搜档网
当前位置:搜档网 › 锰采样及实验

锰采样及实验

锰采样及实验
锰采样及实验

现场采样

1.采样内容

1.1 气压

1.2 温度、相对湿度

1.3 风速

1.4 采集粉尘

2.仪器

1.1 微孔滤膜,孔径0.8μm

1.2 采样夹,滤料直径为40mm

1.3 2GF-IS双头恒流粉尘采样仪,流量0~30L/min

1.4 QDF-6 型数字风速仪

1.5 YM-3型空盒气压表

1.6 DHM2机械通风干湿温度计

3.采样方法

钢结构工艺流程图

3.1 在采样的同时应作对照试验,即将空气收集器带至采样点,除不连接空气采样器采

集空气样品外,其余操作同样品,作为样品的空白对照。

3.2 选择有代表性的工作地点,其中应包括空气中有害物质浓度最高、劳动者接触时间

最长的工作地点。

3.3 在不影响劳动者工作的情况下,采样点尽可能靠近劳动者;空气收集器应尽量接近

劳动者工作时的呼吸带。

3.4 采样点应设在工作地点的下风向,应远离排气口和可能产生涡流的地点。

3.5 工作场所按产品的生产工艺流程,凡逸散或存在有害物质的工作地点,至少应设置1 个采样点。

3.6 采样时间一般为15min;采样时间不足15min时,可进行1次以上的采样。

3.6.1 采样时间为15min时,按式(3)计算:

c·v

STEL =――――― (3)

F·15

式中:STEL -短时间接触浓度,mg/m3;

c -测得样品溶液中有害物质的浓度,μg/ml;

v -样品溶液体积,ml;

F -采样流量,L/min;

15 -采样时间,min。

3.6.2 采样时间不足15min,进行1次以上采样时,按15min时间加权平均浓度计算。

C1T1+C2T2+…+CnTn

STEL =———————————— (4)

15

式中:STEL -短时间接触浓度,mg/m3;

C1、C2、Cn -测得空气中有害物质浓度,mg/m3;

T1、T2、Tn -劳动者在相应的有害物质浓度下的工作时间,min;

15 -短时间接触容许浓度规定的15min。

4.采样结果

4.1 风速:0.09 m/s、0.06 m/s、

0.04 m/s

4.2 气压:103.1 hpa×10

4.3 干球:18.2℃湿球:1

5.2 ℃

实验部分

火焰原子吸收光谱法测定空气中锰浓度

1 原理

空气中气溶胶态锰及其化合物用微孔滤膜采集,消解后,在279.5nm 波长下,用乙炔- 空气火焰原子吸收光谱法测定。

2 仪器

2.1 微孔滤膜(采完样)

2.2 剪刀

2.3 高脚烧杯

2.4 移液管、洗耳球

2.5 具塞刻度试管,10ml

2.6 电热板

2.7 原子吸收分光光度计,配备乙炔-空气火焰燃烧器和锰空心阴极灯。

3 试剂

实验用水为去离子水,用酸为优级纯

5.1 硝酸,ρ20=1.42g/ml

5.2 盐酸,ρ20=1.18g/ml,高纯

5.3 高氯酸,ρ20=1.67g/ml

5.4 消化液:取100ml 高氯酸,加入到900ml 硝酸中(已配好)

5.5 盐酸溶液,0.12mol/L:1ml 盐酸加到99ml 水中(已配好)

5.6 标准溶液:称取0.2748g 硫酸锰(将MnSO4·H2O于280?C烘烤1h 而得),溶于少量盐酸中,用水定量转移入100ml 容量瓶中,并稀释至刻度。此溶液为1.0mg/ml 标准贮备液。临用前,用盐酸溶液稀释成10.0μg/ml 锰标准溶液。或用国家认可的标准溶液配制。(国家认可的标准溶液GBS 07-1127-2000 500ug/ml)

7 分析步骤

7.1 对照试验:将装好微孔滤膜的采样夹带至采样点,除不连接空气采样器采集空气样品外,其余操作同样品,作为样品的空白对照。

7.2 样品处理:将采过样的滤膜剪碎放入烧杯中,加入5ml消化液,在电热板上加热消解,保持温度在200?C左右,待消化液基本挥发干时,取下稍冷后,用盐酸溶液溶解残渣,并定量转移入具塞刻度试管中,稀释至10.0ml,摇匀,供测定。若样品液中锰的浓度超过测定范围,可用盐酸溶液稀释后测定,计算时乘以稀释倍数。

