搜档网
当前位置:搜档网 › 离子交换

离子交换

离子交换
离子交换

四、离子交换

一、离子交换介绍

离子交换是五、六十年代发展起来的水处理工艺,我国也有近六十多年的应用历史,其工艺原理是十分成熟的,运行实践是丰富的,国家有成熟的工艺设计标准和出水水质标准。离子交换法是以圆球形树脂(离子交换树脂)过滤原水,水中的离子会与固定在树脂上的离子交换。

1.1离子交换树脂

离子交换树脂是离子交换树脂是带有官能团(有交换离子的活性基团)、具有网状结构、不溶性的高分子化合物。通常是球形颗粒物。离子交换树脂是一类具有离子交换功能的高分子材料。在溶液中它能将本身的离子与溶液中的同号离子进行交换。按交换基团性质的不同,离子交换树脂可分为阳离子交换树脂和阴离子交换树脂两类。

离子交换树脂利用氢离子交换阳离子,而以氢氧根离子交换阴离子;以包含磺酸根的苯乙烯和二乙烯苯制成的阳离子交换树脂会以氢离子交换碰到的各种阳离子(例如Na+、Ca2+、Al3+)。同样的,以包含季铵盐的苯乙烯制成的阴离子交换树脂会以氢氧根离子交换碰到的各种阴离子(如Cl-)。从阳离子交换树脂释出的氢离子与从阴离子交换树脂释出的氢氧根离子相结合后生成纯水。

阴阳离子交换树脂可被分别包装在不同的离子交换床中,分成所谓的阴离子交换床和阳离子交换床。也可以将阳离子交换树脂与阴离子交换树脂混在一起,

置于同一个离子交换床中。不论是哪一种形式,当树脂与水中带电荷的杂质交换完树脂上的氢离子及(或)氢氧根离子,就必须进行“再生”。再生的程序恰与纯化的程序相反,利用氢离子及氢氧根离子进行再生,交换附着在离子交换树脂上的杂质。

离子交换树脂的全名称由分类名称、骨架(或基因)名称、基本名称组成。孔隙结构分凝胶型和大孔型两种,凡具有物理孔结构的称大孔型树脂,在全名称前加“大孔”。分类属酸性的应在名称前加“阳”,分类属碱性的,在名称前加“阴”。如:大孔强酸性苯乙烯系阳离子交换树脂。

离子交换树脂还可以根据其基体的种类分为苯乙烯系树脂和丙烯酸系树脂。树脂中化学活性基团的种类决定了树脂的主要性质和类别。首先区分为阳离子树脂和阴离子树脂两大类,它们可分别与溶液中的阳离子和阴离子进行离子交换。阳离子树脂又分为强酸性和弱酸性两类,阴离子树脂又分为强碱性和弱碱性两类(或再分出中强酸和中强碱性类)。

强酸性阳离子树脂:这类树脂含有大量的强酸性基团,如磺酸基-SO3H,容易在溶液中离解出H+,故呈强酸性。树脂离解后,本体所含的负电基团,如SO3-,能吸附结合溶液中的其他阳离子。这两个反应使树脂中的H+与溶液中的阳离子互相交换。强酸性树脂的离解能力很强,在酸性或碱性溶液中均能离解和产生离子交换作用。树脂在使用一段时间后,要进行再生处理,即用化学药品使离子交换反应以相反方向进行,使树脂的官能基团回复原来状态,以供再次使用。如上述的阳离子树脂是用强酸进行再生处理,此时树脂放出被吸附的阳离子,再与H+结合而恢复原来的组成。

弱酸性阳离子树脂:这类树脂含弱酸性基团,如羧基-COOH,能在水中离解出H+ 而呈酸性。树脂离解后余下的负电基团,如R-COO-(R为碳氢基团),能与溶液中的其他阳离子吸附结合,从而产生阳离子交换作用。这种树脂的酸性即离解性较弱,在低pH下难以离解和进行离子交换,只能在碱性、中性或微酸性溶液中(如pH5~14)起作用。这类树脂亦是用酸进行再生(比强酸性树脂较易再生)。

强碱性阴离子树脂:这类树脂含有强碱性基团,如季胺基(亦称四级胺基)-NR3OH(R为碳氢基团),能在水中离解出OH-而呈强碱性。这种树脂的正电基团能与溶液中的阴离子吸附结合,从而产生阴离子交换作用。这种树脂的离解性很强,在不同pH下都能正常工作。它用强碱(如NaOH)进行再生。

弱碱性阴离子树脂:这类树脂含有弱碱性基团,如伯胺基(亦称一级胺基)-NH2、仲胺基(二级胺基)-NHR、或叔胺基(三级胺基)-NR2,它们在水中能离解出OH-而呈弱碱性。这种树脂的正电基团能与溶液中的阴离子吸附结合,从而产生阴离子交换作用。这种树脂在多数情况下是将溶液中的整个其他酸分子吸

附。它只能在中性或酸性条件(如pH1~9)下工作。它可用Na2CO3、NH4OH进行再生。

离子树脂的转型:以上是树脂的四种基本类型。在实际使用上,常将这些树脂转变为其他离子型式运行,以适应各种需要。例如常将强酸性阳离子树脂与NaCl作用,转变为钠型树脂再使用。工作时钠型树脂放出Na+与溶液中的Ca2+、Mg2+等阳离子交换吸附,除去这些离子。反应时没有放出H+,可避免溶液pH下降和由此产生的副作用(如蔗糖转化和设备腐蚀等)。这种树脂以钠型运行使用后,可用盐水再生(不用强酸)。又如阴离子树脂可转变为氯型再使用,工作时放出Cl-而吸附交换其他阴离子,它的再生只需用食盐水溶液。氯型树脂也可转变为碳酸氢型(HCO3-)运行。强酸性树脂及强碱性树脂在转变为钠型和氯型后,就不再具有强酸性及强碱性,但它们仍然有这些树脂的其他典型性能,如离解性强和工作的pH范围宽广等。

1.2离子交换器

离子交换分离常在柱式设备中进行。由于操作方法的不同离子交换法又可分为淋洗法和排代法等。将离子交换剂装入交换柱中,含被分离物质的溶液由柱顶加入,使之在交换柱顶端发生交换吸附,然后用一种溶液(淋洗剂或排代剂)连续流过交换柱,使被分离离子在柱中实现多次离子交换吸附和解吸,最后达到不同离子间的分离。

离子交换器时用于降低水中的硬度,生水由上而下通过交换器进行软化,水中含有的钙、镁、阳离子与水中交换剂的钠离子等互相交换,生水被软化成为极少的钙、镁、盐的水(称为软水),可用于锅炉给水及一些工业用水。

软化器即离子交换器,分为:钠离子交换器、阴阳床、混合床等种类。离子交换柱(器)外壳一般采用硬聚氯乙烯(PVC)、硬聚氯乙烯复合玻璃钢(PVC-FRP)、有机玻璃(PMMA)、有机玻璃复合透明玻璃钢(PMMA-FRP)、钢衬胶(JR)、不锈钢衬胶等材质。

动软化器即为钠离子交换器,主要用于锅炉、热电站、化工、轻工、纺织、医药、生物、电子、原子能及纯水处理的前道处理。

阴阳离子交换床:也就是复床,它是由阳、阴离子交换器串联使用,达到水的除盐的目的。

混合床:是把阴阳离子交换树脂按一定混合比例装填在同一个离子交换器内,因为混合离子交换后进入水中的H离子与OH离子立即生成电离度很低的水分子,能使交换反应进行得十分彻底。混床一般设置一级复床之后,对水质进一步纯化处理。当水质要求不高的时候,也可以单独使用。

钠离子交换器:即软化器是用于去除水中钙离子、镁离子,制取软化水的离子交换器。组成水中硬度的钙、镁离子与软化器中的离子交换树脂进行交换,水中的钙、镁离子被钠离子交换,使水中不易形成碳酸盐垢及硫酸盐垢,从而获得软化水。

1.3离子交换原理

常见的两种离子交换方法分别是硬水软化和去离子法。硬水软化主要是用在反渗透(RO)处理之前,先将水质硬度降低的一种前处理程序。软化机里面的球状树脂,以两个钠离子交换一个钙离子或镁离子的方式来软化水质。

离子交换法的关键在于选择合适的离子交换剂和吸附、淋洗的条件。交换剂中交换基团的性质,交联度、粒度和交换容量的大小,对交换过程有重要影响。往溶液中加入络合剂可提高离子交换法的选择性,以获得更加良好的分离效果。

2、沙生湿地离子交换器的运行说明

2.1概述:沙生湿地的离子交换系统包括钠床和螯床。

2.2工艺流程:

2.3.1钠离子交换器:

设计单套钠床最大进水量为150m3/h,6用4备。正常运行情况下1台钠床供水泵流量300m3/h对应2台钠床。钠床为预吸附来水二价离子(Ca,Mg,Br,Sr),床体里装填钠型强酸型树脂,单床装填树脂量为17.5m3,保证钠床进水二价离子浓度在400mg/L以内(以CaCO3计),要求钠床产水二价离子含量小于去除率95%以上(以CaCO3计)。若钠床进水量超过150m3/h,请立即调整流量在设计范围内。在钠床进水管道设置投加还原剂,保证钠床进水ORP值在100mv 以内或余氯在0mg/L以内,也可保证下游反渗透装置不被氧化剂氧化。操作人员需定期检测钠床进水的Fe3+,Fe2+含量(总铁含量<0.1mg/L),防止树脂铁中毒。钠床运行pH值范围9-10。

当钠床运行一段时间,树脂会达到吸附饱和,需要进行再生,使用再生剂为8%的NaCl溶液。

钠床#套运行失效后,再生完全后,操作人员应记录钠床#套的投运时间,并每隔3hr连续取样并检测,观察到什么时候,产水二价离子浓度超过10ppm,这段时间为钠床的实际运行时间。

当钠床进出水压差超过2公斤时,请立即停运,并对钠床进行大反洗,松动树脂层。并进行相应的倍量再生,再生剂浓度适当加大,最好在12%-14%。

正常运行中要关注树脂运行情况和严格控制进水铁含量,定期进行钠床树脂复苏。

操作规程:

1.钠床充水:①打开进水阀(XV17A)②打开排气阀(XV26A)③启动给水泵(P08A),时间大约为5min,流量为150 m3/h。

2.钠床运行:①打开产水阀(XV18A),关闭排气阀(XV26A)②启动,运行时间为900min。

3.钠床小反洗:关闭给水泵(P08A),关闭还原剂计量泵(P49A),关闭进水阀(XV17A),打开反洗排水阀(XV22A),打开反洗水总进水阀(XV28B),打开小反洗进水阀(XV21A),启动反洗水泵(P10A),运行时间为15min,流量为60 m3/h。

4.钠床排水:关闭反洗水泵(P10A),关闭反洗排水阀(XV22A),关闭小反洗进水阀(XV21A),关闭反洗水总进水阀(XV28B),打开中排排水阀(XV25A),打开排气阀(XV26A),时间大约在5~10min,运行完关闭排气阀(XV26A)

5.钠床再生阶段1:打开再生液总进水阀(XV85),打开进再生液阀(XV23A),启动再生水泵(P41A),调节流量为20 m3/h,再生液为8%的NaCL溶液,运行50min。

6.钠床再生阶段2:打开中间排水阀(XV24A),关闭中间排水阀(XV25A),运行时间为30min,流量为20 m3/h。

7.回用水置换:关闭再生水泵(P41A),启动树脂再生水泵(P16A),流量为20 m3/h,运行时间大约为60min,关闭P16A,关闭所有处于打开状态的阀门。

8.钠床充水:打开进水阀(XV17A),打开排气阀(XV21A),启动给水泵(P08A),运行时间大约为5min,流量为150 m3/h。

9.钠床小正洗:打开中间排水阀(XV25A),关排气阀(XV26A),运行6min,流量为150 m3/h。

10.钠床正洗:打开正洗排水阀1(XV19A),关闭中间排水阀(XV25A),运行时间6min,流量为150 m3/h,6min之后关闭给水泵(P08A),关闭进水阀(XV17A),关闭中间排水阀(XV25A)。

11.卸压:打开排气阀(XV6A),时间大约为10s

12.大反洗:打开反洗水排放阀(XV22A),打开反洗水进水阀(XV20A)、反洗水总进水阀(XV28B),启动离子交换反洗水泵(P10A),流量为60 m3/h,时间为30min。

注:

①钠床运行步骤为1-2-3-4-5-6-7-8-9-10-11;

②当设备再生20次时,进行一次大反洗,大反洗完成以偶再生时,再生液需倍量,盐浓度为12%,大反洗完成时运行步骤为:2-12-5-6-7-8-9-10-11-1

操作步序:

2.3.2螯合离子交换器

单套螯床设计流量225m3/h,正常情况下,2台钠床对应1台螯床。若螯床产水流量超过225m3/h,请调整其流量在设计范围之内。螯床作用为精去除二价离子(Ca,Mg,Br,Sr),保证安螯床进水二价离子浓度20mg/L以内(以CaCO3计),要求其产水二价离子浓度在1mg/L以内(以CaCO3计)。单套螯床内装填螯合树脂,螯合树脂装填量为14.2m3。螯床运行PH值范围9-10。

当螯床运行一定时间(暂定72hr),树脂达到吸附饱和状态,需要使用再生剂进行再生,螯床再生剂为7%HCl和4%的NaOH。盐酸主要作用是将树脂中的二价离子洗脱出来,碱的作用是将树脂由H型转成Na型。注意,钠床,螯床使用同一根回用水管线,尽量错开再生,以免回用水流量不稳定。

再者,现场反应螯床出水有时PH比其进水PH还高,原因为再生螯床时,碱再生剂没有被完全置换出来,在通入碱时间一定的条件下(2hr),可以适当延

长纯水置换的时间(2.5hr),观察再生后的螯床的产水pH 如何。

现在发现酸泵和碱泵的实际打入量比设定的值要偏大,请根据DN1800酸罐5m 3,和DN1500碱罐3m 3,计算设定的流量与实际的流量的差别。

螯床#套运行失效后,再生完全后,操作人员应记录螯床#套的投运时间,并每隔3hr 连续取样并检测,观察到什么时候,产水二价离子浓度超过1mg/L ,这段时间为螯床的实际运行时间。

弱酸螯合钠床除二价离子的工艺原理为:

制水:

再生:

设计要求离子交换产水中的结垢离子必须小于0.1mg/L ,钠离子交换树脂,其优点是树脂价格低,其缺点它存在交换可逆特性使交换不彻底,脱除率95%左右,螯床优点是离子交换的不可逆特性,脱除率高于99%,缺点是树脂价格昂贵。系统设计中采用吸取各自优点的钠床和螯床组合设计,钠床产水结垢离子总含量<5.0mg/L ,螯床总含量<0.1mg/L 。

)

离子交换器正常运行曲线和失效拐点以及不同运行曲线反映的可能故障

操作规程:

1.螯床运行充水:①打开进水阀(XV29A )②打开排气阀(XV38A )

2.螯床运行:①打开产水阀(XV30A ),关闭排气阀(XV38A )。

3.螯床反洗:关闭进水阀(XV29A ),打开反洗排水阀(XV33A ),打开反洗

水总进水阀(XV28A ),打开反洗进水阀(XV32A ),启动反洗水泵(P10A ),运行时间为15min ,流量为60 m 3/h 。

R COONa

R COO

COO Ca

Ca 2+

+R COO

COO Ca 2HCl +R COOH CaCl 2+R

COOH

2NaOH +R COONa +2H 2O

4.螯床排水:关闭反洗水泵(P10A),关闭反洗排水阀(XV33A),关闭反洗进水阀(XV32A),关闭反洗水总进水阀(XV28A),打开中排排水阀1(XV37A),打开排气阀(XV38A),时间大约在5~10min,运行完关闭排气阀(XV38A)。

5.螯床酸再生阶段1:打开螯床再生酸进液阀(XV34A),螯床中间排水阀1(XV37A),螯床酸再生液进液总阀(XV90B)用手动阀调节流量为13 m3/h,启动螯床再生酸计量泵(P47A),运行20 min。

6.螯床酸再生阶段2:打开螯床中间排水阀2(XV36A), 关闭螯床中间排水阀1(XV37A),运行60 min。

7.回用水置换酸:关闭螯床再生酸计量泵(P47A),运行60 min;打开螯床中间排水阀1(XV37A),关闭螯床中间排水阀2(XV36A)运行20 min;关闭所有打开阀。

8.螯床碱再生阶段1:打开螯床再生碱进液阀(XV35A),螯床中排水阀2(XV36A),螯床碱再生液进液总阀(XV90A),调节手动阀使流量为13 m3/h,启动螯床再生碱计量泵(P46A),运行60 min。

