搜档网
当前位置:搜档网 › 2016届高考数学(理)二轮专题复习演练:专题四 第3讲 立体几何与空间向量模拟演练(人教版含答案)(浙江专用)

2016届高考数学(理)二轮专题复习演练:专题四 第3讲 立体几何与空间向量模拟演练(人教版含答案)(浙江专用)

2016届高考数学(理)二轮专题复习演练:专题四 第3讲 立体几何与空间向量模拟演练(人教版含答案)(浙江专用)
2016届高考数学(理)二轮专题复习演练:专题四 第3讲 立体几何与空间向量模拟演练(人教版含答案)(浙江专用)

专题四 立体几何与空间向量

经典模拟·演练卷

一、选择题

1.(2015·济宁模拟)已知α,β表示两个不同的平面,m 为平面α内的一条直线,则“α⊥β”是“m ⊥β”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件

D .既不充分也不必要条件

2.(2015·潍坊三模)一个几何体的三视图如图所示,其中侧视图为直角三角形,则该几何体的体积为( )

A.423

B.82

3

C.1623

D .16 2

3.(2015·诸暨中学模拟)已知正三棱柱ABC -A 1B 1C 1的侧棱长与底面边长相等,则AB 1与侧面ACC 1A 1所成角的正弦值等于( ) A.64 B.104 C.22 D.32

4.(2015·河北质检)某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x 的值是( )

A.92

B.3

2

C .3

D .2 5.(2015·吉林实验中学模拟)已知

E ,

F 分别是矩形ABCD 的边BC 与AD 的中点,且BC =2AB =2,现沿EF 将平面ABEF 折起,使平面ABEF ⊥平面EFDC ,则三棱锥A -FEC 外接球的体积为( ) A.3

3

π B.32

π C.3π D .23π

6.(2015·宁波联考)如图,棱长为1的正方体ABCD -A 1B 1C 1D 1中,P 为线段A 1B 上的动点,则下列结论错误的是( )

A .DC 1⊥D 1P

B .平面D 1A 1P ⊥平面A 1AP

C .∠AP

D 1的最大值为90° D .AP +PD 1的最小值为2+2

二、填空题

7.(2015·金华模拟)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 为棱DD 1上的点,F 为AB 的中点,则三棱锥B 1-BFE 的体积为________.

8.(2015·保定调研)如图是一个空间几何体的三视图,则该几何体的表面积为________.

9.(2015·杭州模拟)在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥平面ABCD,AB =PD=a,点E为侧棱PC的中点,又作DF⊥PB交PB于点F,则PB与平面EFD所成角为________.

三、解答题

10.(2015·杭州模拟)如图,四棱锥P-ABCD中,PD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=2,PD=2,M为棱PB的中点.

(1)证明:DM⊥平面PBC;

(2)求二面角A-DM-C的余弦值.

11.(2015·浙江名校联考)如图,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°,E,F分别为AC,DC的中点.

(1)求证:EF⊥BC;

(2)求二面角E-BF-C的正弦值.

12.(2015·温州中学二模)如图,边长为2的正方形ADEF 与梯形ABCD 所在的平面互相垂直.已知AB ∥CD ,AB ⊥BC ,DC =BC =1

2

AB =1,点M 在线段EC 上.

(1)证明:平面BDM ⊥平面ADEF ;

(2)判断点M 的位置,使得平面BDM 与平面ABF 所成的锐二面角为π

3.

经典模拟·演练卷

1.B [当m ⊥β,m ?α时,α⊥β,必要性成立.

但α⊥β,m ?α,则m ?β或m ∥β或m 与β相交.因此“α⊥β”是“m ⊥β”的必要不充分条件.]

2.C [由三视图知,该几何体为三棱锥(如图).

其中AO ⊥底面BCD ,且OD ⊥BC .

∵AO =22,S △BCD =12×42×22=8.所以几何体的体积V =1

3

·OA ·

S △BCD =1

3×22×8=

162

3

.]

3.A [如图所示,设点E 为棱A 1C 1的中点,连接AE ,B 1E . 在正三棱柱ABC -A 1B 1C 1中,B 1E ⊥平面ACC 1A 1, ∴∠B 1AE 为直线AB 1与侧面ACC 1A 1所成的角,记为α.

设三棱柱的棱长为a ,则B 1E =

32a ,AB 1=2a .∴sin α=B 1E AB 1=3

2

a 2a =64

.] 4.C [由三视图知,该几何体是底面为直角梯形的四棱锥. ∵S 底=1

2

(1+2)×2=3.

∴几何体的体积V =1

3x ·S 底=3,

即1

3

x ·3=3.因此x =3.] 5.B [如图,平面ABEF ⊥平面EFDC ,AF ⊥

EF , ∴AF ⊥平面ECDF ,

将三棱锥A -FEC 补成正方体ABC ′D ′-FECD . 依题意,其棱长为1,外接球的半径R =32

, ∴外接球的体积V =43πR 3

=43π·? ????323

=3

2

π.] 6.C [由DC 1⊥平面A 1BCD 1知DC 1⊥D 1P ,∴A 正确. ∵D 1A 1⊥平面ABB 1A 1,且A 1D 1?平面D 1A 1P , ∴平面D 1A 1P ⊥平面A 1AP ,因此B 正确. 当0

2

2

时,∠APD 1为钝角,∴C 错.

将面AA 1B 与面A 1BCD 1沿面对角线A 1B 展开成平面图形时,线段A 1D 为AP +PD 1的最小值. 在△AA 1D 1中,A 1D 1=A 1A =1,∠AA 1D 1=135°.

由余弦定理,AD 2

1=12

+12

-2×1×1cos 135°=2+ 2. ∴AP +PD 1的最小值AD 1=2+2,因此D 正确.] 7.1

12

[∵V 三棱锥B 1-BFE =V 三棱锥E -BB 1F , 又S △BB 1F =12·BB 1·BF =1

4,且点E 到底面BB 1F 的距离h =1.

∴V 三棱锥B 1-BFE =13·h ·S △BB 1F =1

12

.]

8.(16+213)π [由三视图知,该几何体是由一个底面半径为2, 高为3的圆柱挖去一个同底等高的圆锥所得的组合体. 则S 圆柱侧=2π×2×3=12π.S 圆柱下底=π×22

=4π.

S 圆锥侧=12

×2π×2×13=213π.

故几何体的表面积S =12π+4π+213π=(16+213)π.]

9.90° [建立如图所示的空间直角坐标系D -xyz ,D 为坐标原点,则P (0,0,a ),B (a ,

a ,0),PB →

=(a ,a ,-a ),

又DE →

=? ?

?

??

0,a 2,a 2,

PB →

·DE →

=0+a 22

-a 2

2

=0,

所以PB ⊥DE .

又DF ⊥PB ,且DF ∩DE =D ,

∴PB ⊥平面DEF .

故直线PB 与平面DEF 所成的角为90°.]

10.(1)证明 连接BD ,取DC 的中点G ,连接BG , 由此知DG =GC =BG =1,即△DBC 为直角三角形, ∴BC ⊥BD .又PD ⊥平面ABCD , ∴BC ⊥PD ,又PD ∩BD =D , ∴BC ⊥平面BDP ,∴BC ⊥DM .

