搜档网
当前位置:搜档网 › 过流保护的方式

过流保护的方式

过流保护的方式
过流保护的方式

过流保护的方式

?1、复合型:将多种保护符合起来.

2、限功率型:限定输出的总功率

3、回卷型:初始电流恒定不变,电压下降到一定数值电流开始减小.

4、打隔型:过流后,电流电压下降到0,然后又开始上升,周而复始.

5:恒流行:电流恒定不变,电压下降

过流保护电路的应用举例

?压器初级电压220V,次级电压16V,次级电流1.5A,次级异常时的初级电流约350mA,10分钟之内应进入保护状态,变压器工作环境温度-10 ~ 40 ℃,正常工作时温升15 ~ 20 ℃,PTC热敏电阻器靠近变压器安装,请选定一PTC热敏电阻器用于初级保护。

1.确定最大工作电压

已知变压器工作电压220V,考虑电源波动的因素,最大工作电压应达到220V×(1+20%)=264V

PTC热敏电阻器的最大工作电压选265V。

2.确定不动作电流

经计算和实际测量,变压器正常工作时初级电流125mA,考虑到PTC热敏电阻的安装位置的环境温最高可达60 ℃,可确定不动作电流在60 ℃时应为130~ 140mA。

3.确定动作电流

考虑到PTC热敏电阻器的安装位置的环境温度最低可达到-10 ℃或25℃,可确定动作电流在-10 ℃或25℃时应为340~ 350mA,动作时间约5分钟。

4.确定额定零功率电阻R25

PTC热敏电阻器串联在初级中,产生的电压降应尽量小,PTC热敏电阻器自身的发热功率也应尽量小,一般PTC热敏电阻器的压降应小于总电源的1%,R25经计算:220V × 1% ÷0.125A=17.6 Ω

5.确定最大电流

经实际测量,变压器次级短路时,初级电流可达到500mA,如果考虑到初级线圈发生部分短路时有更大的电流通过,PTC热敏电阻器的最大电流确定在1A以上。

6. 确定居里温度和外形尺寸

考虑到PTC热敏电阻器的安装位置的环境温最高可达60 ℃,选择居里温度时在此基础上增加40 ℃,居里温度为100 ℃,但考虑到低成本,以及PTC热敏电阻器未安装在变压器线包内,其较高的表面温度不会对变压器产生不良作用,故居里温度可选择120 ℃,这样PTC热敏电阻器的直径可减小一档,成本可以下降。

7.确定PTC热敏电阻器型号

根据以上要求,查阅我们公司的规格表,选定MZ11-10P15RH265

即: 最大工作电压265V,额定零功率电阻值15Ω± 25%,不动作电流140 mA,动作电流350 mA,最大电流1.2A,居里温度120 ℃,最大尺寸为?11.0mm。

开关电源中几种过流保护方式的比较

电源作为一切电子产品的供电设备,除了性能要满足供电产品的要求外,其自身的保护措施也非常重要,如过压、过流、过热保护等。一旦电子产品出现故障时,如电子产品输入侧短路或输出侧开路时,则电源必须关闭其输出电压,才能保护功率MOSFET和输出侧设备等不被烧毁,否则可能引起电子产品的进一步损坏,甚至引起操作人员的触电及火灾等现象,因此,开关电源的过流保护功能一定要完善。

1 开关电源中常用的过流保护方式

过电流保护有多种形式,如图1所示,可分为额定电流下垂型,即字型;恒流型;恒功率型,多数为电流下垂型。过电流的设定值通常为额定电流的110%~130%。一般为自动恢复型。

图1中①表示电流下垂型,②表示恒流型,③表示恒功率型。

1.1 用于变压器初级直接驱动电路中的限流电路

在变压器初级直接驱动的电路(如单端正激式变换器或反激式变换器)的设计中,实现限流是比较容易的。图2是在这样的电路中实现限流的两种方法。

图2电路可用于单端正激式变换器和反激式变换器。图2(a)与图2(b)中在MOSFET 的源极均串入一个限流电阻Rsc,在图2(a)中,Rsc提供一个电压降驱动晶体管S2导通,在图2(b)中跨接在Rsc上的限流电压比较器,当产生过流时,可以把驱动电流脉冲短路,起到保护作用。

图2(a)与图2(b)相比,图2(b)保护电路反应速度更快及准确。首先,它把比较放大器的限流驱动的门槛电压预置在一个比晶体管的门槛电压Vbe更精确的范围内;第二,它把所预置的门槛电压取得足够小,其典型值只有100mV~200mV,因此,可以把限流取样电阻Rsc的值取得较小,这样就减小了功耗,提高了电源的效率。

当AC输入电压在90~264V范围内变化,且输出同等功率时,则变压器初级的尖峰电流相差很大,导致高、低端过流保护点严重漂移,不利于过流点的一致性。在电路中增加一个取自+VH的上拉电阻R1,其目的是使S2的基极或限流比较器的同相端有一个预值,以达到高低端的过流保护点尽量一致。

1.2 用于基极驱动电路的限流电路

在一般情况下,都是利用基极驱动电路把电源的控制电路和开关晶体管隔离开来。变换器的输出部分和控制电路共地。限流电路可以直接和输出电路相接,其电路如图3所示。在图3中,控制电路与输出电路共地。工作原理如下:

电路正常工作时,负载电流IL流过电阻Rsc产生的压降不足以使S1导通,由于S1在截止时IC1=0,电容器C1处于未充电状态,因此晶体管S2也截止。如果负载侧电流增加,使IL达到一个设定的值,使得ILRsc=Vbe1+Ib1R1,则S1导通,使电容器C1充电,其充电时间常数τ=R2C1,C1上充满电荷后的电压是VC1=Ib2R4+Vbe2。在电路检测到有过流发生时,为使电容器C1能够快速放电,应当选择R4 R3。R2的选用原则为Ib1max=(Vin-Vbe1)/R1,IC1=β×Ib1max,则R2≥(Vin-Vcesat1)R1/(V1-Vbe1)。如果参数设计正确,由VC1所产生的偏压足以使S2快速进入导通状态,通过S2的集电极输出可以进一步关闭PWM的驱动信号。当过载现象解除后,电路可以自动恢复到正常工作状态。

1.3 无功率损耗的限流电路

上述两种过流保护比较有效,但是Rsc的存在降低了电源的效率,尤其是在大电流输出的情况下,Rsc上的功耗就会明显增加。图4电路利用电流互感器作为检测元件,就为电源效率的提高创造了一定的条件。

图4电路工作原理如下:利用电流互感器T2监视负载电流IL,IL在通过互感器初级时,把电流的变化耦合到次级,在电阻R1上产生压降。二极管D3对脉冲电流进行整流,经整流后由电阻R2和电容C1进行平滑滤波。当发生过载现象时,电容器C1两端电压迅速增加,使齐纳管D4导通,驱动晶体管S1导通,S1集电极的信号可以用来作为电源变换器调节电路的驱动信号。

