搜档网
当前位置:搜档网 › Smith Predictor-Based Control Schemes for Dead-Time Unstable Cascade Processes

Smith Predictor-Based Control Schemes for Dead-Time Unstable Cascade Processes

Smith Predictor-Based Control Schemes for Dead-Time Unstable Cascade Processes
Smith Predictor-Based Control Schemes for Dead-Time Unstable Cascade Processes

Smith Predictor-Based Control Schemes for Dead-Time Unstable Cascade Processes

Pedro Garc?′a,?,§Tito Santos,?Julio E.Normey-Rico,*,?and Pedro Albertos?

Departamento de Ingenier?′a de Sistemas y Automa′tica,Uni V ersidad Polite′cnica de Valencia(UPV),Box

22012,E-46071Valencia,Spain and Departamento de Automac?a?o e Sistemas,Uni V ersidade Federal de Santa

Catarina(UFSC),Caixa Postal476,CEP88040-900,Floriano′polis,Santa Catarina,Brasil

This paper presents two simple and ef?cient Smith predictor(SP)based control schemes which can be used

to control open-loop stable or unstable time-delay cascade processes.The proposed structures have two control

loops,a secondary inner loop and a primary outer loop.Similar to previous approaches,the secondary loop

uses an internal model control(IMC)structure.Two different schemes are proposed for the outer loop that

has an unstable open-loop behavior.Contrary to previous proposed controllers,where a delayed model should

be used in the stabilization and tuning procedure by considering some kind of polynomial approximation of

the dead time,in the proposed structures,internal stability is naturally achieved through a suitable

implementation and tuning of the controller without using any delay approximation.To illustrate this,simulation

comparative results with some of the schemes recently presented in the literature are presented,showing the

simplicity of the proposed design.Moreover,the simulations show that the proposed schemes allow one to

obtain some improvement in disturbance rejections performance.

1.Introduction

Many processes in industry,as well as in other areas,exhibit dead times in their dynamic behavior.1Conventional controllers, such as PID controllers,could be used when the dead time is small,but they show poor performance when the process exhibits long dead times.In these cases,it is convenient to introduce a dead-time compensating(DTC)structure.2,3

The Smith predictor4(SP),and its many extensions,was used to improve the performance of classical controllers for stable plants with dead time.However,for open-loop unstable dead-time processes,the original SP is unstable.1,5Over recent years, numerous extensions and modi?cations of the SP have been proposed in order to allow its use with unstable plants.6-11 Controlling processes with long time delays and subjected to strong disturbances with the standard feedback control loop sometimes does not result in good enough performance.12 Cascade control13is one strategy that can be used to improve disturbance rejection performance in several situations.The idea of cascade structure is that the effect of the disturbance on the main controlled variable is reduced by an internal(or secondary) loop when an intermediate measurement is available.Cascade control loops are normally used in the process industry for control of temperature,?ow,and pressure loops.14

Control strategies that combine cascade control with dead-time compensation structures are interesting solutions to control unstable processes with signi?cant dead times and subjected to strong disturbances in the inner loop.Because of this,in the past few years this subject has attracted the attention of several researchers.15-18In refs15and16the proposed methods do not consider systems with zeros;the control structure involves many controllers,and the design methods are dif?cult to be used.17To overcome these problems Uma et al.17,18proposed a new modi?ed Smith predictor combined with cascade control to control processes with an unstable or an integrative mode. The proposed scheme shows basically three improvements over previous strategies:(i)it considers processes with a zero;(ii)it uses only three controllers in the principal loop;(iii)the tuning procedure is easier.However,neither this controller nor the previous ones ful?ll the Smith philosophy,that is,the design of all the necessary controllers is done without considering any delay.Because of this,the delay is not removed from all the sensitivity functions and they need a polynomial approximation of the delay in the tuning procedure or analog controller implementation.Moreover,the design of the mentioned propos-als is limited to speci?c low-order processes(most of them are only for?rst-order models),and none of them consider the discrete implementation of the control law.

In this paper,two equivalent structures based on the SP philosophy to control unstable time delay cascade systems are presented.In the proposed strategies the focus is on the design and tuning of the controller for the unstable dead-time system of the principal loop;thus,a conventional IMC structure19is used to control the inner loop,as in refs15-17.The proposed structures are based on two recently published controllers20,21 and have some advantages over other structures:(i)both schemes are much simpler than the ones proposed in previous works15-18and give similar or better closed-loop responses; (ii)tuning of primary controllers of the proposed DTC structures is done without considering any delay;(iii)tuning is simple because simple?lters are used to improve robustness,distur-bance rejection performance,or noise attenuation;(iv)they are designed for the general discrete case,that is,they can be used with any process model order and the implementation is straightforward.

Although the proposed controllers are general,simple models are used in the examples of this paper to allow a comparative analysis with previous solutions.Moreover,it is important to note that,in industry,easy to understand and tune control structures are very important,and on this point the proposed controllers show an important advantage when simple models are considered to describe the process dynamics.

*To whom correspondence should be addresed.E-mail:

julio@das.ufsc.br.

?UPV.

?UFSC.

§The?rst author is currently on leave at the UFSC under a grant

by the Ministerio de Educacio′n y Ciencia Espan?ol,Programa Movilidad,

2009-2010.

Ind.Eng.Chem.Res.2010,49,11471–1148111471

10.1021/ie1009958 2010American Chemical Society

Published on Web10/18/2010

The rest of the paper is as follows.The next section presents the cascade control of unstable dead-time systems and revises the last controllers presented in the literature.Section3is devoted to introducing the proposed cascade schemes,and some comparative examples are given in section4.The paper ends with some conclusions.

2.Cascade Control of Unstable Time Delay Processes

In process industry more than set-point tracking disturbance rejection is the principal goal,as most industrial processes operate with a?xed set point during long periods of time.In several situations the process can be modeled by two blocks connected in series,where it is possible to have an auxiliary measurement variable in addition of the controlled one.This idea is depicted in Figure1,where the?rst part of the process, modeled by P2(s),has a faster dynamics than the second one, modeled by P1(s),and external disturbances are represented by d0,d1,and d2.Therefore,the auxiliary measurement variable re?ects the effect of the disturbance before it excites the slow

dynamics of the process.It is just in these cases where cascade control can be used to improve the disturbance rejection response of the closed-loop system.This type of structure is usually used in?ow-level control,?ow-temperature control,and speed-position control,among others.22The traditional design consist of two steps:?rst,the internal loop is controlled by means of G c2,and then G c1is computed.The design and tuning problem is much more involved if the process has delays.Delays can appear in both primary and secondary processes,but in nature time delays more frequently appear in the primary process, which is the slowest one.Because of the dead time,it is dif?cult to tune standard feedback controllers for these systems,mainly when fast closed-loop responses are required.In these cases,a DTC-based scheme,as conventional SP or IMC strategies,can be used to improve the performance obtained with standard controllers.12

However,if the primary process is unstable,the original SP or IMC schemes cannot be directly used because they are not internally stable;thus,a speci?c DTC-based control scheme which avoids internal instability is sought.This problem has attracted the attention of the control community in recent years, and recently,some control structures have been proposed to avoid the internal instability for open-loop unstable dead-time cascade processes.15-17A brief review of theses strategies is presented in the following to point out their advantages and drawbacks and to motivate the presentation of section3,where two new solutions are proposed.Four main aspects of the revised controllers are highlighted in this section:the process model order,the number of controllers to be tuned,the design and implementation complexity,and the ful?llment(or not)of the Smith principle,that is,the design of all controllers is made without considering any delays.

2.1.Liu et al.’s Controller.In Liu et al.15the scheme in Figure2is proposed for cascade control of open-loop unstable processes with delays,where P1and P2represent the two parts of the delayed process and L1and L2the corresponding delays. As can be seen,an IMC structure is used and four controllers must be tuned in this scheme:F2,F1,P c,C.In the nominal case, that is,if there are not modeling errors,from the scheme in Figure2the following closed-loop transfer functions are obtained

where P1m is the model of P1,P2m is the model of P2,and G m is the delay-free model of P1P2.From the above nominal expressions it can be noted that controllers C and P c can be determined using the delay-free part of the overall plant transfer function model,but this is not the case for F1and F2.In particular,the design of F2uses a polynomial approximation of the obtained nonrational expression of F2based on a Maclaurin expansion formula or a Pade′series expansion. Moreover,the design procedure is limited to a?rst-order plus dead time(FOPDT)and an unstable?rst-order plus dead time (UFOPDT)for the secondary and primary process models, respectively.15

2.2.Kaya et al.’s Controller.An SP-based controller was presented in Kaya et al.16based on the structure of Figure

3. Also,in this case,four controllers must be tuned:G c1, G c2,G c3,G d.Similarly to the previous case,P2m is the model of P2,P1m is the model of P1,and G m is the delay-free model of P1P2.

In the nominal case,from the scheme in Figure3,the following sensitivity functions are used to tune the controller

Figure1.Cascade control system.

Figure2.Liu et al.’s cascade control structure.

Figure3.Scheme proposed by Kaya et al.,2008.

H

yr )

CP

2m

P

1m

1+P

c

G

m

;H

yd2

)

P

2m

1+F

2

P

2m

H

yd0)

1

1+F

2

P

2m

;H

yd1

)

1

1+F

1

P

2m

P

1m

11472Ind.Eng.Chem.Res.,Vol.49,No.22,

2010

where G m e-(L1+L2)s)P1m M imc and M imc is the closed-loop transfer function of the internal loop.In the nominal case M imc)G c2P2. These expressions revel that,in the nominal case,the controllers G c1,G c2,and G c3can be determined using the delay-free part of the overall plant transfer function model,but the tuning of G d is delay dependent.As in the previous analyzed controller,the design methodology presented in this paper is restricted to two special cases:UFOPDT or integral plus dead-time(IPDT)process models.16

2.3.Uma et al.’s Controller.Recently Uma et al.17proposed the scheme shown in Figure4with,again,four controllers:G cs, G c2,G cd,G f.Although in this new controller the idea is similar to the previous one,the tuning is simpler and it can cope with processes with zeros.G f is a predictor error?rst-order?lter, and the other three controllers have to be tuned to obtain the desired closed-loop responses.Although in ref17the authors showed that signi?cant improvement is obtained when this strategy is compared to previous reported methods in the literature,the approach only considers?rst-order models with

a zero.Again,in the ideal case,from scheme in Figure4,the closed-loop relationships are

where G m e-(L1+L2)s)P1m M imc and M imc is the closed-loop transfer function of the secondary loop.As can be seen from these expressions,the tuning of G cd is delay dependent and this is solved by using a?rst-order Pade′approximation of the time delay.17

The main conclusions of the analysis of these controllers (which are those reporting the best results for cascade control of unstable dead-time processes)are as follows:(i)all structures use more than three controllers in the design;(ii)they are restricted to simple process models;(iii)they do not verify the SP principle for all the involved characteristic equations;(iv) the overall structure and tuning rules are not easy to understand and use;(v)most of them use an approximation of the delay to obtain at least one of the controllers,and(vi)digital imple-mentation issues are not addressed,which are fundamental for practical applications.Thus,to give a solution for the cited drawbacks of the analyzed schemes,two new cascade control structures are proposed in the next section for unstable dead-time processes.

