搜档网
当前位置:搜档网 › 数学高考总复习导数的应用

数学高考总复习导数的应用

数学高考总复习导数的应用
数学高考总复习导数的应用

数学高考总复习:导数的应用

编稿:林景飞责编:严春梅

一、知识结构:

二、高考考点:

1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);

2.了解函数在一点处的导数的定义和掌握导数的几何意义;

3.熟记基本导数公式;

4.掌握两个函数和、差、积、商的求导法则;

5.了解复合函数的求导法则会求某些简单函数的导数;

6.理解可导函数的单调性与其导数的关系,能利用导数研究函数的单调性;

7.了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号),会求给定函数的极大值、极小值,会求给定函数在闭区间上的最大值、最小值;

8.了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念及其基本定理。

三、知识要点:

(一)导数的相关概念

1、导数的物理意义:事物的瞬时变化率,如:表示运动物体在时刻的瞬时速度;

气球半径关于体积的导数就是气球的瞬时膨胀率等.

2、导数的几何意义:过曲线y=f(x)上任意一点(x,y)的切线的斜率就是f(x)在x处的导数,即

。也就是说,曲线y=f(x)在点P(x0, f(x0))处的切线的斜率是,切线方程为

(二)求导数的方法:

1、几种常见函数的导数公式:

①;②(a∈Q);③;④

⑤⑥⑦⑧

2、导数的四则运算法则:

①;②;③

(三)导数的应用

1、求切线方程的一般方法,可分两步:

(1)求出函数在处的导数;

(2)利用直线的点斜式得切线方程。(注意:求切线方程,首先要判断所给点是否在曲线上.若在曲线上,可用上法求解;若不在曲线上,可设出切点,写出切线方程,结合已知条件求出切点坐标,从而得方程.)

2、判定函数的单调性

(1)函数f(x)在区间(a,b)内是单调递增或递减的判定可依据单调性定义也可利用导数,应根据问题的具体条件适当选用方法,有时须将区间(a,b)划分成若干小区间,在每个小区间上分别判定单调性。

(2)函数的单调性与其导数的关系:设函数y=f(x)在某个区间内可导,则当时

f(x)为增函数;当时f(x)为减函数。

3、求函数的极值与最值

(1)函数极值只反映函数在某点附近值的大小情况。在某区间上函数的极值可能有若干个,而且极小值未必小于极大值。仅是函数f(x)在点x0处有极值的必要条件,点x0是f(x)

的极值点,当且仅当在x0的左右的符号产生变化。

(2)函数的最值表示函数在定义域内值的整体情况。连续函数f(x)在闭区间[a,b]上必有一

个最大值和一个最小值,但是最值点可以不唯一。

(3)在实际问题中,要由实际问题的背景构造出相应的函数关系式y=f(x),并注明其定义域,当在定义域内只有一个解时,并且最值一定存在,则此点即为函数f(x)的最值点。

(四)定积分的概念及其应用

1.定积分的定义:

如果函数在区间[a,b]上连续,用分点将区间

_______分为n个小区间,在每个小区间上任取一点(i=1,2,3…,n),作和式

,当时,上述和式无限趋近于某个常数,这个常数叫做在区间[a,b]上的定积分.记作__________

2.定积分的性质:

(1)(为常数)

(2)

(3)(其中)

3.微积分基本定理:

如果,且在上_______,则=_______,其中_________

叫做的一个原函数.由于___________也是的原函数,其中c为常数.

一般地,原函数在上的改变量简记作____________.因此,微积分基本

定理可以写成形式:=_______________=_________________.

注:求定积分主要是要找到被积函数的________,也就是说,要找到一个函数,它的导函数等于_________.由此,求导运算与求原函数运算互为______________.

4.定积分的几何意义:

设函数在区间上连续.在上,当时,定积分在几何上

表示由曲线以及直线与轴围成的曲边梯形的面积.在上,当

时,由曲线以及直线与轴围成的曲边梯形位于轴下方,定

积分在几何上表示上述曲边梯形面积的负值;在上,当既取正值又取负

值时,曲线的某些部分在轴的上方,而其他部分在轴下方,如果我们将在轴上方的图形的面积赋予正号,在轴下方的图形的面积赋予符号,那么在一般情形下,定积分

的几何意义是曲线,两条直线与轴所围成的各部分面积的代数和.

5. 应用定积分求面积

(1)如图,由曲线及直线

围成图形的面积公式为:

(2)如图,在区间上,,则曲边梯形的面积为

6.利用定积分求平面图形面积的步骤:

(1)画出草图,在直角坐标系中画出曲线或直线的大致图像;

(2)借助图形确定出被积函数,求出交点坐标,确定积分的上、下限;

(3)写出定积分表达式;

(4)求出平面图形的面积.

7.利用函数的奇偶性求积分:

若函数在区间上是奇函数,则;

若函数在区间上是偶函数,则;

四、经典例题:

例1.求下列函数的导数:

(1);(2);(3);解:

(1)

(2)(法一)

(法二)

(3)

例2.运动曲线的方程为:,求t=3时的速度,加速度。

分析:由导数的物理意义知,t=3时的速度就是求函数在t=3时的导数值,

t=3时的加速度就是求速度函数在t=3时的导数值。

解:运动曲线的速度为:

t=3时的速度:

运动曲线的加速度为:

t=3时的加速度:

例3:运用微积分定理求定积分

(1);

(2),求函数在区间上的积分.

(3);

(4)。

解:

(1)

(2)

(3)∵是奇函数,是偶函数。

∴,

(4)(法一)

设,则表示个圆,

由积分的概念可知,所求积分就是圆的面积,

所以

(法二)

令,则当从0变到时,相应的t自0变到

所以,

点评:当被积式为分段函数时,应分段积分;求定积分最常用的方法是微积分基本定理,但

有时不易找到原函数,此时可以用其他方法:利用定积分的几何意义,利用函数的奇偶性等。

例4:求由曲线围成的平面图形的面积.