电流互感器可以用铁氧体磁芯或MPP环型磁芯来绕制,但要经过反复实验,以确保磁芯不饱和。理想的电流互感器应该达到匝数比是电流比。通常互感器的Np=1,

Ns=NpIpR1/(Vs+VD3)。具体绕制数据最后还要经过实验调整,使其性能达到最佳状态。

1.4 用555做限流电路

图5为555集成时基电路的基本框图。

555集成时基电路是一种新颖的、多用途的模拟集成电路,有LM555,RCA555,

5G1555等,其基本性能都是相同的,用它组成的延时电路、单稳态振荡器、多谐振荡器及各种脉冲调制电路,用途十分广泛,也可用于直接变换器的控制电路。

图4

555时基电路由分压器R1、R2、R3,两个比较器,R S触发器以及两个晶体管等组成,电路在5~18V范围内均能工作。分压器提供偏压给比较器1的反相输入端,电压为2Vcc/3,提供给比较器2的同相输入端电压为Vcc/3,比较器的另两个输入端脚2、脚6分别为触发和门限,比较器输出控制R S触发器,触发器输出供给输出级以及晶体管V1的基极。当触发器输出置高时,V1导通,接通脚7的放电电路;当触发器输出为低时,V1截止,输出级提供一个低的输出阻抗,并且将触发器输出脉冲反相。当触发器输出置高时,脚3输出的电压为低电平,触发器输出为低时,脚3输出的电压为高电平。输出级能够提供的最大电流为200mA,晶体管V2是PNP管,它的发射极接内部基准电压Vr,Vr的取值总是小于电源电压Vcc,因此,若将V2的基极(脚4复位)接到Vcc上,V2的基—射极为反偏,晶体管V2截止。

图5

图6为用555做限流保护的电路,其工作原理如下:UC384X与S1及T1组成一个基本的PWM变换器电路。UC384X系列控制IC有两个闭环控制回路,一个是输出电压Vo反馈至误差放大器,用于同基准电压Vref比较之后产生误差电压(为了防止误差放大器的自激现象产生,直接把脚2对地短接);另一个是变压器初级电感中的电流在T2次级检测到的电流值在R8及C7上的电压,与误差电压进行比较后产生调制脉冲的脉冲信号。当然,这些均在时钟所设定的固定频率下工作。UC384X具有良好的线性调整率,能达到0.01%/V;可明显地改善负载调整率;使误差放大器的外电路补偿网络得到简化,稳定度提高并改善了频响,具有更大的增益带宽乘积。UC384X有两种关闭技术;一是将脚3电压升高超过1V,引起过流保护开关关闭电路输出;二是将脚1电压降到1V以下,使PWM 比较器输出高电平,PWM锁存器复位,关闭输出,直到下一个时钟脉冲的到来,将PWM 锁存器置位,电路才能重新启动。电流互感器T2监视着T1的尖峰电流值,当发生过载时,T1的尖峰电流迅速上升,使T2的次级电流上升,经D1整流,R9及C7平滑滤波,送到IC1的脚3,使IC1的脚1电平下降(注意:接IC1脚1的R3,C4必须接成开环模式,如接成闭环模式则过流时555的脚7放电端无法放电)。IC1的脚1与IC2的脚6相连接,使IC2的比较器1同相输入端的电压降低,触发器Q输出高电平,V1导通,IC2的脚7放电,使IC1的脚1电平被拉低于1V,则IC1输出关闭,S1因无栅极驱动信号而关闭,使电路得到保护。若过流不消除,则重复上述过程,IC1重新进入启动、关闭、再启动、再关闭的循环状态,即“打嗝”现象。而且,过负载期间,重复进行着启振与停振,但停振时间长,启振时间短,因此电源不会过热,这种过负载保护称为周期保护方式(当输入端输入电压变化范围较大时,仍可使高、低端的过流保护点基本相同)。其振荡周期由555单稳多谐振荡器的RC时间常数τ决定,本例中τ=R1C1,直到过载现象消失,电路才可恢复正常工作。电流互感器T2的选择同1.3的互感器计算方法。

图6

图6电路,可以用在单端反激式或单端正激式变换器中,也可用在半桥式、全桥式或推挽式电路中,只要IC1有反馈控制端及基准电压端即可,当发生过流现象时,用555电路的单稳态特性使电路工作在“打嗝”状态下。

1.5 几种过流保护方式的比较

几种过流保护方式的比较如表1所列。

表1 几种过流保护方式的比较

2 结语

作者经过长期的研发与生产,比较了开关电源中所使用的各种过流保护方法,可以说,几乎没有一种过流保护方式是万能的,只有用555的保护方式性能价格比是较好的。一般来说,选择何种过流保护方式,都要结合具体的电路变换模式而做出相应的选择。只有经过

认真的分析,大量的实验才能找到最适合的过流保护方式。保护方式设计的合理、有效,意味着产品的可靠性才可能更高。

过流保护在可控硅整流装置中的应用

可控硅整流装置不论在电力系统还是在现代工业的各行各业中已得到广泛应用。如冶金行业中,应用于金属冶炼;化工行业中,应用于电解、电镀;在电力系统中,既可作为系统控制、保护的工作电源,同是又可作为蓄电池的充电装置。可控硅整流装置要安全运行,必须有可靠的保护措施。在整流装置过载或者输出短路时,保护措施能起到安全保护作用,使装置不受损坏。我们把这种保护功能,归结为限流保护和过流保护。这两种保护是否可靠,直接影响产品的质量,代表着产品的水平。

1 可控硅整流装置的控制原理

1.1可控硅整流装置的开环控制

以三相全控桥为例,可控硅整流装置的输出电压Ud与可控硅控制角α之间的关系如下:Ud=1.35Uzlcosα

式中:Ud—可控硅整流装置输出电压;Uzl—整流变压器二次侧线电压;α—可控硅控制角。

由上式可以看出,可控硅整流装置的输出电压与可控硅控制角α有关系。在如图1中α实际上由控制电压Uy决定,即当Uy增加时,α增大,则Ud减小;当Uy减小时,α减小,则Ud增大。所以调节Uy的大小,可以控制整流装置的输出电压值。这便构成了整流装置的开环控制。

1.2可控硅整流装置的闭环控制

整流装置的输出通过调节单元,来控制Ud这一过程便构成了可控硅整流装置的闭环控制。如图2所示。图中的调节单元为整个控制系统的核心,这个调节单元设计的如何,决定着整流装置能否正常工作。

1.3调节单元

调节单元的构成及原理如图3所示。图中Uvf为装置Uif为装置输出电压或电流反馈信号。当只有电压反馈Uvf时,整流装置工作在恒压状态下;当只有电流反馈UIf时,装置工作在恒流状态下。R1、R3、R5、C、N构成了PI调节器。PI调节器输出Uy与电压反馈Uvf之间的关系为:

由式中可以看出,Uvf决定Uy,从而决定整流装置的输出电压Ud,这样就构成了一个自动调节系统。这一调节单元的加入,使整流装置自动工作在恒压或恒流状态。

当电网波动或整流装置负载变化而引起整流装置输出电压高于输出整定值时,电压反馈Uvf升高,Uy也升高,则控制角α增大。由整流装置输出电压公式可以看出,Ud相应减小,控制角α减小,使Ud增大,以达到整定值。通过这种自动调节,使整流装置达到稳定电压的目的。整流装置处于恒流工作状态时,其调节过程与恒压状态的调节过程原理相同,这里不再赘述。