3.Proposed Schemes Based on the Smith Predictor Philosophy

In this section,two new output prediction-based cascade control schemes are proposed to control unstable time delay systems:the?ltered Smith predictor cascade control(FSPCC) and the generalize predictor cascade control(GPCC).These controllers are closely related mainly because(i)they are directly de?ned in the discrete domain and(ii)internal stability is achieved by eliminating the unstable poles from the predictor structure,using an explicit procedure in the FSPCC and an implicit one in the GPCC.As will be shown later,the proposed schemes solve the drawbacks of the controllers analyzed in the previous section.

3.1.Filtered Smith Predictor Cascade Controller.The FSPCC is a DTC that can be used to control stable,unstable, and integrative dead-time processes in a cascade con?guration with a uni?ed tuning approach.The conceptual structure of the FSPCC is depicted in Figure5,where P2m is the model of P2, G c2is the internal loop IMC controller,K is the external loop controller,F r is the prediction?lter(also called robustness?lter), and P m)G m e-(L1+L2)s is the overall plant model which includes the internal loop(see Figure5).

The FSPCC is derived from the FSP strategy,in which it is possible to deal with robustness and disturbance rejection aspects by means of a?lter F r that does not change the nominal set-point response.1,11In this controller,an IMC internal loop is used to compare the results with previous works;however,any other controller can be de?ned for this internal loop.

As the?nal control law is implemented in discrete time,from now on a discrete equivalent system is used to analyze the design and tuning of the controller(the same procedure is used in the GPCC in the next section).This equivalent system is obtained using traditional discretization tools with a sampling time T de?ned using the procedure suggested in ref1(Chapter8).Thus, the implementation structure of the FSPCC is shown in Figure 6where S(z))G m(z)(1-z-h F r(z))and F r(z)and K(z)are the controllers of the principal loop.Here,h represents the overall delay,in samples,of both loops.F r(z)is used to guarantee that S(z)is stable,avoiding internal instability problems when there are unstable or integrative poles in P m(z),and to give a

H

yr )

G

m

G

c1

e-(L1+L2)s

1+G

m

[G

c1

+G

c3

]

H

yd0)

P

1

(1-G

c2

P

2m

)

[1+G

m

(G

c1

+G

c3

)]

×

[1+G

m G

c3

+G

m

G

c1

(e-(L1+L2)s-1)]

(1+G

d G

m

e-(L1+L2)s)

H

yr )

G

cs

G

m

e-(L1+L2)s

1+G

cs

G

m

H

yd2)

P

1

P

2

(1+G

m

G

cs

-G

f

G

cs

G

m

e-(L1+L2)s)

(1+G

m

G

cs

)(1+G

cd

G

m

e-(L1+L2)s)

H

yd0)

P

1

(1+G

m

G

cs

-G

f

G

cs

G

m

e-(L1+L2)s)

(1+G

m

G

cs

)(1+G

cd

G

m

e-(L1+L2)s)

Figure4.Scheme proposed by Uma et al.,2009.

Figure5.FSPCC analysis structure.

Ind.Eng.Chem.Res.,Vol.49,No.22,2010

11473

compromise between robustness and disturbance rejection,as it is analyzed in the following sections.

3.2.Generalized Predictor Cascade Controller.The GPCC is a strategy specially oriented to control unstable and integrative dead-time processes in a cascade con?guration.Its structure is depicted in Figure7.

Let us de?ne the undelayed system output such as

where G m is the delay-free model of the overall process,that is,P(z))G m(z)z-h,andΓ(z)is a polynomial representing its all nonminimal phase zeros and those stable zeros(nonminimal phase zeros and stable zeros are,respectively,zeros outside and inside the unitary circle)located close to the unitary circle which can cause measurement noise ampli?cation in the control action. Note that for systems without this type of zeros,Γ(z))1and G m)G n.

Then,the undelayed system output(eq1)can be computed as(see ref20for details)

where F1and F2are stable?lters being de?ned

and(A,b,c)is a minimal state space representation of G n(z). In this strategy the prediction error?lter F k(z)can be used to improve robustness or noise attenuation.This?lter must have unitary static gain(F k(1))1)in order to reject step disturbances.

3.3.Internal Stability and Robust Stability.Consider?rst the structure of the FSPCC.In the ideal case,i.e.,when there are no uncertainties,from the scheme in Figure6,the following expressions can be obtained(for simplicity,the dependence with z is omitted in the following)

where M imc is the stable desired closed-loop transfer function of the IMC internal loop(obtained with G c2)M imc/P2)and the overall plant model is P m)M imc P1)G m z-h.Thus,if K(z)is computed to obtain a stable H yr(z)(solving1+K(z)G m(z))0, that is,a delay-free stabilization problem)also H yn(z)and H yd

1

(z) are stable.To show that H yd

2

(z)and H yd

(z)are also stable it is suf?cient to note that G m(z)and P m(z)have the same poles and that S(z)is stable;thus,the internal stability is guaranteed as K stabilizes the main loop.

To show how F r(z)is selected for internal stability,that is, to have a stable S(z),consider that F r(z))N r(z)/D r(z),F r(1)) 1,and G m(z))N m(z)/D m+(z)D m-(z),where D m-has all its roots inside the unitary circle and D m+has all its roots with|z|g1. Thus

Thus,using an arbitrary D r,N r is computed to satisfy the following diophantine equation

where p(z)is an unknown polynomial.Note that contrary to the previous solutions analyzed in section2,this problem has an exact solution for any dead time and any process model order. Also note that,as expected,the order of the?lter depends on the number of unstable roots.

Now consider the GPCC,as in Figure7.With the same IMC internal loop control used before,the following transfer functions are obtained

Figure6.FSPCC implementation structure. Figure7.Scheme of the GPCC.

y j(z)z G

m (z)u(z))G

n

(z)Γ(z)u(z)(1)

y j(z))F

1(z)u(z)+F

2

(z)y(z)(2)

F

1

(z))c∑i)1h A i-1bz-iΓ(z)(3)

F 2(z))

G

n

/(z)

G

n

(z)

)

c(zI-A)-1A h b

c(zI-A)-1b

(4)

H

yr

(z))

P

m

K

1+KG

m

(5)

H

yd2

(z))

(1+KS)P

1

P

2

1+KG

m

(1-M

imc

)(6)

H

yd0

(z))

(1+KS)P

1

1+KG

m

(1-M

imc

)(7)

H

yd1

(z))

(1+KS)

1+KG

m

(8)

H

yn

(z))-

F

r

KP

m

1+KG

m

(9)

S(z))G

m

(z)z-h(z h-F

r

(z)))

N

m

(z)z-h

D

m

+(z)D

m

-(z)

z h D

r

(z)-N

r

(z)

D

r

(z)

z h D

r

(z)-N

r

(z))D

m

+(z)(z-1)p(z)(10)

H

yr

(z))

KP

m

1+KG

m

(11)

11474Ind.Eng.Chem.Res.,Vol.49,No.22,

2010

where G *)(1-KF k F 1z -h +KF 1),F r )F 2+F k [1-z -h F 2],and M imc )P 2R imc /(1+R imc P 2).

To prove the internal stability in the GPCC,?rst note that,as in the FSPCC,K and G c 2are computed to obtain a stable closed-loop control system,that is,K and R imc are designed to stabilize (1+KG m )and (1+R imc P 2),respectively.Moreover,as G m (z )and P 1(z )have the same unstable poles and the possible unstable poles of G *(z )are those in K (z ),the internal stability is guaranteed.

The robustness stability analysis could be done in both schemes considering multiplicative uncertainties,that is,as-suming a process transfer function P r (z ))P (z )(1+W m (z )),where W m (z )de?nes the process multiplicative uncertainty term (note that the delay uncertainty can be modeled as multiplicative uncertainty,see refs 1,19,and 23).In this situation the robust stability condition is obtained using the output-noise sensitivity function 24

where H yn is computed for each control strategy.Although conceptually different,if the prediction ?lters F r and F k satisfy

it is possible to interpret the GPCC prediction structure (Figure 7)as a particular case of the FSPCC one as it is done in the simple loop DTC case.25In this case,both structures,the FSPCC and the GPCC,have the same H yn and the robust stability analysis can be performed in a uni?ed manner using Here,it is easy to note that after K (z )was tuned for some set-point response,a low-pass ?lter F r (z )can be used to improve robustness by selecting an appropriate cutoff frequency.Notice that F r (z )does not modify the nominal set-point tracking (eqs 5and 11),but it affects both the disturbance rejection response and the noise attenuation.Therefore,the tuning of this ?lter is the crucial point in the design of the FSPCC,and it is detailed in the next section.

3.4.Robust Tuning Design Procedure.As pointed out,the controller design starts with the inner loop using a simple IMC tuning which was already deeply explored.19For the principal loop the tuning procedure has special steps for the two analyzed controllers.For the FSPCC the tuning can be done in a decoupled manner,that is,?rst K (z )is tuned for a desired set-point response H yr (z ))H d (z )z -h (note that K can include set-point weighting tuning parameters);in a second step,if F r )F ′r /H d (z ),F ′r (z )allows one to obtain different closed-loop poles

for disturbance rejection and set-point tracking and the internal stability at the same time.Moreover,the degree of freedom of this ?lter allows one to de?ne the trade off between robustness,disturbance rejection,and noise attenuation,always satisfying the conditions imposed by the unstable model.21,25Note that the order of F r increases if the number of control objectives so does.Finally,it must be highlighted that in this controller the digital implementation is straightforward.In the following section,the design procedure is illustrated for several compara-tive examples.

For the FSPCC and GPCC K is tuned to reach a compromise between robustness and disturbance rejection and in a second step set-point weighting tuning parameters are used to improve the set-point response.If necessary,the predictor error ?lter F k can be included in the GPCC structure in order to improve the disturbance rejection https://www.sodocs.net/doc/004062178.html,parative Examples

In this section the proposed schemes are compared with the schemes and tuning presented in refs 16-18,which are recently proposed methods conceived to improve the performance of unstable cascade time-delay systems.For that purpose,the processes and conditions referred in these papers are used.Three examples are considered to illustrate the most representative cases studied in literature:an UFOPDT,a IPDT,and an UFOPDT with a zero system.

As the main objective of this section is to compare the different dead-time compensations strategies,tuning choices for both inner and outer controllers are not a matter of discussion.As a consequence,the controllers used in the proposed schemes,that is,G c 2(z )and K (z ),are,respectively,obtained using a pole-zero matching discretization of the continuous controllers proposed in refs 16-18in each of the examples.