解:由得A (1,1);由得B(2,4)

所求面积:

例5.对正整数n,设曲线在x=2处的切线与y轴交点的纵坐标为,则数列的前n项和的公式是

解:,

令x=0,求出切线与y轴交点的纵坐标为,

所以,

则数列的前n项和

点评:本题主要考查利用导数求切线方程,再与数列知识结合起来,解决相关问题。

例6.已知函数在与x=1时都取得极值

(1)求a、b的值与函数f(x)的单调区间;

(2)若对x∈[-1,2],不等式恒成立,求c的取值范围。

解:(1),

由,得

,b=-2

,函数f(x)的单调区间如下表:

所以函数f(x)的递增区间是与

递减区间是

(2),x∈[-1,2],

当时,为极大值,

而,则为最大值

要使(x∈[-1,2])恒成立,

只需,解得.

例7.请您设计一个帐篷,它下部的形状是高为1m的正六棱柱,上部的形状是侧棱长为3m

的正六棱锥(如图所示)。试问当帐篷的顶点O到底面中心的距离为多少时,帐篷的体积最大?

解:设OO1为,则

由题设可得正六棱锥底面边长为:(单位:)

故底面正六边形的面积为:=(单位:)

帐篷的体积为:

(单位:)

求导得

令,解得(不合题意,舍去),,

当时,,为增函数;当时,,

为减函数

∴当时,最大

答:当OO1为时,帐篷的体积最大,最大体积为。

点评:本题主要考查利用导数研究函数的最值的基础知识,以及运用数学知识解决实际问题的能力.

例8.设是函数的一个极值点.

(Ⅰ)求与的关系式(用表示),并求的单调区间;

(Ⅱ)设,.若存在使得成立,求的取值范围.

解:

(Ⅰ)

,

由,得,即得,

令,得或,

由于x=3是极值点,所以,

当,即时,

在区间上,,为减函数;

在区间上,,为增函数;

在区间上,,为减函数。

当,即时,

在区间上,,为减函数;

在区间上,,为增函数;

在区间上,,为减函数。

(Ⅱ)

由(Ⅰ)知,当a>0时,f (x)在区间(0,3)上的单调递增,在区间(3,4)上单调递减,

所以f (x)在区间[0,4]上的值域是

又在区间[0,4]上是增函数,且它在区间[0,4]上的值域是

由于,

所以只需且,解得<.

故a的取值范围是(0,)。

点评:本小题主要考查函数、不等式和导数的应用等知识,考查综合运用数学知识解决问题的能力。

五、高考真题:

1. (2007全国卷II)已知曲线的一条切线的斜率为,则切点的横坐标为

()

A.3B.2C.1D.

答案:A

2. (2007天津卷)已知函数,其中.

(Ⅰ)当时,求曲线在点处的切线方程;

(Ⅱ)当时,求函数的单调区间与极值.

分析:本小题考查导数的几何意义,两个函数的和、差、积、商的导数,利用导数研究函数的单调性和极值等基础知识,考查运算能力及分类讨论的思想方法.

解:

(Ⅰ)当时,,,

又,

所以曲线在点处的切线方程为,

即.

(Ⅱ).

由于,以下分两种情况讨论.

(1)当时,令,得到,.

当变化时,的变化情况如下表:

所以在区间,内为减函数,在区间内为增函数.

函数在处取得极小值,且,

函数在处取得极大值,且.

(2)当时,令,得到,

当变化时,的变化情况如下表:

所以在区间,内为增函数,在区间内为减函数.

函数在处取得极大值,且.

函数在处取得极小值,且.

3.(2007安徽卷)设

(Ⅰ)令,讨论在(0,+∞)内的单调性并求极值;

(Ⅱ)求证:当x>1时,恒有.

分析:本小题主要考查函数导数的概念与计算,利用导数研究函数的单调性、极值和证明不等式的方法,考查综合运用有关知识解决问题的能力.

解:

(Ⅰ)根据求导法则有,

故,

于是,

列表如下:

故知在内是减函数,在内是增函数,

所以在处取得极小值.

(Ⅱ)由知,的极小值.

于是由上表知,对一切,恒有.

从而当时,恒有,

故在内单调增加.

所以当时,,即.

故当时,恒有.

4. (2007湖北卷)已知定义在正实数集上的函数,,

其中.设两曲线,有公共点,且在该点处的切线相同.

(I)用表示,并求的最大值;

(II)求证:().

分析:本小题主要考查函数、不等式和导数的应用等知识,考查综合运用数学知识解决问题的能力.

解:

(Ⅰ)设与在公共点处的切线相同.

,,

由题意,.

即,

由得:,或(舍去).

即有.

令,则.

于是当,即时,;

当,即时,.

故在为增函数,在为减函数,

于是在的最大值为.

(Ⅱ)设,

则.

故在为减函数,在为增函数,

于是函数在上的最小值是.

故当时,有,

即当时,.

5.(2007山东卷)设函数,其中.

(I)当时,判断函数在定义域上的单调性;

(II)求函数的极值点;

(III)证明对任意的正整数,不等式都成立.

分析:

(I)通过判断导函数的正负来确定函数的单调性,是和定义域共同作用的结果;

(II)需要分类讨论,由(I)可知分类的标准为

(III)构造新函数为证明不等式“服务”,构造函数的依据是不等式关系中隐含的易于判断的函数关系。

解:

(I)函数的定义域为.

令,则在上递减,在上递增,

.

当时,,

在上恒成立.

即当时,函数在定义域上单调递增。

(II)分以下几种情形讨论:

(1)由(I)知当时函数无极值点.

(2)当时,,

时,

时,

时,函数在上无极值点。

(3)当时,解得两个不同解,.

当时,,,

此时在上有唯一的极小值点.

当时,

在都大于0 ,在上小于0 ,

此时有一个极大值点和一个极小值点.

综上可知:

时,在上有唯一的极小值点;

时,有一个极大值点和一个极小值点

时,函数在上无极值点。

(III)当时,

则在上恒正,

在上单调递增,当时,恒有.

即当时,有,

对任意正整数,取得

注意:不能论述清楚时,函数在上无极值点;当时,不能发现

,误判断为函数的极值点;在证明不等式时不能挖掘函数的“潜能”,找不到解题的突破口。

点评:用导数解决函数的单调性问题一直是各省市高考及各地市高考模拟试题的重点,究其原因,应该有三条:这里是知识的交汇处,这里是导数的主阵地,这里是思维的制高点.此类问题的一般步骤都能掌握,但重要的是求导后的细节问题------参数的取值范围是否影响了函数的单

调性?因而需要进行分类讨论判断:当参数给出了明确的取值范围后,应根据导函数的特

点迅速判断或。参数取某些特定值时,可直观作出判断,单列为一类;不

能作出直观判断的,再分为一类,用通法解决.另外要注意由求得的根不一定就是极

值点,需要判断在该点两侧的异号性后才能称为“极值点”.

