搜档网
当前位置:搜档网 › 桩基动刚度影响因素分析_马蒙

桩基动刚度影响因素分析_马蒙

桩基动刚度影响因素分析_马蒙
桩基动刚度影响因素分析_马蒙

某轻客接附点局部动刚度研究分析(精)

某轻客接附点局部动刚度分析(精)

————————————————————————————————作者:————————————————————————————————日期: 2

3 某轻客白车身接附点局部动刚度分析 BIW Input Point Inertance Analysis of Light Bus 王纯 雷应锋 崔璨 李翠霞 昃强 (长安汽车北京研究院 北京100195) 摘 要:本文应用Altair 公司的HyperWorks 软件,建立了某轻型客车白车身有限元模型,对白车身接附点进行动刚度分析及优化,并通过试验与仿真结果对比,验证了模型和分析方法的正确性。 关键词:白车身 接附点 动刚度HyperWorks 有限元 Abstract: To achieve the BIW IPI analysis and optimization of light bus, the CAE model of the BIW is operated by HyperWorks. By comparing the results of simulation and testing, the correctness of the model and the analytical method was verified. Key words: BIW, Input point, IPI, HyperWorks CAE 1 引言 目前,随着消费者对汽车的要求越来越高,对汽车的认识也越来越成熟,汽车的NVH 性能逐渐成为消费者非常关注的性能指标之一,同时也是区分汽车档次的重要指标之一。因此,在汽车研发设计之初就必须考虑到整车的NVH 性能问题。在整车NVH 分析中,车身系统既是直接向车内辐射噪声的响应器,又是传递各种振动、噪声的重要环节,因此它的吸声、隔声特性对减少车内噪声和振动有着重要的意义[1]。 白车身接附点局部动刚度考察的是在所关注的频率范围内该点局部区域的刚度水平,刚度过低必然影响隔振效果并引起更大的噪声,因此该性能指标对整车NV H 性能有较大的影响,是在整车NVH 分析中首先要考虑的因素。NVH

汽车动力总成悬置系统研究综述

汽车动力总成悬置系统研究综述 汽车动力总成悬置装置的性能对车辆NVH表现有很大的影响。本文通过单自由度模型对悬置系统的隔振原理进行分析,阐述了悬置系统的发展过程,并对不同类型的隔振垫进行了介绍和比较。 动力总成是汽车主要的噪声和振动源,主要的激励可分为两类:一是汽缸燃烧而产生的震爆力;二是发动机曲轴旋转运动时不平衡而产生的惯性力。为了保证驾乘的舒适性,工程师设计了动力总成隔振装置用以隔离动力总成产生的振动。常见的轿车隔振装置在空间布置上可以分为: 1.底部布置,即将隔振装置安装在机舱底部的副车架上。这种布置安装空间比较自由,但是隔振效果不理想。 2.悬置布置,即将隔振装置安装在动力总成扭矩轴上。这种布置隔振效果好,但是安装空间受到限制,而且通常需要1~2个扭拉杆或者隔振垫以限制动力总成在横向的转动角度。 在本文中,主要分析对象是悬置布置的动力总成隔振垫,即动力总成的悬置系统。动力总成悬置系统工作原理 动力总成悬架装置用于连接动力总成与车身结构,是汽车动力总成的重要组成部分,其主要功能可以归纳为如下两点: 1.支撑与限位。悬置系统的首要功能即连接动力总成与车身结构,因此悬置系统不仅要在静止状态下将动力总成定位并支撑在设计的位置,而且需要保证动力总成在不同工况下与机舱或其他部件不发生碰撞或干涉,将动力总成的位移限制在合理的一个区域内。 2.隔离振动。发动机的激振是汽车的主要振源之一,为了保证驾乘的舒适性,悬置系统需要尽可能减少由发动机传向车身和底盘的振动;另一方面,由于道路不平等原因,悬置系统也需要尽量隔离来自悬架和车轮的振动,防止该激振传递至动力总成,以保护发动机和变速器的正常工作。 由于悬置系统需要承载整个动力总成的重量以及发动机所产生的扭矩,这决定悬置系统需要足够大的刚度以保证动力总成的位置在合理的区域内。若刚度不足则可能导致动力总成与其他部件发生干涉或碰撞;另一方面,要获得较小的振动传递率,就需要更大的频率比,这就要求悬置系统的刚度尽可能小。阻尼方面,在低频区域时,大阻尼可以有效降低振动幅值;随着频率增大,在隔振区内,大阻尼会放大传递的振动幅值。因此,理想的悬置系统需要在低频时具有大刚度和大阻尼而在高频区域需要小刚度和小阻尼。 悬置系统的分类 在早期的汽车设计中,动力总成用螺栓刚性地与车身连接。这种连接方式不仅无法隔离动力总成所产生的振动,由悬架系统传递到车身的振动也会因为没有任何隔振措施而直接传递到动力总成,致使动力总成的寿命和可靠性都受到影响。随后设计师逐渐开始使用软木等软性材料来隔离振动。目前,动力总成的隔振垫可主要分为被动隔振垫,半主动隔振垫和主动隔振垫。其中,半主动隔振垫和主动隔振垫由于其尺寸庞大,结构复杂,一般较少使用;被动隔振垫是现代汽车所广泛使用的隔振方式。 被动悬置 被动悬置构造较简单,没有额外的控制单元,仅依靠材料的本身特性和不同的结构设计来完成隔振。主要可以分为橡胶悬置和液阻悬置。 橡胶悬置早在20世纪30年代就出现并广泛应用在汽车上。由于橡胶部件的结构和橡胶特性是一定的,所以橡胶悬置的刚度和阻尼要么同时设计得很大,要么同时设计得很小。根据前文所述,当悬置的刚度和阻尼都较大时,悬置系统比较适合冲击隔离,在低频工作区域