Moreover,for the sake of tuning and implementation simplic-ity,when necessary (note that in Example 3F k (z ))1),the GPCC prediction error ?lter,F k (z ),is also obtained from a pole-zero matching discretization of G f (s ).17

In the FSPCC case,differently from the GPCC,all the measured signals are ?ltered by F r (z ),which may slow down disturbance rejection response.Thus,a simple phase lead is used to improve disturbance rejection such as

where γ1and F 1represents a discrete phase lead,γ2is a pole mapping of G f (s ),and k f and F 2should be used to guarantee internal stability as discussed in section 3.3(internal stability and robust stability).The phase lead parameters γ1and F 1will be tuned using the phase lead effect of the controller G cd (s )and will be presented at each example.

As the worst-case model uncertainty depends on the controller tuning,the uncertainties scenarios were extracted from the previous references in order to perform a fair comparison.It is important to emphasize that robustness can be suitably modi?ed without changing the nominal response.As a consequence,simulations will be carried out to illustrate that the proposed strategy outperforms related works in nominal case and leads to similar responses even in the presence of signi?cant plant-model mismatches.

4.1.Example 1.Consider the system studied in ref 17.The primary and secondary processes are considered to be

H yd 2(z ))

G /P 1P 2

1+KG m (1-M imc )(12)

H yd 0(z ))G /P 1

1+KG m

(1-M imc )

(13)

H yd 1(z ))

G /

1+KG m (14)

H yn (z ))-F r

KP m 1+KG m

(15)

|H yn (z )W m (z )|∞<1,z )e j ωT ,ω∈[0,π/T ]

(16)

F r (z ))F 2(z )+F k (z )[1-z -h F 2(z )]

|F r (z )

K (z )P m (z )

1+K (z )G m (z )

W m (z )|∞<1,z )e j ωT ,ω∈[0,π/T ]

(17)

F r (z ))k f

(z -F 1)(z -F 2)

(z -γ1)(z -γ2)

Ind.Eng.Chem.Res.,Vol.49,No.22,201011475

In the scheme proposed by Uma et al.,17three controllers are considered;the inner loop controller G c2(s))(0.5(20s+1))/ (2s+1),the primary set-point tracking controller G cs)(4.6571 +0.1829/s+12.2857s)(1/(2.8571s+1)),and the primary

disturbance rejection controller G cd)(3.1190+0.0921/s+ 6.6156s)((3s+1)/(0.1440s+1)).The set-point weighting parameter is considered to beε)0.3,and the prediction error ?lter is chosen as G f(s))1/(36s+1).

Considering a sampling period of T)0.2s,for both GPCC and FSPCC,the following discretized overall free delay model is obtained

As pointed out,G c2(z)and K(z)are,respectively,obtained by using a pole-zero matching discretization of G c2(s)and G cs(s). In the GPCC,to avoid measurement noise ampli?cation,the predicted output,eqs3and4,is computed consideringΓ(z))(z+0.9704)/z and G n(z))0.00048537z/[(z- 1.01)(z-0.9048)].For the FSPCC?lter,the tuning parameters areγ1) e-T/0.144)0.2494,F1)e-T/3)0.9355,andγ2)e-T/36) 0.9945,where0.144and3correspond to the phase lead parameters of G cd.Finally,F2)0.9957and k f)14.9524are computed to guarantee that eq10holds.

The nominal system responses obtained are shown in Figure8.As can be seen,process output behavior is similar for the three cases;however,control effort in the scheme proposed by Uma et al.is too high,more than20times higher than the control effort of the other two controllers.These high values of the control action are caused by the derivative action of G cd.Note that FSPCC and GPCC do not use this extra controller and allow for the same performance with a smoother control action.

To show the effect of process uncertainties,perturbations of +20%in the primary time delay and-20%in the primary time constant are considered in the following simulations where step load disturbances of-1at t)150s in d2and-0.2at t)300 in d1are considered(as done in ref17).Figure9shows the obtained results.In Figure9b of this?gure the y axis was limited

Figure8.Nominal system responses(process output(a)and control action(b))for a step load disturbance of-1at t)150s in d2and-0.2at t)300in d1(Example1a).

Figure9.Process output(a)and control action(b)responses for+20%perturbation in the primary time delay and-20%in the primary time constant (Example1b).

G

p1(s))

e-4s

20s-1

;G

p2

(s))

2e-2s

20s+1

G

m (z))

0.00048537(z+0.9704)

(z-1.01)(z-0.9048)

11476Ind.Eng.Chem.Res.,Vol.49,No.22,

2010

to show the details of the control action,as the one obtained with Uma et al.’s scheme achieves values greater than200units. To show the performance for input disturbances in the primary loop(d0),perturbations of+20%in the primary gain, time delay,and time constant are considered(as done in ref 17).Moreover,negative step disturbances in d2and d0are applied at t)150and300s,respectively.The obtained responses are shown in Figure10.

The analysis of the two last cases shows the same situation as in the nominal case;the proposed schemes exhibit slightly better performance with smoother control action.

4.2.Example2.Consider the system previously studied in refs16and18.The primary and secondary processes are considered to be

In the scheme proposed by Uma et al.,18three controllers are considered;the inner loop controller G c2(s))(0.5(s+1))/(s+ 2),the primary set-point tracking controller G cs)1.8(1+1/3.6s +1.0722s)((0.5s+1)/(0.6561s2+2.9160s+1)),and the primary disturbance rejection controller G cd)(0.0436-0.1206s)((0.75s2+1.5s+1)/(1.8314s2+0.7686s+1)).The set-point weighting parameter is considered to beε)0.4,and the prediction error?lter is chosen as G f)1/(0.6s+1).

In the scheme proposed by Kaya et al.,16four controllers are considered(see Figure3);the inner loop controller G c2(s))

(0.5(s+1))/(s+2),the primary set-point tracking controller

G c1)0.1(1+1/4s),and the PD controllers G c3)(0.0606-

0.205s)and G d(s))0.083(1+0.5s).

In the FSPCC and GPCC G c2(z)and K(z)are,respectively, obtained by using a pole-zero matching discretization of G c2(s) and G c1(s)proposed in Kaya et al.In order to obtain the same set-point response as in refs18and16the following set-point ?lter is included in both the FSPCC and GPCC

Using a sampling period T)0.1s the discretized overall free delay model is

Figure10.Process output(a)and control action(b)responses for uncertainties of+20%in the primary process time delay and time constant.A negative step disturbance in d2and d0are applied at t)150and300s,respectively(Example1c).

Figure11.Perturbed system responses(process output(a)and control action(b))for a step load disturbance of-0.1at t)80s in d0and-0.2at t)170 in d1(Example2a).

G

p1(s))

2e-2s

s

;G

p2

(s))

4e-2s

s+1F(z))(1-z0)

2(1+G

c1

G

m

)

(z-z

)2G

c1

G

m

,z

)0.905

Ind.Eng.Chem.Res.,Vol.49,No.22,2010

11477

Again,in the GPCC design the prediction output(eqs3and4) is computed consideringΓ(z))(z+0.9355)/z and G n(z)) 0.018731z/[(z-0.8187)(z-1)].In this particular example,?lter F r(z))k f(z-F)/(z-e-T)with F)0.9753and k f) 3.8549is computed to guarantee internal stability(eq10).

In the nominal case,all controllers show similar closed-loop behavior in this example.To analyze the effect of model uncertainties,as it is done in ref18,perturbations of+20%in the primary time delay and primary process gain are considered in this example.The system responses are shown in Figure11. As can be seen,process output behavior is better and control effort is smoother for the FSPCC and GPCC.

Finally,let us consider the effect of a white noise in the measurement device,with a power spectrum of0.02(the same as considered in ref16).The results are shown in Figure12. In this case output behavior is similar for all controllers; however,control action in Kaya et al.’s controller is strongly affected by noise,showing high values and high-frequency oscillations.

4.3.Example3.Consider the system previously studied in ref17.The primary and secondary process are considered to be

Note that the primary process has a stable zero.In ref17it is claimed that the proposed scheme is superior to previous proposals because it can directly deal with this kind of process model.

In the scheme proposed by Uma et al.,17three controllers are considered;the inner loop controller G c2(s))(0.3123s+

1)/(6.150(0.2s+1)),the primary set-point tracking controller

G cs)(10.2956+2.2534/s+16.1646s)(1/(3.9841s+1)),and the primary disturbance rejection controller G cd)(2.3514+ 0.2922/s+0.9845s)((0.5s+1)/(0.4077s+1)).The set-point weighting parameter is considered to beε)0.3,and the prediction error?lter is chosen as G f)1/(6s+1).

In this example,the sampling period is T)0.1s both for GPCC and FSPCC.Then,the discretized overall free delay model is

Figure12.Process output(a)and control action(b)responses for the case with measurement noise(Example2b).

Figure13.Nominal system responses(process output(a)and control action(b))for a step load disturbance of-0.05at t)30s in d2and-0.2at t)60 in d1(Example3a).

G

m (z))

0.018731(z+0.9355)

(z-1)(z-0.8187)

G

p1

(s))

(0.1251s+1)e-0.8s

(2.828s-1)

;G

p2

(s))

6.1506e-0.2s

0.3123s+1

11478Ind.Eng.Chem.Res.,Vol.49,No.22,

2010

G c2(z)and K(z)are obtained as in previous examples.In this caseΓ(z))1and G n(z))G m(z)in the GPCC.In the FSPCC, similarly to the?rst example,tuning parameters of predictor error?lter areγ1)e-T/0.4077)0.7825,F1)e-T/0.5)0.8187,γ2)e-T/6)0.9835while F2)0.9894,k f)1.8739are used to guarantee internal stability.The nominal system responses are shown in Figure13.

This example shows again the advantages of the FSPCC and GPCC over the controller proposed in ref17;they need only two controllers and offer better disturbance rejection perfor-mance and smoother control action.

To show the effect of uncertainties on the closed-loop performance,different types of perturbations are considered. Figure14shows the system responses for+20%perturbations in time delays and-20%in time constants,while Figures15 and16show,respectively,the cases when perturbations of -20%and+20%in both time delays and time constants are

considered.

These cases con?rm the previous obtained results;FSPCC and GPCC offer a better compromise between control effort and closed-loop behavior.

Finally,let us consider the effect of a white noise in the measurement device,with a power spectrum of0.002.The results are shown in Figure17.

Note that although the process output has more or less the same behavior for the three controllers,the effect of noise in the control action is not admissible in the controller proposed in Uma et al.17This is again caused by the derivative action of the controller used to obtain an internally stable system.Note that the better trade off between performance and control effort obtained by the FSPCC and GPCC are due to their predictor structure,which do not need this extra controller to obtain an internal stable system.

4.4.General Remark.In the schemes proposed in refs16 and18the additional controller used to stabilize the closed-loop system(G cd(s)or G d(s))is always a PD controller tuned for stabilization of a delay-dependent loop.Among this disad-vantage,which needs some kind of approximation of the delay,

Figure14.Nominal process output(a)and control action(b)responses for the following modeling errors:+20%in both time delays and-20%in both the time constants(Example3b).

Figure15.Process output(a)and control action(b)responses for perturbations of-20%in both time delays and time constants(Example3c).