RP1为整流装置输出电压或电流值的设置电位器,通过RP1的调整,使装置输出一定的电压或电流值。

2 限流保护

限流保护是在整流装置工作在恒压状态下所加入的一种保护措施。当整流装置输出电流超过额定值时,这种保护能使整流装置的输出电压降低,并使装置继续运行,如图4所示。

电流反馈信号Uif经过运算放大器放大,再经过反相器倒相后,与电压反馈信号Uvf

通过选通电路相迭加在一起,做为PI调节器的输入。这里UIfˊ=R7/R5

(R2/R1•Uif+R2/R3?URP1)

运算放大器N1与反相器N2完成电流反馈信号的放大作用。电路应该这样设计和调整,当整流装置输出电流超出输出电流额定值,即|UIf|>|URP1|时,保证UIFˊ>Uvf;当整流装置输出电流低于输出电流额定值即|UIf|<|URP1|时,UIFˊ< Uvf,而选通电路能保证:

当UIFˊ>时,Uˊ=UIFˊ-Uv2

当UIFˊ<时,Uˊ=Uvf-Uv1

Uv1—二极管V1的管压降,Uv2—二极管V2的管压降。

综上所述,电流反馈与电压反馈经选通电路后,保证只有一个信号作为PI调节器的输入。也就是说,当整流装置输出电流超出电流额定值时,则只有电流反馈作为PI调节器的输入,那么整流装置处于恒流工作状态。当整流装置输出电流低于电流额定值时,只有电压反馈作为PI调节器的输入,则整流装置工作在恒压状态下。

由此可见,整流装置只有加入限流保护后,在超负荷运行时,电流能受到有效的抑制,元件不会被损坏,装置能得到可靠的保护。

在实际工作中,用于给蓄电池充电的整流装置,就经常工作在限流状态下。比如,在为蓄电池恒压充电时,由于电池初始电压很低,整流装置的输出电压与电池端电压之间的压差较大,则充电电流很大,超出整流装置输出的额定电流,但由于整流装置中设有限流作用,装置便可在额定输出状态下恒流运行,随着电池电压的上升,使整流装置逐步脱离限流环节,自动转为恒压工作状态。图5给出了整流装置在为蓄电池充电时的电压、电流与时间的关系曲线。

3 过流保护

用在可控硅整流装置中的过流保护方式很多,如快速熔断器保护、快速电流继电器保护、自动空气断路器保护和电子回路保护等。根据多年的实际经验,我们采用电子回路作整流装置的过流保护措施,其原理见图6所示。

可控硅触发脉冲是由一个电平信号Uk来控制,当Uk为“1”电平时,可控硅触发脉冲关断,则整流装置输出为0。当Uk为“0”电平时,可控硅触发脉冲正常输出,则整流装置输出电压为Ud。

图6中,R1,R2,N组成比较器,通过RP1来设置过流保护值;V1为钳位二极管,Uk为可控硅触发脉冲输出的控制信号。当整流装置输出电流超出额定值的20%时,电流反馈UIF>URP1,则比较器输出为“0”电平,使三极管V2截止,此时Uk为“1”电平,使整流装置输出电压为0。钳位二极管V1保证系统在出现过流时,比较器输出电位为“0”电平,使整流装置可靠关断。

这种过流保护电路的设计,确保了在整流装置输出正负极短路时,不致于损坏装置中的任何元件。实践证明,这种电路工作极为可靠。

4 结语

限流、过流保护在可控硅整流装置中的完善,使整流装置运行起来更加安全可靠。这种保护措施不仅适用于可控硅整流装置,而且同样适用于开关电源和其它直流稳压装置,在电力系统中,为无人职守提供了可能,并为全自动整流装置的诞生奠定了基础。

三段式电流保护的配合原则

三段式电流保护的配合原则,其局限性表现在哪些方面? 三段式电流保护指的是电流速断保护(第一段)、限时电流速断保护(第二段)、定时限过电流保护(第三段)相互配合构成的一套保护。一段又叫电流速断保护,没有时限,按躲开本段末端最大短路电流整定二段又叫限时电流速断,按躲开下级各相邻元件电流速断保护的最大动作范围整定,可以作为本段线路一段的后备保护,比一段多时间t时限。三段又叫过电流保护,按照躲开本元件最大负荷电流来整定,具有比二段更长的时限,可以作为一二段的后备保护,保护范围最大,时限最长。 电流速断保护(第一段) 对于仅反应于电流增大而瞬时动作的电流保护,称为电流速断保护。为优先保证继电保护动作的选择性,就要在保护装置起动参数的整定上保证下一条线路出口处短路时不起动,这在继电保护技术中,又称为按躲过下一条线路出口处短路的条件整定。 电流速断保护的主要优点是:简单可靠,动作迅速,因而获得了广泛的应用。但由于引入的可靠系数,所以不难看出,电流速断保护的缺点是:不能保护本线路的全长,且保护范围直接受系统运行方式变化的影响。运行实践证明,电流速断保护的保护范围大概是本线路的85%-90%。 当被保护线路的一次侧电流达到起动电流这个数值时,安装在A母线处的保护1就能起动,最后动作于跳class="relatedlink">断路器1对保护2来讲,按照同样的原则,其起动电流必须整定得大于d4点处短路时,可能出现的最大短路电流,即在最大运行方式下C母线上三相短路时的电流

限时电流速断保护(第二段) 由于有选择性的电流速断保护不能保护本线路的全长,因此我们考虑增加一段新的保护,用来切除速断范围以外的故障,保护本线路的全长,同时也能作为电流速断保护的后备保护。由于要求它必须保护本线路的全长,因此它的保护范围必然要延伸到下一条线路中去,这样当下一条线路出口处发生短路时,它就要起动,在这种情况下,为了保证动作的选择性,就必须使保护的动作带有一定的时限,但又为了使这一时限尽量缩短,我们就考虑使它的保护范围不超过下一条线路速断保护的保护范围,而动作时限则比下一条线路速断保护高出一个时间阶段。 定时限过电流保护(第三段) 过电流保护通常是指其起动电流按躲过最大负荷电流来整定的一种保护。它在正常运行时不起动,而在电网发生故障时,则能反应于电流增大而动作,它不仅能保护线路的全长,也能保护相邻线路的全长,以起到后备保护的作用。 三段式电流保护局限性: 电流速断保护:不能保护线路全长,在线路较短或运行方式变化较大时可能无保护范围。 限时电流速断保护:不能作为相邻元件的后备保护,受系统运行方式变化较大。 定时限过电流保护:动作时间长,越靠近电源端其动作时限越大,对靠电源端的故障不能快速切除。