白车身接附点局部动刚度分析

白车身接附点局部动刚度分析 肖攀 周定陆 周舟 长安汽车股份有限公司汽车工程研究院

白车身接附点局部动刚度分析 BIW INPUT POINT INERTANCE ANALYSIS 肖攀 周定陆 周舟 (长安汽车股份有限公司汽车工程研究院,重庆401120) 摘 要: 白车身接附点的局部动刚度对整车的NVH性能有较大的影响,是在整车NVH分析中需要首先考虑的因素。MSC Nastran对于整车的中低频NVH分析有一套完整的解决方案,本文中的IPI分析是其中的一种方案。 关键词:白车身,有限元,接附点,动刚度,源点导纳 Abstract:The local dynamic stiffness of attaching points is the key point to NVH performance of a vehicle, and it should be considered first in NVH analysis. MSC Nastran can provide a series of solutions for normal frequency NVH analysis of total vehicle, and IPI analysis in this paper is one of these solutions. Key words: BIW, CAE, NVH, IPI, MSC Nastran 1 前言 随着消费者对汽车的要求越来越高和对汽车认识的成熟,汽车的NVH性能也成消费者非常关注的性能指标之一。NVH测试试验虽然是一种必不可少的可靠的方法,但有滞后的缺点,必须要在样车完成之后才能进行试验并发现问题,然后解决问题。如果问题严重,还将带来开发周期的延长和巨额的设计变更费用,增加开发成本。整车NVH性能的CAE分析方法,其优点在于可以在没有实物样车的工程化设计阶段,较为准确地评价整车的NVH 性能,并提出改进方案,尽可能在设计阶段解决车身结构及包装上可能存在的NVH问题。为最后得到NVH性能优良的汽车,在设计阶段就打好良好的基础。 利用现有软件MSC Nastran,可以对整车的中低频NVH性能进行有效地分析及评价。其中,IPI(Input Point Inertance)分析是评价NVH性能的重要分析方法之一,是用于考察车身与发动机、悬架连接的接附点的局部动刚度这一个重要指标。 白车身接附点局部动刚度所考察的是在所关注的频率范围内该接附点局部区域的刚度水平,刚度过低必然引起更大的噪声,因此该性能指标对整车的NVH性能有较大的影响,是在整车NVH分析中需要首先考虑的因素。 2 分析模型 由于IPI分析是考察白车身的各接附点局部刚度,因此分析对象包括白车身上的弹簧接

第四章扭转的强度与刚度计算.

41 一、 传动轴如图19-5(a )所示。主动轮A 输入功率kW N A 75.36=,从动轮D C B 、、输出功率分别为kW N kW N N D C B 7.14,11===,轴的转速为n =300r/min 。试画出轴的扭矩图。 解 (1)计算外力偶矩:由于给出功率以kW 为单位,根据(19-1)式: 1170300 75 .3695509550=?==n N M A A (N ·m ) 351300 11 95509550=?===n N M M B C B (N ·m ) 468300 7 .1495509550=?==n N M D D (N ·m ) (2)计算扭矩:由图知,外力偶矩的作用位置将轴分为三段:AD CA BC 、、。现分别在各段中任取一横截面,也就是用截面法,根据平衡条件计算其扭矩。 BC 段:以1n M 表示截面Ⅰ-Ⅰ上的扭矩,并任意地把1n M 的方向假设为图19-5(b )所示。根据平衡条件0=∑x m 得: 01=+B n M M 3511-=-=B n M M (N ·m ) 结果的负号说明实际扭矩的方向与所设的相反,应为负扭矩。BC 段内各截面上的扭矩不变,均为351N ·m 。所以这一段内扭矩图为一水平线。同理,在CA 段内: M n Ⅱ+0=+B C M M Ⅱn M = -B C M M -= -702(N ·m ) AD 段:0=D n M M -Ⅲ 468==D n M M Ⅲ(N ·m ) 根据所得数据,即可画出扭矩图[图19-5(e )]。由扭矩图可知,最大扭矩发生在CA 段内,且702max =n M N ·m 二、 如图19-15所示汽车传动轴AB ,由45号钢无缝钢管制成,该轴的外径 (a ) (c ) C B m (d ) (e ) 图19-5 (b )

ABAQUS+计算+动刚度+详细说明

F(ω)=F0×sin(ωt) 输入激励力 当使用abaqus-steady-state daynmics modal, 其中20-1000即为激励力的最低频率和最高频率。

开始模态和结束模态要覆盖上图所示的激励力的最低频率和最高频率,选择直接阻尼,即每阶模态的临界阻尼比3%,(典型的取值范围在1%-10%)