又PD =BD =2,PD ⊥BD ,M 为PB 的中点, ∴DM ⊥PB ,∵PB ∩BC =B , ∴DM ⊥平面PBC .

(2)解 以D 为坐标原点,射线DA 、DC 、DP 分别为x 轴、y 轴、z 轴的正半轴,建立如图所示的直角坐标系D -xyz ,

则A (1,0,0),B (1,1,0),C (0,2,0),P (0,0,2),从而M ? ??

??12,1

2,22,设n 1=(x ,

y ,z )是平面ADM 的法向量,则?????n 1·DA →

=0,n 1·DM →

=0,即????

?x =0,x 2+y 2+22

z =0, ∴可取n 1=(0,2,-1).

同理,设n 2=(u ,v ,w )是平面CDM 的法向量,则?????n 2·DC →

=0,

n 2·DM →

=0,

即????

?v =0,u 2+v 2+2

2

w =0,

∴可取n 2=(2,0,-1),∴cos 〈n 1,n 2〉=1

3,

显然二面角A -DM -C 的大小为钝角, ∴所以二面角A -DM -C 的余弦值为-1

3.

11. (1)证明 法一 过E 作EO ⊥BC ,垂足为O ,连接OF . 由△ABC ≌△DBC 可证出△EOC ≌△FOC .

图1

所以∠EOC =∠FOC =π

2,即FO ⊥BC .

又EO ⊥BC ,FO ∩EO =O ,因此BC ⊥面EFO , 又EF ?面EFO ,所以EF ⊥BC .

法二 由题意,以B 为坐标原点,在平面DBC 内过B 作垂直BC 的直线为x 轴,BC 所在直线为y 轴,在平面ABC 内过B 作垂

图2

直BC 的直线为z 轴,建立如图2所示空间直角坐标系.易得B (0,0,0),A (0,-1,3),

D (3,-1,0),C (0,2,0).因而

E ? ????0,12,32,

F ? ????32,12,0,所以EF →

=? ????3

2,0,-32,

BC →

=(0,2,0),因此EF →

·BC →

=0.从而EF →

⊥BC →

,所以EF ⊥BC .

(2)解 法一 在图1中,过O 作OG ⊥BF ,垂足为G ,连接EG .

由平面ABC ⊥平面BDC ,从而EO ⊥面BDC ,∴EO ⊥BF ,又OG ⊥BF ,EO ∩OG =O ,∴BF ⊥平面

BOG ,∴EO ⊥BF .

因此∠EGO 为二面角E -BF -C 的平面角.

在△EOC 中,EO =12EC =12BC ·cos 30°=3

2,

由△BGO ∽△BFC 知,OG =BO

BC ·FC =34

, 因此tan ∠EGO =EO OG

=2,

从而sin ∠EGO =255,即二面角E -BF -C 的正弦值为25

5.

法二 在图2中,平面BFC 的一个法向量为n 1=(0,0,1). 设平面BEF 的法向量n 2=(x ,y ,z ), 又BF →

=? ????32,12,0,BE →=? ????0,1

2,32.

由?????n 2·BF →

=0n 2·BE →

=0

得其中一个n 2=(1,-3,1). 设二面角E -BF -C 大小为θ,且由题意知θ为锐角,则 cos θ=|cos 〈n 1,n 2〉|=??

???

?n 1·n 2|n 1||n 2|=15

因此sin θ=

2

5

=255,即所求二面角的正弦值为25

5.

12.(1)证明 ∵DC =BC =1,DC ⊥BC ,∴BD =2, 又∵AD =2,AB =2,

∴AD 2

+BD 2

=AB 2

,则∠ADB =90°. ∴AD ⊥BD ,

又∵面ADEF ⊥面ABCD ,ED ⊥AD ,面ADEF ∩面ABCD =AD , ∴ED ⊥面ABCD ,∴BD ⊥ED ,

又∵AD ∩DE =D ,∴BD ⊥面ADEF ,BD ?面BDM , ∴面BDM ⊥面ADEF .

(2)解 在面DAB 内过D 作DN ⊥AB ,垂足N , ∵AB ∥CD ,∴DN ⊥CD , 又∵ED ⊥面ABCD ,∴DN ⊥ED ,

∴以D 为坐标原点,DN 为x 轴,DC 为y 轴,DE 为z 轴,建立空间直角坐标系. ∴B (1,1,0),C (0,1,0),E (0,0,2),

N (1,0,0),

设M (x 0,y 0,z 0),

EM →

=λEC →

(0<λ<1),

∴(x 0,y 0,z 0-2)=λ(0,1,-2) 因此x 0=0,y 0=λ,z 0=2(1-λ). 于是点M (0,λ,2(1-λ)). 设平面BDM 的法向量n 1=(x ,y ,z ),

则?????n 1·DM →

=0,n 1·DB →

=0,

∴???λy +2z (1-λ)=0,x +y =0,

令x =1,得n 1=? ????1,-1,λ2(1-λ).

∵平面ABF 的法向量n 2=DN →

=(1,0,0), ∴cos 〈n 1,n 2〉=

1

1+1+λ

2

2(1-λ)

2

=cos π3=12

解得λ=23,λ=2(舍去).∴M ? ????0,2

3,23,

∴点M 的位置在线段CE 的三等分点且靠近C 处.