G

m (z))

0.02537(z-0.4418)

(z-1.036)(z-0.6065)

Ind.Eng.Chem.Res.,Vol.49,No.22,2010

11479

the implementation of the controller must include a low-pass ?lter.As has been shown in the examples,the tuning of this ?lter is not a simple issue.The small time constant of this ?lter causes strong control action and poor noise attenuation.On the other hand,large values of this time constant can drive the system to instability.Note that FSPCC and GPCC do not need this extra controller;they do not use any delay approximation and do not have these tuning problems.5.Conclusions

This paper presents two simple and ef?cient dead-time compensator cascade controllers.The proposed strategies have several advantages:(i)they satisfy the Smith principle,(ii)they are formulated in the discrete time domain,thus implementation is straightforward,(iii)they have less controllers to be tuned than in previous proposals,(iv)they are simple to understand and tune,and (v)the tuning considers a trade off between robustness and performance.Moreover,the performance that can be obtained with these two new schemes is always similar or better than the one obtained with previous algorithms:they offer better trade off between performance,control effort,and noise attenuation.

This last advantage is due to the predictor structure used in the proposed schemes,which do not need any extra controller to obtain an internal stable system.All these properties and advantages are illustrated in the paper through several comparative simulation examples that consider the most representative cases studied in the literature.Acknowledgment

P.G.thanks the Ministerio de Educacio ′n y Ciencia Espan ?ol;P.A.thanks the Conselleria de Educacio ′n de la Generalitat Valenciana (PROMETEO project number 2009-0268);T.S.and J.E.N.-R.thank CNPq-Brasil for ?nancial support.Literature Cited

(1)Normey-Rico,J.E.;Camacho,E.F.Control of Dead-time Processes ;Springer-Verlag:London,2007.(2)Astro ¨m,K.;Ha ¨gglund,T.Ad V anced PID Control ;ISA-The Instru-mentation,Systems,and Automation Society:Research Triangle Park,NC;2005.(3)Ha ¨gglund,T.An industrial dead-time compensating PI controller.

Control Eng.Pract.1996,4,749–756.

(4)Smith,O.J.M.Closer control of loops with dead-time.Chem.Eng.Prog.1957,53,217–219.

Figure 16.Process output (a)and control action (b)responses for perturbations of +20%in both time delays and time constants (Example 3d).

Figure 17.Process output (a)and control action (b)responses for the case with measurement noise (Example 3e).

11480Ind.Eng.Chem.Res.,Vol.49,No.22,2010

(5)Palmor,Z.J.Time delay Compensation-Smith predictor and its modi?cations.In The Control Handbook;Levine,W.S.,Ed.;CRC Press: Boca Raton,FL,1996.

(6)Garcia,P.;Albertos,P.;Hagglund,T.Control of unstable non-minimum-phase delayed systems.J.Process Control2006,16,1099–1111.

(7)Lu,X.;Yang,Y.-S.;Wang,Q.-G.;Zheng,W.-X.A double two-degree-of-freedom control scheme for improved control of unstable delay processes.J.Process Control2005,605–614.

(8)Liu,T.;Zhang,W.;Gu,D.Analytical design of two-degree-of-freedom control scheme for open-loop unstable processes with time delay. J.Process Control2005,15,559–572.

(9)Liu,T.;Cai,Y.;Gu,D.;Zhang,W.New modi?ed Smith predictor scheme for integrating and unstable processes with time delay.IEE Proc.-Control Theory Appl.2005,152,238–246.

(10)Rao,A.S.;Chidambaram,M.Simple analytical design of modi?ed smith predictor with improved performance for unstable?rst-order plus time delay(FOPDT)processes.Ind.Eng.Chem.Res.2007,46,4561–4571.

(11)Normey-Rico,J.E.;Camacho,E.F.Simple Robust Dead-Time Compensator for First-Order Plus Dead-Time Unstable Processes.Ind.Eng. Chem.Res.2008,47(14),840–847.

(12)Kaya,I.;Tan,N.;Atherton,D.Improved cascade control structure for enhanced performance.J.Process Control2007,17,3–16.

(13)Franks,R.;Worley,C.Quantitive analysis of cascade control.Ind. Eng.Chem.1956,48,1074–1079.

(14)Deshpande,P.;Ash,R.Elements of Computer Process Control; ISA:Research Triangle Park,NC,1981.

(15)Liu,T.;Zhang,W.;Gu,D.IMC-Based control strategy for open-loop unstable cascade processes.Ind.Eng.Chem.Res.2005,44,900–909.

(16)Kaya,I.;Atherton,https://www.sodocs.net/doc/004062178.html,e of Smith predictor in the outer loop for cascade control of unstable and integrating processes.Ind.Eng.Chem.Res. 2008,47,1981–1987.

(17)Uma,S.;Chidambaram,M.;Rao,A.Enhanced control of unstable cascade processes with time delays using a modi?ed Smith predictor.Ind. Eng.Chem.Res.2009,48,3098–3111.

(18)Uma,S.;Chidambaram,M.;Rao,A.;Yoo,C.Enhanced control of integrating cascade processes with time delays using modi?ed Smith predictor.Chem.Eng.Sci.2010,65,1065–1075.

(19)Morari,M.;Za?riou,E.Robust Process Control;Prentice Hall: Englewood Cliffs,NJ,1989.

(20)Albertos,P.;Garc?′a,P.Robust control design for long time-delay systems.J.Process Control2009,19,1640–1648.

(21)Normey-Rico,J.E.;Camacho,E.F.Uni?ed approach for robust dead-time compensator design.J.Process Control2009,19,38–47.

(22)Isermann,R.Digital Control Systems;Spinger:Berlin,1981.

(23)Sa′nchez-Pen?a,R.S.;Bolea,Y.;Puig,V.MIMO Smith predictor: Global and structured robust performance analysis.J.Process Control2009, 19,163–177.

(24)Doyle,J.C.;Francis,B.;Tannembaum,A.Feedback Control Theory;Maxwell/Macmillan:New York,1992.

(25)Santos,T.L.;Botura,P.E.;Normey-Rico,J.E.Dealing with noise in unstable dead-time process control.J.Process Control2010,20,840–847.

Recei V ed for re V iew April30,2010

Re V ised manuscript recei V ed September28,2010

Accepted September30,2010

IE1009958 Ind.Eng.Chem.Res.,Vol.49,No.22,201011481

酒店前台服务员管理规章制度

---------------------- 前台规章制度 一、仪容仪表 1. 上班时间需化淡妆,长发须佩戴头花或盘起。 2. 着装必须干净整洁,必须穿工作服上班。 3. 不能留长指甲,不能涂指甲油,不能佩戴夸张的饰品。 4. 保持最佳的精神状态工作。 二、工作纪律 1. 上班时间,不能吃东西、上网看电视,打接与工作无关的电话时间不能过长(特殊情况和家里重大事情除外)。 2. 上班时间不能在前台睡觉、不能串岗、不能拿上班时间会客,不能大声喧哗。 3.上班时间不能无故缺席,离岗时要在登记表做好记录(楼层巡检,吃饭,检查各个会议室等)不得无故闲逛。 三、工作规定 1. 上班期间服务态度好。主动向客人问好、站立服务、耐心的与客人交流,让客人在酒店住的舒适。 2. 员工不能把私人情绪带入工作中,随时随地对客人保持微笑。 3. 不能拿酒店财物私用或带回家(如有发现一律重罚或开除)。 4. 时刻保持前台的清洁。 5. 员工不能徇私舞弊,互相包庇。 6. 当班人员上班,不能迟到早退、不能擅自离岗、不能私自换班(需提前报告领导写好换班条,待领导审批,通过方可换班)、不能无故旷工(特殊情况可向部门领导请示)。 以上规章制度一经核实,发现第一次给予警告,第二次给予罚款,犯多次或屡教不改者,公司有权给予开除处理。 备注:(罚款方式:第一次20元,第二次50元,情况严重者重罚) ---------------------------------------------------------精品文档

---------------------- ---------------------------------------------------------精 品 文档前台工作内容 1. 为客人办理入住登记并请客人签字确认,认付款方式(挂账、现金,)问明付过押金后给客人房卡,并向客人解释房卡内容,在电脑中及时占房,发放早餐卷。 2.住宿登记单上,住几个人写几个人的名字,以便开门。入住时要询问客人住几天,以便刷几天的房卡,收几天的房费。同时,电脑上时间也要与此一致, 以方便楼层。坚持姓氏称呼。 3.阅读交班本,了解上一班未完成事项,及时进行跟进和处理。 4.查看各部门钥匙使用和归还纪录情况,并将钥匙分类放置。 5.核对房态,确保房态正确,清点房卡,所有一致加起来数目和上一班交接相符和。 6.如有客人要求换房,确定已通知客房服务人员和楼层服务人员进行打扫,检查。确认无误,收回房卡,发放新的发卡为客人换房。 7.了解每日会议信息和会议用房数,若会议举办方有任何要求,及时与楼层服务员和客房服务 员联系并跟进。

酒店房卡管理规定

酒店房卡管理规定 一、房卡类别 1、客房房卡分总控卡、领班卡、楼层卡、客人卡。 2、总控卡由相关管理人员持有。 3、领班卡由各楼层领班持有。 4、楼层卡各楼层员工持有。 5、客人卡由前台员工保管、制作。 注:若领班卡、楼层卡丢失或损坏,应立即上报部门,采取相应的措施(消磁和补办),当班人员要有补办记录,以免酒店遭受损失 二、房卡管理 1、总控卡由总经理、副总经理、前厅部经理、客房部经理、大堂经理持有。 2、领班卡、楼层卡由客房服务中心保管,实行每天签字借用制度。 ⑴领班卡用于查房使用,此卡可以开启所管辖的楼层所有客房房门。 ⑵楼层卡用于服务员打扫卫生使用,按照服务员的工作范围制作。 ⑶调换楼层时要有交接手续。

3、持卡人不得将自己的卡借给其他人员使用,一定发现必将严惩。 4、客人卡的管理制度: ⑴将客房卡交给客人前,前台员工必须确认客人身份; ⑵前台原则上单人房每间只发放一张房卡,双人房根据客人要求可发放两张房卡,并在电脑中注明数量; ⑶客人房卡遗失: 验明客人身份和登记相符→说明规定,向客人收取或从押金中扣除赔偿费→重新制作l张新的房卡给客人→确保前一张房卡作废。 ⑷客人钥匙损坏: A. 验卡→显示房号和客人所报相同,且在期限内→重新制作一张房卡给客人,并与客人说明赔偿费用。 B. 如果卡号不能显示或不能验卡→验明客人身份和登记相符→重新制作1张房卡给客人,并向客人说明赔偿费用。 ⑸客人寄存钥匙: A. 听清客人所报房号,请客人稍等→验卡→显示房号和客人所报一致,取房卡袋填写房号,将房卡插入房卡袋内,放在抽屉内→客人来取时,验明身份后,交还房卡。 B. 如验卡时,房号不能显示,应先验明身份,再进行寄