Ma+cv+kx= F0×sin(ωt) 其中F0是固定的数值(简谐力的幅值),且频率由20Hz 变化到1000Hz 。f ??=πω2 位移阻抗(动刚度):()()() ωωωx F K = ()()t F F ωωsin 0?= 为输入激励力,是一个谐波输入。 ()() θωω+?=t x x sin 0 为输出稳态位移响应,根据振动理论,稳态位 移响应的频率与输入激励力的频率相同,振幅 0x 和相位角θ均取决与系统本身的物理性质(质量,弹簧刚度,阻尼)和激振力的性质(频率与振幅),而与初始条件无关,初始条件仅影响系统的瞬态响应的振幅和初始相位角。 ()ωK ,表示,在某频率下,产生单位位移振幅所需要的激振力幅 值。实际情况下,频率不同,刚度也不同。 假设()ωK =10N/m ,及动刚度在任意频率都是固定的,不随频率的变化而变化(理想情况),即在任意频率激振下,产生1m 单位位移振幅所需要的激振力幅值为10N 。 假设()ωF 的幅值为1 ,()ωK =10N/m ()ωx 的幅值x =()()ωωK F =101 特点:位移响应的幅值与频率没有关系,且是固定值。 由于在abaqus 中可方便的输出某个点的位移,速度,加速度。所以通常以某个点的位移,速度,加速度来表征动刚度的大小。

(完整word版)什么是动刚度

什么是动刚度? 在NVH领域,经常计算或测试动刚度,像悬置动刚度、支架动刚度、车身接附点动刚度等等。那什么是动刚度,动刚度的大小对结构有什么影响? 本文主要内容包括:1. 静刚度;2. 单自由度动刚度;3. 多自由度动刚度;4. 原点动刚度;5. 悬置动刚度;6. 支架动刚度;7. 怎么测量动刚度;刚度是指结构或材料抵抗变形的能力。由于结构或材料所受荷载的不同,可能受到静载荷或动载荷,因此,刚度又分为静刚度和动刚度。当结构或材料受到静载荷时,抵抗静载荷下的变形能力称为静刚度;当受到动载荷时,抵抗动载荷下的变形能力称为动刚度。故,结构或材料既有静刚度又有动刚度。相对而言,在NVH领域,结构或材料受到动载荷的概率远大于静载荷,因此,更普遍关心动刚度。在之前文章《什么是频响函数FRF?》中也提到用加速度与力之比的频响函数和用力与位移之比的动刚度应用更为广泛。 1.静刚度 在讲述动刚度之前,有必要先了解静刚度。静刚度用单值即可表示,不随频率变化。由于静载荷引起的变形又分为弯曲或扭转等,因此,刚度又分为抗弯刚度和抗扭刚度,材料的刚度计算可参考材料力学教科书。在这以弹簧为例说明静刚度,当弹簧受到静力F时,其静态伸长量为X,此时F=kX,k为弹簧的静刚度。单位为N/mm,表示每增加1mm需要的拉力大小。弹簧静刚度常数跟材料的杨氏模量、线径、中径和有效圈数有关。当拉力越来越大时,弹簧的伸长量也增大,如下图所示,但二者满足线性关系。红色曲线表示的斜率即为弹簧静刚度。 注:以下所说到的刚度,如没有特殊说明,都是指的动刚度。 2. 单自由度动刚度在文章《什么是频率函数FRF?》中,我们已经明白了频响函数可以用位移/力表示,当用力/位移时,表示的是动刚度。对于单自由度系统,如下图所示,我们再回顾一下用位移表征的FRF

111_车身声腔及结构动刚度仿真分析_刘文华

车身声腔及结构动刚度仿真分析 刘文华夏汤忠刘盼王萍萍陆志成袁智 (神龙汽车有限公司技术中心武汉 430056) 摘要:对车室声腔模态和车身结构动刚度进行分析可以避开车身壁板与车内空腔声学共振的可能性。本文通过对某车型车内声腔模态和白车身动刚度进行计算分析,在研发阶段初期,发现白车身后隔板区域与声腔在某振动频率有发生共振的可能,针对该问题提出了合理可行的改进方案。 关键字:声腔模态动刚度吸振器 引言 车内噪声特性已成为汽车乘坐舒适性的评价指标之一,日益受到人们的重视。车内噪声根据形成及传播的机理不同,可以分为结构噪声和空气噪声。外界激励(发动机、轮胎、路面及气流)引起车身壁板振动产生的噪声是结构噪声,而车室外通过车身孔隙进入车内的噪声则是空气噪声。试验研究表明,对于轿车乘坐车室来说,发动机振动、路面激励等引起的车身壁板振动而辐射出来的结构低频噪声在车内噪声中占主要地位。 1 声腔模态分析 在车身NVH设计阶段,对车室声腔进行模态分析不仅可以掌握车内空腔的声学模态频率和模态振型,在设计过程中避免车身结构振动导致的车内共鸣噪声,合理布置和优化车内声学特性,还可以掌握空腔声场的声压分布情况,为预测并分析动态声学响应做准备。 1.1车内声腔有限元模型的建立 首先在HyperMesh软件中导入车身结构有限元模型,提取车室内部与空气接触的表面,构成一个密闭的声学空腔,在不影响计算精度的前提下对其局部特征进行一些简化。声学单元的理想尺寸是每个波长至少六个单元,根据空气中的声速和噪声的分析频率可以计算出声波的波长以及声学单元的理想长度。本文采用四面体单元建立声学模型,单元的长度约为50mm,如图1所示。 图1 车室声腔有限元模型