2018年高三数学(理科)二轮复习完整版【精品推荐】

高考数学第二轮复习计划 一、指导思想 高三第一轮复习一般以知识、技能、方法的逐点扫描和梳理为主,通过第一轮复习,学生大都能掌握基本概念的性质、定理及其一般应用,但知识较为零散,综合应用存在较大的问题。第二轮复习的首要任务是把整个高中基础知识有机地结合在一起,强化数学的学科特点,同时第二轮复习承上启下,是促进知识灵活运用的关键时期,是发展学生思维水平、提高综合能力发展的关键时期,因而对讲、练、检测要求较高。 强化高中数学主干知识的复习,形成良好知识网络。整理知识体系,总结解题规律,模拟高考情境,提高应试技巧,掌握通性通法。 第二轮复习承上启下,是知识系统化、条理化,促进灵活运用的关键时期,是促进学生素质、能力发展的关键时期,因而对讲练、检测等要求较高,故有“二轮看水平”之说. “二轮看水平”概括了第二轮复习的思路,目标和要求.具体地说,一是要看教师对《考试大纲》的理解是否深透,研究是否深入,把握是否到位,明确“考什么”、“怎么考”.二是看教师讲解、学生练习是否体现阶段性、层次性和渐进性,做到减少重复,重点突出,让大部分学生学有新意,学有收获,学有发展.三是看知识讲解、练习检测等内容科学性、针对性是否强,使模糊的清晰起来,缺漏的填补起来,杂乱的条理起来,孤立的联系起来,让学生形成系统化、条理化的知识框架.四是看练习检测与高考是否对路,不拔高,不降低,难度适宜,效度良好,重在基础的灵活运用和掌握分析解决问题的思维方法. 二、时间安排: 1.第一阶段为重点主干知识的巩固加强与数学思想方法专项训练阶段,时间为3月10——4月30日。 2.第二阶段是进行各种题型的解题方法和技能专项训练,时间为5月1日——5月25日。 3.最后阶段学生自我检查阶段,时间为5月25日——6月6日。 三、怎样上好第二轮复习课的几点建议: (一).明确“主体”,突出重点。 第二轮复习,教师必须明确重点,对高考“考什么”,“怎样考”,应了若指掌.只有这样,才能讲深讲透,讲练到位.因此,每位教师要研究2009-2010湖南对口高考试题. 第二轮复习的形式和内容 1.形式及内容:分专题的形式,具体而言有以下八个专题。 (1)集合、函数与导数。此专题函数和导数、应用导数知识解决函数问题是重点,特别要注重交汇问题的训练。 (2)三角函数、平面向量和解三角形。此专题中平面向量和三角函数的图像与性质,恒等变换是重点。 (3)数列。此专题中数列是重点,同时也要注意数列与其他知识交汇问题的训练。 (4)立体几何。此专题注重点线面的关系,用空间向量解决点线面的问题是重点。 (5)解析几何。此专题中解析几何是重点,以基本性质、基本运算为目标。突出直线和圆锥曲线的交点、弦长、轨迹等。 (6)不等式、推理与证明。此专题中不等式是重点,注重不等式与其他知识的整合。 (7)排列与组合,二项式定理,概率与统计、复数。此专题中概率统计是重点,以摸球问题为背景理解概率问题。 ((9)高考数学思想方法专题。此专题中函数与方程、数形结合、化归与转化、分类讨论思想方法是重点。 (二)、做到四个转变。 1.变介绍方法为选择方法,突出解法的发现和运用.

2020版高考数学二轮复习专题汇编全集

第1讲 三角函数与平面向量 A 组 基础达标 1.若点? ????sin 5π 6,cos 5π6在角α的终边上,则sin α的值为________. 2.已知α∈? ????0,π2,2sin2α=cos2α+1,那么sin α=________. 3.(2019·榆林模拟)若sin ? ????A +π4=7210,A ∈? ?? ??π4,π,则sin A =________. 4.若函数f (x )=2sin ? ????2x +φ-π6(0<φ<π)是偶函数,则φ=________. 5.已知函数y =A sin (ωx +φ)+B (A >0,ω>0,|φ|<π 2)的部分图象如图所示,那 么φ=________. (第5题) 6.已知sin ? ????α+π3=1213,那么cos ? ?? ??π6-α=________. 7.在距离塔底分别为80m ,160m ,240m 的同一水平面上的A ,B ,C 处,依次测得塔顶的仰角分别为α,β,γ.若α+β+γ=90°,则塔高为________m. 8.(2019·湖北百校联考)设α∈? ????0,π3,且6sin α+2cos α= 3. (1) 求cos ? ????α+π6的值; (2) 求cos ? ????2α+π12的值.

B 组 能力提升 1.计算:3cos10°-1 sin170°=________. 2.(2019·衡水模拟改编)设函数f (x )=2cos (ωx +φ)对任意的x ∈R ,都有f ? ????π3-x =f ? ????π3+x ,若函数g (x )=3sin (ωx +φ)+cos (ωx +φ)+2,则g ? ?? ??π3的值是________. 3.已知函数f (x )=sin (ωx +φ)(ω>0)的图象的一个对称中心为? ????π2,0,且f ? ?? ? ?π4=1 2 ,那么ω的最小值为________. 4.已知函数f (x )=sin ? ????ωx +π5(ω>0),f (x )在[0,2π]上有且仅有5个零点,给出以下四个结论: ①f (x )在(0,2π)上有且仅有3个极大值点; ②f (x )在(0,2π)上有且仅有2个极小值点; ③f (x )在? ????0,π10上单调递增; ④ω的取值范围是???? ??125,2910. 其中正确的结论是________.(填序号) 5.(2019·浙江卷)已知函数f (x )=sin x ,x ∈R . (1) 当θ∈[0,2π)时,函数f (x +θ)是偶函数,求θ的值; (2) 求函数y =??????f ? ????x +π122+??????f ? ????x +π42 的值域. 6.(2019·临川一中)已知函数f (x )=M sin (ωx +π 6)(M >0,ω>0)的大致图象如图所示, 其中A (0,1),B ,C 为函数f (x )的图象与x 轴的交点,且BC =π. (1) 求M ,ω的值;

高考数学二轮复习 第一部分 专题篇 专题四 立体几何 第一讲 空间几何体课时作业 文

2017届高考数学二轮复习第一部分专题篇专题四立体几何第 一讲空间几何体课时作业文 1.如图为一个几何体的侧视图和俯视图,则它的正视图为( ) 解析:根据题中侧视图和俯视图的形状,判断出该几何体是在一个正方体的上表面上放置一个四棱锥(其中四棱锥的底面是边长与正方体棱长相等的正方形、顶点在底面上的射影是底面一边的中点),因此结合选项知,它的正视图为B. 答案:B 2.以边长为1的正方形的一边所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于( ) A.2πB.π C.2 D.1 解析:所得圆柱体的底面半径为1,母线长为1,所以其侧面积S=2π×1×1=2π,故选A. 答案:A 3.一个侧面积为4π的圆柱,其正视图、俯视图是如图所示的两个边长相等的正方形,则与这个圆柱具有相同的正视图、俯视图的三棱柱的相应的侧视图可以为( )

解析:三棱柱一定有两个侧面垂直,故只能是选项C中的图形. 答案:C 4.(2016·郑州质量预测)已知长方体的底面是边长为1的正方形,高为2,其俯视图是一个面积为1的正方形,侧视图是一个面积为2的矩形,则该长方体的正视图的面积等于( ) A.1 B.2 C.2 D.22 解析:由题意知,所求正视图是底边长为2,腰长为2的正方形,其面积与侧视图面积相等为2. 答案:C 5.(2016·河北五校联考)某四面体的三视图如图,则其四个面中最大的面积是( ) A.2 B.22 C. 3 D.23 解析:在正方体ABCD-A1B1C1D1中还原出三视图的直观图,其是一个三个顶点在正方体的右侧面、一个顶点在左侧面的三棱锥,即为D1-BCB1,如图所示,其四个面的面积分别为2,22,22,23,故选D. 答案:D 6.(2016·郑州模拟)如图是一个四面体的三视图,这三个视图均是腰长为2的等腰直角三角形,正视图和俯视图中的虚线是三角形的中线,则该四面体的体积为( )

2020高考数学专题复习----立体几何专题

空间图形的计算与证明 一、近几年高考试卷部分立几试题 1、(全国 8)正六棱柱 ABCDEF -A 1B 1C 1D 1E 1F 1 底面边长为 1, 侧棱长为 2 ,则这个棱柱的侧面对角线 E 1D 与 BC 1 所成的角是 ( ) A 、90° B 、60° C 、45° D 、30° [评注]主要考查正六棱柱的性质,以及异面直线所成角的求法。 2、(全国 18)如图,正方形ABCD 、ABEF 的边长都是 1,而且 平面 ABCD 、ABEF 互相垂直,点 M 在 AC 上移动,点 N 在 BF C 上移动,若 CM=NB=a(0