7.3 标准曲线的绘制:取6只具塞刻度试管,分别加入0.00、0.20、0.50、1.00、2.00、3.00ml 锰标准溶液,各加盐酸溶液至10.0ml,配成0.0、0.20、0.50、1.0、2.0、3.0μg/ml 锰浓度标准系列。将原子吸收分光光度计调节至最佳测定状态,在279.5nm 波长下,用乙炔- 空气火焰分别测定标准系列,每个浓度重复测定3 次,以吸光度均值对锰浓度(μg/ml)绘制标准曲线。

1 2 3 4 5 6

锰标准溶液(ml)

盐酸溶液(ml) 10.00 9.80 9.50 9.00 8.00 7.00 ug/ml0.00 0.20 0.50 1.00 2.00 3.00

7.4 样品测定:用测定标准系列的操作条件测定样品溶液和空白对照溶液;测得的样品吸光度值减去空白对照吸光度值后,由标准曲线得锰浓度(ug/ml)。

8 计算

8.1按式(1)将采样体积换算成标准采样体积:

293 P

V o = V ×—————×————— (1)

273 + t 101.3

式中:V o —标准采样体积,L;

V —采样体积,L;

t —采样点的温度,℃;

P —采样点的大气压,kPa。

8.2 按式(2)计算空气中锰的浓度:

10 c

C = ――――― (2)

Vo

式中:C-空气中锰的浓度,乘以1.58为二氧化锰的浓度,mg/ m3;

c -测得样品溶液中锰的浓度,μg/ml;

10 —样品溶液的体积,ml;

Vo -标准采样体积,L。

实验六频率混叠与采样定理

实验六频率混叠与采样定理 一.实验目的: 熟悉信号采样过程,并通过本实验观察欠采样时信号频谱的混迭现象,了解采样前后信号频谱的变化,加深对采样定理的理解,掌握采样频率的确定方法。二.实验内容和原理: 模拟信号经过(A/D) 变换转换为数字信号的过程称之为采样,信号采样后其频谱产生了周期延拓,每隔一个采样频率fs,重复出现一次。为保证采样后信号的频谱形状不失真,采样频率必须大于信号中最高频率成份的两倍,这称之为采样定理。 a) 正常采样b) 欠采样 x(t)=3sin(2π·f·t) 采样频率=5120Hz,取信号频率f=150Hz(正常采样)和f=3000Hz(欠采样)两种情况进行采样分析。 三.实验仿真 1.Matlab源代码: x=-10:0.1:10; m=0:0.05:10; y1=sin(2*pi*x); y2=sin(4*pi*x); y3=sin(6*pi*x); y4=sin(8*pi*x); y5=sin(9*pi*x); y6=sin(12*pi*x); transf1=abs(fft(y1))/100; transf2=abs(fft(y2))/100; transf3=abs(fft(y3))/100; transf4=abs(fft(y4))/100; transf5=abs(fft(y5))/100; transf6=abs(fft(y6))/100; subplot(6,2,1); plot(x,y1); subplot(6,2,2); plot(m(1:100),transf1(1:100)); subplot(6,2,3); plot(x,y2);

验实验报告离散控制系统的性能分析及设计

实验报告 离散控制系统的性能分析及设计 一.实验目的:熟悉MATLAB环境下的离散控制系统性能分析;二.实验原理及实验内容 1. 数学模型的确定及系统分析: 已知采样控制系统,如图所示,若采样周期T=1s,K=10,(1)求闭环z传函;(2)求单位阶跃响应;(3)判定系统稳定性;(4)确定系统的临界放大系数; 图1 (1)计算闭环Z传函 ds1=tf(10,[1 1 0]);Ts=1; dg1=c2d(ds1,Ts,'zoh') dgg=feedback(dg1,1) Transfer function: 3.679 z + 2.642 ---------------------- z^2 - 1.368 z + 0.3679 3.679 z + 2.642 -------------------- z^2 + 2.311 z + 3.01 (2)求系统单位阶跃响应 C(z)=R*G Y= 3.6788 -2.1802 0.28517 12.225 -22.789 22.182 23.66 -115.13