车辆悬架中高频振动传递分析与橡胶衬套刚度优化

2011年10月 农业机械学报 第42卷第10期 车辆悬架中高频振动传递分析与橡胶衬套刚度优化 * 陈无畏 李欣冉 陈晓新 王 磊 (合肥工业大学机械与汽车工程学院,合肥230009) 【摘要】利用ADAMS 与NASTRAN 软件建立了某微型轿车整车刚柔耦合动力学模型。通过ADAMS /Vibration 模块建立虚拟激振台,分析悬架在路面中高频段激励下的振动响应与传递特性。从提高悬架隔振性能的角度出发, 分析了底盘/悬架系统中副车架、扭转梁和橡胶衬套对整车振动的影响。采用ADAMS 中的DOE 技术对悬架系统中几个主要连接衬套的刚度进行灵敏度分析,在ADAMS /Insight 中对衬套刚度进行优化,通过改变衬套 刚度提高整车振动性能。仿真结果显示,地板处的垂向加速度均方根值在整个研究频率范围内由477.9mm /s 2 降至454.2mm /s 2 ,降低了5%。 关键词:车辆悬架中高频激励振动传递特性橡胶衬套优化 中图分类号:U461.4;U463.33文献标识码:A 文章编号:1000- 1298(2011)10-0025-05Middle-high Frequency Vibration Transfer Analysis of Vehicle Suspension and Optimization of Rubber Bushings Chen Wuwei Li Xinran Chen Xiaoxin Wang Lei (School of Mechanical and Automobile Engineering ,Hefei University of Technology ,Hefei 230009,China ) Abstract Based on ADAMS and NASTRAN ,a rigid-flexible coupling dynamic full vehicle model was established.A virtual test rig was also built up by using ADAMS /Vibration to analyze the vibration responses and transfer characteristics of the suspension system motivated by middle-high frequency road excitations.To improve the vibration isolation capability of the suspension system ,the effects of the subframe ,twist beam and rubber bushings of the chassis /suspension system with the vehicle vibration was analyzed.Finally ,through adopting the ADAMS /Insight DOE technology ,the researchers proposed the sensitivity analyses of several key rubber bushing stiffness ,and the optimization of the bushing in the environment of ADAMS /Insight.By changing the bushing stiffness ,the vibration performance of the vehicle was improved.Simulation results indicated that the vertical acceleration root mean square (RMS )decreased from 477.9mm /s 2to 454.2mm /s 2,by 5%in the whole research frequency spectrum. Key words Vehicle ,Suspension ,Middle-high frequency excitation ,Vibration transfer characteristics ,Rubber bushings ,Optimization 收稿日期:2010-10-21修回日期:2011-05-25*国家高技术研究发展计划(863计划)资助项目(2006AA110101)和国家自然科学基金资助项目(51075112) 作者简介:陈无畏,教授,博士生导师,主要从事车辆振动与噪声控制、车辆控制技术研究, E-mail :cww@mail.hf.ah.cn 引言 悬架是汽车底盘系统的主要组成部分,作为路面激励通过轮胎传递到车身的过渡环节,能缓冲和吸收来自路面的振动,对整车的噪声、振动与舒适度(NVH )等性能有很大影响。文献[1 2]主要是利 用多体动力学的方法,在ADAMS 中建立整车多刚 体动力学模型,实现了虚拟样车在软件三维路面上的行驶,并且对汽车的平顺性进行仿真与分析。在此基础上,对前、后悬架的弹簧刚度和减振器阻尼等主要参数进行优化匹配,取得了不少成果。 路面不平度和动力总成是汽车NVH 的主要激

基于hypermesh及nastran的动刚度分析图文教程

基于hypermesh及nastran的动刚度分析图文教程 1、2、打开hypermesh选择nastran入口。 打开或导入响应模型(只是网格不带实体)。 3、点击material创建材料。 a) Type选择ISOTROPIC(各向同性) b) card image选择MAT1(Defines the material properties for linear isotropic materials.)nastran help文档。 c)点击creat/edit,编辑材料属性输入E(弹性模量)、NU(泊松 比)、RHO(密度)。由于各物理量之间都是相互关联的因此要 注意单位的选择(详情见附件一)。这里选择通用的E=2.07e5, NU=0.3,RHO=7.83e-9。 4、点击properties创建属性。 a)由于是二维模型type选择2D。Card image选择PSHELL(壳单 元)。Material选择刚才新建的材料。 b)点击creat/edit。 c)定义厚度即T(例如T=3,注意此时单位是mm)。 5、创建material以及properties后要将这些数据赋予模型。 a)点击component。 b)由于不是创建是修改,所以左边点选update 选择相应部件。 然后双击 c)然后双击选择刚才新建的厚度属性。

d)最后点击update。 6、创建加载情况,点击。 a)加一个单位动态激励。创建名为excite的激励,点击creat。 b)加载单位激励。Analysis-constraints确定加载力的方向。例如 X正方向加载激励,只需要勾选dof1,且值为1。Load types选 择DAREA。然后在模型上选择一点,最后点击create。 c)创建激励频率范围。创建名为tabled1,card image为TABLED1, 点击creat/edit。设置TABLED1_NUM=2,x(1)=0,y(1)=1,x(2)=1000, y(2)=1. d)创建rload2目的连接excite和tabled1.card image选择 RLOAD2,点击creat/edit。进入子页面后分别双击 和选择excite以及tabled1. e)由于是采用Lanczos算法计算,创建eigrl,card image选择 EIGRL,然后点击creat/edit。V1和V2代表计算频率的范围, ND代表计算阶次。两种方法可以选择设置,设置V1=0, V2=750. f)创建frequency,card image选择FREQi,进入子页面后勾选 FREQ1。(Defines a set of frequencies to be used in the solution of frequency response problems by specification of a starting frequency, frequency increment, and the number of increments desired.)。F1是起始频率,DF是增量,NDF是次数。此模型 中查看