的底面是边长为a的正方形,PB⊥面ABCD。 (1)若面PAD与面ABCD所成的二面角为60°, 求这个四棱锥的体积; (2)证明无论四棱锥的高怎样变化,面PAD与面 PCD所成的二面角恒大于90°。 [评注]考查线面关系和二面角概念,以及空间想象力和逻辑推理能力。 4、(02全国文22)(一)给出两块面积相同的正三角形纸片,要求用其中一块剪拼成一个正三棱锥模型,使它们的全面积都与原三角形面积相等,请设计一种剪拼法,分别用虚线标示在图(1)(2)中,并作简要说明。 (3) (1)(2) (二)试比较你剪拼的正三棱锥与正三棱柱的体积的大小。(三)如果给出的是一块任意三角形的纸片,如图(3)要求剪拼成一个直三棱柱模型,使它的全面积与给出的三角形面积相等,请设计一种剪拼方法,用虚线标出在图3中,并作简要说明。

2020届高考数学大二轮复习教师用书(理)

专题强化突破 专题一集合、常用逻辑用语、向量、复数、算法、推理与证明、不等式及线性规划 第一讲集合与常用逻辑用语

本部分内容在备考时应注意以下几个方面: (1)紧紧抓住集合的代表元素的实际意义,掌握集合问题的常见解法,活用数学思想解决问题. (2)明确命题的条件和结论之间的关系,关注逻辑联结词和命题,明确命题的否定和否命题的区别. (3)掌握必要条件、充分条件与充要条件的概念及应用. 预测2019年命题热点为: (1)集合的基本性质以及集合之间的基本关系与运算,与不等式的解集、函数的定义域、值域、方程的解集等知识结合在一起考查. (2)与函数、数列、三角函数、不等式、立体几何、解析几何、概率统计等知识结合在一起考查. Z 知识整合hi shi zheng he 1.集合的概念、关系及运算 (1)集合元素的特性:确定性、互异性、无序性. (2)集合与集合之间的关系:A ?B ,B ?C ?A ?C . (3)空集是任何集合的子集. (4)含有n 个元素的集合的子集有2n 个,真子集有2n -1个,非空真子集有2n -2个. (5)重要结论:A ∩B =A ?A ?B ,A ∪B =A ?B ?A . 2.充要条件 设集合A ={x |x 满足条件p },B ={x |x 满中条件q },则有 A B B A (1)命题p ∨q ,只要p ,q 有一真,即为真;命题p ∧q ,只有p ,q 均为真,才为真;綈p

和p 为真假对立的命题. (2)命题p ∨q 的否定是(綈p )∧(綈q );命题p ∧q 的否定是(綈p )∨(綈q ). 4.全(特)称命题及其否定 (1)全称命题p :?x ∈M ,p (x ).它的否定綈p :?x 0∈M ,綈p (x 0). (2)特称命题p :?x 0∈M ,p (x ).它的否定綈p :?x ∈M ,綈p (x ).,Y 易错警示 i cuo jing shi 1.忽略集合元素互异性: 在求解与集合有关的参数问题时,一定要注意集合元素的互异性,否则容易产生增根. 2.忽略空集: 空集是任何集合的子集,是任何非空集合的真子集,在分类讨论时要注意“空集优先”的原则. 3.混淆命题的否定与否命题: 在求解命题的否定与否命题时,一定要注意命题的否定是只对命题的结论进行否定,而否命题既对命题的条件进行否定,又对命题的结论进行否定 . 1.(文)(2018·全国卷Ⅰ,1)已知集合A ={0,2},B ={-2,-1,0,1,2},则A ∩B =( A ) A .{0,2} B .{1,2} C .{0} D .{-2,-1,0,1,2} [解析] A ∩B ={0,2}∩{-2,-1,0,1,2}={0,2}. 故选A . (理)(2018·全国卷Ⅰ,2)已知集合A ={x |x 2-x -2>0},则?R A =( B ) A .{x |-12} D .{x |x ≤-1}∪{x |x ≥2} [解析] ∵ x 2-x -2>0,∴ (x -2)(x +1)>0,∴ x >2或x <-1,即A ={x |x >2或x <-1}.在数轴上表示出集合A ,如图所示. 由图可得?R A ={x |-1≤x ≤2}. 故选B . 2.(文)(2018·全国卷Ⅲ,1)已知集合A ={x |x -1≥0},B ={0,1,2},则A ∩B =( C )

2016高考数学二轮复习微专题强化练习题:13立体几何综合练习(文)

第一部分 一 13(文) 一、选择题 1.(2015·东北三校二模)设l ,m 是两条不同的直线,α是一个平面,则下列说法正确的是( ) A .若l ⊥m ,m ?α,则l ⊥α B .若l ⊥α,l ∥m ,则m ⊥α C .若l ∥α,m ?α,则l ∥m D .若l ∥α,m ∥α,则l ∥m [答案] B [解析] 当l 、m 是平面α内的两条互相垂直的直线时,满足A 的条件,故A 错误;对于C ,过l 作平面与平面α相交于直线l 1,则l ∥l 1,在α内作直线m 与l 1相交,满足C 的条件,但l 与m 不平行,故C 错误;对于D ,设平面α∥β,在β内取两条相交的直线l 、m ,满足D 的条件,故D 错误;对于B ,由线面垂直的性质定理知B 正确. 2.已知α、β、γ是三个不同的平面,命题“α∥β,且α⊥γ?β⊥γ”是真命题,如果把α、β、γ中的任意两个换成直线,另一个保持不变,在所得的所有新命题中,真命题有( ) A .0个 B .1个 C .2个 D .3个 [答案] C [解析] 若α、β换成直线a 、b ,则命题化为“a ∥b ,且a ⊥γ?b ⊥γ”,此命题为真命题;若α、γ换为直线a 、b ,则命题化为“a ∥β,且a ⊥b ?b ⊥β”,此命题为假命题;若β、γ换为直线a 、b ,则命题化为“a ∥α,且b ⊥α?a ⊥b ”,此命题为真命题,故选C. 3.(2015·重庆文,5)某几何体的三视图如图所示,则该几何体的体积为( ) A.1 3+2π B.13π 6 C.7π3 D.5π2 [答案] B [解析] 由三视图可知该几何体是由一个圆柱和一个半圆锥组成,圆柱的底面半径为1,

2020高考数学立体几何练习题23题

2020高考数学之立体几何解答題23題 一.解答题(共23小题) 1.在如图所示的几何体中,四边形ABCD是菱形,ADNM是矩形,平面ADNM⊥平面ABCD,∠DAB=60°,AD=2,AM=1,E为AB的中点. (Ⅰ)求证:AN∥平面MEC; (Ⅱ)在线段AM上是否存在点P,使二面角P﹣EC﹣D的大小为?若存在,求出AP的长h;若不存在,请说明理由. 2.如图,三棱柱中ABC﹣A1B1C1中,点A1在平面ABC内的射影D为棱AC的中点,侧面A1ACC1为边长为2 的菱形,AC⊥CB,BC=1. (Ⅰ)证明:AC1⊥平面A1BC; (Ⅱ)求二面角B﹣A1C﹣B1的大小.