酒店前台房卡管理规定

酒店前台房卡管理规定 SANY GROUP system office room 【SANYUA16H-

前台房卡管理规定 一、房卡类别: 1、客房房卡分总控卡、领班卡、楼层卡、客人卡。 2、总控卡店级领导、客房相关管理人员持有(董事长、总经理、副总经理、客务总监、客房经理) 3、领班卡由各楼层领办持有 4、楼层卡各楼层员工持有 5、客人卡由前台员工制作 注:若领班卡、楼层卡丢失或损坏,应立即上报部门,采取相应的措施(消磁和补办),前台要有补办记录,以免酒店遭受损失 二、客人卡的管理制度: 1、将客房匙交给客人前,前台员工必须确认客人身份; 2、前台原则上单人房每间只发放一条房匙,双人房根据客人要求可发放两条房匙,并在电脑中注明; 3、客人房卡遗失: 验明客人身份和登记相符→说明规定,向客人收取或从押金中扣除赔偿费(30元)→重新制作l把新的钥匙给客人→通知房务中心→使用管理卡到该房间插一次卡(做消磁处理),确保插卡前使用的钥匙作废。 4、客人钥匙损坏: A.验卡→显示房号和客人所报相同,且在期限内→重新制作l把钥匙给客人,并向客人致歉。 B.如果卡号不能显示或不能验卡→验明客人身份和登记相符→重新制作1把钥匙给客人,并向客人致歉。 5、客人寄存钥匙: A.听清客人所报房号,请客人稍等→验卡→显示房号和客人所报一致,取房卡填写房号,钥匙插入新房卡,放在寄存抽屉内→客人来取时,验明身份后,交还钥匙,将写房号的房卡撕毁。 B.如验卡时,房号不能显示,应先验明身份,重新制作钥匙,再进行寄存。 C.如客人寄存时嘱咐他人来取→填写留言单,请客人签字确认→钥匙、留言单放在房卡中存放于收银抽屉内→领取时验明身份→留言单保留在客帐内直至客人退房。 6、客人退房时,前台员工应提醒客人交还房匙→如客人出示的钥匙没有房卡或押金单证明其房号,必须验卡验证无误后,方可通知客房服务员查房并办理退房手续。 7、退房时,客人将钥匙留在房间:客房服务员查完房交到前台。凡有折痕、断裂、明显污迹、坏的钥匙,交前台主管保管。

房卡管理制度

酒店前台房卡管理 一、房卡类别及制卡权限: 1、客房房卡分总卡、领班卡、楼层卡、客人卡 2、总卡为客房相关管理人员持有(董事长、总经理、副总经理、客务总监、客 房经理、前厅经理)由前厅经理制作 3、领班卡由各楼层领办持有由大堂副理或前厅经理制作 4、楼层卡各楼层员工持有由大堂副理制作 5、客人卡由前台员工制作 二、客人卡的管理制度: 1、将房卡交给客人前,前台员工必须确认客人身份; 2、前台原则上单人房每间只发放一张房卡,双人房根据客人要求可发放两张房 卡,并在电脑中注明; 3、客人房卡遗失: 验明客人身份和登记相符→说明规定,向客人收取或从押金中扣除赔偿费(50元)→重新制作一张新的房卡给客人→通知房务中心→使用管理卡到该房间插一次卡(做消磁处理),确保插卡前使用的房卡作废。 4、客人房卡损坏: 1)验卡→显示房号和客人所报相同,且在期限内→重新制作一张房卡给客人, 并向客人致歉。 2)如果房卡号不能显示或不能验卡→验明客人身份和登记相符→重新制作一 张房卡给客人,并向客人致歉。

5、客人寄存房卡: 1)听清客人所报房号,请客人稍等→验卡→显示房号和客人所报一致,取 房卡套填写房号,房卡插入房卡套,放在寄存抽屉内→客人来取时,验明身份后,交还房卡,将写房号的房卡套撕毁。 2)如验卡时,房号不能显示,应先验明身份,重新制作房卡,再进行寄存。 3)如客人寄存时嘱咐他人来取→填写留言单,请客人签字确认→房卡、留 言单放在房卡中存放于收银抽屉内→领取时验明身份→留言单保留在客帐内直至客人退房。 6、客人退房时,前台员工应提醒客人交还房卡→如客人出示的房卡没有房卡 或押金单证明其房号,必须验卡验证无误后,方可通知客房服务员查房并办理退房手续。 7、退房时,客人将房卡留在房间:客房服务员查完房交到前台。凡有折痕、断 裂、明显污迹、坏的房卡,交前台主管保管并做记录。 8、未经登记客人许可,不得为任何来访者开启客人房间或发卡给来访者; 9、任何服务员如发现房卡遗留于公共场所,应立即交当值主管,送回前台接待 处处理; 10、客房服务员不得对客人以错放房卡在房间内为由,随便开房门让客人进入, 应即时打电话到前台接待处核实客人身份,如有任何疑问,应请客人到前台接待处办理补卡手续。 11、前台服务员每班交接时,必须核对客人房卡数量。发现任何缺失必须上报 并在交接本上作记录。 12、所有房卡上不能贴房号

星级酒店房卡管理守则4.doc

星级酒店房卡管理制度4 一、房卡类别: 1、客房房卡分总控卡、领班卡、楼层卡、客人卡。 2、总控卡店级领导、客房相关管理人员持有(董事长、总经理、副总经理、客务总监、客房经理) 3、领班卡由各楼层领办持有 4、楼层卡各楼层员工持有 5、客人卡由前台员工制作 注:若领班卡、楼层卡丢失或损坏,应立即上报部门,采取相应的措施(消磁和补办),前台要有补办记录,以免酒店遭受损失 二、客人卡的管理制度: 1、将客房匙交给客人前,前台员工必须确认客人身份; 2、前台原则上单人房每间只发放一条房匙,双人房根据客人要求可发放两条房匙,并在电脑中注明; 3、客人房卡遗失: 验明客人身份和登记相符→说明规定,向客人收取或从押金中扣除赔偿费(30元)→重新制作l把新的钥匙给客人→通知房务 中心→使用管理卡到该房间插一次卡(做消磁处理),确保插

卡前使用的钥匙作废。 4、客人钥匙损坏: A.验卡→显示房号和客人所报相同,且在期限内→重新制作l把钥匙给客人,并向客人致歉。 B.如果卡号不能显示或不能验卡→验明客人身份和登记相符→重新制作1把钥匙给客人,并向客人致歉。 5、客人寄存钥匙: A.听清客人所报房号,请客人稍等→验卡→显示房号和客人所报一致,取房卡填写房号,钥匙插入新房卡,放在寄存抽屉内→客人来取时,验明身份后,交还钥匙,将写房号的房卡撕毁。 B.如验卡时,房号不能显示,应先验明身份,重新制作钥匙,再进行寄存。 C.如客人寄存时嘱咐他人来鳃填写留言单,请客人签字确认→钥匙、留言单放在房卡中存放于收银抽屉内→领取时验明身份→留言单保留在客帐内直至客人退房。 6、客人退房时,前台员工应提醒客人交还房匙→如客人出示的钥匙没有房卡或押金单证明其房号,必须验卡验证无误后,方可通知客房服务员查房并办理退房手续。 7、退房时,客人将钥匙留在房间:客房服务员查完房交到前台。凡有折痕、断裂、明显污迹、坏的钥匙,交前台主管保管。 8、未经登记客人许可,不得为任何来访者开启客人房间或

客房部房卡管理制度

客房部房卡管理制度及开门程序 房卡管理制度 1、作为客房部的任何一员,如将总卡或是楼层卡丢失,就等于丢掉自己的这份工作,后果是不堪设想的,因为这关系到酒店和客人的财产安全和人生安全问题; 2、所有持卡人都应做到卡不离人,不可将卡乱扔乱放,更不可 将卡随便给部门以外的人去开房门; 3、每天上下班或吃饭的时候,都应有交接卡的程序,做好交接 的登记; 4、不可将卡带离工作岗位,用餐或下班时应将卡交还房务中心保管; 5、每个持卡人都应爱护房卡,正确使用房卡。 敲门开门程序 1、客房部任何持卡人都应养成,不管是任何房态(也就是说: 不管是空房、住人房、锁房还是维修房等等”)都应养成敲门报服务员”的好习惯; 2、在开房门前首先要时刻了解所要开门的房间状态(即:房态),一般除住人房而外,我们只需敲一次房门报服务员”即可,而对 住客房来讲就不能简单化,不管此时房间是否有客或是无客,都应先按门铃三下或再敲三次房门,然后报:服务员”同时耳朵 要时刻关注房间有无动静(也就是说:是否听到有客人回应?”; 3、不可不敲门直接就拿房卡开门,或者是边敲门边插房卡开门,

还有任何人都不能抱有:我以为房间没有客人”的这种想法,而 直接插卡开门的话,将会酿成大错,这些可都是开门的大忌; 4、开门时要注意房卡芯片的朝向,同时要懂得识别电脑锁信号灯所表示的意思,电脑锁信号灯一般有以下四种表示意义: A、房卡芯片朝向正确和设置房号和门牌号对得上,插入房卡电脑锁会亮绿灯,你会听到嘟”一声,此时立即拔出房卡,此时又会听到电脑锁内弹簧回弹的声音,这时房门就可以打开了; B、房卡所设置的房号与门牌号对不上(也就是说:客人如果走错房间”,或者是房卡超时和插卡不到位,此时电脑锁会闪三下黄灯,房门是打不开的; C、任何房卡插反了,电脑锁都会亮红灯,抽出房卡红灯立即熄 灭,此时房门是打不开的; D如果房间里面打上防盗栓的话,此时用总卡、楼层卡、宾客卡开门,电脑锁都会先亮黄灯,再亮红灯,并且会有嘟”一声鸣响; E、不管你怎么插卡,电脑锁都不会亮灯的话,表示电脑锁没有电了,就要采取措施更换电池,方可用卡开门。 5、客房部任何持卡人都不能随便用自己的卡去帮客人开门,必 须确认客人身份无误后,方可用自己的卡帮客人开门,一般客人开不了门并要求帮其开门有以下几种情况: A、客人有卡,没欢迎卡,走错房间; B、客人有卡,有/无欢迎卡,但客人不会开;