什么是动刚度 (优选.)

wo最新文件---------------- 仅供参考--------------------已改成-----------word文本--------------------- 方便更改 rd 什么是动刚度? 在NVH领域,经常计算或测试动刚度,像悬置动刚度、支架动刚度、车身接附点动刚度等等。那什么是动刚度,动刚度的大小对结构有什么影响? 本文主要内容包括:1. 静刚度;2. 单自由度动刚度;3. 多自由度动刚度;4. 原点动刚度;5. 悬置动刚度;6. 支架动刚度;7. 怎么测量动刚度;刚度是指结构或材料抵抗变形的能力。由于结构或材料所受荷载的不同,可能受到静载荷或动载荷,因此,刚度又分为静刚度和动刚度。当结构或材料受到静载荷时,抵抗静载荷下的变形能力称为静刚度;当受到动载荷时,抵抗动载荷下的变形能力称为动刚度。故,结构或材料既有静刚度又有动刚度。相对而言,在NVH领域,结构或材料受到动载荷的概率远大于静载荷,因此,更普遍关心动刚度。在之前文章《什么是频响函数FRF?》中也提到用加速度与力之比的频响函数和用力与位移之比的动刚度应用更为广泛。 1.静刚度 在讲述动刚度之前,有必要先了解静刚度。静刚度用单值即可表示,不随频率变化。由于静载荷引起的变形又分为弯曲或扭转等,因此,刚度又分为抗弯刚度和抗扭刚度,材料的刚度计算可参考材料力学教科书。在这以弹簧为例说明静刚度,当弹簧受到静力F时,其静态伸长量为X,此时F=kX,k为弹簧的静刚度。单位为N/mm,表示每增加1mm需要的拉力大小。弹簧静刚度常数跟材料的杨氏模量、线径、中径和有效圈数有关。当拉力越来越大时,弹簧的伸长量也增大,如下图所示,但二者满足线性关系。红色曲线表示的斜率即为弹簧静刚度。 注:以下所说到的刚度,如没有特殊说明,都是指的动刚度。 2. 单自由度动刚度在文章《什么是频率函数FRF?》中,我们已经明白了频响函数可以用位移/力表示,当用力/位移时,表示的是动刚度。对于单自由度系统,如下图所示,我们再回顾一下用位移表征的FRF

材料的抗弯刚度计算

内支撑的支锚刚度如何计算? 答:桩计算时采用的刚度为分配到每个桩上的刚度。软件计算中自动用交互的“支锚刚度”先除以交互的“水平间距”再乘以“桩间距”(如是地下连续墙乘1),换算成作用在每根桩或者单位宽度墙上的刚度,进行支护构件计算。 在单元计算中需要用户按照如下方法输入,在整体计算中软件可以自动计算。 ①方法一:可以输入按《基坑支护技术规程附录C》方法计算的刚度,此时在“水平间距”栏需输入“桩间距”(如果是地下连续墙输入1)。 《基坑支护技术规程附录C》对水平刚度系数kT计算公式为: 附件: 您所在的用户组无法下载或查看附件 式中: kT ——支撑结构水平刚度系数; ——与支撑松弛有关的系数,取0.8~1.0; E ——支撑构件材料的弹性模量(N/mm2); A ——支撑构件断面面积(m2); L ——支撑构件的受压计算长度(m); s ——支撑的水平间距(m); sa ——计算宽度(m),排桩用桩间距,地下连续墙用1。 ②方法二:可在“支锚的水平间距”和“桩间距”都输入实际的间距,此时交互的支锚刚度就应是整根支撑的刚度;即采用公式的前半部分, 这两个方法算出来的结果好像不一样吧,望楼主再发帖前先自己试验一下,不然会误导我们 E是混凝土的弹性模量,数值大小与混凝土强度等级有关,具体可以查混凝土结构设计规范相关条文。I值为构件截面惯性矩,L为构件计算长度,则EI/L则为构件线刚度。这也是结构力学中弯矩分配主要依据 材料的抗弯刚度计算,实际上就是对材料制成的构件进行变形(即挠度)控制的依据,计算方法的由来,应该是从材料的性能特征中得到的: 第一个特性决定材料的抗压强度和抗拉强度,当材料的抗拉强度决定构件的承载力时,因其延伸率很大,而表现出延性破坏特征,反之即为脆性破坏。如抗弯适筋梁和超筋梁,大小偏心受压。而抗剪构件,在桁架受力模型中,不存在强度正比关系(抗弯尽管也不是严格意义上的正比关系,但基本接近正比),而只是双线性关系,所以,其适筋时的延性也不如抗弯适筋梁,只就是概念设计中的强剪弱弯的由来;