三段式过流保护

无时限电流速断保护(电流I段) 反应电流增大而能瞬时动作切除故障的电流保护,称为电流速断保护也称为无时限电流速断保护。 1.几个基本概念 (1)系统最大运行方式与系统最小运行方式 最大运行方式:就是在被保护线路末端发生短路时,系统等值阻抗最小,而通过保护装置的短路电流为最大的运行方式。 最小运行方式:就是在同样短路条件下,系统等值阻抗最大,而通过保护装置的短路电流为最小的运行方式。 (2)最小短路电流与最大短路电流 在最大运行方式下三相短路时,通过保护装置的短路电流为最大,称之为最大短路电流。在最小运行方式下两相短路时,通过保护装置的短路电流为最小,称之为最小短路电流。(3)保护装置的起动值 对应电流升高而动作的电流保护来讲,使保护装置起动的最小电流值称为保护装置的起动电流。 (4)保护装置的整定 所谓整定就是根据对继电保护的基本要求,确定保护装置起动值,灵敏系数,动作时限等过程。 2、整定计算 (1)动作电流 为保证选择性,保护装置的起动电流应按躲开下一条线路出口处短路时,通过保护的最大短路电流来整定。即 Idz>Id.max=KK Id.Bmax 式中可靠系数KK =1.2~1.3, 结论:电流速断保护只能保护本条线路的一部分,而不能保护全线路,其最大和最小保护范围Lmax和Lmin。 (2) 保护范围(灵敏度KLm)计算(校验) 《规程》规定,在最小运行方式下,速断保护范围的相对值Lb%>(15%~20%)时,为合乎要求,即 (3)动作时限 无时限电流速断保护没有人为延时,在速断保护装置中加装一个保护出口中间继电器。一方面扩大接点的容量和数量,另一方面躲过管型避雷器的放电时间,防止误动作。t=0s 3、对电流速断保护的评价 优点:是简单可靠,动作迅速。 缺点:(1)不能保护线路全长; (2)运行方式变化较大时,可能无保护范围。 注意: (1) 在最大运行方式下整定后,在最小运行 方式下无保护范围。 二、限时电流速断保护(电流II段)的电流速断保护 限时电流速断保护:按与相邻线路电流速断保护相配合且以较短时限获得选择性的电流保护。 1、工作原理 (1)为了保护本条线路全长,限时电流速断保护的保护范围必须延伸到下一条线路中去。(2)为了保证选择性,就必须使限时电流速断保护的动作带有一定的时限。

实验三三段式电流保护实验

实验三三段式电流保护实验 【实验名称】 三段式电流保护实验 【实验目的】 1.掌握无时限电流速断保护、限时电流速断保护及过电流保护的电 路原理,工作特性及整定原则; 2.理解输电线路阶段式电流保护的原理图及保护装置中各继电器 的功用; 3.掌握阶段式电流保护的电气接线和操作实验技术。 【预习要点】 1.复习无时限电流速断保护、限时电流速断保护及过电流保护相关 知识。 2.根据给定技术参数,对三段式电流保护参数进行计算与整定。【实验仪器设备】

【实验原理】 1.无时限电流速断保护 三段式电流保护通常用于3-66kV电力线路的相间短路保护。在被保护线路上发生短路时,流过保护安装点的短路电流值,随短路点的位置不同而变化。在线路的始端短路时,短路电流值最大;短路点向后移动时,短路电流将随线路阻抗的增大而减小,直至线路末端短路时短路回路的阻抗最大,短路电流最小。短路电流值还与系统运行方式及短路的类型有关。图3-1曲线1表示在最大运行方式下发生三相短路时,线路各点短路电流变化的曲线;曲线2则为最小运行方式下两相短路时,短路电流变化的曲线。 图3-1 瞬时电流速断保护的整定及动作范围 由于本线路末端f1点短路和下一线路始端的f2点短路时,其短路电流几乎是相等的(因f1离f2很近,两点间的阻抗约为零)。如果要求在被保护线路的末端短路时,保护装置能够动作,那么,在下一线路始端短路时,保护装置不可避免地也将动作。这样,就不能保证应有的选择性。为了保证保护动作的选择性,将保护范围严格地限制在本线路以内,就应使保护的动作电流I op1.1(为保护1的动作电流折算到一次电路的值)大于最大运行方式下线路末端发生三相短路时的短路电流I f.B.max,即 I op1.1 I f.b.max,I op1.1=K rel I f.b.max 式中,K rel—可靠系数,当采用电磁型电流继电器时,取K rel=1.2~1.3。 显然,保护的动作电流是按躲过线路末端最大短路电流来整定,可保证在其

三段式定时限过流保护

三段式定时限过流保护 过流Ⅰ段保护为定时限过流保护,主要作为无时限电流速断保护,用于相间短路的主保护。过流Ⅱ段保护为阶段性相间保护后备保护,可用作限时电流速断保护、过电流保护,以满足保护选择性的要求,过流Ⅲ段保护为定时限/反时限可选过流保护,若定时限控制字投入则过流Ⅲ段按定时限动作,若反时限控制字投入则过流Ⅲ段按反时限动作。图3—1给出了定时限过流保护的逻辑框图。 图3—1过流保护逻辑框图 Idz、Tdz分别为过流保护电流启动值和延时定值。即A、B、C三相电流中一相或一相以上大于整定值Idz且持续时间大于整定延时Tdz时过流段保护动作。当整定时间为零秒时,动作时间<30ms。过流保护动作后,在三相电流同时低于定值的93%时,保护动作复归。 “使能”是指装置某项保护功能的“投入/禁止”,如过流保护使能,即指过流保护投入。在本书中的保护原理及定值说明等部分将大量使用此术语。 3.1.2.2带复合电压的方向过流保护 带复合电压闭锁的方向过流保护,是否带复合电压闭锁和方向继电器可以在定值菜单里面选择。其逻辑框图如图3—2所示。 Ia>Ip 方向继电器使能 Ib>Ip 图3—2带复合电压的方向过流保护逻辑框图 发信、跳闸 过流保护使能 Ia>Idz Ib>Idz Ic>Idz

Ip 、Tdz 、Udz 、Ufx 分别为过流保护的电流启动值、延时时间、电压启动值、负序电压整定值。即A 、B 、C 三相电流中一相或一相以上大于整定值Ip 且持续时间大于整定延时Tdz 时过流保护动作。 若需投入方向特性,则需把“方向继电器使能”投入,同时设置好方向特性,如正方向动作则负方向应拒动,反之亦然。 若需投入复合电压闭锁过流保护,则需把“复合电压启动”使能投入,同时设置好电压启动值和负序电压值。定值菜单中的“负序电压”对三段过流皆起作用。定值中Ue 为相电压二次额定值57.7V 。 3.1.2.3 带反时限的过流保护 过流保护定时限/反时限可选过流保护,同时带复合电压闭锁的方向过流保护,是否带复合电压闭锁和方向继电器可以在定值里面选择,其逻辑框图如图3—3所示。 跳闸、发信 Ia>Ip Ib>Ip Ic>Ip 图3—3 带反时限的过流保护逻辑框图 Ip 、Tdz 、Udz 、Ufx 分别为过流保护电流启动值、延时时间、电压启动值、负序电压整定值。即A 、B 、C 三相电流中一相或一相以上大于整定值Ip 且持续时间大于整定延时Tdz 时过流保护动作。 在装置中,共有四组动作时间特性方程(曲线)供用户选择使用,后三组动作方程根据IEC255-4标准和英国标准BS142制定。 1·常用反时限,T=p p T I I *2 ??? ? ? ? 2·一般反时限,T=1)(14.002.0-*p p I I T

2三段式电流保护的整定及计算

2三段式电流保护的整定计算 1、瞬时电流速断保护 整定计算原则:躲开本条线路末端最大短路电流 整定计算公式: 式中: Iact——继电器动作电流 Kc——保护的接线系数 IkBmax——最大运行方式下,保护区末端B母线处三相相间短路时,流经保护的短路电流。 K1rel——可靠系数,一般取1.2~1.3。 I1op1——保护动作电流的一次侧数值。 nTA——保护安装处电流互感器的变比。 灵敏系数校验:

式中: X1— —线 路的 单位 阻抗, 一般 0.4Ω /KM; Xsmax ——系统最大短路阻抗。 要求最小保护范围不得低于15%~20%线路全长,才允许使用。 2、限时电流速断保护 整定计算原则: 不超出相邻下一元件的瞬时速断保护范围。所以保护1的限时电流速断保护的动作电流大于保护2的瞬时速断保护动作电流,且为保证在下一元件首端短路时保护动作的选择性,保护1的动作时限应该比保护2大。故: 式中: KⅡrel——限时速断保护可靠系数,一般取1.1~1.2; △t——时限级差,一般取0.5S; 灵敏度校验:

规程要求: 3、定时限过电流保护 定时限过电流保护一般是作为后备保护使用。要求作为本线路主保护的后备 以及相邻线路或元件的远后备。 动作电流按躲过最大负荷 电流整定。 式中: KⅢrel——可靠系数,一般 取1.15~1.25; Krel——电流继电器返回系数,一般取0.85~0.95; Kss——电动机自起动系数,一般取1.5~3.0; 动作时间按阶梯原则递推。 灵敏度分别按近后备和远后备进行计算。 式中: Ikmin——保护区末端短路时,流经保护的最小短路电流。即:最小运行方式下,两相相间短路电流。 要求:作近后备使用时,Ksen≥1.3~1.5 作远后备使用时,Ksen≥1.2

三段式过电流保护

三段式过电流保护: 第Ⅰ段―――电流速断保护 第Ⅱ段―――限时电流速断保护 第Ⅲ段―――过电流保护 ①电流速断保护: 电流速断保护按被保护设备的短路电流整定,当短路电流超过整定值时,则保护装置动作,断路器跳闸,电流速断保护一般没有时限,不能保护线路全长(为避免失去选择性),即存在保护的死区.为克服此缺陷,常采用略带时限的电流速断保护以保护线路全长.时限速断的保护范围不仅包括线路全长,而深入到相邻线路的无时限保护的一部分,其动作时限比相邻线路的无时限保护大一个级差。 特点: 1.没有时限。 2.不能保护线路全长(存在死区)(一般设定为保护线路全长的85%)。 ②限时电流速断保护: 电流速断保护不能保护线路全长,故需要增加一段新的保护,用以切除本线路上速断范围以外的故障,同时也作为电流速断保护的后备保护(电流速断保护拒动,可能原因主要有测量误差,非金属性短路)(非金属性短路即存在过渡电阻,此时短路电流比金属性短路电流小,可能达不到电流速断保护的整定值)。 特点: 1.有时限,一般比下一条线路的速断保护高出一个时间阶段△t,通常取0.5s。 2.能保护线路全长,要求灵敏度大于1.3~1.5。(灵敏度指保护长度比总长度,零度1即表示保护全长)。 3.电流速断保护与限时电流速断保护配合,构成一条线路的主保护,保证了全线路范围的故障都能在0.5秒内切除,在一般情况下都能满足速动要求。 ③过电流保护: 当电流超过预定最大值时,使保护装置动作的一种保护方式。一般可用熔断体(没有太大冲击电流时,即负荷中电动机容量较少)或断路器。 特点: 1.有时限。如果下一级有限时电流速断保护,则比限时电流速断保护高出一个时间 阶段(区别于定时限,过电流保护作为第三段保护时,可以使反时限:故障电流越大,动作时间越短)。 2.能保护线路全长。

浅谈反时限保护的适用范围及整定方案

浅谈反时限保护的适用范围及整定方案 摘要:白银电网负荷大部分是工业和电力提灌负荷,因此网内存在着大量的大型高压电动机。相当一部分配网线路的定时限过流保护定值须躲电机启动电流,导致过电流定值很大,甚至有超限时速断电流定值的情况,而此时低电压及负序电压对线末没有灵敏度。电网的快速发展,使保护配合的级数增加,部分配网及用户变电所时间级差已非常紧张。因此,寻找能很好躲电机启动电流及缓解时间级差的保护类型显得尤为迫切,而反时限保护能很好的躲电机启动电流——只要选择适当的曲线类型和时间常数;同时其动作时限与故障电流的大小成反比,上下级保护之间只需一个时间级差配合,缓解时间级差效果明显。 一、定时限过流保护陷入窘境的几个案例 ㈠ 王岘水泥厂117水泥磨线过电流保护 YJV-2×(3×120)/0.7 117 水泥磨线 K1 0.0556 0.64441.373王岘水泥厂 5.75 1#4.6%0.8MVA 5.75 2#4.6%0.8MVA K2 K3 R:2800kW +560kW 0.4kV:1377kW 保护型号:PMC-651F 装置版本号:V1.60.00 1、 参数计算 1)电缆YJV-3×120/10,r=0.158Ω/㎞ x=0.0755Ω/㎞ Z=0.1751Ω/㎞ Z*=0.1588 2)短路电流: A I 7857) 3(K1= )(1538) 3(K2并列A I = A I 3334)2(K1 = A I 663)2(K2 = A I 3469)) 2((=小首 A I 7391)2() (=大首 2、保护主要功能:1)瞬时电流速断;2)复压(方向)限时电流速断;3)复压(方向)定限时限过流;4)相电流加速;5)反时限过流;6)过负荷保护;7)零序过流;8)重合闸;9)低周、低

【国家电网 继电保护】5方向电流保护习题

1 方向电流保护 一、选择题 1. 方向电流保护是在电流保护的基础上,加装一个(C ) A :负荷电压元件 B :复合电流继电器 C :方向元件 D :复合电压元件 2、相间短路保护功率方向继电器采用90°接线的目的是(B ) A 、消除三相短路时方向元件的动作死区 B 、消除出口两相短路时方向元件的动作死区 C 、消除反方向短路时保护误动作 D 、消除正向和反向出口三相短路保护拒动或误动 3、功率方向继电器的电流和电压为a bc ca ab U ,U ,U b c I I I 、、、时,称为(A ) A :90°接线 B :60°接线 C :30°接线 D :0°接线 4、所谓功率方向继电器的潜动,是指(B )的现象。 A :只给继电器加入电流或电压时,继电器不动作; B :只给继电器加入电流或电压时,继电器动作; C :加入继电器的电流与电压反相时,继电器动作; D :与电流、电压无关。 5、相间方向过电流的按相启动接线方式是将(B ) A :各相的电流元件触点并联后,再串入各功率方向继电器的触点; B :同名相的电流和功率方向继电器的触点串联后再并联; C :非同名相的电流元件触点和方向元件的触点串联后再并联; D :各相功率方向继电器的触点和各相电流元件触点分别并联后再串联