六、反馈练习:

1.设,则()

A. B. C. D.不存在

2.下列定积分值为0的有()

A. B. C. D.

3.设函数,集合M=,P=,若M P,则实数a的取值范围是()

A.(-∞,1)

B.(0,1)

C.(1,+∞)

D. [1,+∞)

4.定积分()

A. B. C. D.

高三数学专题复习:导数及其应用

【考情解读】 导数的概念及其运算是导数应用的基础,这是高考重点考查的内容.考查方式以客观题为主,主要考查: 一是导数的基本公式和运算法则,以及导数的几何意义; 二是导数的应用,特别是利用导数来解决函数的单调性与最值问题、证明不等式以及讨论方程的根等,已成为高考热点问题; 三是应用导数解决实际问题. 【知识梳理】 1.导数的几何意义 函数y=f(x)在点x=x0处的导数值就是曲线y=f(x)在点处的切线的,其切线方程是. 注意:函数在点P0处的切线与函数过点P0的切线的区别:. 2.导数与函数单调性的关系 (1)() '>0是f(x)为增函数的条件. f x 如函数f(x)=x3在(-∞,+∞)上单调递增,但f′(x)≥0. (2)() '≥0是f(x)为增函数的条件. f x 当函数在某个区间内恒有() '=0时,则f(x)为常数,函数不具有单调 f x 性. 注意:导数值为0的点是函数在该点取得极值的条件.

3. 函数的极值与最值 (1)函数的极值是局部范围内讨论的问题,函数的最值是对整个定义域而言的,是在整个范围内讨论的问题. (2)函数在其定义区间的最大值、最小值最多有 个,而函数的极值可能不止一个,也可能没有. (3)闭区间上连续的函数一定有最值,开区间内的函数不一定有最值,若有唯一的极值,则此极值一定是函数的 . 4. 几个易误导数公式及两个常用的运算法则 (1)(sin x )′= ; (2)(cos x )′= ; (3)(e x )′= ; (4)(a x )′= (a >0,且a ≠1); (5)(x a )′= ; (6)(log e x )′= ; (7)(log a x )′= (a >0,且a ≠1); (8)′= ; (9)??????? ? f (x ) g (x )′= (g (x )≠0) .

高考数学导数题型归纳

导数题型归纳 请同学们高度重视: 首先,关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法 5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系 (2)端点处和顶点是最值所在 其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。 最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)(' =x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上, ()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数,432 3()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =-- 得32 ()332 x mx f x x '=-- (1) ()y f x =在区间[]0,3上为“凸函数”, 则 2 ()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x < 解法二:分离变量法: ∵ 当0x =时, 2 ()330g x x mx ∴=--=-<恒成立, 当03x <≤时, 2 ()30g x x mx =--<恒成立 等价于233 x m x x x ->=-的最大值(03x <≤)恒成立, 而3 ()h x x x =-(03x <≤)是增函数,则max ()(3)2h x h == (2)∵当2m ≤时()f x 在区间(),a b 上都为“凸函数” 则等价于当2m ≤时2 ()30g x x mx =--< 恒成立 解法三:变更主元法 再等价于2 ()30F m mx x =-+>在2m ≤恒成立(视为关于m 的一次函数最值问题) 2 2 (2)0230 11(2)0230 F x x x F x x ?->--+>?????-<-+>??? 例2),10(32 R b a b x a ∈<<+- ],2不等式()f x a '≤恒成立,求a 的取值范围.

高三数学一轮复习 导数的综合应用

导数的综合应用 一、选择题 1.已知函数f(x)=x2+mx+ln x是单调递增函数,则m的取值范围是( B ) (A)m>-2(B)m≥-2 (C)m<2 (D)m≤2 解析:函数定义域为(0,+∞), 又f'(x)=2x+m+. 依题意有f'(x)=2x+m+≥0在(0,+∞)上恒成立, ∴m≥-恒成立,设g(x)=-, 则g(x)=-≤-2, 当且仅当x=时等号成立. 故m≥-2, 故选B. 2.(2013洛阳统考)函数f(x)的定义域是R,f(0)=2,对任意x∈R,f(x)+f'(x)>1,则不等式 e x·f(x)>e x+1的解集为( A ) (A){x|x>0} (B){x|x<0} (C){x|x<-1或x>1} (D){x|x<-1或0e x-e x=0, 所以g(x)=e x·f(x)-e x为R上的增函数. 又因为g(0)=e0·f(0)-e0=1, 所以原不等式转化为g(x)>g(0), 解得x>0. 故选A. 3.如图所示,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记t时刻五角星露出水面部分的图形面积为S(t)(S(0)=0),则导函数y=S'(t)的图象大致为( A )

解析:由导数的定义知,S'(t0)表示面积函数S(t0)在t0时刻的瞬时变化率.如图所示,正五角星薄片中首先露出水面的是区域Ⅰ,此时其面积S(t)在逐渐增大,且增长速度越来越快,故其瞬时变化率S'(t)也应逐渐增大;当露出的是区域Ⅱ时,此时的S(t)应突然增大,然后增长速度减慢,但仍为增函数,故其瞬时变化率S'(t)也随之突然变大,再逐渐变小,但S'(t)>0(故可排除选项B);当五角星薄片全部露出水面后,S(t)的值不再变化,故其导数值S'(t)最终应等于0,符合上述特征的只有选项A. 4.已知f(x)是定义域为R的奇函数,f(-4)=-1,f(x)的导函数f'(x)的图象如图所示.若两正 数a,b满足f(a+2b)<1,则的取值范围是( B ) (A)(B) (C)(-1,0) (D)(-∞,-1) 解析:因为f(x)是定义域为R的奇函数,f(-4)=-1,所以f(-4)=-f(4),所以f(4)=1,所以f(a+2b)