9. 螯床碱再生阶段2:打开螯床中排水阀1(XV37A),关闭螯床中排水阀2(XV36A),运行60 min。

10. 回用水置换碱:关闭螯床中排水阀1(XV37A),运行120 min。关闭打开所有阀。

11.螯床小正洗:打开进水阀(XV29A),螯床中间排水阀(XV37A),运行5 min。

12.螯床正洗:打开螯床正洗排水阀(XV31A),关闭螯床中间排水阀(XV37A),运行10 min。

13.卸压:关闭进水阀(XV29A),打开螯床排气阀(XV38A),运行30S。

注:

①螯床运行步骤为1-2-3-4-5-6-7-8-9-10-11-12-13;

操作步续表:

3、故障排除

3.1钠床树脂铁中毒处理

1、对树脂层大反洗:因树脂层有大量的不溶性絮凝物,絮凝物主要来源再生液中带入和进钠床水带入,絮凝物会导致树脂孔道堵塞、树脂结块,影响树脂交换能力。采用两台反洗水泵同时启动120m3/h,由底部进、顶部排出,反洗不小于30min,然后中排进水、顶部排出进行20min,现场实际操作中发现有大量絮凝物冲出。

2、排水:将树脂柱内水全部排出,避免进酸时酸稀释。

3、进酸浸泡:每小时10 m3左右流速进10%的盐酸和0.1-0.2%左右的亚硫酸钠混合液,底部进,中排排出,待中排出酸浓度大于6%后停止进酸,浸泡18小时以上。

4、回用水置换盐酸:底部进水,中排排出,待出水pH大于3后结束。然后将树脂柱内残余酸液排完。

4、再生液转型:按照正常再生工艺要求进行。

后期正常再生时也可以通过向再生液中添加0.1%的亚硫酸钠加强树脂中毒后的再生效果。具体添加方法:每次在化盐桶化盐10m3,加亚硫酸钠10kg。

3.2螯床树脂铁中毒处理:

螯床树脂铁中毒的恢复难度很大,螯合树脂的铁中毒目前没有太好的处理方法,因此要加强钠床进水铁的控制。

1、采用两台反洗水泵同时启动120m3/h,由底部进、顶部排出。然后排出树脂柱内水。

2、进酸浸泡:每小时10 m3左右流速进10%的盐酸和0.1-0.2%左右的亚硫酸钠混合液,底部进,中排排出,待中排出酸浓度大于8%后停止进酸,浸泡18小时以上。

3、回用水置换:按照树脂操作工艺要求进行。

4、后续操作按照操作要求进行。

其他注意事项

(1)钠床再生液为工业盐直接配置后进柱再生,工业盐中含有不溶性杂质会在树脂柱内积累导致运行压力高、树脂结块、堵塞树脂孔道等,会影响树脂使用效果。希望能对再生液过滤处理去除不溶性杂质再使用。建议再生液罐的液位保持50%以上,保证有足够的再生液储备,同时使再生液经过静置后能使不溶物充分沉淀。经常性清理再生液罐底的沉淀,避免再生液罐在边进边出的情况下底部大量沉淀物进入钠床。

(2)树脂再生水泵为树脂系统的专用泵,只用单独用于树脂系统才能保证树脂再生中的工艺要求。而目前再生水泵被用于向六效蒸发工段供水,这样为树脂再生供水能力就无法得到保证,另外供水流量和泵变频的连锁控制也被解除,再生过程中的流量稳定性难以得到保证。建议改回原先的设计,目前再生需要操作人员密切关注流量。

(3)树脂失效后需要及时进行再生,树脂处理能力远远大于目前的处理水量,再生树脂有足够时间,只要及时再生不会产生出水不合格的情况。避免树脂再生步及时导致出水不合格,影响整个系统的运行。

(4)目前的浸没式超滤产水直接进入超滤产水箱,但是浸没式超滤产水的水质也需要严格控制,前段时间出现铁超标情况,同时水也略带黄色。建议该水回超滤前工艺处理。

(5)螯床、钠床需要单独的运行记录,要求记录每柱的再生的时间、氯化钠、酸、碱浓度、流量。

运行产水记录:投运时间、每两小时进水指标(见钠床进水要求),运行压力、流量、出水指标。

(6)操作人员需要严格按照操作流程,控制好树脂再生各步骤工艺指标,保证树脂再生效果。

(7)再生液系统投入使用后,经过处理后的氯化钠溶液成分折合成100%

氯化钠后必须满足和工业盐的成分指标要求。特别是碳酸根含量要控制好,因为碳酸根会和钙镁形成沉淀物影响树脂性能。

萃取的操作方法

萃取的操作方法 萃取操作方法在分析中使用较广泛的萃取方法为间歇法(亦称单效萃取法)。这种方法是取一定体积的被萃取溶液,加入适当的萃取剂,调节至应控制的酸度。然后移入分液漏斗中,加入一定体积的溶剂,充分振荡至达到平衡为止。静置待两相分层后,轻轻转动分液漏斗的活塞、使水溶液层或有机溶剂层流人另一容器中,使两相彼此分离。假如被萃取物质的分配比足够大时,则一次萃取即可达到定量分离的要求。假如被萃取物质的分配比不够大,经第一次分离之后,再加入新鲜溶剂,重复操作,进行二次或三次萃取。但萃取次数太多、不仅操作费时,而且轻易带人杂质或损失萃取的组分。 §11-4离子交换分离法 利用离子交换剂和溶液中的离子发生交换作用而使离子分离的方法,称为离子交换分离法。20世纪初期,工业上就开始用天然的无机离子交换剂泡沸石来软化硬水。但这类无机离子交换剂的交换能力低,化学稳定性和机械强度差,使用受到很大限制。 近年来合成了有机离子交换剂——离子交换树脂,基本上克服了无机离子交换剂的缺点因此离子交换分离法在生产和科研各方面得到了广泛的使用。 一、离子交换树脂的结构和性质 (一)结构 离子交换树脂是具有网状结构的复杂的有机高分子聚合物。网状结构的骨架部分一段很稳定,不溶于酸、碱和一般溶剂。在网状结构的骨架上有许多可被交换的活性基团。根据活性基团的不同、离子交换树脂可分为阳离子交换树脂和阴离子交换树脂两大类。 1.阳离子交换树脂 阳离子交换树脂具有酸性基团,如使用最广泛的强酸性磺酸型聚苯乙烯树脂,它是以苯乙烯和二乙烯苯聚合,经浓硫酸磺化而制得的聚合物。 这种树脂的化学性质很稳定,具有耐强酸、强碱、氧化剂和还原剂的性质,因此使用非常广泛。 各种阳离子交换树脂含有不同的活性基因、常见的有磺酸基(-SO3H)、羧基(-COOH)和酚基(-OH)等。根据活性基团离解出H 能力的大小不同,阳离子交换树脂分为强酸性和弱酸性两种。例如含-SO3的为强酸性阳离子交换树脂,常用R-SO3H表示(R表示树脂的骨架),合-COOH和-OH的弱酸性阳离子交换树脂,分别用R-COOH和R-OH表示。 强酸性阳离子交换树脂使用较广泛,弱酸性阳离子交换树脂的H 不易电离,所以在酸性溶液中不能使用,但它的选择性较高而且易于洗脱。 2.阴离子交换树脂

离子交换设计计算书(有公式)

全自动软水器设计指导手册 (附设计公式)

目录 一、总述 0 1. 锅炉水处理监督管理规则 0 2. 离子交换树脂部结构 0 3. 钠离子交换软化原理及特性: (1) 4. 水质分析测试容 (1) ?PH值(Potential of Hydrogen) (1) ?总溶解固体(TDS --TOTAL DISSOLVED SOLIDS) (1) ?铁含量(IRON) (1) ?锰 (2) ?硬度值(HARDNESS) (2) ?碱度 (2) ?克分子(mol) (2) ?当量 (3) ?克当量 (3) ?硬度单位 (3) ?我国江河湖泊水质组成 (5) 二、全自动软水器 (5) 三、影响软水器交换容量的因素 (7) 1. 流速(gpm/ft,m/h) (7) 2. 水与树脂的接触时间:(gpm/ft3) (7) 3. 树脂层的高度 (8) 4. 进水含盐量 (9) 5. 温度 (11) 6. 再生剂质量(NaCl) (11) 7. 再生液流量 (12) 8. 再生液浓度 (13) 9. 再生剂用量 (14) 10. 树脂 (14) 四、自动软水器设计 (14) 1. 软水器设备应遵循的标准 (14) 2. 全自动软水器主要参数计算 (15) 1) 反洗流速的计算: (15) 2) 系统压降计算 (15) 3. 软水器设计计算步骤 (15) 计算示例 (17)