酒店房卡管理制度

南融全际酒店 房卡管理制度 一、房卡类别: a)客房房卡分总裁卡、管理卡、总控卡、领班卡、楼层卡、客人卡。 b)总裁卡、管理卡、总控卡由总经办班相关管理人员持有(总经理、总助) c)领班卡由客房经理和客房主管、领班持有 d)楼层卡由各楼层客房部员工持有 e)客人卡由前台员工制作 注:若领班卡、楼层卡丢失或损坏,应立即上报直属上级,采取相应措施(消磁 和补办),前台需有补办记录,以免酒店遭受损失 二、房卡操作流程 a)领班卡、楼层卡由客房部负责保管,必须存放在指定地方,客房经理须每天检查 b)楼层房卡由客房经理/主管在每日晨会时发放给服务员 c)服务员在领用和交接时必须在工作记录本上记录并签名确认 d)服务员在当班时才有权使用楼层卡在班次结束时需将楼层卡归还 e)服务员非工作需要不得擅自开启客房房门 f)不得随便为他人开启客房 g)客人在楼层要求开门,服务员请客人核对身份,用电话和前台核对(姓名、身份证、 入住日期等),待确认客人身份后方可为客人开启房门 h)按前台指示为客人开启房门 三、房卡保管 a)房卡要时刻随身携带,不得乱丢、乱放 b)严禁将房卡转借他人使用 c)丢失房卡,马上报告主管,查明原因,积极寻找 d)房卡严禁当取电卡使用 e)夜班员工领取领班卡 f)房卡归还必须有记录,并且签名确认 四、客人卡管理制度 a)客人入住前前台人员将客人房间房卡制作给客人 b)原则上每个房间只发放一张房卡,若客人需要两张房卡需收取相应的押金为客人发 放两张房卡并在电脑上注明,在交班记录本上做好交接 c)客人房卡遗失:验明客人身份和登记相符说明规定,向客人收取赔偿费重 新制作一把新的房卡给客人开具赔偿单签客人签字在交班记录本上做好 交接管理人员根据赔偿单到财务处领取新房卡 d)客人房卡损坏:验卡显示房号和客人所报相同,且房卡还未过期核对客

酒店管理规范

客房服务流程及规范 一、目的:为了规范客房服务人员的服务行为,提高酒店的客房服务水平, 提升客户对服务的满意度,特制定工作标准。 二、员工仪容仪表: 1.手指甲不得超过0、5毫米,时刻保持清洁,不可涂指甲油; 2.经常理发,头发梳理整齐。保持前不遮眉、中不盖耳、后不过领,女士 长发要简单盘于脑后。男士胡须应始终修剪干净。 3.不可佩戴夸张首饰,男士只可带样式简单的手表; 4.整齐穿着酒店制服,制服要求干净整洁; 5.员工不可佩戴有色及大框眼镜; 6.女员工必须着淡妆,不可不化妆或化浓妆。 三、对客服务规范: 1.见到客人要侧身礼让并微笑点头问好; 2.与客人交谈时要有礼貌,必须使用礼貌用语; 3.对客人的额外要求,应立即报告主管; 4.不得向客人索要小费或礼品; 5.如果发现客人在房间里吵闹、发病或醉酒,立即通知主管; 6.非工作需要不得开启或进入客人房间,如因工作需要应先敲门经客人 允许后方可进入; 7.在客人房间做清洁时,不得翻瞧客人物品; 8.不得想客人泄露酒店管理秘密; 9.不得想客人泄露其她客人的信息及秘密; 10.不得私自为客人结账,应礼貌指引到前厅处。 四、物品发放流程及规范: 1.填写申请单 ①客房部凡领用物品,均须规定填写申请单; ②申请单须经主管与经理审批。 2.发放与盘点 ①凭经理审批后的申请单,有客房文员予以发放,发货时要注意物品 保质期,先进先发、后进后发; ②客房文员按时进行月度物品盘点存量。 3.做好发放记录 ①发放物品时,客房文员要以填好的物品领用单(含日期、名称、规 格、型号、数量、单价、用途等)为依据; ②客房文员要及时做好物品管理账簿,保证账物一致。

酒店前台房卡管理制度

酒店前台房卡管理制度 一、房卡类别: 1、客房房卡分总控卡、领班卡、楼层卡、客人卡。 2、总控卡店级领导、客房相关管理人员持有(董事长、总经理、副总经理、客务总监、客房经理) 3、领班卡由各楼层领班持有 4、楼层卡各楼层员工持有 5、客人卡由前台员工制作 注:若领班卡、楼层卡丢失或损坏,应立即上报部门,采取相应的措施(消磁和补办),前台要有补办记录,以免酒店遭受损失 二、客人卡的管理制度: 1、将客房匙交给客人前,前台员工必须确认客人身份; 2、前台原则上单人房每间只发放一条房匙,双人房根据客人要求可发放两条房匙,并在电脑中注明; 3、客人房卡遗失: 验明客人身份和登记相符→说明规定,向客人收取或从押金中扣除赔偿费(30元)→重新制作l把新的钥匙给客人→通知房务中心→使用管理卡到该房间插一次卡(做消磁处理),确保插卡前使用的钥匙作废。 4、客人钥匙损坏: A.验卡→显示房号和客人所报相同,且在期限内→重新制作l把钥匙给客人,并向客人致歉。 B.如果卡号不能显示或不能验卡→验明客人身份和登记相符→重新制作1把钥匙给客人,并向客人致歉。 5、客人寄存钥匙: A.听清客人所报房号,请客人稍等→验卡→显示房号和客人所报一致,取房卡填写房号,钥匙插入新房卡,放在寄存抽屉内→客人来取时,验明身份后,交还钥匙,将写房号的房卡撕

毁。 B.如验卡时,房号不能显示,应先验明身份,重新制作钥匙,再进行寄存。 C.如客人寄存时嘱咐他人来取→填写留言单,请客人签字确认→钥匙、留言单放在房卡中存放于收银抽屉内→领取时验明身份→留言单保留在客帐内直至客人退房。 6、客人退房时,前台员工应提醒客人交还房匙→如客人出示的钥匙没有房卡或押金单证明其房号,必须验卡验证无误后,方可通知客房服务员查房并办理退房手续。 7、退房时,客人将钥匙留在房间:客房服务员查完房交到前台。凡有折痕、断裂、明显污迹、坏的钥匙,交前台主管保管。 8、未经登记客人许可,不得为任何来访者开启客人房间或发卡给来访者; 9、任何服务员如发现房卡遗留于公共场所,应立即交当值主管,送回前台接待处处理; 10、客房服务员不得对客人以错放锁匙在房间内为由,随便开房门让客人进入,应即时打电话到前台接待处核实客人身份,如有任何疑问,应请客人到前台接待处办理补匙手续。 11、前台服务员每班交接时,必须核对客人钥匙数量。发现任何缺失必须上报并在交接本上作记录。 10、所有IC卡上不能贴房号。

前台房卡管理规定

前台房卡管理规定 一、房卡类别: 1、客房房卡分总控卡、领班卡、楼层卡、客人卡。 2、总控卡店级领导、客房相关管理人员持有(董事长、总经理、副总经理、客务总监、客 房经理) 3、领班卡由各楼层领办持有 4、楼层卡各楼层员工持有 5、客人卡由前台员工制作 注:若领班卡、楼层卡丢失或损坏,应立即上报部门,采取相应的措施(消磁和补办),前台要有补办记录,以免酒店遭受损失 二、客人卡的管理制度: 1、将客房匙交给客人前,前台员工必须确认客人身份; 2、前台原则上单人房每间只发放一条房匙,双人房根据客人要求可发放两条房匙,并在电 脑中注明; 3、客人房卡遗失: 验明客人身份和登记相符→说明规定,向客人收取或从押金中扣除赔偿费(30元)→重新制作l把新的钥匙给客人→通知房务中心→使用管理卡到该房间插一次卡(做消磁处理),确保插卡前使用的钥匙作废。 4、客人钥匙损坏: A.验卡→显示房号和客人所报相同,且在期限内→重新制作l把钥匙给客人,并向客人 致歉。 B.如果卡号不能显示或不能验卡→验明客人身份和登记相符→重新制作1把钥匙给客 人,并向客人致歉。 5、客人寄存钥匙: A.听清客人所报房号,请客人稍等→验卡→显示房号和客人所报一致,取房卡填写房号, 钥匙插入新房卡,放在寄存抽屉内→客人来取时,验明身份后,交还钥匙,将写房号的房卡撕毁。 B.如验卡时,房号不能显示,应先验明身份,重新制作钥匙,再进行寄存。 C.如客人寄存时嘱咐他人来取→填写留言单,请客人签字确认→钥匙、留言单放在房卡 中存放于收银抽屉内→领取时验明身份→留言单保留在客帐内直至客人退房。 6、客人退房时,前台员工应提醒客人交还房匙→如客人出示的钥匙没有房卡或押金单证明 其房号,必须验卡验证无误后,方可通知客房服务员查房并办理退房手续。 7、退房时,客人将钥匙留在房间:客房服务员查完房交到前台。凡有折痕、断裂、明显污 迹、坏的钥匙,交前台主管保管。 8、未经登记客人许可,不得为任何来访者开启客人房间或发卡给来访者; 9、任何服务员如发现房卡遗留于公共场所,应立即交当值主管,送回前台接待处处理; 10、客房服务员不得对客人以错放锁匙在房间内为由,随便开房门让客人进入,应即时打电 话到前台接待处核实客人身份,如有任何疑问,应请客人到前台接待处办理补匙手续。 11、前台服务员每班交接时,必须核对客人钥匙数量。发现任何缺失必须上报并在交接本上 作记录。 12、所有IC卡上不能贴房号。

酒店安全管理制度

酒店安全管理制度 总则 一、为了加强酒店的安全监督管理,防止和减少安全事故,保障酒店、客人和员工的生命和财产安全,促进酒店经营管理的健康发展,根据《中华人民共和国安全法》和有关法律法规的规定,特制定本规定。 二、酒店设安全管理委员会,由总经理任主任委员,副主任委员由酒店副总担任,以协管酒店工保部工作。安全管理委员会其他委员由各部门负责人担任,并由总经理任命。安全管理委员会的常设办事机构为工保部,安全日常工作由工保部负责,档案管理由总经办负责。 三、各部门应根据本部门各岗位的工作特点,依照国家及行业的有关劳动安全规定及技术标准,制定和不断完善本部门各类劳动安全管理制度和操作规程。 四、各部门制定的各类劳动安全管理规章制度,须报总经办备案。 五、在发生安全事故时,可根据酒店总经理指示成立事故处理小组,并按酒店制定的《安全管理工作程序和报告制度》(见附件一)进行妥善处置。 六、酒店劳动安全实行酒店、部门、班组三级管理。 七、酒店安全管理委员会的职责: 1、组织、指导各部门贯彻落实国家的安全方针和有关政策、规定。 2、教育各部门管理人员尊章守法,带头搞好安全。 3、听取各部门安全方面的情况汇报,发现问题及时找有关人员研究解决。 4、协调各部门安全工作,调查、布置、指导、检查安全情况,发现问题立即纠正。 5、负责随时检查、通报各部门劳动安全管理的执行情况,对出现的各类不安全问题及职业伤害事故进行调查分析,并提出处理意见和整改措施。 八、部门负责人安全职责: 1、在酒店安全管理委员会的领导下,对本部门执行安全规章制度的情况进行经常性的监督检查,对各岗位、设备的安全操作和安全运行进行监督。 2、向酒店安全管理委员会提交安全书面工作意见,主要包括:针对部门的安全隐患提出防范措施、隐患整改方案、安全技术措施和经费开支计划。 3、参与制定酒店和部门防止伤亡、火灾事故和职业危害的措施及危险岗位、危险设备的安全操作规程,并负责督促实施。 4、经常进行现场安全检查,及时发现、处理事故隐患。如有重大问题,应以书面形式