江苏省2015届高三数学一轮复习备考试题:导数及其应用

江苏省2015年高考一轮复习备考试题 导数及其应用 一、填空题 1、(2014年江苏高考)在平面直角坐标系xOy 中,若曲线),(y 2为常数b a x b ax +=过点)5,2(P -,且该曲线在点P 处的切线与直线0327x =++y 平行,则b a +的值是 ▲ . 2、(2013年江苏高考)抛物线2x y =在1=x 处的切线与两坐标轴围成三角形区域为D (包含三角形内部与边界)。若点),(y x P 是区域D 内的任意一点,则y x 2+的取值范围是 。 3、(2015届江苏苏州高三9月调研)函数()321122132 f x ax ax ax a =+-++的图象经过四个象限的充要条件是 ▲ 4、(南京市2014届高三第三次模拟)设二次函数f (x )=ax 2+bx +c (a ,b ,c 为常数)的导函数为f′(x ).对 任意x ∈R ,不等式f (x )≥f′(x )恒成立,则b 2 a 2+c 2的最大值为 ▲ 5、(苏锡常镇四市2014届高三5月调研(二))直线y = kx 与曲线2e x y =相切,则实数k = ▲ 6、(南京、盐城市2014届高三第二次模拟(淮安三模))设函数f (x )=ax +sin x +cos x .若函数f (x )的图象上存在不同的两点A ,B ,使得曲线y =f (x )在点A ,B 处的切线互相垂直,则实数a 的取值范围为 ▲ 7、(江苏省南京市第一中学2014届高三12月月考)已知R 上的可导函数)(x f 的导函数)(x f '满足:)(x f '+)(x f 0>,且1)1(=f 则不等式>)(x f 11 -x e 的解是 . 8、(江苏省阜宁中学2014届高三第三次调研)若函数()32f x x ax bx c =+++有极值点12,x x ,且 ()11f x x =,则关于x 的方程()()()2320f x af x b ++=的不同实根个数是 ▲ . 9、(江苏省如东县掘港高级中学2014届高三第三次调研考试)函数12ln y x x =+的单调减区间为__________ 10、(江苏省睢宁县菁华高级中学2014届高三12月学情调研)已知函数()f x ,()g x 满足(1)2f =,(1)1f '=,(1)1g =,(1)1g '=,则函数()(()1)()F x f x g x =-?的图象在1x =处的切线方程为 ▲ . 11、曲线2(1)1()e (0)e 2 x f f x f x x '=-+在点(1,f (1))处的切线方程为 ▲ .

高三数学专题复习 函数的零点与导数的应用关系

高三数学专题复习 函数的零点与导数的应用关系 21、(本题满分14分) 已知函数1()ln ,()f x a x a R x =-∈其中 (1)设()(),h x f x x =+讨论()h x 的单调性。 (2)若函数()f x 有唯一的零点,求a 取值范围。 21.解:(1)1()ln h x a x x x =-+,定义域为(0,)+∞………………1分 22211()1a ax x h x x x x ++'=++=………………2分 令22()1,4g x x ax a =++?=- 当0?≤,即22a -≤≤时()0g x ≥,()0h x '≥此时()h x 在(0,)+∞上单调递增。………………4分 当0?>即2a <-或2a >时,由()0g x =得1x =,2x = ………………5分 若2a >则10x <又1210x x =>所以20x < 故()0h x '>在(0,)+∞上恒成立 所以()h x 在(0,)+∞单调递增……………………6分 若2a <-则20x >又1210x x =>所以20x > 此时当1(0,)x x ∈时()0h x '>;当12(,)x x x ∈时()0h x '<当2(,)x x ∈+∞时()0h x '> 故()h x 在1(0,)x ,2(,)x +∞上单调递增,在12(,)x x 单调递减……………………7分 综上,当2a ≥-时()h x 在(0,)+∞上单调递增 当2a <-时()h x 在1(0,)x ,2(,)x +∞单调递增,在12(,)x x 单调递减……………8分 (2)方法1:问题等价于1ln a x x = 有唯一实根 显然0a ≠则关于x 的方程1ln x x a =有唯一实根……………10分 构造函数()ln x x x ?=,则()1ln x x ?'=+ 由0ln 1'=+=x ?,得e x 1=

函数与导数大题部分-高考数学解题方法归纳总结专题训练

专题03 函数与导数大题部分 【训练目标】 1、 理解函数的概念,会求函数的定义域,值域和解析式,特别是定义域的求法; 2、 掌握函数单调性,奇偶性,周期性的判断方法及相互之间的关系,会解决它们之间的综合问题; 3、 掌握指数和对数的运算性质,对数的换底公式; 4、 掌握指数函数和对数函数的图像与性质; 5、 掌握函数的零点存在定理,函数与方程的关系; 6、 熟练数形结合的数学思想在解决函数问题的运用; 7、 熟练掌握导数的计算,导数的几何意义求切线问题; 8、 理解并掌握导数与函数单调性之间的关系,会利用导数分析函数的单调性,会根据单调性确定参数的取 值范围; 9、 会利用导数求函数的极值和最值,掌握构造函数的方法解决问题。 【温馨小提示】 本章内容既是高考的重点,又是难点,再备考过程中应该大量解出各种题型,总结其解题方法,积累一些常用的小结论,会给解题带来极大的方便。 【名校试题荟萃】 1、(2019届新余四中、上高二中高三第一次联考)已知函数 .,R n m ∈ (1)若函数()x f 在()()2,2f 处的切线与直线0=-y x 平行,求实数n 的值; (2)试讨论函数()x f 在区间[)+∞,1上最大值; (3)若1=n 时,函数()x f 恰有两个零点,求证:221>+x x 【答案】(1)6n =(2)1ln m n --(3)见解析 【解析】(1)由, ,由于函数()f x 在(2,(2))f 处的切线与直线0x y -=平行, 故 2 14 n -=,解得6n =。 (2) ,由()0f x '<时,x n >;()0f x '>时,x n <,所以 ①当1n ≤时,()f x 在[)1,+∞上单调递减,故()f x 在[)1,+∞上的最大值为 ;

