) 0 f (x) (2)偶函数 f x f x f xf x f x 0 1 f x 0 . f x 4.函数奇偶性的几个性质: (1)奇偶函数的定义域关于原点对称,在判断函数奇偶性时,应先考察函数的定义域;(2)奇偶性是函数的整体性质,对定义域内任意一个x 都必须成立; (3)若奇函数 f x在原点有意义,则 f 00 ; (4)根据奇偶性可将函数分为四类:奇函数、偶函数、既是奇函数又是偶函数、既不是奇函数,又不是偶函数; (5)在公共的定义域内:两个奇(偶)函数的和与差仍是奇(偶)函数;两个奇(偶)函数的积是偶函数;一个奇函数与一个偶函数的积是奇函数; (6)函数 f x与函数 1 有相同的奇偶性 . f x

5.奇偶性与单调性: (1)奇函数在两个关于原点对称的区间 b, a , a, b 上有相同的单调性; (2)偶函数在两个关于原点对称的区间 b, a , a, b 上有相反的单调性 . 【典例精讲】 类型一 函数奇偶性的判断 例 1 判断下列函数的奇偶性: (1) f x x 2 2 x ; (2) f x 1 x 2 x 2 1 ; (3) f x ax b ax b a b 0 ; 1 1 (4) f x x ; 2 x 1 2 x 2 x 1, x x 2 2x 3, x 0, (5) f ( x) 0, x 0, 2 x 1, x ( 6) f ( x)0, x 0; 2x 3, x 0. x 2 变式 判断下列函数的奇偶性: 4 5 1 1 (1) f ( x )= x ; (2) f ( x )= x ; (3)f ( x )= x + x 2 ;(4) f ( x )= x 2 . ( 5) f ( x ) x 3 2 x ( 6) f ( x) 2 x 4 4 x 2 ( ) y ax b ( a 0, b 0) ( 8) y x ( k 0) 7 x k x 2

函数的奇偶性与周期性

函数的奇偶性与周期性 考点梳理 一、函数的奇偶性 (探究:奇、偶函数的定义域有何特点?若函数f(x)具有奇偶性,则f(x)的定义域关于原点对称,反之,若函数的定义域不关于原点对称,则函数无奇偶性。) 二、奇、偶函数的性质 1、奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上单调性相反。 2、在公共定义域内, (1)两个奇函数的和函数是奇函数,两个奇函数的积函数是偶函数。(2)两个偶函数的和函数、积函数是偶函数。 (3)一个奇函数,一个偶函数的积函数是奇函数。 3、若f(x)是奇函数且在x=0处有定义,则f(0)=0。 (探究:若f(x)是偶函数且在x=0处有定义,是否有f(x)=0?不一定,

如f(x)= 21x +,而f(0)=1。) 三、函数的周期性 一般的,对于函数f(x),如果存在一个非零常数T ,使得当x 取定义域的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T 叫做这个函数的周期。 对于一个周期函数f(x),如果在它所有的周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期。 (探究:若偶函数f(x)满足对任意的x R ∈,都有f(2+x)=f(-x),那么函数f(x)是周期函数吗? 是周期函数,()()(),(2)() (2)(),()=2f x f x f x f x f x f x f x f x T ∴-=+=-∴ += 是偶函数, 又所以是以为周期的函数) 例题解析 要点1:函数奇偶性的判定 判断函数奇偶性的一般方法 (1)首先确定函数的定义域,看其是否关于原点对称,否则,既不是奇函数也不是偶函数。 (2)若定义域关于原点对称,则可用下述方法进行判断: ①定义判断: ()()()()-()()f x f x f x f x f x f x -=?-=?为偶函数, 为奇函数。 ②等价形式判断:

函数奇偶性讲义

函数的性质 要求层次 重点 难点 单调性 C ①概念和图象特征 ②熟知函数的性质和图象 ①函数单调性的证明和判断 ②简单函数单调区间的求法 奇偶性 B 简单函数奇偶性的判断和证明 ①复合函数的奇偶性判断与证明 *②抽象函数的奇偶性 周期性 B 简单函数周期性的判断和证明 ①复合函数的周期性判断与证明 *②抽象函数的周期性 板块一:函数的单调性 (一)知识内容 1.函数单调性的定义: ①如果函数()f x 对区间D 内的任意12,x x ,当12x x <时都有()()12f x f x <,则称()f x 在D 内是增函数; 当12x x <时都有()()12f x f x >,则()f x 在D 内时减函数. ②设函数()y f x =在某区间D 内可导,若()0f x '>,则()y f x =为x D ∈的增函数;若()0f x '<,则 ()y f x =为x D ∈的减函数. 2.单调性的定义①的等价形式: 设[]12,,x x a b ∈,那么 ()() ()1212 0f x f x f x x x ->?-在[],a b 是增函数; ()()()1212 0f x f x f x x x -

即若()f x 在区间D 上递增(递减)且1212()()f x f x x x .(1x 2,x D ∈). ①比较函数值的大小②可用来解不等式.③求函数的值域或最值等 (二)主要方法 1.讨论函数单调性必须在其定义域内进行,因此要研究函数单调性必须先求函数的定义域,函数的单调区间是定义域的子集; 2.判断函数的单调性的方法有: ⑴用定义 用定义法证明函数单调性的一般步骤: ①取值:即设1x ,2x 是该区间内的任意两个值,且12x x < ②作差变形:通过因式分解、配方,有理化等方法,向有利于判断差的符号的方向变形. ③定号:确定差12()()f x f x -(或21()()f x f x -)的符号,若符号不确定,可以进行分类讨论. ④下结论:即根据定义得出结论,注意下结论时不要忘记说明区间. ⑵用已知函数的单调性; ⑶利用函数的导数; ⑷如果()f x 在区间D 上是增(减)函数,那么()f x 在D 的任一非空子区间上也是增(减)函数; ⑸图象法; ⑹复合函数的单调性结论:“同增异减” ; 复合函数的概念: 如果y 是u 的函数,记作()y f u =,u 是x 的函数,记为()u g x =,且()g x 的值域与()f u 的定义域的交集非空,则通过u 确定了y 是x 的函数[()]y f g x =,这时y 叫做x 的复合函数,其中u 叫做中间变量,()u f u =叫做外层函数,()u g x =叫做内层函数. 注意:只有当外层函数()f u 的定义域与内层函数()g x 的值域的交集非空时才能构成复合函数[()]f g x . ⑺在公共定义域内,增函数()f x +增函数()g x 是增函数;减函数()f x +减函数()g x 是减函数;增函数()f x -减函数()g x 是增函数;减函数()f x -增函数()g x 是减函数. ⑻函数(0,0)b y ax a b x =+>>在,,b b a a ????-∞-+∞ ??? ?????或上单调递增;在,00b b a a ????-? ??? ????或,上是单调递减. (三)典例分析 【例1】根据函数单调性的定义,证明函数3()1f x x =-+在(,)-∞+∞上是减函数. 【例2】证明函数()f x x =-在定义域上是减函数. 【例3】讨论函数2()23f x x ax =-+在(2,2)-内的单调性.

相关主题