3.如图,已知四棱锥P﹣ABCD,PB⊥AD侧面PAD为边长等于2的正三角形,底面ABCD为菱形,侧面PAD与底面ABCD所成的二面角为120°. (I)求点P到平面ABCD的距离, (II)求面APB与面CPB所成二面角的大小. 4.在正三棱锥P﹣ABC中,底面正△ABC的中心为O,D是PA的中点,PO=AB=2,求PB与平面BDC所成角的正弦值.

5.如图,正三棱锥O﹣ABC的三条侧棱OA、OB、OC两两垂直,且长度均为2.E、F分别是AB、AC的中点,H是EF的中点,过EF作平面与侧棱OA、OB、OC或其延长线分别相交于A1、B1、C1,已知. (1)求证:B1C1⊥平面OAH; (2)求二面角O﹣A1B1﹣C1的大小. 6.如图,在三棱锥A﹣BCD中,侧面ABD、ACD是全等的直角三角形,AD是公共的斜边,且AD=,BD=CD=1,另一个侧面是正三角形. (1)求证:AD⊥BC. (2)求二面角B﹣AC﹣D的大小. (3)在直线AC上是否存在一点E,使ED与面BCD成30°角?若存在,确定E的位置;若不存在,说明理由.

高三二轮复习立体几何试卷及答案

2020年高考数学专题复习(立体几何) 1.如图,一个圆柱的底面半径为3,高为2,若它的两个底面圆周均在球O 的球面上,则球O 的表面积为( ) A .323 π B .16π C .8π D .4π 2.《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”. 已知某“堑堵”的三视图如图所示,正视图中的虚线平分矩形的面积, 则该“堑堵”的体积为( ) A . 2 3 B .1 C .2 D .4 3.如图,在底面边长为1,高为2的正四棱柱1111ABCD A B C D -中, 点P 是平面1111D C B A 内一点,则三棱锥P BCD -的正视图与侧视图 的面积之和为( ) A .2 B .3 C .4 D .5 4.阿基米德(公元前287年—公元前212年)是古希腊伟大的哲学家、数学家和物理学家,他和高斯、牛顿并列被称为世界三大数学家.据说,他自己觉得最为满意的一个数学发现就是“圆柱内切球体的体积是圆柱体积的三分之二,并且球的表面积也是圆柱表面积的三分之二”.他特别喜欢这个结论,要求后人在他的墓碑上刻着一个圆柱容器里放了一个球,如图,该球顶天立地,四周碰边,表面积为54π的圆柱的底面直径与高都等于球的直径,则该球的体积为 ( ) A .4π B .16π C .36π D . 643 π

3.如图所示,在边长为4的正方形纸片ABCD 中, AC 与BD 相交于O .剪去AOB ?,将剩余部分沿 OC ,OD 折叠,使OA 、OB 重合,则以()A B 、 C 、D 、O 为顶点的四面体的外接球的体积为________. 6.一副直角三角板(如图1)拼接,将BCD ?折起,得到三棱锥A BCD -(如图2). (1)若,E F 分别为,AB BC 的中点,求证://EF 平面ACD ; (2)若平面ABC ⊥平面BCD ,求证:平面ABD ⊥平面ACD . 7.在棱长为2的正方体1111ABCD A B C D -中,设E 是棱1CC 的中点. (1)求证:; (2)求证:平面 ; (3)求三棱锥的体积.

2014届高考数学(理)二轮复习大题规范训练三

弋阳一中2014届高考二轮复习 大题规范练(三) 数列综合题 (限时:60分钟) 1.(2013·高考山东卷)设等差数列{a n }的前n 项和为S n ,且S 4=4S 2,a 2n =2a n +1. (1) 求数列{a n }的通项公式; (2) 设数列{b n }的前n 项和为T n ,且T n +a n +12n =λ(λ为常数),令c n =b 2n (n ∈N *),求数列{c n }的前n 项和R n . 2.已知公比为q 的等比数列{a n }的前6项和S 6=21,且4a 1、32 a 2、a 2成等差数列. (1)求a n ; (2)设{b n }是首项为2,公差为-a 1的等差数列,其前n 项和为T n ,求不等式T n -b n >0的解集. 3.(2014·济南市模拟)数列{a n }的前n 项和为S n ,a 1=1,a n +1=2S n +1(n ∈N *),等差数列{b n } 满足b 3=3,b 5=9. (1)分别求数列{a n },{b n }的通项公式; (2)设c n = b n +2a n +2(n ∈N *),求证: c n +1<c n ≤13 .

4.已知数列{a n }中,a 1=1,a n +1= a n a n +3(n ∈N *). (1)求数列{a n }的通项a n ; (2)若数列{b n }满足b n =(3n -1)n 2n a n ,数列{b n }的前n 项和为T n ,若不等式(-1)n λ<T n 对一切n ∈N *恒成立,求λ的取值范围. 5.(2014·辽宁省五校联考)已知数列{a n }满足:a 1=1,a 2=a (a ≠0),a n +2=p ·a 2 n +1a n (其中p 为非零常数,n ∈N *). (1)判断数列?? ????a n +1a n 是不是等比数列; (2)求a n ; (3)当a =1时,令b n = na n +2a n ,S n 为数列{b n }的前n 项和,求S n . 6.(2013·高考广东卷)设数列{a n }的前n 项和为S n .已知a 1=1,2S n n =a n +1-13n 2-n -23 ,n ∈

2020高考数学二轮专题复习 三角函数

三角函数 【考纲解读】 1.了解任意角的概念,了解弧度制的概念,能进行弧度与角度的互化;理解任意角的三角函数(正弦、余弦、正切)的定义. 2.能利用单位圆中的三角函数线推导出 2 πα±,πα±的正弦、余弦、正切的诱导公式; 理解同角的三角函数的基本关系式:sin 2 x+cos 2 x=1, sin tan cos x x x =. 3.能画出y=sinx, y=cosx, y=tanx 的图象,了解三角函数的周期性;2.理解正弦函数,余弦函数在区间[0,2π]上的性质(如单调性,最大值和最小值以及与x 轴的交点等),理解正切函数在区间(- 2π,2 π )内的单调性. 4.了解函数sin()y A x ω?=+的物理意义;能画出sin()y A x ω?=+的图象,了解 ,,A ω?对函数图象变化的影响. 5.会用向量的数量积推导两角差的余弦公式;能利用两角差的余弦公式导出两角和与差的正弦、余弦和正切公式,了解它们的内在联系. 6.能利用两角差的余弦公式导出二倍角的正弦、余弦、正切公式,了解它们的内在联系;能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆). 【考点预测】 从近几年高考试题来看,对三角函数的考查:一是以选择填空的形式考查三角函数的性质及公式的应用,一般占两个小题;二是以解答题的形式综合考查三角恒等变换、sin()y A x ω?=+的性质、 三角函数与向量等其他知识综合及三角函数为背景的实际问题等. 预测明年,考查形式不变,选择、填空题以考查三角函数性质及公式应用为主,解答题将会以向量为载体,考查三角函数的图象与性质或者与函数奇偶性、周期性、最值等相结合,以小型综合题形式出现. 【要点梳理】 1.知识点:弧度制、象限角、终边相同的角、任意角三角函数的定义、同角三角函数基本关系式、诱导公式、三角函数线、三角函数图象和性质;和、差、倍角公式,正、余弦定理及其变形公式. 2.三角函数中常用的转化思想及方法技巧: (1)方程思想:sin cos αα+, sin cos αα-,sin cos αα三者中,知一可求二;