高考数学 导数及其应用的典型例题

第二部分 导数、微分及其导数的应用 知识汇总 一、求导数方法 1.利用定义求导数 2.导数的四则运算法则 3.复合函数的求导法则 若)(u f y =与)(x u φ=均可导,则[])(x f y φ=也可导,且dx du du dy dx dy ? = 即 [])()(x x f y φφ'?'=' 4.反函数的求导法则 若)(x f y =与)(y x φ=互为反函数,且)(y φ单调、可导,则 )(1)(y x f φ'= ',即dy dx dx dy 1 = 5.隐函数求导法 求由方程0),(=y x F 确定的隐函数 )(x f y =的导数dx dy 。只需将方程0),(=y x F 两边同时对x 求导(注意其中变量y 是x 的函数),然后解出 dx dy 即可。 6.对数求导法 对数求导法是先取对数,然后按隐函数求导数的方法来求导数。对数求导法主要解决两类函数的求导数问题: (1)幂指数函数y=)()(x v x u ;(2)由若干个因子的乘积或商的显函数,如 y= 3 4 )3(52)2)(1(---++x x x x x ,3 ) 2)(53() 32)(1(--+-=x x x x y ,5 5 2 2 5 +-=x x y 等等。 7.由参数方程所确定函数的求导法则 设由参数方程 ? ? ?==)() (t y t x ?φ ),(βα∈t 确定的函数为y=f(x),其中)(),(t t ?φ

可导,且)(t φ'≠0,则y=f(x)可导,且 dt dx dt dy t t dx dy =''=)()(φ? 8.求高阶导数的方法 二、求导数公式 1.基本初等函数求导公式 (1) 0)(='C (2) 1 )(-='μμμx x (3) x x cos )(sin =' (4) x x sin )(cos -=' (5) x x 2 sec )(tan =' (6) x x 2csc )(cot -=' (7) x x x tan sec )(sec =' (8) x x x cot csc )(csc -=' (9) a a a x x ln )(=' (10) (e )e x x '= (11) a x x a ln 1 )(log = ' (12) x x 1)(ln = ', (13) 211)(arcsin x x -= ' (14) 211)(arccos x x -- =' (15) 21(arctan )1x x '= + (16) 21(arccot )1x x '=- + 2.常见函数的高阶导数 (1) n n x n x -+-?-?-?=αα αααα)1()2()1()() ( (2) x n x e e =) () ( (3) ()()ln x n x n a a a = (4) () (sin ) sin 2n x x n π? ?=+? ??? (5) ??? ? ??+=2cos )(cos )(πn x x n (6) () 1 (1)!ln()(1) ()n n n n a x a x --+=-+ (7) 1 )() (!)1()1(++-=+n n n n b ax a n b ax

高考数学复习-导数及其应用(第一部分)

高考数学复习-导数及其应用(第一部分) [基础题组练习1-导数及其应用] 1.已知函数f (x )=1 x cos x ,则f (π)+f ′????π2=( ) A .-3π2 B .-1π2 C .-3π D .-1π 解析:选C.因为f ′(x )=-1x 2cos x +1x (-sin x ),所以f (π)+f ′????π2=-1π+2π·(-1)=-3 π. 2.(2019·福州模拟)曲线f (x )=x +ln x 在点(1,1)处的切线与坐标轴围成的三角形的面积为( ) A .2 B.32 C.1 2 D.14 解析:选D.f ′(x )=1+1 x ,则f ′(1)=2,故曲线f (x )=x +ln x 在点(1,1)处的切线方程为y -1=2(x -1),即y =2x -1,此切线与两坐标轴的交点坐标分别为(0,-1),???? 12,0,则切线与坐标轴围成的三角形的面积为12×1×12=1 4 ,故选D. 3.已知曲线y =x 24-3ln x 的一条切线的斜率为1 2,则切点的横坐标为( ) A .3 B .2 C .1 D. 1 2 解析:选A.因为y ′=x 2-3x ,令y ′=1 2 ,解得x =3,即切点的横坐标为3. 4.如图所示为函数y =f (x ),y =g (x )的导函数的图象,那么y =f (x ),y =g (x )的图象可能是( )

解析:选D.由y =f ′(x )的图象知y =f ′(x )在(0,+∞)上单调递减,说明函数y =f (x )的切线的斜率在(0,+∞)上也单调递减,故排除A 、C.又由图象知y =f ′(x )与y =g ′(x )的图象在x =x 0处相交,说明y =f (x )与y =g (x )的图象在x =x 0处的切线的斜率相同,故排除B. 5.函数g (x )=x 3+5 2x 2+3ln x +b (b ∈R )在x =1处的切线过点(0,-5),则b 的值为( ) A.72 B.52 C.32 D.12 解析:选B.当x =1时,g (1)=1+52+b =7 2+b , 又g ′(x )=3x 2+5x +3 x , 所以切线斜率k =g ′(1)=3+5+3=11, 从而切线方程为y =11x -5, 由于点????1,72+b 在切线上,所以7 2+b =11-5, 解得b =5 2 .故选B. 6.已知f (x )=ax 4+b cos x +7x -2.若f ′(2 018)=6,则f ′(-2 018)=________. 解析:因为f ′(x )=4ax 3-b sin x +7, 所以f ′(-x )=4a (-x )3-b sin(-x )+7 =-4ax 3+b sin x +7. 所以f ′(x )+f ′(-x )=14. 又f ′(2 018)=6, 所以f ′(-2 018)=14-6=8.

高中数学导数的应用——极值与最值专项训练题(全)

高中数学专题训练 导数的应用——极值与最值一、选择题 1.函数y=ax3+bx2取得极大值和极小值时的x的值分别为0和1 3,则() A.a-2b=0B.2a-b=0 C.2a+b=0 D.a+2b=0 答案 D 解析y′=3ax2+2bx,据题意, 0、1 3是方程3ax 2+2bx=0的两根 ∴-2b 3a= 1 3,∴a+2b=0. 2.当函数y=x·2x取极小值时,x=() A. 1 ln2B.- 1 ln2 C.-ln2 D.ln2 答案 B 解析由y=x·2x得y′=2x+x·2x·ln2 令y′=0得2x(1+x·ln2)=0 ∵2x>0,∴x=- 1 ln2 3.函数f(x)=x3-3bx+3b在(0,1)内有极小值,则() A.0<b<1 B.b<1 C.b>0 D.b<1 2 答案 A 解析f(x)在(0,1)内有极小值,则f′(x)=3x2-3b在(0,1)上先负后正,∴f′(0)=-3b<0, ∴b>0,f′(1)=3-3b>0,∴b<1 综上,b的范围为0<b<1 4.连续函数f(x)的导函数为f′(x),若(x+1)·f′(x)>0,则下列结论中正确的是() A.x=-1一定是函数f(x)的极大值点 B.x=-1一定是函数f(x)的极小值点 C.x=-1不是函数f(x)的极值点 D.x=-1不一定是函数f(x)的极值点 答案 B 解析x>-1时,f′(x)>0 x<-1时,f′(x)<0 ∴连续函数f(x)在(-∞,-1)单减,在(-1,+∞)单增,∴x=-1为极小值点.