车身前副车架安装点设计指南

车身前副车架安装点设计规范

1范围 本标准规定了车身前?副车架安装点设计要点及其判断标准等。 本标准适用于新开发的血类和N1类汽车车身前副车架安装点设汁。 2规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本 适用于本 文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文 件。 乘用车外部凸出物》 乘用车尺寸代码》 热轧钢板和钢带的尺寸、外形、重量及允许偏差》 优质碳素结构钢热轧薄钢板和钢带》 汽车车身术语》 《整车车身设汁公差与装配尺寸链分析》 《螺栓连接的装配质量控制》 3术语和定义 3. 1车身结构 3. L 1车身结构是各个零件的安装载体。 3.2副车架 3. 2. 1副车架最早的应用原因是可以降低发动机舱传递到驾驶室的振动和噪音。副车 架 与车身的连接点就如同发动机悬置一样。通常一个副车架总成需要山四个悬置点与车身 连接,这样既能保证其连接刚度,乂能有很好的震动隔绝效果。副车架能分5级减小震动 的传入,对副车架来说,在性能上主要U 的是减小路面震动的传入,以及提高悬挂系统的 连接刚度,因此装有副车架的车驾驶起来会感觉底盘非常扎实,非常紧凑。而副车架悬置 软?度的设定也面临着像悬挂调校一样的一个不可规避的矛盾。所以工程师们在设计和匹 配副车架时通常会针对车型的定位和用途选择合适刚度的橡胶衬垫。由于来自发动机和悬 挂的一部分震动会先到达副车架然后再传到车身,经过副车架的衰减后振动噪声会有明显 改善。副车架发展到今天,可以简化多车型的研发步骤。这是因为悬挂、稳定杆、转向机 等底盘零件都可以预先安装在一起,形成一个所谓的超级模块,然后再一起安装到车身上。 3.3HIJ 副车架安装点 3. 3. 1前副车架安装点指安装在车身的安装孔中心线与安装面下平面交点的位置(XYZ 坐 标)及装配孔公称尺寸。 4车身前副车架安装点技术要求 4. 1车身安装硬点要求公差控制在±L5mm 范H 内; 4. 2前副车架与车身安装平面间的平度要求控制在±0. 5mm 范S 内; 4. 3车身安装硬点所采用的带法兰面的螺母或者螺纹管要求能够承受的扭矩事 160N. m : 4. 4车身前-副车架安装点强度由CAE 部门依拯安装点所选材料及车辆工况分析确定; 4. 5车身前副车架安装点刚度要求达到SOOON/mm —lOOOON/mmo 5车身前副车架安装点设计要点 《GB 11566-2009 《GB/T19234-2003 《GB/T 709-2006 《GB/T 710-2008

动刚度的影响的应用实例

某车型白车身动刚度计算方法与性能优化研究 作者:神龙汽车有限公司 夏汤忠 摘要:本文介绍了动态刚度的基 本概念,建立了公司的计算方法,对某车型白车身进行动态刚度分析,进而提出优化改进方案,使该车型获得良好的NVH 性能 关键词:白车身 动刚度 模态 优化 1.引言 在轿车车身的性能中,动刚度计算占有重要的地位,其作用主要表现在车身疲劳寿命和整车乘坐的舒适性上。 汽车在行驶的过程中,会受到各种各样的动载荷。当动载荷与车身的动力学特性接近,即动载荷的某分量与车身的某阶模态的固有频率接近时,将可能引发结构共振产生较高的动应力,导致车身的疲劳破坏。而车身的动力学特性对乘坐舒适性的影响,主要表现在NVH 性能上。 在某车型项目中,以前期项目为标准,研究白车身动态刚度的计算方法,修正白车身动刚度有限元模型,确保计算获得准确的动态刚度结果。计算方法和建模方法的研究完成为之后的动刚度性能优化工作搭建了良好的基础,然后运用通过模态计算寻找改进思路,尝试多种改进方案,确定最佳方案使车身动刚度性能达标,提升了整车的NVH 性能。 2.动态刚度 动刚度是指计算结构在周期振荡载荷作用下对每一个计算频率的动响应,也称为频率响应。激励载荷是在频域中明确定义的,所有的外力在每一个指定的频率上已知。力的形式可以是外力,也可以是强迫运动(位移、速度、加速度等)。计算结果分实部和虚部两部分。实部代表响应的幅度,虚部代表响应的相角。通常动刚度采用响应的幅值来表示,包括节点位移、加速度、单元力和应力等。动刚度的计算方法主要有直接频率响应、模态频率响应两种。

a) 直接频率响应,通过求解整个模型的阻尼耦合方程,得出各频率对于外载荷的响应。 b) 模态频率响应,利用结构的模态振型来对耦合的运动方程进行缩减和解耦,同时由单个模态响应的叠加得到某一给定频率下的解答。其分析的输出类型与直接频率响应分析得到的输出类型相同。模态频率响应分析法利用结构的模态振型来对运动方程进行缩减,因此在对较大模型做频率响应分析时比直接法更右效率。在本车型的频率响应计算中使用模态频率响应,下面是对模态频率响应理论的简介。 再由(2)式可计算出系统在物理坐标下的响应。 本公司的法国母公司PSA对动态刚度的计算方法内嵌在其自行开发的CAE软件OPTIMA 中,其中应用的算法和控制参数设置对我们而言可以说是未知数。在某车型项目中,我们使