高考数学专题复习立体几何练习题

立体几何测试卷 班级 姓名 学号 一、选择题: 1.一个圆锥的侧面积是其底面积的2倍,则该圆锥的母线与底面所成的角为( ) (A )30 (B )45 (C )60 (D )75 2.两个完全相同的长方体的长、宽、高分别为5 cm 、4cm 、3cm ,把它们重叠在一起组成一个新长方体,在这些新长方体中,最长的对角线的长度是 ( ) (A )cm 77 (B )cm 27 (C )cm 55 (D )cm 210 3.等边三角形ABC 的边长为4,M 、N 分别为AB 、AC 的中点,沿MN 将AMN ?折起,使得面AMN 与面MNCB 所成的二面角为30 ,则四棱锥A —MNCB 的体积为( ) (A ) 2 3 (B )23 (C )3 (D )3 4.若二面角βα--l 为120 ,直线m α⊥,则β所在平面内的直线与m 所成角的取值范围是 ( ) (A )(] 90,0 (B )[ ] 60 ,30 (C )[] 90,60 (D )[] 90,30 5.关于直线a 、b 、l 及平面M 、N ,下列命题中正确的是 ( ) (A )若a // M,b // M,则a // b (B )若a // M,b ⊥a,则b ⊥ M (C )若a ,,M b M ??且l b l a ⊥⊥,则M l ⊥ (D )若,//,N a M a ⊥则N M ⊥ 6.棱长为a 的正方体中,连接相邻的中心,以这些线段为棱的八面体的体积为( ) (A )33a (B )43a (C )63a (D )12 3 a 7.一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为( ) (A )3π (B )4π (C )π33 (D )6π 8. 已知圆锥的底面半径为R ,高为3R ,它的所有内接圆柱中,全面积的最大值是( ) (A )22 R π (B ) 249R π (C )238R π (D )22 5 R π 9.在下列条件中,可判断平面α与β平行的是 ( ) (A )βα、都垂直于平面γ (B )α内存在不共线的三点到β的距离相等

高考数学(理科)二轮复习【专题2】函数的应用(含答案)

第2讲函数的应用 考情解读(1)函数零点所在区间、零点个数及参数的取值范围是高考的常见题型,主要以填空题的形式出现.(2)函数的实际应用以二次函数、分段函数模型为载体,主要考查函数的最值问题. 1.函数的零点与方程的根 (1)函数的零点 对于函数f(x),我们把使f(x)=0的实数x叫做函数f(x)的零点. (2)函数的零点与方程根的关系 函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的根,即函数y=f(x)的图象与函数y=g(x)的图象交点的横坐标. (3)零点存在性定理 如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且有f(a)·f(b)<0,那么,函数y =f(x)在区间(a,b)内有零点,即存在c∈(a,b)使得f(c)=0,这个c也就是方程f(x)=0的根.注意以下两点: ①满足条件的零点可能不唯一; ②不满足条件时,也可能有零点. (4)二分法求函数零点的近似值,二分法求方程的近似解. 2.函数模型 解决函数模型的实际应用题,首先考虑题目考查的函数模型,并要注意定义域.其解题步骤是(1)阅读理解,审清题意:分析出已知什么,求什么,从中提炼出相应的数学问题;(2)数学建模:弄清题目中的已知条件和数量关系,建立函数关系式;(3)解函数模型:利用数学方法得出函数模型的数学结果;(4)实际问题作答:将数学问题的结果转化成实际问题作出解答. 热点一函数的零点 例1(1)函数f(x)=2x+x3-2在区间(0,1)内的零点个数是________.

(2)(2014·辽宁改编)已知f (x )为偶函数,当x ≥0时,f (x )=??? cos πx ,x ∈[0,1 2 ], 2x -1,x ∈(1 2 ,+∞),则不等式 f (x -1)≤1 2 的解集为________. 思维升华 (1)根据二分法原理,逐个判断;(2)画出函数图象,利用数形结合思想解决. 答案 (1)1 (2)[14,23]∪[43,7 4 ] 解析 (1)先判断函数的单调性,再确定零点. 因为f ′(x )=2x ln 2+3x 2>0, 所以函数f (x )=2x +x 3-2在(0,1)上递增, 且f (0)=1+0-2=-1<0,f (1)=2+1-2=1>0, 所以有1个零点. (2)先画出y 轴右边的图象,如图所示. ∵f (x )是偶函数,∴图象关于y 轴对称,∴可画出y 轴左边的图象,再画直线y =1 2.设与曲线交 于点A ,B ,C ,D ,先分别求出A ,B 两点的横坐标. 令cos πx =12,∵x ∈[0,1 2], ∴πx =π3,∴x =1 3 . 令2x -1=12,∴x =34,∴x A =13,x B =34 . 根据对称性可知直线y =12与曲线另外两个交点的横坐标为x C =-34,x D =-1 3. ∵f (x -1)≤12,则在直线y =1 2上及其下方的图象满足, ∴13≤x -1≤34或-34≤x -1≤-1 3, ∴43≤x ≤74或14≤x ≤23 . 思维升华 函数零点(即方程的根)的确定问题,常见的有①函数零点值大致存在区间的确定;②零点个数的确定;③两函数图象交点的横坐标或有几个交点的确定.解决这类问题的常用方法有解方程法、利用零点存在的判定或数形结合法,尤其是方程两端对应的函数类型不同