客房部房卡管理制度及开门程序

房卡管理制度 1、作为客房部的任何一员,如将总卡或是楼层卡丢失,就等于丢掉自己的这份工作,后果是不堪设想的,因为这关系到酒店和客人的财产安全和人生安全问题; 2、所有持卡人都应做到卡不离人,不可将卡乱扔乱放,更不可将卡随便给部门以外的人去开房门; 3、每天上下班或吃饭的时候,都应有交接卡的程序,做好交接的登记; 4、不可将卡带离工作岗位,用餐或下班时应将卡交还房务中心保管; 5、每个持卡人都应爱护房卡,正确使用房卡。 敲门开门程序 1、客房部任何持卡人都应养成,不管是任何房态(也就是说:“不管是空房、住人房、锁房还是维修房等等”)都应养成敲门报“服务员”的好习惯; 2、在开房门前首先要时刻了解所要开门的房间状态(即:房态),一般除住人房而外,我们只需敲一次房门报“服务员”即可,而对住客房来讲就不能简单化,不管此时房间是否有客或是无客,都应先按门铃三下或再敲三次房门,然后报:“服务员”,同时耳朵要时刻关注房间有无动静(也就是说:“是否听到有客人回应?”); 3、不可不敲门直接就拿房卡开门,或者是边敲门边插房卡开门,还有任何人都不能抱有:“我以为房间没有客人”的这种想法,而直接插卡开门的话,将会酿成大错,这些可都是开门的大忌; 4、开门时要注意房卡芯片的朝向,同时要懂得识别电脑锁信号灯所表示的意思,电脑锁信号灯一般有以下四种表示意义: A、房卡芯片朝向正确和设置房号和门牌号对得上,插入房卡电脑锁会亮绿灯,你会听到“嘟”一声,此时立即拔出房卡,此时又会听到电脑锁内弹簧回弹的声音,这时房门就可以打开了; B、房卡所设置的房号与门牌号对不上(也就是说:“客人如果走错房间”),或者是房卡超时和插卡不到位,此时电脑锁会闪三下黄灯,房门是打不开的; C、任何房卡插反了,电脑锁都会亮红灯,抽出房卡红灯立即熄灭,此时房门是打不开的; D、如果房间里面打上防盗栓的话,此时用总卡、楼层卡、宾客卡开门,电脑锁都会先亮黄灯,再亮红灯,并且会有“嘟”一声鸣响; E、不管你怎么插卡,电脑锁都不会亮灯的话,表示电脑锁没有电了,就要采取措施更换电池,方可用卡开门。 5、客房部任何持卡人都不能随便用自己的卡去帮客人开门,必须确认客人身份无误后,方可用自己的卡帮客人开门,一般客人开不了门并要求帮其开门有以下几种情况: A、客人有卡,没欢迎卡,走错房间; B、客人有卡,有/无欢迎卡,但客人不会开;

酒店客房部管理制度流程

一、房务部规章制度 “宾客至上、服务第一”是我们的服务宗旨:客人永远是对的,是我们的座右铭。对此,每一个前台人员务必深刻、领会、贯彻到一言一行中去。 酒店业是服务行业,我们要发扬中国传统的礼节和好客之道,树立服务光荣的思想,加强服务意识,竭力提供高效、准确、礼貌的服务,这宾客创一个“宾至如归”的境界。 1)仪表、仪态: (一)本部门员工以站立姿势服务,总台夜班员工十二点以后方坐,但若有客人前来,当即起立。 (二)在服务区域内,身体不得东歪西倒,前倾后靠,不得伸懒腰、驼背、耸肩、不得扎堆聊天。 (三)不配带任何饰物、留长指甲、女员工不得涂色在指甲上。 (四)必须佩带工号牌,工号牌应佩带在左胸处,不得任其歪歪扭扭,注意修整,发现问题及时纠正,从后台进入服务区域之前,也应检查仪容仪表。 2)表情、言谈: (一)面对客人应表现出热情、亲切、真实、友好,必要时要有同情的表情,做到精神振奋、情绪饱满、不卑不亢。(二)和客人交谈时应眼望对方,频频点头称是。 (三)双手不得叉腰,交叉腰前,插入衣裤或随意乱放,不抓头,抓痒,挖耳,抠鼻孔,不得敲桌子,鼓击或摆弄其它物品。 (四)不得哼歌曲,吹口哨,跺脚,不得随地吐痰,乱蓬蓬丢杂物,不得当众整理个人衣物,不得将任何物件夹于腋下。 (五)在客人面前不得经常看表。 (六)咳嗽,打喷嚏时应转身向后,并说对不起。 (七)不得大声谈笑、说话、喊叫,乱丢碰物品,发出不必要声响。 (八)上班时间不得抽烟、吃食物。 (九)不得用手指或笔杆指客人和为人指示方向。 (十)要注意自我控制,随时注意自己的言行举动。在与客人讲话时应全身贯注,用心倾听,不得东张西望,心不在焉。 (十一)在为客人服务时不得流露出厌烦、冷淡、愤怒、僵硬、紧张和恐惧的表情,不得扭捏作态,做鬼脸、吐舌、眨眼。 (十二)员工在服务、工作、打电话和与客人交谈时,如有客人走近,应立即示意,以表示已注意他(她)的来临,不得无所表示,等客人开口。 (十三)不得以任何借口顶撞、讽刺、挖苦客人。 (十四)指第三者是不能讲他(她),应称那位先生或那位女士。 (十五)离开面对客人,一律讲“请稍候”,如果离开时间较长,回来后要讲“对不起,让你久等”,不得一言不发就开始服务。 3)制服: (一)制服应干净、整齐、笔挺。 二)纽扣要全部扣好,穿西装制服时,第一颗纽扣须扣上,不得敞开外衣,卷起裤脚,衣袖,领带必须给正。(三)行李员不得不戴制服帽出现在服务区域内。 4)电话: (一)所有来电务必在三响之内接答。

房卡管理规定

房卡管理规定 一、房卡类别: 1、客房房卡分总控卡、领班卡、楼层卡、客人卡。 2、总控卡由相关管理人员持有。 3、领班卡由各楼层领班持有。 4、楼层卡各楼层员工持有。 5、客人卡由前台员工保管、制作。 注:若领班卡、楼层卡丢失或损坏,应立即上报部门,采取相应的措施(消磁和补办),前厅部要有补办记录,以免酒店遭受损失 二、房卡管理 1、总控卡由项目经理、项目副经理、前厅部经理、客房部经理、值班经理持有。 2、领班卡、楼层卡由客房服务中心保管,实行每天签字借用制度。 ⑴领班卡用于查房使用,此卡可以开启所管辖的楼层所有客房房门。 ⑵楼层卡用于服务员打扫卫生使用,按照服务员的工作范围制作。 ⑶调换楼层时要有交接手续。 3、客人卡的管理制度: ⑴将客房卡交给客人前,前台员工必须确认客人身份; ⑵前台原则上单人房每间只发放一张房卡,根据客人实际要求可发放两张房 卡,并在电脑中注明数量; ⑶客人房卡遗失: 验明客人身份和登记相符→说明规定,向飞行大队相关负责部门或负责人报告→重新制作l张新的房卡给客人→确保前一张房卡作废。 ⑷客人钥匙损坏: A. 验卡→显示房号和客人所报相同,且在期限内→重新制作l张房卡给客人,。

B. 如果卡号不能显示或不能验卡→验明客人身份和登记相符→重新制作1张 房卡给客人,并向客人说明。 ⑸客人寄存钥匙: A. 听清客人所报房号,请客人稍等→验卡→显示房号和客人所报一致,取房卡 袋填写房号,将房卡插入房卡袋内,放在抽屉内→客人来取时,验明身份后,交还房卡。 B. 如验卡时,房号不能显示,应先验明身份,再进行寄存。 C. 如客人寄存时嘱咐他人来取→填写留言单,请客人签字确认→房卡、留言单 放在房卡袋中存放于抽屉内→领取时验明身份→留言单保留在客帐内直至客人退房。 ⑹客人退房时,前台员工应提醒客人交还房卡→必须验卡无误后,方可通知客 房服务员查房并办理退房手续。 ⑺退房时,客人将房卡留在房间:客房服务员查完房交到房务中心→礼宾员/ 服务员取回送至总台。 ⑻未经登记客人许可,不得为任何来访者开启客人房间或发卡给来访者; ⑼任何服务员如发现房卡遗留于公共场所,应立即交当值经理,送回前台接待 处处理; ⑽客房服务员不得对客人以错放房卡在房间内为由,随便开房门让客人进入,应即时打电话到前台接待处核实客人身份,如有任何疑问,应请客人到前台接待处办理补卡手续。 ⑾前台服务员每班交接时,必须核对客人房卡数量。发现任何缺失必须上报并在交接本上作记录。 ⑿所有房卡上不能贴房号。(房卡套未到之前,总台制作客人卡可使用房号贴)

酒 店 房 卡 管 理 规 定

酒店房卡管理规定 一、房卡类别: 1、客房房卡分总控卡、领班卡、楼层卡、客人卡。 2、总控卡由相关管理人员持有。 3、领班卡由各楼层领班持有。 4、楼层卡各楼层员工持有。 5、客人卡由前台员工保管、制作。 注:若领班卡、楼层卡丢失或损坏,应立即上报部门,采取相应的措施(消磁和补办),网络班要有补办记录,以免酒店遭受损失 二、房卡管理 1、总控卡由总经理、副总经理、前厅部经理、客房部经理、大堂经理持有。 2、领班卡、楼层卡由客房服务中心保管,实行每天签字借用制度。 ⑴领班卡用于查房使用,此卡可以开启所管辖的楼层所有客房房门。 ⑵楼层卡用于服务员打扫卫生使用,按照服务员的工作范围制作。 ⑶调换楼层时要有交接手续。 3、客人卡的管理制度: ⑴将客房卡交给客人前,前台员工必须确认客人身份; ⑵前台原则上单人房每间只发放一张房卡,双人房根据客人要求可发放两张 房卡,并在电脑中注明数量; ⑶客人房卡遗失: 验明客人身份和登记相符→说明规定,向客人收取或从押金中扣除赔偿费(30元)→重新制作l张新的房卡给客人→确保前一张房卡作废。 ⑷客人钥匙损坏:

A. 验卡→显示房号和客人所报相同,且在期限内→重新制作l张房卡给客人,并与客人说明赔偿费用。 B. 如果卡号不能显示或不能验卡→验明客人身份和登记相符→重新制作1张 房卡给客人,并向客人说明赔偿费用。 ⑸客人寄存钥匙: A. 听清客人所报房号,请客人稍等→验卡→显示房号和客人所报一致,取房卡 袋填写房号,将房卡插入房卡袋内,放在抽屉内→客人来取时,验明身份后,交还房卡。 B. 如验卡时,房号不能显示,应先验明身份,再进行寄存。 C. 如客人寄存时嘱咐他人来取→填写留言单,请客人签字确认→房卡、留言单 放在房卡袋中存放于抽屉内→领取时验明身份→留言单保留在客帐内直至客人退房。 ⑹客人退房时,前台员工应提醒客人交还房卡→必须验卡无误后,方可通知客 房服务员查房并办理退房手续。 ⑺退房时,客人将房卡留在房间:客房服务员查完房交到房务中心→礼宾员取 回送至总台。 ⑻未经登记客人许可,不得为任何来访者开启客人房间或发卡给来访者; ⑼任何服务员如发现房卡遗留于公共场所,应立即交当值主管,送回前台接待 处处理; ⑽客房服务员不得对客人以错放房卡在房间内为由,随便开房门让客人进入,应即时打电话到前台接待处核实客人身份,如有任何疑问,应请客人到前台接待处办理补卡手续。 ⑾前台服务员每班交接时,必须核对客人房卡数量。发现任何缺失必须上报并在交接本上作记录。 ⑿所有房卡上不能贴房号。

酒店房卡管理制度20111231

----------------------------精品word文档值得下载值得拥有---------------------------------------------- ----------------------------------------------------------------------------------------------------------------------------------------- ----- 峨眉天颐温泉度假大饭店 房卡管理制度 一、房卡类别 1、客房房卡分总控卡、领班卡、楼层卡、客人卡。 2、总控卡店级领导、客房相关管理人员持有(董事长、总经理、副总经理、客务总监、客房经理) 3、领班卡由各楼层领办持有 4、楼层卡各楼层员工持有 5、客人卡由前台员工制作 注:若领班卡、楼层卡丢失或损坏,应立即上报部门,采取相应的措施(消磁和补办),前台要有补办记录,以免酒店遭受损失 二、客人卡的管理制度: 1、将客房匙交给客人前,前台员工必须确认客人身份; 2、前台原则上单人房每间只发放一条房匙,双人房根据客人要求可发放两条房匙,并在电脑中注明; 3、客人房卡遗失: 验明客人身份和登记相符→说明规定,向客人收取或从押金中扣除赔偿费(30元)→重新制作l把新的钥匙给客人→通知房务中心→使用管理卡到该房间插一次卡(做消磁处理),确保插卡前使用的钥匙作废。 4、客人钥匙损坏: A.验卡→显示房号和客人所报相同,且在期限内→重新制作l把钥匙给客人,并向客人致歉。 B.如果卡号不能显示或不能验卡→验明客人身份和登记相符→重新制作1把钥匙给客人,并向客人致歉。 5、客人寄存钥匙: A.听清客人所报房号,请客人稍等→验卡→显示房号和客人所报一致,取房卡填写房号,钥匙插入新房卡,放在寄存抽屉内→客人来取时,验明身份后,交还钥匙,将写房号的房卡撕毁。 ----------------------------精品word文档值得下载值得拥有----------------------------------------------

酒店前台房卡管理制度

酒店前台房卡管理制度 酒店前台房卡处理制度一、房卡类别:1、客房房卡分总控卡、工头卡、楼层卡、客人卡。2、总控卡店级领导、客房相关处理人员持有(董事长、总司理、副总司理、客务总监、客房司理)3、工头卡由各楼层领办持有4、楼层卡各楼层职工持有5、客人卡由前台职工制造注:若工头卡、楼层卡丢掉或损坏,应立即上报部分,采纳相应的办法(消磁和补办),前台要有补办记载,避免酒店遭受丢失二、客人卡的处理制度:1、将客房匙交给客人前,前台职工有必要承认客人身份;2、前台原则上单人房每间只发放一条房匙,双人房依据客人要求可发放两条房匙,并在电脑中注明;3、客人房卡丢失:验明客人身份和挂号相符→阐明规则,向客人收取或从押金中扣除赔偿费(30元)→从头制造l把新的钥匙给客人→告诉房务中心→运用处理卡到该房间插一次卡(做消磁处理),保证插卡前运用的钥匙报废。4、客人钥匙损坏:A.验卡→显现房号和客人所报相同,且在期限内→从头制造l 把钥匙给客人,并向客人致歉。B.假如卡号不能显现或不能验卡→验明客人身份和挂号相符→从头制造1把钥匙给客人,并向客人致歉。5、客人存放钥匙: A.听清客人所报房号,请客人稍等→验卡→显现房号和客人所报共同,取房卡填写房号,钥匙刺进新房卡,放在存放抽屉内→客人来取时,验

明身份后,交还钥匙,将写房号的房卡撕毁。B.如验卡时,房号不能显现,应先验明身份,从头制造钥匙,再进行存放。C.如客人存放时吩咐别人来取→填写留言单,请客人签字承认→钥匙、留言单放在房卡中存放于收银抽屉内→收取时验明身份→留言单保留在客帐内直至客人退房。6、客人退房时,前台职工应提示客人交还房匙→如客人出示的钥匙没有房卡或押金单证明其房号,有必要验卡验证无误后,方可告诉客房服务员查房并处理退房手续。7、退房时,客人将钥匙留在房间:客房服务员查完房交到前台。凡有折痕、开裂、显着污迹、坏的钥匙,交前台主管保管。8、未经挂号客人答应,不得为任何来访者敞开客人房间或发卡给来访者;9、任何服务员如发现房卡留传于公共场所,应立即交当值主管,送回前台接待处处理;10、客房服务员不得对客人以错放锁匙在房间内为由,随意开房门让客人进入,应即时打电话到前台接待处核实客人身份,如有任何疑问,应请客人到前台接待处处理补匙手续。11、前台服务员每班交代时,有必要核对客人钥匙数量。发现任何缺失有必要上报并在交代本上作记载。

旅馆治安管理制度

美湖假日酒店治安管理制度 (一) 安全责任制度。 旅馆业的法定代表人或者主要负责人为治安责任人,负责组织本单位员工切实贯彻执行相关法律法规和旅馆业治安管理的各项规章制度;加强对内部保卫组织的领导,教育员工提高警惕,遵纪守法,落实各项安全防范措施。 (二) 验证登记制度。 对入住旅客,要严格检验其有效证件,做到人证相符,登记内容齐全、准确、不漏登、错登,旅馆入住、退宿登记率达到100%。验证主要是查验旅馆客居民身份、军人证、司法机关的释放证明文书、公安机关的身份证明、有身份证号码的其他证件(驾驶证等),以及行政事业单位的工作证件等;查验登记主要包括查验身份证件真伪,登记旅馆姓名、证件号码、户籍住址以及入住时间等项目。 (三) 使用旅馆业治安管理信息系统制度。 1. 及时录入、修改、传送旅馆地址、名称、经营范围等基本情况; 2. 及时录入、修改、传送旅馆法人、负责人、安保部和客房部、前厅部等部门负责人、客房、总台、安保部门的从业人员花名册; 3. 及时录入、传送行李寄存、现金及贵重物品寄存、拾物登记等情况;

4. 及时录入、传送可疑情况报查信息、骚扰登记情况; 5. 及时录入、传送发生的各种治安案件、刑事案件和治安灾害事故的情况,以及系统设置的其他信息; 6. 及时浏览接收各种通知、通缉、通报、协查,并录入、传送接收回执。 7. 因故不能及时录入旅客住宿信息的,要在1小时内补录、传送。交接班时要检查计算机登记的信息,对未传送的录入信息按规定传送。其他相关信息或信息变更要及时录入、即时传送。 8. 建立系统管理使用日志,将每天入退宿人员信息、录入数量和传输情况如实登记。如遇计算机无法录入和传输帮障时,应在30分种内和系统维修单位联系,同时告知当地派出所。 (四) 访客登记制度。 对前来访客的非住宿人员,门卫或前台服务人员应审查登记其身份证件项目、记录会客来去时间,由旅馆工作人员安排会见,提示来访客者遵守访客时间,一般安排在会客室或指定的地点,不宜进入客房会客。 (五) 值班巡查制度。 旅馆应根据规模大小设立专兼职内保人员,负责门卫、内部安全保卫和停车场所等重要部位安全管理。旅馆安保人员要加强对消防安全、治安安全检查,建立安全检查登记簿。按规定应安装监控系统的

星级酒店房卡管理制度

一、房卡类别: 1、客房房卡分总控卡、领班卡、楼层卡、客人卡。 2、总控卡店级领导、客房相关管理人员持有(董事长、总经理、副总经理、客务总监、客房经理) 3、领班卡由各楼层领办持有 4、楼层卡各楼层员工持有 5、客人卡由前台员工制作 注:若领班卡、楼层卡丢失或损坏,应立即上报部门,采取相应的措施(消磁和补办),前台要有补办记录,以免酒店遭受损失 二、客人卡的管理制度: 1、将客房匙交给客人前,前台员工必须确认客人身份; 2、前台原则上单人房每间只发放一条房匙,双人房根据客人要求可发放两条房匙,并在电脑中注明; 3、客人房卡遗失: 验明客人身份和登记相符→说明规定,向客人收取或从押金中扣除赔偿费(30元)→重新制作l把新的钥匙给客人→通知房务

中心→使用管理卡到该房间插一次卡(做消磁处理),确保插卡前使用的钥匙作废。 4、客人钥匙损坏: A.验卡→显示房号和客人所报相同,且在期限内→重新制作l把钥匙给客人,并向客人致歉。 B.如果卡号不能显示或不能验卡→验明客人身份和登记相符→重新制作1把钥匙给客人,并向客人致歉。 5、客人寄存钥匙: A.听清客人所报房号,请客人稍等→验卡→显示房号和客人所报一致,取房卡填写房号,钥匙插入新房卡,放在寄存抽屉内→客人来取时,验明身份后,交还钥匙,将写房号的房卡撕毁。 B.如验卡时,房号不能显示,应先验明身份,重新制作钥匙,再进行寄存。 C.如客人寄存时嘱咐他人来鳃填写留言单,请客人签字确认→钥匙、留言单放在房卡中存放于收银抽屉内→领取时验明身份→留言单保留在客帐内直至客人退房。

6、客人退房时,前台员工应提醒客人交还房匙→如客人出示的钥匙没有房卡或押金单证明其房号,必须验卡验证无误后,方可通知客房服务员查房并办理退房手续。 7、退房时,客人将钥匙留在房间:客房服务员查完房交到前台。凡有折痕、断裂、明显污迹、坏的钥匙,交前台主管保管。 8、未经登记客人许可,不得为任何来访者开启客人房间或发卡给来访者; 9、任何服务员如发现房卡遗留于公共场所,应立即交当值主管,送回前台接待处处理; 10、客房服务员不得对客人以错放锁匙在房间内为由,随便开房门让客人进入,应即时打电话到前台接待处核实客人身份,如有任何疑问,应请客人到前台接待处办理补匙手续。 11、前台服务员每班交接时,必须核对客人钥匙数量。发现任何缺失必须上报并在交接本上作记录。 10、所有IC卡上不能贴房号。

相关主题