二、判断题 1. 方向过流保护动作的正方向是短路功率从母线流向线路。(√) 2、双电源幅射形网络中,输电线路的电流保护均应加方向元件才能保证选择性。(×) 3.功率方向继电器采用900接线方式时,接入电压和电流的组合为相电压和相电流。(×) 三、填空题 1.在两电气量之间进行比较的继电器可归纳为(幅值)比较和(相位)比较两类。 2.在电网中装带有方向元件的过流保护是为保证动作的(选择性)。 3.为了确保方向过流保护在反向两相短路时不受(非故障)相电流的影响,保护装置应采用(按相)起动的接线方式。 4.90度接线功率方向元件在(保护安装处)附近发生(三相)短路时存在“死区”。 5.功率方向继电器采用90度接线的优点在于(两相短路时无死区)。 6.方向电流保护主要用于(双电源辐射形)和(单电源环网)线路上。 7.LG-11功率方向继电器采用90o接线方式,C相方向元件电压接( U), AB 电流接( I)。 C 8.按900接线的相间功率方向继电器,当线路发生正向故障时,若短路阻抗角φk为300,为使继电器动作最灵敏,其内角α值应是(30°)。 9.功率方向继电器按90o接线时,当输入电流 I 时,输入的电压为 B ( U)。 C A 10. 按900接线的相间功率方向继电器,内角α值为(30°或45°) 1

三段式过流保护的原理及其整定值

无时限电流速断保护(电流 I 段 ) 反应电流增大而能瞬时动作切除故障的电流保护,称为电流速断保护也称为无时限电流速 断保护。 1.几个基本概念 ( 1)系统最大运行方式与系统最小运行方式 最大运行方式:就是在被保护线路末端发生短路时,系统等值阻抗最小,而通过保护装置 的短路电流为最大的运行方式。 最小运行方式:就是在同样短路条件下,系统等值阻抗最大,而通过保护装置的短路电流 为最小的运行方式。 (2)最小短路电流与最大短路电流 在最大运行方式下三相短路时,通过保护装置的短路电流为最大,称之为最大短路 电流。在最小运行方式下两相短路时,通过保护装置的短路电流为最小,称之为最 小短路电流。 (3)保护装置的起动值 对应电流升高而动作的电流保护来讲,使保护装置起动的最小电流值称为保护装置的起 动电流。 (4)保护装置的整定 所谓整定就是根据对继电保护的基本要求,确定保护装置起动值,灵敏系数,动作时限等过程。 2、整定计算 (1)动作电流 为保证选择性,保护装置的起动电流应按躲开下一条线路出口处短路时,通过保护的最大短 路电流来整定。即 Idz >Id.max=KK Id.Bmax 式中可靠系数KK =1.2~1.3 , 结论 :电流速断保护只能保护本条线路的一部分,而不能保护全线路,其最大和最小 保护范围 Lmax 和 Lmin 。 KLm )计算(校验) (2) 保护范围(灵敏 度 Lb% >( 15%~20% )时,为合《规程》规定,在最小运行方式下,速断保护范围的相 对值乎要求,即 (3)动作时限 无时限电流速断保护没有人为延时,在速断保护装置中加装一个保护出口中间继电器。一方 面扩大接点的容量和数量,另一方面躲过管型避雷器的放电时间,防止误动作。t=0s 3、 对电流速断保护的评价 优点:是简单可靠,动作迅速。 缺点:( 1)不能保护线路全长; (2)运行方式变化较大时,可能无保护范围。 注意 : (1) 在最大运行方式下整定后,在最小 运行方式下无保护范围。 二、限时电流速断保护(电流 II 段 )的电流速断保护 限时电流速断保护:按与相邻线路电流速断保护相配合且以较短时限获得选择性的 电流保护。 1、工作原理 (1)为了保护本条线路全长,限时电流速断保护的保护范围必须延伸到下一条线路中去。 (2)为了保证选择性,就必须使限时电流速断保护的动作带有一定的时限。

过载保护反时限动作值

以下表格为当时间常数Tp=1时在各过载电流情况下的动作时间: 表1 反时限特性参考值 电机功率计算公式: P = 1.732UIcosΦ P:电机功率 ***Kw U:额定电压 ***V I:额定电流 ***A cosΦ:功率因数 0.85(经验值) 已知:电机功率( P = 315Kw = 315000W)、额定电压( Ue = 1140V)、功率因数(cosΦ = 0.85),求电机电流? 根据公式:P = 1.732UIcosΦ 315000 = 1.732*1140*I*0.85 I = 188A 经验值: 电压:660V 1.1A/KW 电压:1140V 0.6A/KW 电压:3300V 0.2A/KW

漏电闭锁解释: 漏电闭锁作用是:在电动机起动前监视线路的绝缘状态,电动机起动后失去作用。若电动机在运行过程中漏电,则有专用的漏电继电器使馈电开关跳闸。当馈电开关再次合闸,如漏电事故尚未排除,闭锁电路仍起作用,使真空启动器不能起动,这就可以较顺利地找出漏电事故发生的区段。 ----------------采区电气设备P107 1:在分断感性负荷时,交流真空接触器过强的灭弧能力也会带来操作过电压的危险,因此真空接触器须配套限制过电压措施。如RC吸收。 -------------------------采区电气设备P98 2:交流真空接触器与空气接触器的比较: (1)真空介质强度高,恢复快,熄弧能力强,分断电流能力大。Ie 200A,可分断4500A (2)真空电弧产生在密闭的真空管内,不飞弧,安全。 (3)燃弧时间短,触头磨损小,寿命长。 (4)真空触头开距小(1~2mm),系统结构小,动作线圈功耗小。(5)体积小,重量轻。 -------------------------采区电气设备P94

三段式电流保护的设计(完整版)

学号 2010 《电力系统继电保护》 课程设计 (2010届本科) 题目:三段式电流保护课程设计 学院:物理与机电工程学院 专业:电气程及其自动化 作者姓名: 指导教师:职称:教授 完成日期:年12 月26 日

目录 1 设计原始资料........................................................................................................................................ - 3 - 1.1 具体题目..................................................................................................................................... - 3 - 1.2 要完成的内容............................................................................................................................. - 3 - 2 设计要考虑的问题................................................................................................................................ - 3 - 2.1 设计规程..................................................................................................................................... - 3 - 2.1.1 短路电流计算规程.......................................................................................................... - 3 - 2.1.2 保护方式的选取及整定计算 .......................................................................................... - 4 - 2.2 本设计的保护配置..................................................................................................................... - 5 - 2.2.1 主保护配置...................................................................................................................... - 5 - 2.2.2 后备保护配置.................................................................................................................. - 5 - 3 短路电流计算........................................................................................................................................ - 5 - 3.1 等效电路的建立......................................................................................................................... - 5 - 3.2 保护短路点及短路点的选取..................................................................................................... - 6 - 3.3 短路电流的计算......................................................................................................................... - 6 - 3.3.1 最大方式短路电流计算 .................................................................................................. - 6 - 3.3.2 最小方式短路电流计算 .................................................................................................. - 7 - 4 保护的配合及整定计算........................................................................................................................ - 8 - 4.1 主保护的整定计算..................................................................................................................... - 8 - 4.1.1 动作电流的计算............................................................................................................ - 8 - 4.1.2 灵敏度校验...................................................................................................................... - 9 - 4.2 后备保护的整定计算................................................................................................................. - 9 - 4.2.1 动作电流的计算.............................................................................................................. - 9 - 4.2.2 动作时间的计算............................................................................................................ - 10 - 4.2.3 灵敏度校验.................................................................................................................... - 10 - 5 原理图及展开图的的绘制.................................................................................................................. - 10 - 5.1 原理接线图............................................................................................................................... - 10 - 5.2 交流回路展开图........................................................................................................................- 11 - 5.3 直流回路展开图....................................................................................................................... - 12 - 6 继电保护设备的选择.......................................................................................................................... - 12 - 6.1 电流互感器的选择................................................................................................................... - 12 - 6.2 继电器的选择........................................................................................................................... - 13 - 7 保护的评价.......................................................................................................................................... - 14 -