2015届高三二轮复习立体几何专题训练

D C B A F E A B C A 1 O B 1 C 1 1 2015届高三二轮复习立体几何专题训练 1.如图所示的多面体中, ABCD 是菱形,BDEF 是矩形,ED ⊥面ABCD ,3 BAD π ∠= . (1)求证:平面//BCF 面AED ; (2)若BF BD a ==,求四棱锥A BDEF -的体积. 2.如图1,在Rt △ABC 中,∠ABC =90°,D 为AC 中点,AE BD ⊥于E (不同于点D ),延长AE 交BC 于F , 将△ABD 沿BD 折起,得到三棱锥1A BCD -,如图2所示. (1)若M 是FC 的中点,求证:直线DM //平面1A EF ; (2)求证:BD ⊥1A F ; (3)若平面1A BD ⊥平面BCD ,试判断直线1A B 与直线CD 能否垂直?并说明理由. 3.如图,在四棱锥ABCD P -中,底面ABCD 是正方形,△PAD 是正三角形,平面PAD ⊥平面M ABCD ,和N 分别是AD 和BC 的中点。 (1)求证:MN PM ⊥; (2)求证:平面PMN ⊥平面PBC ; (3)在PA 上是否存在点Q ,使得平面//QMN 平面PCD ?若在求出Q 点位置,并证明;若不存在,请说明理由。 4.如图,四边形ABCD 是菱形,四边形MADN \是矩形,平面⊥MADN 平面ABCD ,F E ,分别为DC MA ,的中点,求证: (1)//EF 平面MNCB ; (2)平面MAC ⊥平面BND . 5.如图1,在直角梯形ABCD 中,90ADC ∠=?,//CD AB ,1 22 AD CD AB == =, 点E 为AC 中点.将ADC ?沿AC 折起, 使平面ADC ⊥平面ABC ,得到几何体D ABC -,如图2所示. (1)在CD 上找一点F ,使//AD 平面EFB ; (2)求点C 到平面ABD 的距离. 6.如图,在斜三棱柱111C B A ABC -中,O 是AC 的中点,O A 1⊥平面0 90,=∠BCA ABC ,BC AC AA ==1. (1)求证:1AC ⊥平面BC A 1; (2)若21=AA ,求三棱锥AB A C 1-的高的大小. 7.已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1)//1O C 面11AB D ; (2)1A C ⊥面11AB D . (3)平面//11D AB 平面BD C 1 A B C D 图2 E B A C D 图1 E 1 图

高考数学二轮专题复习 数学思想方法

高考数学二轮专题复习 数学思想方法 【考纲解读】 1.熟练掌握函数与方程思想、数形结合思想、分类讨论思想、转化与化归思想. 2.能够对所学知识进行分类或归纳,能应用数学思想方法分析和解决问题,系统地把握知识间的内在联系. 【考点预测】 1.函数知识涉及的知识点多、面广,在概念性、应用性、理解性都有一定的要求,所以是高考中考查的重点,也是高考的一个热点。对函数试题的设计仍然会围绕几个基本初等函数和函数的性质、图象、应用考查函数知识;与方程、不等式、解析几何等内容相结合,考查函数知识的综合应用;在函数知识考查的同时,加强对函数方程、分类讨论、数形结合、等价转化等数学思想方法的考查。 2.预测在今年的高考中,数形结合与分类讨论思想仍是考查的一个热点,数形结合的考查方式常以数学式、数学概念的几何意义、函数图象、解析几何等为载体综合考查,分类讨论思想的考查重点为含有参数的函数性质问题、与等比数列的前n 项和有关的计算推证问题、直线与圆锥曲线的位置关系不定问题等。 3.预测在今年的高考中,运用化归与转化思想解题的途径主要有:借助函数、方程(组)、辅助命题、等价变换、特殊的式与数的结构、几何特征进行转化,其方法有:正反转化、数形转化、语义转化、等与不等、抽象问题与具体问题化归,一般问题与特殊问题化归,正向思维与逆向思维化归。 【要点梳理】 1.函数与方程思想:我们应用函数思想的几种常见题型是:遇到变量,构造函数关系解题;有关的不等式、方程、最小值和最大值之类的问题,利用函数观点加以分析;含有多个变量的数学问题中,选定合适的主变量,从而揭示其中的函数关系;实际应用问题,翻译成数学语言,建立数学模型和函数关系式,应用函数性质或不等式等知识解答;等差、等比数列中,通项公式、前n 项和的公式,都可以看成n 的函数,数列问题也可以用函数方法解决。 2.数形结合的思想:是解答高考数学试题的一种常用方法与技巧,特别是在解选择与填空题时发挥着奇特功效.具体操作时,应注意以下几点:(1)准确画图,注意函数的定义域;(2)用图象法讨论方程的解的个数. 3.与分类讨论有关的知识点有:直线的斜率分为存在和不存在两种情形、等比数列中的公比1q =和1q ≠、由参数的变化引起的分类讨论、由图形的不确定性引起的分类讨论、指对函数的底数a 分为1a >和01a <<两种情形等。分类的原则是:不重复、不遗漏、分层次讨论。分类讨论的一般流程是:明确讨论的对象、选择分类的标准、逐类进行讨论、归纳整合。 4.转化与化归常用的方法有:直接转化法、换元法、数形结合法、构造法、坐标法、类比法、特殊化方法等。 【考点在线】 考点一 函数与方程思想 函数描述了自然界中数量之间的关系,函数思想通过提出问题的数学特征,建立函数关系型的数学模型,从而进行研究。它体现了“联系和变化”的辩证唯物主义观点。一般地,函数思想是构造函数从而利用函数的性质解题,经常利用的性质是:f(x)、f -1 (x)的单调性、 奇偶性、周期性、最大值和最小值、图像变换等,要求我们熟练掌握的是一次函数、二次函数、幂函数、指数函数、对数函数、三角函数的具体特性。在解题中,善于挖掘题目中的隐

立体几何专题(二轮复习)

第1页 共4页 ◎ 第2页 共4页 专题--立体几何 1.[2014·安徽卷] 一个多面体的三视图如图1-1所示,则该多面体的体积是( ) 图1-1 图1-2 图1-3 图1-4 A.233 B.47 6 C .6 D .7 2.[2014·北京卷] 某三棱锥的三视图如图1-2所示,则该三棱锥最长棱的棱长为________. 3.[2014·湖南卷] 一块石材表示的几何体的三视图如图1-3所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( ) A .1 B .2 C .3 D .4 4.[2014·浙江卷] 某几何体的三视图(单位:cm)如图所示,则该几何体的体积是( ) A .72 cm 3 B .90 cm 3 C .108 cm 3 D .138 cm 3 5.[2014·辽宁卷] 已知m ,n 表示两条不同直线,α表示平面.下列说法正确的是( ) A .若m ∥α,n ∥α,则m ∥n B .若m ⊥α,n ?α,则m ⊥n C .若m ⊥α,m ⊥n ,则n ∥α D .若m ∥α,m ⊥n ,则n ⊥α 6.[2014·浙江卷] 设m ,n 是两条不同的直线,α,β是两个不同的平面( ) A .若m ⊥n ,n ∥α,则m ⊥α B .若m ∥β,β⊥α,则m ⊥α C .若m ⊥β,n ⊥β,n ⊥α,则m ⊥α D .若m ⊥n ,n ⊥β,β⊥α,则m ⊥α 7.(2016年3卷9题)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为() (A )18+B )54+C )90(D )81 7. [2014·安徽卷] 如图1-5所示,四棱锥P - ABCD 的底面是边长为8的正方形,四条侧棱长均为217. 点G ,E ,F ,H 分别是棱PB ,AB ,CD ,PC 上共面的四点,平面GEFH ⊥平面ABCD ,BC ∥平面GEFH . (1)证明:GH ∥EF ; (2)若EB =2,求四边形GEFH 的面积. 图1-5 8.[2014·北京卷] 如图1-6,在三棱柱ABC -A 1B 1C 1中,侧棱垂直于底面,AB ⊥BC ,AA 1=AC =2,BC =1,E ,F 分别是A 1C 1,BC 的中点. (1)求证:平面ABE ⊥平面B 1BCC 1; (2)求证:C 1F ∥平面ABE ; (3)求三棱锥E - ABC 的体积. 图1-6

2019-2020年高考数学大题专题练习——立体几何

2019-2020年高考数学大题专题练习——立体几何(一) 1.如图所示,四棱锥P ABCD -中,底面ABCD 为正方形,⊥PD 平面ABCD , 2PD AB ==,点,,E F G 分别为,,PC PD BC 的中点. (1)求证:EF PA ⊥; (2)求二面角D FG E --的余弦值. 2.如图所示,该几何体是由一个直角三棱柱ADE BCF -和一个正四棱锥P ABCD -组合而成,AF AD ⊥,2AE AD ==. (1)证明:平面⊥PAD 平面ABFE ; (2)求正四棱锥P ABCD -的高h ,使得二面角C AF P --的余弦值是 22 .