5.函数y =x 33+x 2-3x -4在[0,2]上的最小值是( ) A .-173 B .-103 C .-4 D .-643 答案 A 解析 y ′=x 2+2x -3. 令y ′=x 2+2x -3=0,x =-3或x =1为极值点. 当x ∈[0,1]时,y ′<0.当x ∈[1,2]时,y ′>0,所以当x =1时,函数取得极小值,也为最小值. ∴当x =1时,y min =-173. 6.函数f (x )的导函数f ′(x )的图象,如右图所示,则( ) A .x =1是最小值点 B .x =0是极小值点 C .x =2是极小值点 D .函数f (x )在(1,2)上单增 答案 C 解析 由导数图象可知,x =0,x =2为两极值点,x =0为极大值点,x =2为极小值点,选C. 7.已知函数f (x )=12x 3-x 2-72x ,则f (-a 2)与f (-1)的大小关系为( ) A .f (-a 2)≤f (-1) B .f (-a 2)

高三数学重点知识:导数及其应用

2019年高三数学重点知识:导数及其应用查字典数学网高中频道收集和整理了2019年高三数学重点知识:导数及其应用,以便高中生在高考备考过程中更好的梳理知识,轻松备战。祝大家暑假快乐。 一基础再现 考点87简单复合函数的导数 1.曲线在点处的切线方程为____________。 2.已知函数和的图象在处的切线互相平行,则=________. 3.(宁夏、海南卷)设函数 (Ⅰ)讨论的单调性;(Ⅱ)求在区间的最大值和最小值. 考点88定积分 4.计算 5.(1);(2) 6. 计算= 7.___________ 8.求由曲线y=x3,直线x=1,x=2及y=0所围成的曲边梯形的面积. 二感悟解答 1.答案: 2.答案:6 3.解:的定义域为. 当时,;当时,;当时,.

从而,分别在区间,单调增,在区间单调减. (Ⅱ)由(Ⅰ)知在区间的最小值为. 又. 所以在区间的最大值为. 4.答案:6 5.答案:(1) 死记硬背是一种传统的教学方式,在我国有悠久的历史。但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。其实,只要应用得当,“死记硬背”与提高学生素质并不矛盾。相反,它恰是提高学生语文水平的重要前提和基础。 (2)利用导数的几何意义:与x=0,x=2所围图形是以(0,0)为圆心,2为半径的四分之一个圆,其面积即为(图略) 观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。我提供的观察对象,注意形象逼真,色彩鲜明,大小适中,引导幼儿多角度多层面地进行观察,保证每个幼儿看得到,看得清。看得清才能说得正确。在观察过程中指导。我注意帮助幼儿学习正确的观察方法,即按顺序观察和抓住事物的不同特征重

高考文科数学专题复习导数训练题文

欢迎下载学习好资料 高考文科数学专题复习导数训练题(文)一、考点回顾导数的概念及其运算是导数应用的基础,是高考重点考查的内容。考查方式以客观题为主,主1. 要考查导数的基本公式和运算法则,以及导数的几何意义。导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工2.具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题。选择填空题侧重于利用导不等式、解答题侧重于导数的综合应用,即与函数、数确定函数的单调性、单调区间和最值问题,数列的综合应用。3.应用导数解决实际问题,关键是建立恰当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极大(小)值,而此时不用和端点值进行比较,也可以得知这就是最大(小)值。 二、经典例题剖析 考点一:求导公式。 13f(x)?x?2x?1??ff(?1)(x)3的值是的导函数,则。例1. 是 ????2?1?2?1?f'32x??xf'解析:,所以 答案:3 点评:本题考查多项式的求导法则。 考点二:导数的几何意义。 1x?y?2(1?(1))f(x)My,f2,点则图数2. 例已知函的象程的处切线方在是 ??(1)(f1?)f。 115???fk?'1M(1,f(1))222,所的纵坐标为,所以,由切线过点,可得点M 解析:因为5???f1?????3'f1?f12以,所以3 答案: 学习好资料欢迎下载 32?3)(1,2??4x?yx?2x例3. 。在点曲线处的切线方程是 2?3)(1,4??4xy'?3x5?k?3?4?4??解析:,所以设切线方程,处切线的斜率为点?3)(1, ?3)y??5x?b(1,2b?,将点处的切线为带入切线方程可得,所以,过曲线上点5x?y?2?0方程为:5x?y?2?0答案:点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 ??23x?,y0x l:y?kx x?3x?2y?xl与曲线C且直线相切于点,,例,4.已知曲线C:直线000l的方程及切点坐标。求直线y??00k??x??0x y,x?0在曲析解:线直线过原点,C则。由点上, ??00232x?2x?3xy?x yx,y'?3x?6x?2??0在,处,。又 则00y20?x?3x?2 000000??222x?3x?2?3x?6x?22x?'6x??3xk?f?,整曲线C,的切线斜率为 0000000331y???k??x03x??2x x?00082400。所以,(舍),此时,,解得:理得:,或033??1,???y??x82l??4的方程为,切点坐标是直线。 33??1,???y??x82l??4的方程为,切点坐标是答案:直线点评:本小题考查导数