三段式继电保护

1.1什么是继电保护装置: 继电保护装置是一种由继电器和其它辅助元件构成的安全自动装置。它能反映电气元件的故障和不正常运行状态,并动作于断路器跳闸或发出信号。 (1)故障:将故障元件切除(借助断路器); (2)不正常状态——自动发出信号以便及时处理,可预防事故的发生和缩小事故影响范围,保证电能质量和供电可靠性。 1.2 继电保护的作用与组成 在电力系统中,继电保护装置的基本任务(作用)是: (1)当电力系统中的电气设备发生短路故障时,能自动、迅速、有选择性地将故障元件从电力系统中切除,使故障元件免于继续遭到破坏,保证其它无故障部分迅速恢复正常运行。 (2)当电力系统中的电气设备出现不正常运行状态时,并根据运行维护的条件( 例如有无经常值班人员) ,动作于发出信号、减负荷或跳闸。此时一般不要求保护迅速动作,而是根据当时电力系统和元件的危害程度规定一定的延时,以免误动作。继电保护的组成一般由测量部分、逻辑部分和执行部分组成。就全局而论,在电力系统的安全问题上有两种必须避免的灾害性事故:一种是重大电力设备损坏,另一种是电网的长期大面积停电。在这些方面,电力系统继电保护一直发挥着特殊重要作用。继电保护装置主要都包括三个部分:测量部分、逻辑部分、执行部分。 1.4 继电保护装置的分类 继电保护装置一般可以按反应的物理量不同、被保护对象的不同、组成元件的不同以及作用的不同等方式来分类,例如: (1)根据保护装置反应物理量的不同可分为:电流保护、电压保护、距离保护、差动保护和瓦斯保护等。 (2)根据被保护对象的不同可分为:发电机保护、输电线保护、母线保护、变压器保护、电动机保护等。在电气化铁道牵引供电系统中,主要有110kV(或220 kV)输电线保护、牵引变压器保护、牵引网馈线保护及并联电容器补偿装置保护等。 (3)根据保护装置的组成元件不同可分为:电磁型、半导体型、数字型及微机保护装置等。 (4)根据保护装置的作用不同可分为:主保护、后备保护,以及为了改善保护装置的某种性能,而专门设置的辅助保护装置等。 当某一电气设备装设有多种保护装置时,其中起主要保护作用的保护装置称为主保护;作为主保护装置备用保护的保护装置称为后备保护。后备保护又分为近后备保护和远后备保护,近后备保护指同一电气设备上多种保护的相互备用,远后备保护则是指对相邻电气设备保护的备用。 3.4 三段式过电流保护装置 由于瞬时电流速断保护只能保护线路的一部分,所以不能作为线路的主保护,而只能作为加速切除线路首端故障的辅助保护;略带时限的电流速断保护能保护线路的全长,可作为本线路的主保护,但不能作为下一段线路的后备保护;定时限过电流保护既可作为本级线路的后备保护(当动作时限短时,也可作为主保护,而不再装设略带时限的电流速断保护。),还可以作为相临下一级线路的后备保护,但切除故障的时限较长。一般情况下,为了对线路进行可靠而有效的保护,也常把瞬时电流速断保护(或略带时限的电流速断保护)和定时限过电流保护相配合构成两段式电流保护。 对于第一段电流保护,究竟采用瞬时电流速断保护,还是采用略带时限的电流速断保护,可由具体情况确定。如用在线路---变压器组接线,以采用瞬时电流速断保护为佳。

过流三段保护

三段式过流保护是把速断、限时速断及过流三种过电流保护综合在一起的电流保护,其区别为: 1.速断保护:电流定值很大,一般为额定电流8~10倍(我厂经验),无延时出口跳闸 2.限时速断:电流定值较大,一般为额定电流5~7倍,短延时出口跳闸 3.过流:电流定值较小,一般为额定电流2~3倍,较长延时出口跳闸电流速断、限时电流速断和过电流保护都是反应电流增大而动作的保护,它们相互配合构成一整套保护,称做三段式电流保护。三段的区别主要在于起动电流的选择原则不同。其中速断和限时速断保护是按照躲开某一点的最大短路电流来整定的,而过电流保护是按照躲开最大负荷电流来整定的。 电流三段保护 2010-04-14 17:04 1 2 3段保护中----动作时间最长是( 1 )段,动作时间最短是( 3)段 ----最灵敏是( 3 )段,最不灵敏是( 1)段 ----动作电流最大是( 1 )段,动作电流最小是( 3 )段https://www.sodocs.net/doc/0115826745.html,/view/ce96976fb84ae45c3b358c84.html 三段式电流保护由:定时限、瞬时速断保护、定时速断保护组成。 定时限中,这样选择的:离电源较近的上一级保护动作时限,比相邻电源较远的下一级保护时限要大,也就是说不能越级: t1>t2>t3 或者:ti=t2+△t △t:电流保护的时间差,以此画出来的时限特性曲线,就是阶梯曲线,一般取△t的可靠系数:0.35S~0.6S之间。 动作电流的整定:1. 动作电流>线路最大负荷电流 2. 已经动作的,在被保护线路通过最大负荷电流时,应可靠 的返回。

瞬时速断保护、定时速断保护的电流、时间整定就看整定值了。 一段又叫电流速断保护,没有时限,按躲开本段末端最大短路电流整定 二段又叫限时电流速断,按躲开下级各相邻元件电流速断保护的最大动作范围整定,可以作为本段线路一段的后备保护,比一段多时间t时限。 三段又叫过电流保护,按照躲开本元件最大负荷电流来整定,具有比二段更长的时限,可以作为一二段的后备保护,保护范围最大,时限最长。 电流三段保护 为了实现过电流保护的动作选择性,各保护的动作时间一般按阶梯原则进行整定。即相邻保护的动作时间,自负荷向电源方向逐级增大,且每套保护的动作时间是恒定不变的,与短路电流的大小无关。具有这种动作时限特性的过电流保护称为定时限过电流保护。 三段式电流保护的作用,是利用不同过电流值下,设置不同的延时动作时间来规避工作尖峰电流和使发生短路故障时,只有事故点最近的断路器动作以减少断电的影响范围。 三段就是三个时限,一般一段时间最短电流最大(又叫瞬时速断)比如20A 0S 二段三段电流比一段小时间稍微长(叫带时限的过流)一般参照一段可以设二段10A 0.5S 三段8A 1S (具体数值只是告诉你大概意思) 各段均可经低电压元件或方向元件闭锁. 意思就是过流可以经复压或方向闭锁,及在满足过流和时间情况下还须满足电压低于定值和方向需满足故障电流方向保护才能动作 三段式零序电流保护和上面的过流原理一样,第三段可选择告警或跳闸就是由于三段电流相对比较小可以选择只告警,当然也可以选择跳闸。