一、总述 1.锅炉水处理监督管理规则 第三条锅炉及水处理设备的设计、制造、检验、修理、改造的单位,锅炉及水处理药剂、树脂的生产单位,锅炉房设计单位,锅炉水质监测 单位、锅炉水处理技术服务单位及锅炉清洗单位必须认真执行本规 则。 第九条锅炉水处理是保证锅炉安全经济运行的重要措施,不应以化学清洗代替正常的水处理工作。 第十条生产锅炉水处理设备、药剂和树脂的单位,须取得省级以上(含省级)安全监察结构注册登记后,才能生产。 第十一条未经注册登记的锅炉水处理设备、药剂和树脂,不得生产、销售、安装和使用。 第十四条锅炉水处理设备出厂时,至少应提供下列资料: 1.水处理设备图样(总图、管道系统图等); 2.设计计算书; 3.产品质量证明书; 4.设备安装、使用说明书; 5.注册登记证书复印件。 第三十六条对违反本规则的单位和个人,有下列情况之一者,安全监察机构有权给予通报批评、限期改进,暂扣直至吊销资格(对持证的单位 和个人)的处理。 2.离子交换树脂部结构 离子交换树脂的部结构可以分为三个部分: 1)高分子骨架由交联的高分子聚合物组成,如交联的聚苯烯、聚丙烯酸等; 2)离子交换基团它连在高分子骨架上,带有可交换的离子(称为反离子)的 离子官能团[如-SO3Na、-COOH、-N(CH3)3Cl]等,或带有极性的非离子型官能团[如-N(CH3)2、-N(CH3)H等]; 3)孔它是在干态和湿态的离子交换树脂中都存在的高分子结构中的孔(凝 胶孔)和高分子结构之间的孔(毛细孔)。 离子交换树脂的部结构如下图中的左图所示,离子交换基团的结构如下图的右图所示。 顺流再生:交换流速20-30m/h,反洗流速12~15m/h,吸盐流速4-6m/h(逆1.4-2m/h)

离子交换柱层析原理

离子交换层析介质的应用 离子交换层析分离纯化生物大分子的过程,主要是利用各种分子的可离解性、离子的净电荷、表面电荷分布的电性差异而进行选择分离的。现已成为分离纯化生化制品、蛋白质、多肽等物质中使用最频繁的纯化技术之一。 子交换层析(Ion Exchange Chromatography 简称为IEC)是以离子交换剂为固定相,依据流动相中的组分离子与交换剂上的平衡离子进行可逆交换时的结合力大小的差别而进行分离的一种层析方法。离子交换层析是目前生物化学领域中常用的一种层析方法,广泛的应用于各种生化物质如氨基酸、蛋白、糖类、核苷酸等的分离纯化。 1.离子交换层析的基本原理: 离子交换层析是通过带电的溶质分子与离子交换层析介质中可交换离子进行交换而达到分离纯化的方法,也可以认为是蛋白质分子中带电的氨基酸与带相反电荷的介质的骨架相互作用而达到分离纯化的方法。 离子交换层析法主要依赖电荷间的相互作用,利用带电分子中电荷的微小差异而进行分离,具有较高的分离容量。几乎所有的生物大分子都是极性的,都可使其带电,所以离子交换层析法已广泛用于生物大分子的分离、中等纯化及精制的各个步骤中。 由于离子交换层析法分辨率高,工作容量大,并容易操作,因此它不但在医药、化工、食品等领域成为独立的操作单元,也已成为蛋白质、多肽、核酸及大部分发酵产物分离纯化的一种重要的方法。目前,在生化分离中约有75%的工艺采用离子交换层析法。 2.离子交换层析介质: 离子交换层析的固定相是离子交换剂,它是由一类不溶于水的惰性高分子聚合物基质通过一定的化学反应共价结合上某种电荷基团形成的。离子交换剂可以分为三部分:高分子聚合物基质、电荷基团和平衡离子。电荷基团与高分子聚合物共价结合,形成一个带电的可进行离子交换的基团。平衡离子是结合于电荷基团上的相反离子,它能与溶液中其它的离子基团发生可逆的交换反应。平衡离子带正电的离子交换剂能与带正电的离子基团发生交换作用,称为阳离子交换剂;平衡离子带负电的离子交换剂与带负电的离子基团发生交换作用,称为阴离子交换剂。在一定条件下,溶液中的某种离子基团可以把平衡离子置换出来,并通过电荷基团结合到固定相上,而平衡离子则进入流动相,这就是离子交换层析的基本置换反应。通过在不同条件下的多次置换反应,就可以对溶液中不同的离子基团进行分离。下面以阴离子交换剂为例简单介绍离子交换层析的基本分离过程。 阴离子交换剂的电荷基团带正电,装柱平衡后,与缓冲溶液中的带负电的平衡离子结合。待分离溶液中可能有正电基团、负电基团和中性基团。加样后,负电基团可以与平衡离子进行可逆的置换反应,而结合到离子交换剂上。而正电基团和中性基团则不能与离子交换剂结合,随流动相流出而被去除。通过选择合适的洗脱方式和洗脱液,如增加离子强度的梯度洗脱。随着洗脱液离子强度的增加,洗脱液中的离子可

树脂在使用前的活化方法概述

树脂使用前的活化(转) 对于初次使用需要激活或者说完全再生的树脂而言,整理网友的资料如下: (1)新的离子交换树脂常含有反应溶剂、未参加反应的物质和少量低分子量的聚合物、铁、铅、铜等杂质。当树脂与水、酸、碱或其它溶液相接触时,上述可溶性杂质就会转入溶液中,在使用初期污染出水水质。因此,新树脂在投运前要进行预处理,转换为指定的离子型式。 (2 )阳离子交换树脂(含碱性基团的强酸阳树脂)的预处理步骤:首先用清水对树脂进行 冲洗(最好为反洗)洗至出水清澈无混浊、无杂质为止。然后用?4~5%勺HCI和NaOH在交换 柱中依次交替浸泡2~4小时,在酸碱之间用大量清水淋洗(最好用混合床高纯度去离子水进行淋洗)至出水接近中性,如此重复2~3次,每次酸碱用量为树脂体积的2倍。最后一次处 (3 )阴离子交换树脂(含酸性基团的强碱阴树脂)的预处理步骤:同上,只是酸碱的使用交换位置。 (4)应用于医药、食品行业的树脂,预处理最好先用乙醇浸泡,而后再用酸碱进行交替处理,大量清水淋洗至中性待用。 (5 )各种树脂因品种、用途不一,预处理的方法也有区别,预处理时的酸碱浓度及接触时 间等,可具体参考各型号树脂的介绍。 (6 )预处理中最后一次通过交换柱的是酸还是碱,决定于使用时所要求的离子型式。 (7)为了保证所要求的离子型式的彻底转换,所用的酸、碱应是过量的。 有网友提出如何检测树脂失效的问题。整理答案:新树脂必须先送到有关部门检测合 格后再使用。树脂必须符合阴阳树脂的验收标准,主要检测指标:全交换容量、含水率、耐磨率、有效粒径、湿真密度、湿视密度、不均匀系数等。 根据厂家提供的再生装置及离子交换树脂再生的需要可以得知,这次,我们采用的树 脂应该是强酸性阳离子(Na+)交换树脂。因为它的再生装置只有一个盐箱,用的是NaCI (当 然不是吃的那种),听说是工业专用的粗盐。弱酸性的阳离子交换树脂也用NaCI再生,但它 需要在碱性条件下才能有较高的交换能力,而这套设备不提供碱性条件。(关于离子交换树 脂种类、型号的详细情况可以在一些厂家的网站上找到,偶去的是这里,, &ArticlePage=&lnfold=7&Menuld=38613&Mainld=67491 。在中国水网论坛、中国化学化工论