3.四棱锥P ABCD -中,侧面PDC是边长为2的正三角形,且与底面垂直,底面ABCD是 面积为ADC ∠为锐角,M为PB的中点. (Ⅰ)求证:PD∥面ACM. (Ⅱ)求证:PA⊥CD. (Ⅲ)求三棱锥P ABCD -的体积. 4.如图,四棱锥S ABCD -满足SA⊥面ABCD,90 DAB ABC ∠=∠=?.SA AB BC a ===,2 AD a =. (Ⅰ)求证:面SAB⊥面SAD. (Ⅱ)求证:CD⊥面SAC. S B A D M C B A P D

5.在四棱锥P ABCD -中,底面ABCD 为矩形,测棱PD ⊥底面ABCD ,PD DC =,点E 是 BC 的中点,作EF PB ⊥交PB 于F . (Ⅰ)求证:平面PCD ⊥平面PBC . (Ⅱ)求证:PB ⊥平面EFD . 6.在直棱柱111ABC A B C -中,已知AB AC ⊥,设1AB 中点为D ,1A C 中点为E . (Ⅰ)求证:DE ∥平面11BCC B . (Ⅱ)求证:平面11ABB A ⊥平面11ACC A . E D A B C C 1 B 1 A 1 D A B C E F P

高考数学二轮复习(理数)专题圆锥曲线

专题13 圆锥曲线 1.已知双曲线-=1〔a>0,b>0〕的左、右焦点分别为F1,F2,以F1,F2为直径的圆与双曲线渐近线的一个交点为〔3,4〕,则此双曲线的方程为〔〕 A.-=1 B.-=1 C.-=1 D.-=1 【答案】C【解析】 2.椭圆+=1的焦点为F1和F2,点P在椭圆上,如果线段PF1的中点在y轴上,那么|PF1|是|PF2|的〔〕A.7倍 B.5倍 C.4倍 D.3倍 【答案】A 【解析】由题设知F1〔-3,0〕,F2〔3,0〕,如图, ∵线段PF1的中点M在y轴上,∴可设P〔3,b〕, 把P〔3,b〕代入椭圆+=1,得b2=.∴|PF1|==,|PF2|==. ∴==7.故选A. 3.已知F1,F2为双曲线C:x2-y2=1的左、右焦点,点P在C上,∠F1PF2=60°,则|PF1|·|PF2|=〔〕 A.2 B. 4 C.6 D.8 【答案】B【解析】由余弦定理得 cos∠F1PF2=|PF1|2+|PF2|2-|F1F2|2 2|PF1|·|PF2| ?cos 60°=?|PF1|·|PF2|=4. 4.设F1,F2分别是双曲线C:-=1的左、右焦点,点P在此双曲线上,且PF1⊥PF2,则双曲线C的离心率等于〔〕 A. B. C. D. 6 2 【答案】B

5.已知抛物线C的顶点是椭圆+=1的中心,焦点与该椭圆的右焦点F2重合,若抛物线C与该椭圆在第一象限的交点为P,椭圆的左焦点为F1,则|PF1|=〔〕 A. B. C. D.2 【答案】B 【解析】由椭圆的方程可得a2=4,b2=3,∴c==1,故椭圆的右焦点F2为〔1,0〕,即抛物线C的焦点为〔1,0〕,∴=1,∴p=2,∴2p=4,∴抛物线C的方程为y2=4x,联立解得或∵P为第一象限的点,∴P, ∴|PF2|=1+=,∴|PF1|=2a-|PF2|=4-=,故选B. 6.已知双曲线-=1〔a>0,b>0〕的左顶点与抛物线y2=2px〔p>0〕的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为〔-2,-1〕,则双曲线的焦距为〔〕A.2 B.2 C.4 D.4 5 【答案】B 7.抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AK⊥l,垂足为K,则△AKF的面积是〔〕 A.4 B.3 C.4 D.8 【答案】C 【解析】∵y2=4x,∴F〔1,0〕,l:x=-1,过焦点F且斜率为的直线l1:y=〔x-1〕,与y2=4x

2020高考数学第二轮专题复习:专题二

专题二 万能答题模板——助你解题得高分 数学解答题题型解读 数学解答题是高考数学试卷中的一类重要题型,通常是高考的把关题和压轴题,具有较好的区分层次和选拔功能.目前的高考解答题已经由单纯的知识综合型转化为知识、方法和能力的综合型解答题.要求考生具有一定的创新意识和创新能力等特点,解答题综合考查运算能力、逻辑思维能力、空间想象能力和分析问题、解决问题的能力. 针对不少同学答题格式不规范,出现“会而不对,对而不全”的问题,规范每种题型的万能答题模板,按照规范的解题程序和答题格式分步解答,实现答题步骤的最优化. 万能答题模板以数学方法为载体,清晰梳理解题思路,完美展现解题程序,把所有零散的解题方法与技巧整合到不同的模块中,再把所有的题目归纳到不同的答题模板中,真正做到题题有方法,道道有模板,使学生从题海中上岸,知点通面,在高考中处于不败之地,解题得高分. 模板1 三角函数的性质问题 例1 已知函数f (x )=cos 2????x +π12,g (x )=1+1 2 sin 2x . (1)设x =x 0是函数y =f (x )图象的一条对称轴,求g (x 0)的值; (2)求函数h (x )=f (x )+g (x )的单调递增区间. 审题破题 (1)由x =x 0是y =f (x )的对称轴可得g (x 0)取到f (x )的最值;(2)将h (x )化成y =A sin(ωx +φ)的形式. 解 (1)f (x )=12? ???1+cos ????2x +π6, 因为x =x 0是函数y =f (x )图象的一条对称轴, 所以2x 0+π 6=k π (k ∈Z ), 即2x 0=k π-π 6 (k ∈Z ). 所以g (x 0)=1+12sin 2x 0=1+1 2sin ????k π-π6,k ∈Z . 当k 为偶数时,g (x 0)=1+12sin ????-π6=1-14=34. 当k 为奇数时,g (x 0)=1+12sin π6=1+14=5 4. (2)h (x )=f (x )+g (x ) =12[1+cos ????2x +π6]+1+1 2 sin 2x

相关主题