高考理科数学全国卷三导数压轴题解析

2018年高考理科数学全国卷三导数压轴题解析 已知函数2()(2)ln(1)2f x x ax x x =+++- (1) 若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2) 若0x =是()f x 的极大值点,求a . 考点分析 综合历年试题来看,全国卷理科数学题目中,全国卷三的题目相对容易。但在2018年全国卷三的考察中,很多考生反应其中的导数压轴题并不是非常容易上手。第1小问,主要通过函数的单调性证明不等式,第2小问以函数极值点的判断为切入点,综合考察复杂含参变量函数的单调性以及零点问题,对思维能力(化归思想与分类讨论)的要求较高。 具体而言,第1问,给定参数a 的值,证明函数值与0这一特殊值的大小关系,结合函数以及其导函数的单调性,比较容易证明,这也是大多数考生拿到题目的第一思维方式,比较常规。如果能结合给定函数中20x +>这一隐藏特点,把ln(1)x +前面的系数化为1,判断ln(1)x +与2/(2)x x +之间的大小关系,仅通过一次求导即可把超越函数化为求解零点比较容易的代数函数,解法更加容易,思维比较巧妙。总体来讲,题目设置比较灵活,不同能力层次的学生皆可上手。 理解什么是函数的极值点是解决第2问的关键。极值点与导数为0点之间有什么关系:对于任意函数,在极值点,导函数一定等于0么(存在不存在)?导函数等于0的点一定是函数的极值点么?因此,任何不结合函数的单调性而去空谈函数极值点的行为都是莽撞与武断的。在本题目中,0x =是()f x 的极大值点的充要条件是存在10δ<和20δ>使得对于任意1(,0)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递增),对于任意2(0,)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递减),因此解答本题的关键是讨论函数()f x 在0x =附近的单调性或者判断()f x 与(0)f 的大小关系。题目中并没有限定参数a 的取值范围,所以要对实数范围内不同a 取值时的情况都进行分类讨论。在第1小问的基础上,可以很容易判断0a =以及0a >时并不能满足极大值点的要求,难点是在于判断0a <时的情况。官方标准答案中将问题等价转化为讨论函数2 ()ln(1)/(2)h x x x x =+++在0x =点的极值情况,非常巧妙,但是思维跨度比较大,在时间相对紧张的选拔性考试中大多数考生很难想到。需要说明的是,官方答案中的函数命题等价转化思想需要引起大家的重视,这种思想在2018年全国卷2以及2011年新课标卷1的压轴题中均有体现,这可能是今后导数压轴题型的重要命题趋势,对学生概念理解以及思维变通的能力要求更高,符合高考命题的思想。 下面就a 值变化对函数()f x 本身在0x =附近的单调性以及极值点变化情况进行详细讨论。

2019年高考文科数学导数及其应用分类汇编

导数及其应用 1.【2019年高考全国Ⅱ卷文数】曲线y =2sin x +cos x 在点(π,-1)处的切线方程为 A .10x y --π-= B .2210x y --π-= C .2210x y +-π+= D .10x y +-π+= 【答案】C 【解析】2cos sin ,y x x '=-π2cos πsin π2,x y =∴=-=-' 则2sin cos y x x =+在点(,1)π-处的切线方程为(1)2()y x --=--π,即2210x y +-π+=. 故选C . 2.【2019年高考全国Ⅲ卷文数】已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-, B .a=e ,b =1 C .1e 1a b -==, D .1e a -=,1b =- 【答案】D 【解析】∵e ln 1,x y a x '=++ ∴切线的斜率1|e 12x k y a ='==+=,1e a -∴=, 将(1,1)代入2y x b =+,得21,1b b +==-. 故选D . 3.【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),03 2x x f x x a x ax x 0 C .a >–1,b <0 D .a >–1,b >0 【答案】C 【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x , 则y =f (x )﹣ax ﹣b 最多有一个零点; 当x ≥0时,y =f (x )﹣ax ﹣b x 3 (a +1)x 2+ax ﹣ax ﹣b x 3 (a +1)x 2﹣b ,

高三数学导数及其应用

北京市人大附中高三数学尖子生专题训练:导数及其应用 I 卷 一、选择题 1.曲线y =-x 3+3x 2 在点(1,2)处的切线方程为( ) A .y =3x -1 B .y =-3x +5 C .y =3x +5 D .y =2x 【答案】A 2.函数f (x )=x 3+ax 2 +3x -9,已知f (x )在x =-3时取得极值,则a = ( ) A .2 B .3 C .4 D .5 【答案】D 3. 曲线y=x+ln x 在点(2 e ,2 e +2)处的切线在y 轴上的截距为( ) A .1 B .-1 C . 2 e D .- 2 e 【答案】A 4.曲线x x y 43 -=在点(1,3)-处的切线倾斜角为( ) A . 34 π B . 2 π C . 4 π D . 6 π 答案:A 5.若 2)(0='x f ,则k x f k x f k 2) ()(lim 000 --→等于( ) A .-1 B .-2 C .-1 D . 2 1 【答案】A 6. 已知 ()(3)2,32,f f ¢==-则323() lim 3 x x f x x ?--的值为 ( ) A . -4 B . 0 C . 8 D . 不存在 【答案】C 7. 设曲线1 1 x y x += -在点(3,2)处的切线与直线10ax y ++=垂直,则a = ( ) A .2 B . 2- C . 12- D . 1 2 【答案】B 8.若函数f (x )=2x 2-ln x 在其定义域内的一个子区间(k -1,k +1)内不.是单调函数,则实数k 的取值范围是( ) A .[1,+∞) B .????1,3 2 C .[1,2) D .??? ?3 2,2 【答案】B 9.设函数,其中,则导数的取值范围 是( ) A . B . C . D .

校级:高考数学试题导数内容探究

高考数学试题导数内容探究 现代中学数学组陈永生 导数是研究函数的工具,运用导数的有关知识,研究函数的性质:单调性、极值和最值;以导数为工具,通过观察、分析三次函数图像的变化趋势,寻找临界状况,并以此为出发点进行推测、论证,实现对考生创造能力的考查是高考的热点问题。在高考中考察形式多种多样,以选择题、填空题等主观题目的形式考察基本概念、运算及导数的应用,也经常把高次多项式函数,分式函数,指数型,对数型函数,以及初等基本函数的和、差、积、商知识结合起来,以解答题形式综合考察利用导数研究函数的单调性、极值、最值,切线,方程的根,参数的范围等问题,这类题难度很大,综合性强,内容新,背景新,方法新,是高考命题的丰富宝藏。解题中需用到函数与方程思想、分类讨论思想、数形结合思想、转化与划归思想。 《课程标准》中导数的内容有:导数概念及其几何意义、导数的运算、导数在研究函数中的应用、生活中的优化问题举例、(理科)定积分与微积分基本定理。文、理科考查形式略有不同。理科基本以一个解答题的形式考查。文科以一个选择题或填空题和一个解答题为主。从新课程高考分析,对导数的要求一般有三个层次:第一层次是主要考查导数的概念、求导公式和求导法则;第二层次是导数的简单应用,包括求切线方程、求函数的单调区间, 求函数的极值;第三层次是综合考查,包括解决应用问题,将导数内容和传统内容中有关不等式和函数的单调性等有机的结合在一起,设计综合试题。本文以高考试题为例,谈谈高考导数的热点问题,供鉴赏。 一、函数,导数,不等式综合在一起,解决单调性,参数的范围等问题。解决单调性问题转化为解含参数的一元二次不等式或高次不等式的问题;求解参数的取值范围问题转化为不等式的恒成立,能成立,恰成立来求解。进一步转化求函数的最值或一元二次不等式在给定区间上(或实数集 )上的恒成立问题来解决,从而达到考查分类与整合、化归与转化的数学思想。