离子交换带控制点的工艺流程图

(一)带控制点的工艺流程 工艺流程及原理 反洗水 废液 正洗水 工作原理: 离子交换是指水溶液通过树脂时,发生在固体颗粒和液体之间的界面上,固液间离子相互交换的过程。离子交换反应是可逆反应,离子交换对不同组分显示出不同的平衡特性。在水处理中常见的离子交换反应是水的软化,除盐及去除或回收污水种重金属离子等。水中在阳离子交换剂上的Na+离子进行交换反应。其反应如下: 2RNa+M2+=R2M+2Na2+ 式中:R-----离子交换剂的骨架N+-----交换剂上可交换离子 M2+----水溶液中二价阳离子 (三)自动控制,在线检测及参数调节 自动控制:水泵 1、调节池,盐池,软水池均设下水位开关及水位下限自动报警装置。水位达下限 时报警并停泵。 在线检测: 1、流量:泵(A-J,L-N)出口流量在线检测,其中泵(A-C)流量的瞬时值和累 计值通过计算机显示,记录和打印。 2、测硬度:A7-A8检测 3、Ph值:调节池中污水,混合反应池中污水,泵(G)出水的Ph值在线检测, 既可现场检读,也可通过计算机显示,记录并打印。 运行参数调节及控制策略 1、流量: 泵(I-K)皆为交流电源离心泵,泵(I-K)连接电磁流量计(F1 -10 )可通过 计算机,根据流量设定值指定变频器工作,改变泵的转速以调节其流量。(四)额定运行参数及预期效果 1、盐池容积:12.3L 2、离子交换柱:进水流量0.1m3h-1,进水空塔流速=正洗强度=12.7m/h,正洗流量100Lh-1,反洗强度10.2m/h,反洗流量80Lh-1,正反洗时间各15分钟。 3、软水池:流量0.10m3h-1,容积1.37m,停留时间13.7小时。 4、调节池:流量0.10m3h-1。 (五)非标设备的工艺设计及计算

离子交换树脂的原理及应用总结归纳(重点阅读)

精心整理如何筛分混合的阴阳离子交换树脂? 离子交换树脂的工作原理及优缺点分析 将离子性官能基结合在树脂(有机高分子)上的材料,称之为“离子交换树脂”。树脂表面带有磺酸(sulfonic acid) 者,称为阳离子交换树脂,而带有四级氨离子的,则为阴离子交换树脂。由於离子交换树脂可以有效去除水中阴阳离子,所以经常使用於纯水、超纯水的制造程序中。(见下图) 离子交换树脂上的官能基虽可去除原水(Feed water) (Fouling)。方。 原理 软水,这是软化水设备的工作过程。 当树脂上的大量功能基团与钙镁离子结合后,树脂的软化能力下降,可以用氯化钠溶液流过树脂,此时溶液中的钠离子含量高,功能基团会释放出钙镁离子而与钠离子结合,这样树脂就恢复了交换能力,这个过程叫作“再生”。

由于实际工作的需要,软化水设备的标准工作流程主要包括:工作(有时叫做产水,下同)、反洗、吸盐(再生)、慢冲洗(置换)、快冲洗五个过程。不同软化水设备的所有工序非常接近,只是由于实际工艺的不同或控制的需要,可能会有一些附加的流程。任何以钠离子交换为基础的软化水设备都是在这五个流程的基础上发展来的(其中,全自动软化水设备会增加盐水重注过程)。 反洗:工作一段时间后的设备,会在树脂上部拦截很多由原水带来的污物,把这些污物除去后,离子交换树脂才能完全曝露出来,再生的效果才能得到保证。反洗过程就是水从树脂的底部洗入,从顶部流出,这样可以把顶部拦截下来的污物冲走。这个过程一般 需要5-15分钟左右。 吸盐(再生) (只要进水有一定的压力即可) 慢冲洗(置换) 应用 1)水处理 水处理领域离子交换树脂的需求量很大,约占离子交换树脂产量的90%,用于水中的各种阴阳离子的去除。目前,离子交换树脂的最大消耗量是用在火力发电厂的纯水处理上,其次是原子能、半导体、电子工业等。

沸石分子筛的离子交换性能

沸石分子筛的离子交换性能 沸石分子筛是指具有空旷骨架和较规则孔笼结构的含碱金属或碱土金属氧化物的硅铝酸盐材料。其从1956年被瑞典科学家发现之后便广泛应用,后因其特殊的物理特性被广泛应用于石油化工、环境保护、生物工程等领域。并且随着沸石分子筛需求量逐渐扩大,研究人员开始不断拓展多种沸石分子筛的合成方法,从而满足各个领域的需求。 沸石分子筛具有超强的吸附性能,其之所以具有强大吸附性能,是因为分子引力作用在固体表面产生的一种“表面力”,当流体流过时,流体中的一些分子由于做不规则运动而碰撞到吸附剂表面,在表面产生分子浓聚,使流体中的这种分子数目减少到分离、清除的目的。由于吸附不发生化学变化,只要设法将浓聚在表面的分子赶跑,沸石分子筛就又具有吸附能力,这一过程是吸附的逆过程,被称作是解析或再生过程。 同时,沸石分子筛也具有强大的离子交换性能,其指的是对骨架外的补偿阳离子交换过程。通过离子交换能够改变沸石分子筛的孔径大小,从而改变其性能。经离子交换后,阳离子的数目、大小和位置发生改变,如高价阳离子交换低价阳离子后使沸石分子筛中的阳离子数目减少,往往造成位置空缺使其孔径变大;而半径较大的离子交换半径较小的离子后,则易使其孔穴受到一定的阻塞,使有效孔径有开始减小。 再次,沸石分子筛因其具有独特的晶体结构,因此有一定的催化性能。沸石分子筛作为催化剂或催化剂载体时,催化反应的进行受到沸石分子筛晶孔大小的控制。晶孔和孔道的大小和形状都可以对催化反应起着选择性作用。 伴随着研究的不断深入,沸石分子筛逐渐从实验室走向了工业实际应用。由于其强大的性能,因此能够与反应器集成,在膜催化反应中,现反应与分离的藕合。目前研究的沸石分子筛膜的应用领域通常为渗透汽化、气体分离及膜反应器。 正是人类实践活动的需要和应用领域的发展,不断的推动着沸石分子筛的发展。从天然沸石到人工合成沸石、从低硅沸石到高硅沸石;从硅铝分子筛到磷铝分子筛;从超大微孔到介孔材料的出现;从无机多孔骨架发展到MOFs,以及近期正在兴起的大孔材料等等,有效的提高了产率,降低了合成成本和环境污染。

分子筛的主要特性

分子筛的主要特性 1、物理特性: 比热:约0.95KJ/KgXK(0.23Kcal/KgX℃ 导热系数(脱水物):2.09KJ/MXK(0.506Kcal/mX℃ 水吸附热:约3780KJ/Kg(915Kcal/Kg) 2、热稳定性和化学稳定性: 分子筛能承受600—700℃的短暂高温,但再生温度一般在400℃以下。分子筛可在PH值5-10范围的介质中使用;在盐溶液中能交换某些金属阳离子。 3、基本特性: a)分子筛对水或各种气,液态化合物可逆吸附及脱附。 b)金属阳离子易被交换。 c)分子筛内部空腔和通道形成非常高的内表面积。其内表面可高于分子筛颗粒的外表面积的10000-100000倍。 分子筛的选择吸附特性: 1、根据分子大小和形状的不同选择吸附——分子筛效应 分子筛晶体具有蜂窝状的结构,晶体内的晶穴和孔道相互沟通,并且孔径大小均匀,固定(分子筛空腔直径一般在6—15埃之间),与通常分子的大小相当,只有那些直径比较小的分子才能通过沸石孔道被分子筛吸附,而构型庞大的分子由于不能进入沸石孔道,则不被分子筛吸附。而硅胶,活性氧化铝和活性碳没有均匀的孔径,孔径分布范围十分宽广,所以没有筛分性能。 2、根据分子极性,不饱和度和极化率的选择吸附 分子筛对于极性分子和不饱和分子有很高的亲和力;在非极性分子中,

对于极化率在的分子有较高的选择吸附优势。此外,沸点越低的分子,越不易被分子筛所吸收。 分子筛的高效吸附特性: 分子筛对于H2O、NH3、H2S、CO2 等高分子极性具有很高的亲和力,特别是对于水,在低分压(甚至在133帕以下)或低浓度,高温(甚至在100℃以上)等十分苛刻的条件下仍有很高的吸附容量。 1、低分压或低浓度下的吸附 在相对湿度30% 时分子筛的吸水量比硅胶,活性氧化铝都高。随着相对湿度的降低,分子筛的优越性越发显著,而硅胶,活性氧化铝随着湿度的增加,吸附量不断增加,在相对湿度很低时,它们的吸附量很少。2、高温吸附 分子筛是唯一可用的高温吸附剂。在100 ℃和1.3 %相对湿度时分子筛可吸附15%重量的水分,比相同条件下活性氧化铝的吸水量大10倍;而比硅胶大20倍以上。所以在较高的温度下,分子筛仍能吸附相当数量的水分,而活性氧化铝,特别是硅胶,大大丧失了吸附能力。 3、高速吸附 分子筛对像水等极性分子在分压或浓度很低时的吸附速率要远远超过硅胶,活性氧化铝。虽然在相对湿度很高时,硅胶的平衡吸水量要高于分子筛,但随着吸附质的线速度的提高,硅胶的吸水率越来越不如分子筛效率高。 分子筛的离子交换性 分子筛的一个重要性能是可以进行可逆的离子交换。通过这种交换,改进了分子筛的吸附和催化性能,从而获得了广泛的应用(如可用于软化水和废水处理)。