201.15 -111.95 -1.1555 + 1.2943i -1.1555 - 1.2943i ans = 1.7350 1.7350 (4)临界稳定

将上述系统改变采样周期,T=0.1s,确定系统稳定的K 值范围; Root Locus Real Axis I m a g i n a r y A x i s -6 -5-4-3 -2-101 -2-1.5 -1 -0.5 0.5 1 1.5 2

附录: 最小拍系统设计原理及实例:

信号与系统 抽样定理实验

信号与系统 实验报告 实验六抽样定理 实验六抽样定理 一、实验内容:(60分) 1、阅读并输入实验原理中介绍的例题程序,观察输出的数据和图形,结合基本原理理解每一条语句的含义。 2、已知一个连续时间信号f(t)=sinc(t),取最高有限带宽频率f m=1Hz。 (1)分别显示原连续信号波形和F s=f m、F s=2f m、F s=3f m三种情况下抽样信号的波形;

程序如下: dt=0.1; f0=0.2; T0=1/f0; fm=5*f0; Tm=1/fm; t=-10:dt:10; f=sinc(t); subplot(4,1,1); plot(t,f); axis([min(t),max(t),1.1*min(f),1.1*max(f)]); title('?-á?D?D?o?oí3é?ùD?o?'); for i=1:3; fs=i*fm;Ts=1/fs; n=-10:Ts:10; f=sinc(n); subplot(4,1,i+1);stem(n,f,'filled'); axis([min(n),max(n),1.1*min(f),1.1*max(f)]); end 运行结果如下:

(2)求解原连续信号和抽样信号的幅度谱; 程序: dt=0.1;fm=1; t=-8:dt:8;N=length(t); f=sinc(t); wm=2*pi*fm;k=0:N-1;w1=k*wm/N; F1=f*exp(-j*t'*w1)*dt;subplot(4,1,1);plot(w1/(2*pi),abs(F1)); axis([0,max(4*fm),1.1*min(abs(F1)),1.1*max(abs(F1))]); for i=1:3; if i<=2 c=0;else c=1;end fs=(i+c)*fm;Ts=1/fs; n=-6:Ts:6; N=length(n); f=sinc(n); wm=2*pi*fs; k=0:N-1;

通信原理实验四 实验报告 抽样定理与PAM系统实训

南昌大学实验报告 学生姓名:学号:专业班级: 实验类型:■验证□综合□设计□创新实验日期:实验成绩:实验四抽样定理与PAM系统实训 一、实验目的 1.熟通过对模拟信号抽样的实验,加深对抽样定理的理解; 2.通过PAM调制实验,使学生能加深理解脉冲幅度调制的特点; 3.通过对电路组成、波形和所测数据的分析,了解PAM调制方式的优缺点。 二、实验原理 1.取样(抽样、采样) (1)取样 取样是把时间连续的模拟信号变换为时间离散信号的过程。 (2)抽样定理 一个频带限制在(0,f H) 内的时间连续信号m(t),如果以≦1/2f H每秒的间隔对它进行等间隔抽样,则m(t)将被所得到的抽 样值完全确定。 (3)取样分类 ①理想取样、自然取样、平顶取样; ②低通取样和带通取样。 2.脉冲振幅调制电路原理(PAM) (1)脉冲幅度调制系统 系统由输入电路、高速电子开关电路、脉冲发生电路、解调滤波电路、功放输出电路等五部分组成。 图 1 脉冲振幅调制电路原理框图 (2)取样电路 取样电路是用4066模拟门电路实现。当取样脉冲为高电位时,