最新高考状元数学复习资料-导数及其应用优秀名师资料

2011高考状元数学复习资料-导数及其应用 2011高考状元数学复习资料-导数及其应用 【学法导航】 导数是高中数学中较为重要的知识,由于其应用的广泛性,为我们解决所学过的有关函数问题提供了一般性方法,是解决实际问题强有力的工具。导数的概念及其运算是导数应用的基础,是高考重点考查的对象。要牢记导数公式,熟练应用导数公式求函数的导数,掌握求导数的方法。导数的应用是高考考查的重点和难点,题型既有灵活多变的客观性试题,又有具有一定能力要求的主观性试题,这要求我们复习时要掌握基本题型的解法,树立利用导数处理问题的意识( 所以在复习中要重点把握以下几点:一是导数的概念及其运算是导数应用的基础,这是高考重点考查的内容。考查方式以客观题为主,主要考查导数的基本公式和运算法则,以及导数的几何意义;二是导数的应用,特别是利用导数来解决函数的单调性与最值问题、证明不等式以及讨论方程的根等,已成为高考热点问题(三是应用导数解决实际问题( 【专题综合】 导数是高中数学知识的一个重要的交汇点,命题范围非常广泛,为高考考查函数提供了广阔天地,处于一种特殊的地位,高考命题在利用导数工具研究函数的有关性质,把导数应用于单调性、极值等传统、常规问题的同时,进一步升华到处理与自然数有关的不等式的证明,是函数知识和不等式知识的一个结合体,它的解题又融合了转化、分类讨论、函数与方程、数形结合等数学思想与方法,突出了对能力的考查. 1.利用导数处理方程问题 932例1(2009江西卷文)设函数( fxxxxa()6,,,,2

,(1)对于任意实数,恒成立,求的最大值; fxm(),xm (2)若方程有且仅有一个实根,求的取值范围( fx()0,a '2解:(1) , fxxxxx()3963(1)(2),,,,,, '2 因为,, 即恒成立, x,,,,,(,)fxm(),39(6)0xxm,,,, 33 所以 , 得,即的最大值为 ,,,,,8112(6)0mm,m,,44 ''' (2) 因为当时, ;当时, ;当时, ; fx()0,fx()0,fx()0,x,112,,xx,2 5 所以当时,取极大值 ; fx()x,1fa(1),,2 当时,fx()取极小值 fa(2)2,,; x,2 5 故当f(2)0, 或f(1)0,时, 方程fx()0,仅有一个实根. 解得或. a,a,222利用导数研究函数的图像变化规律 3例3(2009陕西卷文)已知函数 fxxaxa()31,0,,,, 保护原创权益?净化网络环境 求的单调区间; ,fx(),, 若在处取得极值,直线y=m与的图象有三个不同的交点,求m 的,,fx()yfx,()x,,1,, 取值范围。 '22w.w.w.k.s.5.u.c.o.m解析:(1) fxxaxa()333(),,,,, '当时,对,有 fx()0,,a,0xR, 当时,的单调增区间为 fx()(,),,,,a,0 '当时,由解得或; fx()0,xa,,xa,a,0 '由解得, fx()0,,,,axa 当时,的单调增区间为;的单调减区间为。 fx()fx()(,),(,),,,,,aa(,),aaa,0 (2)因为在处取得极大值, fx()x,,1

2021年高考数学专题03 导数及其应用 (原卷版)

专题03 导数及其应用 易错点1 不能正确识别图象与平均变化率的关系 A , B 两机关单位开展节能活动,活动开始后两机关的用电量()()12W t W t ,与时间t (天)的关系如图 所示,则一定有 A .两机关单位节能效果一样好 B .A 机关单位比B 机关单位节能效果好 C .A 机关单位的用电量在0[0]t ,上的平均变化率比B 机关单位的用电量在0[0]t ,上的平均变化率大 D .A 机关单位与B 机关单位自节能以来用电量总是一样大 【错解】选C. 因为在(0,t 0)上,()1W t 的图象比()2W t 的图象陡峭,所以在(0,t 0)上用电量的平均变化率,A 机关单位比B 机关单位大. 【错因分析】识图时,一定要结合题意弄清图形所反映的量之间的关系,特别是单调性,增长(减少)的快慢等要弄清. 【试题解析】由题可知,A 机关单位所对应的图象比较陡峭,B 机关单位所对应的图象比较平缓,且用电量在0[0]t ,上的平均变化率都小于0,故一定有A 机关单位比B 机关单位节能效果好.故选B. 【参考答案】B 1.平均变化率

函数()y f x =从1x 到2x 的平均变化率为 2121 ()() f x f x x x --,若21x x x ?=-,2()y f x ?=-1()f x ,则平 均变化率可表示为y x ??. 2.瞬时速度 一般地,如果物体的运动规律可以用函数()s s t =来描述,那么,物体在时刻t 的瞬时速度v 就是物体在 t 到t t +?这段时间内,当t ?无限趋近于0时, s t ??无限趋近的常数. 1.巍巍泰山为我国的五岳之首,有“天下第一山”之美誉,登泰山在当地有“紧十八,慢十八,不紧不慢又十八”的俗语来形容爬十八盘的感受,下面是一段登山路线图.同样是登山,但是从A 处到B 处会感觉比较轻松,而从B 处到C 处会感觉比较吃力.想想看,为什么?你能用数学语言来量化BC 段曲线的陡峭程度吗? 【答案】见解析. 【解析】山路从A 到B 高度的平均变化率为h AB =1001 5005 -=-, 山路从B 到C 高度的平均变化率为h BC =15101 70504 -=-, ∴h BC >h AB , ∴山路从B 到C 比从A 到B 要陡峭的多. 易错点2 求切线时混淆“某点处”和“过某点” 若经过点P (2,8)作曲线3 y x =的切线,则切线方程为 A .12160x y --= B .320x y -+=

相关主题