各种反时限特性曲线

反时限特性曲线的应用 反时限电流保护概念也十分简单,但是选择曲线、确定待定参数,存在一定的技巧和方法。 目前,国内外常用的反时限保护的通用数学模型的基本形式为: 式中:t为动作延时;K是设计的常数;M是由用户整定的时间常数,一般由上下级保护动作时间的正确配合要求决定;I为保护测量电流;Ip为基准电流,一般取被保护设备的额定电流;a是曲线水平移动常数,反应了反时限保护动作能够动作的电流相对于Ip的倍数,一般取;n是曲线形状常数,通常在0~2之间取值。n越大曲线形状越陡,即保护动作时间随电流增大而减小的越快。 根据n的取值范围不同,反时限保护可以分为以下几类: 当n<1时,称为普通反时限; 当n=1时,称为非常反时限; 当n>1时,称为超反时限。 为了规范应用,IEEE225-4 标准推荐了五条反时限曲线供用户选择使用:

以上各式中:tp 为时间常数;Ipe故障前绕组电流。 以上式(1)、(2)和(3)主要应用于线路保护。对比这三种反时限曲线:超反时限特性保护,微小的电流差别足以引起保护动作时间上的差异,以牺牲时间换取选择性。普通反时限则相反。一般在被保护线路首端和末端短路时电流变化较小的情况下,常采用定时限过流保护。定时限可以认为是一种特殊的反时限特性,即r=0;通常输电线路采用普通反时限特性,即0

反应过热状态的过流保护,则采用特别反时限特性,即r=2。以上式(4)、(5)主要应用于诸如电动机等元件地热过载保护。式(4)忽略了被保护对象故障发生以前负荷电流的发热,而式(5)则计及了故障发生以前负荷电流的发热。因此式(5)较式(4)对元件的热过载保护而言更加合理。

定时限和反时限过流保护

定时限和反时限过流保护 2007-12-15 16:48:22| 分类:知识| 标签:|字号大中小订阅 流过保护装置的短路电流与动作时间之间的关系曲线称为保护装置的延时特性。延时特性又分为定时限延时特性和反时限延时特性。定时限延时动作时间是固定的,与短路电流的大小无关。反时限延时动作时间与短路电流的大小有关,短路电流大,动作时间短,短路电流小,动作时间长。短路电流与动作时限成一 定曲线关系。 过电流保护一般是按避开最大负荷电流这一原则整定的。为了使上、下级的过电流保护具有选择性,在时限上也应应有一个级差。这就使靠近电源端的保护动作时限将很长,这在许多情况下是不允许的。为克服这一缺点,通常采用提高整定值以限制动作范围的办法,不加时限,可以瞬时动作,这种保护叫做电流速 断保护。 无时限电流速断不能保护线路全长,它只能保护线路的一部分。所以,为了保证动作的选择性,其起动电流必须按最大运行方式来整定(即通过本线路的电流为最大电流),这就存在着保护的死区。为了弥补瞬时速断保护不能保护线路全长的缺点,常采用略带时限的速断保护,即延时速断保护。这种保护一般与瞬时速断保护配合使用,其特点与定时限过电流保护装置基本相同,所不同的是其动作时间比定时限过电流保护的整定时间短。为了使保护具有一定的选择性,其动作时间应比下一级线路的瞬时速断大一时限级差 一般取0.5秒。 定时限过流保护电流和时间是定值。反时限过流保护是以I2t等于一个常数来整定的,即电流越大,时间越 短,其实I2t是发热量。 如发电机负序保护一般5%发信;9%启动反时限,I2t=8或10;80%时启动定时限,0.5秒跳发变组。三段的区别主要在于启动电流的选择原则不同。其中速断和限时速断保护是按照躲开某一点的最大短路电流来整定的,而过电流保护是按照躲开最大负荷电流来整定的。电流速断不能保护线路全长,限时电流速断不能作为相邻元件的后备,过电流保护的动作时限较长。

三段式电流保护的设计-课程设计

电力系统继电保护课程设计 题目:三段式电流保护的设计 班级:楼宇112 姓名: XXX 学号:2011XXXX 指导教师: 设计时间: 2013年5月14日 评语: 成绩

1 设计原始资料 1.1 具体题目 如下图所示网络,系统参数为: 35 3kV E ?=,111G Z =Ω、216G Z =Ω、312G Z =Ω错误!未找到引用源。 ,12120L L km ==、330L km =,40B C L km -=错误!未找到引用源。, 25C D L km -=,错误!未找到引用源。25D E L km -=错误!未找到引用源。,线路阻抗0.4/km Ω, ' 1.2rel K = 错误!未找到引用源。、''''' 1.15rel rel K K ==错误!未找到引用源。 ,.max 250B C I A -= ,.max 200C D I A -=,.max 100D E I A -=, 1.5ss K = ,0.85re K =错 误!未找到引用源。 G1 G2 G3 9 8 7 6 4 5 1 2 3 A B C D E L1 L2 L3 试对线路L1,L2,L3进行电流保护的设计。 1.2 要完成的内容 (1)保护的配置及选择; (2)短路电流计算(系统运行方式的考虑、短路点的考虑、短路类型的考虑); (3)保护配合及整定计算; (4)保护原理展开图的设计; (5)对保护的评价。 2 设计要考虑的问题 2.1 设计规程

2.1.1 短路电流计算规程 在决定保护方式前,必须较详细地计算各短路点短路时,流过有关保护的短路电流,然后根据计算结果,在满足《继电保护和自动装置技术规程》和题目给定的要求条件下,尽可能采用简单的保护方式。其计算步骤及注意事项如下。 (1)系统运行方式的考虑 除考虑发电厂发电容量的最大和最小运行方式外,还必须考虑在设备检修或故障切除的情况下,发生短路时流过保护装置的短路电流最大和最小的系统运行方式,以便计算保护的整定值和保护灵敏度。在需采用电流电压联锁速断保护时,还必须考虑系统的正常运行方式。 (2)短路点的考虑 求不同保护的整定值和灵敏度时,应注意短路点的选择。若要绘制短路电流、电压与距离的关系曲线,每一条线路上的短路点至少要取三点,即线路的始端、中点和末端三点。 (3)短路类型的考虑 相间短路保护的整定计算应取系统最大运行方式下三相短路电流,以作动作电流整定之用;而在系统最小运行方式下计算两相短路电流,以作计算灵敏度之用。短路的计算选用三相短路或两相短路进行计算均可,因为对保护所取的残余而言,三相短路和两相短路的残余数值相同。 若采用电流电压连锁速断保护,系统运行方式应采用正常运行方式下的短路电流和电压的数值作为整定之用。 (4)短路电流列表 为了便于整定计算时查考每一点的短路时保护安装处的短路电流和,将计算结果列成表格。 流过保护安装处的短路电流应考虑后备保护的计算需要,即列出本线路各短路点短路时流过保护安装处的短路电流,还要列出相邻线路各点短路时流过保护安装处的短路电流。 计算短路电流时,用标幺值或用有名值均可,可根据题目的数据,用较简单的方法计算。 2.1.2 保护方式的选取及整定计算 采用什么保护方式,主要视其能否满足规程的要求。能满足要求时,所采用的保护就可采用;不能满足要求时,就必须采取措施使其符合要求或改用其他保护方式。 选用保护方式时,首先考虑采用最简单的保护,以便提高保护的可靠性。当采用简单保护不能同时满足选择性、灵敏性和速动性要求时,则可采用较复杂的保护方式。

相关主题