离子交换器的设计计算

离子交换器的设计计算 1、交换器直径: F=Q/(T×N×V) F---交换器截面积(m2); Q---产水量(T/D); T---工作时间(H/D) N---交换器台数; V-交换流速(M/H). 2、交换器高度: H=Hp+Hr+Hs+Ht(米) Hp---交换器下部排水高度,一般为0.3—0.7m; Hr---交换剂层高度,一般在1.0—2.0之间选择。 Hs---反洗膨胀高度,树脂层高50%左右。 Ht---顶部封头高度。 3、交换器连续工作时间: t=V r×Eg/《q×(H1-H2)》 (小时) V r---交换剂体积; q---交换器流量; Eg---交换剂的工作交换容量,一般阳树脂取1000mol/m3。 H1---原水中硬度,mmol/L. H2---出水残留硬度,mmol/L. 4、再生剂用量:G z=V r×Eg×Bz/(1000×ε)

Gz---再生剂用量; Bz---再生剂实际耗率,g/mol. ε---再生剂纯度,对NaCL,可取0.95。 常用再生剂的实际耗率 顺流再生逆流再生 再生剂:NaCL ;HCL NaCL ; HCL 耗率:120-150 ;60-90 70-90; 30-60混合离子交换器设计计算: Q=3.14R2×V Q--混床的处理能力;单位m3/h R--混床的半径;单位m V--过滤流速,一般普通混床20-30m3/h 精致混床30-40m3/h 抛光混床40-60m3/h 取石英砂10-12m/h; V=3.14R2×H×1000 V--树脂的体积;单位kg R--混床的半径;单位m H--树脂的有效高度;单位m 注:树脂总装高不小于1m 阴阳离子交换树脂比例(阳:阴=1:1.3-2)混床的再生周期:

离子交换树脂综合知识

离子交换树脂综合知识 【电厂化学】2007-07-31 09:07:41 阅读1184 评论0 字号:大中小订阅 1 树脂的储存和运输 1、离子交换树脂在长期储存中,或需在停用设备内长期存放,强型树脂(强酸性和强碱性树脂)应转为盐型,弱型树脂(弱酸性和弱碱性树脂)可转为相应的氢型或游离胺型,也可转变为盐型,以保持树脂性能的稳定。然后浸泡在洁净的水中。停用设备若须将水排去,则应密封,以防树脂中水份散失。 2、离子交换树脂内含有一定的平衡水份,在储存和运输中应保持湿润,防止脱水。树脂应储存在室内或加遮盖,环境温度以5°C-40°C为宜。袋装树脂应避免直接日晒,远离锅炉、取暖器等加热装置,避免脱水。 若发现树脂已有脱水现象,切勿将树脂直接放于水中,以免干树脂遇水急剧溶胀而破碎。应根据其脱水程度,用10%左右的食盐水慢慢加入到树脂中,浸泡数小时后用洁净水逐步稀释。 3、当环境温度在0°C或以下时,为防止树脂因内部水份结冰而崩裂,应做好保温措施,或根据气温条件,将树脂存于相应浓度的食盐水中,防止冰冻。若发现树脂已被冻,则应让其缓慢自然解冻,切不可用机械力施于树脂。 食盐溶液浓度与冰点的关系如下表: 4、长期停用而放置在交换器内的树脂,为防止微生物(如藻类、细菌等)对树脂的不可逆污染,树脂在停用前须彻底反洗,以除去运行时积聚的悬浮物质,并注意定期冲洗和换水。或彻底反洗后采用以下措施: 阴树脂:用3倍树脂体积的10%NaCl+2%NaOH混合液分两次通过树脂层,每次静止浸泡数小时,然后将其排去。如有必要,在重新启动前用2倍树脂体积的0.2%过氧化氢(H2O2)溶液淋洗树脂层。 阳树脂:在阳离子交换器及管系内可充入0.5%的甲醛溶液,并在停用期间保持此浓度。也可用食盐水浸泡。在设备重新启动前用0.2%过氧化氢或0.5%甲醛溶液淋洗。 2 树脂的预处理 在离子交换树脂的工业产品中,常含有少量的有机低聚物及一些无机杂质。在使用初期会逐渐溶解释放,影响出水水质或产品质量。因此,新树脂在使用前必须进行预处理,具体方法如下: 1、树脂装入交换器后,用洁净水反洗树脂层,展开率为50-70%,直至出水清晰、无气味、无细碎树脂为止。 2、用约2倍树脂体积的4-5%HCl溶液,以2m/h的流速通过树脂层。全部通入后,浸泡4-8小时,

分子筛的主要特性

分子筛的主要特性 今天小编来介绍一下分子筛的主要特性。让大家对分子筛的特性有一个全面的了解。 一、物理特性: 比热:约0.95KJ/KgXK(0.23Kcal/KgX℃ 导热系数(脱水物):2.09KJ/MXK(0.506Kcal/mX℃ 水吸附热:约3780KJ/Kg(915Kcal/Kg) 二、热稳定性和化学稳定性: 分子筛能承受600—700℃的短暂高温,但再生温度一般在400℃以下。分子筛可在PH值5-10范围的介质中使用;在盐溶液中能交换某些金属阳离子。 三、分子筛的特性 1、基本特性 a)分子筛对水或各种气,液态化合物可逆吸附及脱附。 b)金属阳离子易被交换。 ·石墨烯·分子筛·碳纳米管·黑鳞·类石墨烯·纳米材料 江苏先丰纳米材料科技有限公司是国际上提供石墨烯产品很早的公司之一,现专注于石墨烯、

c)分子筛内部空腔和通道形成非常高的内表面积。其内表面可高于分子筛颗粒的外表面积的10000-100000倍。 (1)根据分子大小和形状的不同选择吸附——分子筛效应 分子筛晶体具有蜂窝状的结构,晶体内的晶穴和孔道相互沟通,并且孔径大小均匀,固定(分子筛空腔直径一般在6—15埃之间),与通常分子的大小相当,只有那些直径比较小的分子才能通过沸石孔道被分子筛吸附,而构型庞大的分子由于不能进入沸石孔道,则不被分子筛吸附。而硅胶,活性氧化铝和活性碳没有均匀的孔径,孔径分布范围十分宽广,所以没有筛分性能。 (2)根据分子极性,不饱和度和极化率的选择吸附 分子筛对于极性分子和不饱和分子有很高的亲和力;在非极性分子中,对于极化率在的分子有较高的选择吸附优势。此外,沸点越低的分子,越不易被分子筛所吸附。 2、分子筛的高效吸附特性 ·石墨烯·分子筛·碳纳米管·黑鳞·类石墨烯·纳米材料 江苏先丰纳米材料科技有限公司是国际上提供石墨烯产品很早的公司之一,现专注于石墨烯、

阳离子交换树脂的处理再生操作规程精编WORD版

阳离子交换树脂的处理 再生操作规程精编 W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

阳离子交换树脂的处理再生操作规程 1、适用范围:1号、2号、3号、树脂罐。 2、职责:树脂处理再生人员严格按照本标准处理。 3、工作原理: 离子交换树脂是一种聚合物,带有相应的功能基因,一般情况下,常规的钠离子交换树脂带有大量的钠离子,当水中的钙镁离子含量高时,离子交换树脂可以释放出钠离子,功能基因与镁离子结合,这样水中的钙镁离子含量降低,水的硬度降低,硬水变成软水,这是软化水设备的工作过程。 当树脂上的大量功能基因与钙镁离子结合后,树脂的软化能力下降,可以用氯化钠溶液流过树脂,此时溶液中的钠离子含量高,功能集团会释放出钙镁离子而与钠离子结合,这样树脂就恢复了交换能力。 4、工作流程: 4.1、小反洗:再生前应对中间排液管上面进行小反洗,洗去进水时积聚在中间排液装置上的污物,小反洗是先关闭进水阀及出水阀,再打开小反洗进水阀及反洗排水阀直至冲洗干净,小反洗结束后关闭小反洗进水阀及反洗排水阀。 4.2、大反洗:打开大反洗进水阀,使水从树脂底部流入,顶部流出,这样可以把顶部拦截的污物冲走,排除破碎的树脂和树脂中的气泡,这个过程一般需要5-15分钟。 4.3、吸盐(再生):即将盐水注入树脂罐的过程,用盐泵将浓度为3%-8%的盐水从罐的底部进入,缓缓流过树脂层,从顶部阀门排出,进盐大约1小时左右,可适当延长浸泡时间。