第四章 扭的强度与刚度计算

一、 传动轴如图19-5(a )所示。主动轮A 输入功率kW N A 75.36=,从动轮D C B 、、输出功率分别为kW N kW N N D C B 7.14,11===,轴的转速为n =300r/min 。试画出轴的扭矩图。 解 (1)计算外力偶矩:由于给出功率以kW 为单位,根据(19-1)式: 1170300 75 .3695509550=?==n N M A A (N ·m ) 351300 11 95509550=?===n N M M B C B (N ·m ) 468300 7 .1495509550=?==n N M D D (N ·m ) (2)计算扭矩:由图知,外力偶矩的作用位置将轴分为三段:AD CA BC 、、。现分别在各段中任取一横截面,也就是用截面法,根据平衡条件计算其扭矩。 BC 段:以1n M 表示截面Ⅰ-Ⅰ上的扭矩,并任意地把1n M 的方向假设为图19-5(b )所示。根据平衡条件0=∑x m 得: 01=+B n M M 3511-=-=B n M M (N ·m ) 结果的负号说明实际扭矩的方向与所设的相反,应为负扭矩。BC 段内各截面上的扭矩不变,均为351N ·m 。所以这一段内扭矩图为一水平线。同理,在CA 段内: M n Ⅱ+0=+B C M M Ⅱn M = -B C M M -= -702(N ·m ) AD 段:0=D n M M -Ⅲ 468==D n M M Ⅲ(N ·m ) 根据所得数据,即可画出扭矩图[图19-5(e )]。由扭矩图可知,最大扭矩发生在CA 段内,且702max =n M N ·m 二、 如图19-15所示汽车传动轴AB ,由45号钢无缝钢管制成,该轴的外径 (a ) (c ) C m (d ) (e ) 图19-5 (b )

什么是动刚度

什么是动刚度 在NVH领域,经常计算或测试动刚度,像悬置动刚度、支架动刚度、车身接附点动刚度等等。那什么是动刚度,动刚度的大小对结构有什么影响 本文主要内容包括:1.??? 静刚度;2.??? 单自由度动刚度;3.??? 多自由度动刚度;4.??? 原点动刚度;5.??? 悬置动刚度;6.??? 支架动刚度;7.??? 怎么测量动刚度;?刚度是指结构或材料抵抗变形的能力。由于结构或材料所受荷载的不同,可能受到静载荷或动载荷,因此,刚度又分为静刚度和动刚度。当结构或材料受到静载荷时,抵抗静载荷下的变形能力称为静刚度;当受到动载荷时,抵抗动载荷下的变形能力称为动刚度。故,结构或材料既有静刚度又有动刚度。?相对而言,在NVH领域,结构或材料受到动载荷的概率远大于静载荷,因此,更普遍关心动刚度。在之前文章《什么是频响函数FRF》中也提到用加速度与力之比的频响函数和用力与位移之比的动刚度应用更为广泛。 1.静刚度 在讲述动刚度之前,有必要先了解静刚度。静刚度用单值即可表示,不随频率变化。由于静载荷引起的变形又分为弯曲或扭转等,因此,刚度又分为抗弯刚度和抗扭刚度,材料的刚度计算可参考材料力学教科书。?在这以弹簧为例说明静刚度,当弹簧受到静力F时,其静态伸长量为X,此时F=kX,k为弹簧的静刚度。单位为N/mm,表示每增加1mm需要的拉力大小。?弹簧静刚度常数跟材料的杨氏模量、线径、中径和有效圈数有关。当拉力越来越大时,弹簧的伸长量也增大,如下图所示,但二者满足线性关系。红色曲线表示的斜率即为弹簧静刚度。 注:以下所说到的刚度,如没有特殊说明,都是指的动刚度。 2. 单自由度动刚度在文章《什么是频率函数FRF》中,我们已经明白了频响函数可以用位移/力表示,当用力/位移时,表示的是动刚度。对于单自由度系统,如下图所示,我们再回顾一下用位移表征的FRF表达式

系统动刚度的概念

系统动刚度的概念 一个典型的由质量一弹簧一阻尼构成的机械系统的质量块在输入力f (t )作用下产生的输出位移为y (t ),其传递函数为 ()()()1121/11222++=++==s s k k Ds ms s F s Y s G n n ω?ω (4.31) 系统的频率特性为 ()()()n n j k j F j Y j G ω?ωωωωωω21/122+???? ? ?-== (4.32) 该式反映了动态作用力f (t )与系统动态变形y (t )之间的关系,如图4-52所示。 图4-52 系统在力作用下产主变形 实质上()ωj G 表示的是机械结构的动柔度()ωλj ,也就是它的动刚度()ωj K 的倒数,即 ()()()ωωλωj K j j G 1= = (4.33) 当0=ω时 ()()k j G j K ====001 ωωωω (4.34) 即该机械结构的静刚度为k 。 当0≠ω时,我们可以写出动刚度()ωj K 的幅值 ()k j K n n ??? ?? ??+???? ??-=2 222 21ω?ωωωω (4.35) 其动刚度曲线如图4-53所示。对()ωj K 求偏导等于零,即 () 0=??ωωj K 可求出二阶系统的谐振频率,即 221?ωω-=n r ( 4.36) 将其代入幅频特性,可求出谐振峰值