4.4、慢冲洗(置换):用盐水流过树脂以后,用原水以同样的流速慢慢将树脂中的盐全部冲洗干净的过程叫慢冲洗,由于这个冲洗过程仍有大量的功能集团上的钙离子、镁离子被钠离子置换,这个过程是再生的主要过程,这个过程一般与吸盐的过程一样,一般大约1小时左右。 4.5、快冲洗:为了将残留的盐彻底冲洗干净,用于实际工作相当的流速对树脂进行冲洗,直到冲出符合规定的软化水。 4.6、产水:当树脂罐产出符合规定的软化水时,投入正常运行,应在用前,使用中、使用后,随时检测软化水的硬度,防止不合格水进入生产用水。 5、注意事项 5.1、离子交换树脂罐一定保持一定水分,切勿脱水。 5.2、保持一定温度,一般在5℃-40℃之间。 5.3、保证再生液的量及浓度,冬天温度底时,应适当延长树脂与再生液的接触时间,若树脂再生效果不理想时,应加大进盐量,延长浸泡时间,提高盐水浓度,如果采取以上措施还不合格,应更换树脂。 5.4、定期检查盐泵及树脂罐的阀门是否能正常运行。 5.5、二级软化时应悬挂标识牌,标明罐的级别。 2012年12月24日

离子交换法制备一种含锌分子筛

离子交换法制备一种含锌分子筛 摘要:通过水热法合成了4A分子筛,考察原料配比和反应条件对分子筛纯度和晶粒大小的影响。在此基础上,再采用离子交换法制备了一种含锌的A型分子筛,确定了锌含量随晶粒大小和反应温度与时间的变化规律。 关键词:离子交换,锌,催化, 1前言 过渡金属元素由于不饱和的d或f轨道,能够与许多含氮,氧,硫,磷的有机物配位,生成各种金属配合物,从而在许多有机反应中显示的较强的催化能力。目前,研究得比较多的过渡金属元素有铁,钒,镍,铜,锌等。铁元素对于费托合成反应具有较佳的活性。钒元素常常应用于脱硫脱硝领域。镍元素广泛应用于催化加氢脱氢。铜元素在一氧化碳氧化方面作用显著。锌元素尤其是锌离子往往在加成取代反应中催化性能优异。马丹等人曾报道了醋酸锌能催化2,4-二氨基甲苯与碳酸二甲酯反应生成2,4-甲苯二氨基甲酸的反应1。二价的锌离子在氨基甲酸甲酯和甲醇生成碳酸二甲酯的反应中也具有较好的催化性能2。侯巩报道了以醋酸锌为催化剂,以对苯二甲酸二甲酯(DMT)与1,3-丙二醇(PDO)为原料,采用酯交换、缩聚反应路线合成聚对苯二甲酸丙二醇酯(PTT)3。虽然锌离子在这些反应中展示了不错的活性,但是它是一种均相催化剂,溶解到了反应体系中,这个后续的催化剂分离带来了巨大困难。 为了保留这些过渡金属元素的催化活性,同时又方便反应后催化剂的分离。人们开展了大量的均相催化剂的非均相化研究。常见的将催化剂非均相化的方法有浸渍法,嫁接法和离子交换法。其中离子交换法由于具有合成工艺简单,制得的催化剂性能稳定等诸多优点而被广泛采用。离子交换法的原理是采用一种离子交换剂为载体,将其加入到含有过渡金属离子的溶液中去,反应过程是金属离子扩散到交换剂表面,而交换剂表面的离子扩散到溶液中去,从而得到一种高分散,均匀分布的金属离子催化剂。 离子交换剂可以分为有机聚合物交换剂和无机交换剂两大类。有机交换剂具有化学稳定性好,耐酸碱,但其耐磨性差,机械强度低,而且热稳定性不好。无机交换剂的优缺点与有机交换剂的相反,实际应用中二者互为补充。有机离子交换机以苯乙烯和二乙烯基苯为主要原料共聚而得的树脂为典型代表,有阴离子树脂,阳离子两大类。无机交换剂以沸石分子筛为典型代表。本工作采用一种沸石分子筛为离子交换剂与锌盐进行离子交换来生产一种含锌的分子筛材料,实现锌元素的非均相化。 沸石分子筛是一种以TO4四面体为基本结构单元,用氧原子桥连而成的无机化合物。T 原子主要是硅和铝,也可以是其他杂原子,比如磷,钒,铁,钛,镓等等。在硅铝分子筛的四面体连接时,它遵循以下规律:一是四面体中的每个氧原子都是由两个T原子共用;二是相邻的两个四面体之间只能用一个氧原子;三是两个铝氧四面体不直接相连,必须要通过硅氧四面体,这也就是说沸石分子筛中硅铝之比不能小于1。由于以上原则,又由于铝只有正三价,在与四个氧相连接时,需要一个正一价的阳离子来平衡。在用水热法合成的沸石中,这个阳离子一般是钾和钠。由于钾和钠比较容易溶剂化,溶解到溶液中,因此可以通过离子交换法,用其他阳离子把钾和钠交换出来。 本工作的研究内容就是采用离子交换法,用氯化锌与沸石分子筛中的一种——A分子筛进行交换来将锌离子非均相化,得到含锌的分子筛。之所以选择A分子筛,是因为人们对

阴阳离子交换树脂的再生标准操作程序

1目的 建立阴、阳离子交换树脂从失效至恢复有将近交换作用的标准操作程序。 2范围 去离子水站失效阴阳离子交换树脂的再生操作。 3责任 纯水站班长负责组织去离子水岗位操作工正确实施失效阴阳离子交换树脂的再生操作。 车间工艺员、质监员负责再生操作的监督和检查,使再生质量符合要求。 去离子岗位操作工有按操作规程正确操作的责任。 4参考文件 SOP文件之作业指导文件。 5内容 732#苯乙烯强酸型阳离子交换树脂。 以检测阳床显中性时,阳床交换饱和失效,需及时再生。 检查阳床阀门是否处于关闭状态。 打开阳床的进酸阀和上排阀。 检查酸泵的进出酸阀门,溶液浓度是否达要求。

开启酸泵,慢慢打开泵后流量计的阀门,流量控制在500L/h。 小时后,先关闭流量计阀门,再关酸泵。 关闭进酸阀进行酸浸泡1小时。 开启过滤水泵,打开阳床下进水阀和上排阀,流量控制在500L/h,进行反冲15分钟。 打开阳床上进水阀的下排水阀,同时关闭阳床下进水阀和上排阀,进行正冲洗。随时用PH值纸进行测试,当PH值在5~6时,再生结束,关闭各阀门和酸泵待用。 717#苯乙烯碱型阴离子交换树脂(1#阴床、2#阴床) 经检测酸碱度下降(PH值﹤7)或有CL-反应时需及时再生。 检查阴床的进出阀门是否处于关闭状态。 打开阴床进碱阀和上排阀。 打开碱泵前的进碱阀。 开启碱泵的回流阀。 开启碱泵、慢慢打开流量计前阀门,流量控制在500L/h。 1小时后,关闭流量计前阀。 关碱泵。 关闭阴床进碱阀,浸泡1小时。 开启过滤水泵,打开阳床上进水阀。 开启流量计前时水阀,流量控制在500L/h,打开阴床下进水阀。 过滤水经过阳床再流入阴床,反冲洗15分钟。 打开阴床上进水阀和下连通阀。 关闭阴床下进水阀和上排阀,打开上进水阀和下排阀进行下冲洗。 用PH试纸测PH值达8~9时,出水按规范初纯水制取工艺操作制取初纯水待用,此再生操作结束。 注意 随时注意测定PH值。 酸碱处理池中的废酸碱应调至中性至排出。 酸碱经流过的管道应彻底冲洗。

Cu(I),Ag(I)~分子筛化学吸附脱硫的pai-络合机理

[Article] www.whxb.pku.edu.cn 物理化学学报(WuliHuaxueXuebao) ActaPhys.-Chim.Sin.,2006,22(5):542~547Received:September22,2005;Revised:December7,2005. * Correspondent,E-mail:dhzhou@dicp.ac.cn;Tel:0411-84258329. !EditorialofficeofActaPhysico-ChimicaSinica Cu(I),Ag(I)/分子筛化学吸附脱硫的π- 络合机理 周丹红1,2* 王玉清1贺宁1杨刚2 (1辽宁师范大学化学化工学院,功能材料化学研究所,辽宁大连, 116029; 2 中国科学院大连化学物理研究所,催化基础国家重点实验室,辽宁大连 116023) 摘要应用DFT研究了一系列含硫的杂环化合物(噻吩、苯并噻吩、二苯并噻吩和4,6-二甲基二苯并噻吩)以及 苯分子在Cu(I)-Y、Ag(I)-Y分子筛上的化学吸附.计算采用16T分子筛簇模型(H22Si15AlO22),对过渡金属采用了赝势基组,在BLYP/DNP水平上完成.相互作用能的结果表明,阳离子交换的分子筛对含硫杂环芳香族化合物吸附能力的顺序为Cu(I)-Y>Ag(I)-Y.两种吸附剂对噻吩类分子的吸附能力大于苯分子.噻吩衍生物的吸附能顺序依次为,4,6-二甲基二苯并噻吩<二苯并噻吩<噻吩<苯并噻吩,与实验结果相近.通过自然键轨道计算,研究了分子筛上担载的Cu(I)、Ag(I)金属离子与噻吩和苯分子之间的π-络合作用,分析比较了自然键电子给体-受体之间的二阶微扰稳定化能,并探索其络合机理. 关键词:DFT,π-络合吸附,自然键轨道,金属担载分子筛,汽油脱硫 中图分类号:O641 Theπ-complexationMechanismsofCu(I),Ag(I)/Zeolitesfor Desulfurization ZHOU,Dan-Hong1,2* WANG,Yu-Qing1 HE,Ning1 YANG,Gang2 (1InstituteofChemistryforFunctionalizedMaterials,CollegeofChemistryandChemicalEngineering,LiaoningNormalUniversity,Dalian 116029,P.R.China; 2 StateKeyLaboratoryofCatalysis, DalianInstituteofChemicalPhysics,ChineseAcademyofSciences,Dalian 116023,P.R.China) Abstract Densityfunctionaltheoryhasbeenemployedtoinvestigatetheπ-complexationadsorptionofaromaticsulfur compoundssuchasthiophene(TP),benzothiophene(BT),dibenzothiophene(DBT),and4,6-dimethyldibenzothiophene(4,6-DMDBT)byionexchangingfaujasitetypezeoliteswithCu+andAg+cations.Thecalculationswerebasedontheclustermodelsof16T(H22Si15AlO22),andperformedwithBLYPfunctionandDNPbasisset.Theeffectivecorepotentialbasissetwasusedfortransitionmetalatoms.ThecalculatedinteractionenergiesindicatedthattheadsorptionabilityoftheionexchangingYzeolitesforthiopheniccompoundsfollowedtheorder:Cu(I)-Y>Ag(I)-Y.Theiradsorptionabilityforthiopheniccompoundsishigherthanthatforbenzene.Thecalculatedadsorptionenergyofthethiopheniccompoundsincreasedas4,6-DMDBT<DBT<TP<BT,whichagreeswiththeexperiment.Thenaturalbondorbital(NBO)analysisofthesecond-orderperturbativeenergyhavebeenperformedtoinvestigatetheπ-complexationadsorptionmechanismofthiopheneandbenzeneonCu(I)-YandAg(I)-Ysorbents.Keywords:DFT,π-Complexationadsorption, NBO, Metalionicexchangingzeolites, Desulfurizationoffuel 汽车尾气中含硫化合物是造成城市大气污染的重要来源之一,因此,世界汽油规格中对硫含量作了 严格控制.目前国外广泛使用的汽油含硫量已经达到30μg?g-1[1-2],而我国2000年7月实施的车用汽油有 May 542

离子交换树脂注意事项

2015离子交换树脂的贮存和装填 一、Lewatit 离子交换树脂的贮存 1、要保持树脂的水分。Lewatit树脂出厂时,其含水率是饱和的,在贮存过程中必须防止水分的消失。建议将离子交换树脂储存于干燥、没有阳光直射的室内.如发现树脂变干时,切忌将树脂直接置于水中浸泡,而应该将它置于饱和食盐水中浸泡,使树脂缓慢膨胀,然后再逐渐稀释食盐水溶液。 2、应将树脂贮存在产品资料中推荐的合适温度下。若贮存的温度过高,容易引起树脂交换基团的分解和微生物污染。若贮存在水的冰点之下,会使树脂内的水分冻结。如果树脂冻结,不能用机械方法处理,将其置于环境温度中逐步解冻。在处理或使用前,应当使树脂完全解冻。不能试图去加速解冻过程。 3、防止树脂受到污染。树脂贮存时要避免和铁容器、氧化剂和油类物质直接接触,以免树脂被污染或被氧化降解。 4、贮存期不要超过产品资料中的推荐值。 二、树脂的装填 1、离子交换器在装填树脂前要彻底清理和检查。确保所有接受树脂的容器在装树脂前是清洁的并用去离子水淋洗过。 2、用去离子水将树脂装入再生塔中,在再生塔中加入去离子水,以使下部排水管免受树脂的冲击。建议用水力引入器将混合水的树脂装入容器。也可以“倒”入容器,但是要始终将液面保持在树脂层上面。不要用机械泵装填树脂。速率最大不超过1m/s,水和树脂的混合比例>2:1。 3、确信去离子水的液面至少高于已经装入的树脂床的0.5m以上。然后将树脂浸泡在去离子水中至少2小时。浸泡时间越长越好,对树脂无害。(对于弱碱性和中碱性树脂(Lewatit MP 62,MonoPlus MP 64等)必须过夜使之浸泡透,防止反洗时损失树脂。 4、浸泡结束后,仔细并彻底反洗树脂约30min。除去所有的树脂细颗粒以及在装填过程中带入的外界杂质。可能会有一些细树脂,也可能没有。反洗出口处不应该有视窗,其会妨碍树脂细颗粒的去除。所有的细颗粒必须反洗出容器。小心不要将好的树脂也反洗出容器。阳树脂的反洗流出液开始的时候可能是棕色的,不必担心,这是磺酸树脂的共有特点,继续反洗,一直到反洗液澄清无细颗粒。推荐分步反洗,每次反洗50%的树脂,反洗速率根据各树脂的技术资料。阴树脂和阳树脂最好使用两个不同的反洗塔,防止交叉污染。 5、在所有的过程中,需要使用去离子水,如果没有去离子水,先用原水反洗阳离子树脂,然后用阳离子树脂软化后的原水,反洗和装填阴树脂。 5、第一次使用树脂前,使用倍量再生剂,再生树脂。注意:只需要增加再生剂的量,不要增加再生剂的浓度。 6、由于树脂在再生过程中会膨胀,所以推荐先装填90%的树脂,再生,淋洗,然后根据树脂的膨胀程度补填剩余的树脂 离子交换树脂床正确的反洗和再生 只有对离子交换树脂床采用适当的反洗和再生措施,才可以使离子交换树脂床正常有效的运行。如果反洗和再生的措施不恰当,可能会导致下列问题: a)树脂床的压降增高 b)由于额外的机械压力,会导致树脂颗粒易破碎 c)离子柱出口出的离子泄漏增大

阴阳离子交换计算

阴阳离子交换计算集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

第一步,计算原水的总离子浓度C,并转换成meq/L单位 1.把原水中各种离子的含量输入RO计算软件,自动得出总的离子浓度。如下: 2.直接计算,公式如下: 单一离子浓度的公式:离子浓度(meq/L)= [离子浓度(ppm或mg/L)÷原/分子量]×化合价 如:Ca浓度(meq/L)= 70÷40×2 = ,Na浓度(meq/L)= 52÷23×1 = SO4浓度(meq/L)= 127÷96×2 = ,Cl浓度(meq/L)= 104÷×1 = 阳离子的总浓度C A(meq/L= eq/m3)为各种阳离子浓度之和; 阴离子的总浓度C C(meq/L= eq/m3)为各种阴离子浓度之和。 第二步,计算树脂的总交换当量Q 一般,阳树脂的实际交换当量以900 meq/L,即900 eq/m3为准; 阴树脂的实际交换当量以350 meq/L,即350 eq/m3为准。 根据树脂的体积即可计算出阳树脂的总交换当量Q A(eq)和阴树脂的总交换当量Q C (eq)。 第三步,计算树脂的再生周期T 对阳树脂和阴树脂的再生周期分别计算: 阳树脂再生周期:T A = Q A÷(C A× F) 阴树脂再生周期:T C = Q C÷(C C× F) 式中,T A和T C的单位为小时(h);Q A和Q C的单位为eq;C A和C C的单位为eq/m3;F为离子交换柱每小时的处理水量,单位为m3/h。 经过计算后,在T A和T C中选择一个小的数值作为树脂再生的周期,一般T C的数值比较小。

相关主题