()212/1??ω-==k j G M r r (4.37) 此时,动柔度最大,而动刚度()ωj K 具有最小值 ()k j K ?-=2min 12??ω (4.38) 由式(4.42)和(4.43)可知,当1<

某轻客接附点局部动刚度分析

某轻客白车身接附点局部动刚度分析BIW Input Point Inertance Analysis of Light Bus 王纯雷应锋崔璨李翠霞昃强 (长安汽车北京研究院北京100195) 摘要:本文应用Altair公司的HyperWorks软件,建立了某轻型客车白车身有限元模型,对白车身接附点进行动刚度分析及优化,并通过试验与仿真结果对比,验证了模型和分析方法的正确性。关键词:白车身接附点动刚度HyperWorks 有限元 Abstract: To achieve the BIW IPI analysis and optimization of light bus, the CAE model of the BIW is operated by HyperWorks. By comparing the results of simulation and testing, the correctness of the model and the analytical method was verified. Key words: BIW, Input point, IPI, HyperWorks CAE 1 引言 目前,随着消费者对汽车的要求越来越高,对汽车的认识也越来越成熟,汽车的NVH性能逐渐成为消费者非常关注的性能指标之一,同时也是区分汽车档次的重要指标之一。因此,在汽车研发设计之初就必须考虑到整车的NVH性能问题。在整车NVH分析中,车身系统既是直接向车内辐射噪声的响应器,又是传递各种振动、噪声的重要环节,因此它的吸声、隔声特性对减少车内噪声和振动有着重要的意义[1]。 白车身接附点局部动刚度考察的是在所关注的频率范围内该点局部区域的刚度水平,刚度过低必然影响隔振效果并引起更大的噪声,因此该性能指标对整车NVH性能有较大的影响,是在整车NVH分析中首先要考虑的因素。NVH试验测试虽然是一种必不可少的可靠方法,但是研发费用高及周期长也是实物试验的固有缺点。大型的仿真商业软件的普遍使用,可以很好的解决这种矛盾。 本文应用Altair公司的HyperWorks软件,建立了某轻型客车白车身有限元模型,对车身上前后悬架和动力总成接附点进行动刚度分析及优化,并通过试验与仿真结果的对比,验证了模型和分析方法的正确性。 2 接附点动刚度分析理论 在整车NVH分析中,噪声和振动传递路径对NVH性能有较大的影响,而振动基本是从底盘通过与车身的安装接附点传递到车身。因此对接附点局部动刚度的考察特别重要。该刚度分析可以通过IPI(源点导纳)方法进行分析。 IPI(源点导纳分析)是指在一定的频率范围内,通过在加载点施加单位力作为输入激励,同时将该点作为响应点,测得该点在该频率范围内的加速度作为输出响应,用于考察该点的局部动刚度。 源点加速度导纳公式为[2]:

朱志峰_OptiStruct在整车NVH分析中的应用

OptiStruct在整车NVH分析中的应用OptiStruct Application In Full vehicle NVH Analysis 朱志峰郭志伟 (广汽吉奥技术中心杭州311200) 摘要: 本文阐述在某款SUV项目研发的过程中,利用Altair OptiStruct解算器成功完成了NVH-CAE相关的工作,从零部件、子系统到车身、底盘和整车,从目标设定、目标分解到性能优化,初步建立起了汽车振动噪声NVH-CAE的研发流程与平台。利用AMSES加速模块在保证精度的前提下,非常显著地缩短了每轮NVH计算的求解时间,为本次项目工作带来了非常大的帮助。关键词: 整车NVH NVH-CAE OptiStruct AMSES Abstract:In the process of SUV project development, Altair OptiStruct solver performed all of the NVH work successfully, from components, subsystem to body, chassis and full-vehicle, from target setting, target decomposition to performance optimization, built the process and platform of vehicle NVH. And with the OptiStruct AMSES acceleration module, the time of NVH analysis each round reduced effectively while analytical precision were reliable. Altair OptiStruct and AMSES can provide efficient help for this project. Key Words: Full-vehicle NVH, NVH-CAE, OptiStruct, AMSES 1 概述 在评价汽车的振动与噪声时,通常从三个方面来评价:整车评价、系统评价和部件评价。整车评价是从顾客的角度出发来评价整个车噪声与振动的水准,通常包括车内评价与车外评价。车内评价指标有驾驶员和乘客耳朵感受到的声压级,方向盘、地板、座椅等关键地方的振动。车外评价指标是是政府制定的“通过噪声”。系统评价是评价一个系统的噪声与振动水平,比如排气系统,尾管的噪声要满足一定的要求。部件评价是指部件的振动与噪声达到规定的指标,如排气系统中的消声器,其指标是声音的传递损失。整车是由系统组成,系统是由部件组成,因此部件NVH的水准决定了系统NVH的水准,系统NVH的水准进而决定了整车NVH的水准。按照汽车产品的研发进程,同样也是遵从部件→系统→整车的研发顺序,虽然用户最关心的是整车的NVH性能,但是作为研发人员必须从部件性能、系统性能把控做起,从而得到一个好的整车性能。

相关主题