取出信号样值;当取样脉冲为低电位,输出电压为0。 图 2 抽样电路 图 3 低通滤波电路 三、实验步骤 1.函数信号发生器产生2KHz(2V)模拟信号送入SP301,记fs; 2.555电路模块输出抽样脉冲,送入SP304,连接SP304和SP302,记fc; 3.分别观察fc>>2fs,fc=2fs,fc<2fs各点波形; 4.连接SP204 与SP301、SP303H 与SP306、SP305 与TP207,把扬声 器J204开关置到1、2 位置,触发SW201 开关,变化SP302 的输入 时钟信号频率,听辨音乐信号的质量. 四、实验内容及现象 1.测量点波形 图 4 TP301 模拟信号输入 图 5 TP302 抽样时钟波形(555稍有失真) fc=38.8kHz ①fc>>2fs,使fs=5KHz: 图 6 TP303 抽样信号输出1 图7 TP304 模拟信号还原输出1 ②fc=2fs,使fs=20KHz: 图8 TP303 抽样信号输出2 图9 TP304 模拟信号还原输出2 ③fc<2fs,使fs=25KHz: 图10 TP303 抽样信号输出3 图11 TP304 模拟信号还原输出3 2.电路Multisim仿真 图12 PAM调制解调仿真电路 图13 模拟信号输入 图14 抽样脉冲波形 图15 PAM信号 图16 低通滤波器特性 图17 还原波形 更多学习资料请见我的个人主页:

采样控制系统的分析讲解

东南大学自动控制实验室 实验报告 课程名称:热工过程自动控制原理 实验名称:采样控制系统的分析 院(系):能源与环境学院专业:热能动力姓名:范永学学号:03013409 实验室:实验组别: 同组人员:实验时间:2015.12.15 评定成绩:审阅教师:

实验八 采样控制系统的分析 一、实验目的 1. 熟悉并掌握Simulink 的使用; 2. 通过本实验进一步理解香农定理和零阶保持器ZOH 的原理及其实现方法; 3. 研究开环增益K 和采样周期T 的变化对系统动态性能的影响; 二、实验原理 1. 采样定理 图2-1为信号的采样与恢复的方框图,图中X(t)是t 的连续信号,经采样开关采样后,变为离散信号)(*t x 。 图2-1 连续信号的采样与恢复 香农采样定理证明要使被采样后的离散信号X *(t)能不失真地恢复原有的连续信号X(t),其充分条件为: max 2ωω≥S 式中S ω为采样的角频率,max ω为连续信号的最高角频率。由于T S πω2= ,因而式可为 m ax ωπ≤ T T 为采样周期。 2. 采样控制系统性能的研究 图2-2为二阶采样控制系统的方块图。 图2-2 采样控制系统稳定的充要条件是其特征方程的根均位于Z 平面上以坐标原点为圆心的单位圆内,且这种系统的动、静态性能均只与采样周期T 有关。 由图2-2所示系统的开环脉冲传递函数为: ]2 5.05.01[)1(25])2(2[)1(25])15.0()1(25[)(21212++--=+-=+-==---S S S Z Z S S Z Z S S e Z z G S T ]5.015.0)1([)1(25221T e Z Z Z Z Z TZ Z Z ---+----=

matlab验证时域采样定理实验报告

通信原理实验报告实验名称:采样定理 实验时间: 201211日年12月 指导老师:应娜 学院:计算机学院 级:班 学号: 姓名:

通信原理实验报告 一、实验名称 MATLAB验证低通抽样定理 二、实验目的 1、掌握抽样定理的工作原理。 2、通过MATLAB编程实现对抽样定理的验证,加深抽样定理的理解。同时训练应用计算机分析问题的能力。 3、了解MATLAB软件,学习应用MATLAB软件的仿真技术。它主要侧重于某些理论知识的灵活运用,以及一些关键命令的掌握,理解,分析等。 4、计算在临界采样、过采样、欠采样三种不同条件下恢复信号的误差,并由此总结采样频率对信号恢复产生误差的影响,从而验证时域采样定理。 三、实验步骤 1、画出连续时间信号的时域波形及其幅频特性曲线,信号为 f(x)=sin(2*pi*80*t)+ cos(2*pi*30*t); 2、对信号进行采样,得到采样序列,画出采样频率分别为80Hz,110 Hz,140 Hz时的采样序列波形; 3、对不同采样频率下的采样序列进行频谱分析,绘制其幅频曲线,对比各频率下采样序列和的幅频曲线有无差别。 4、对信号进行谱分析,观察与3中结果有无差别。 5、由采样序列恢复出连续时间信号,画出其时域波形,对比与原连续时间信号的时域波形。 四、数据分析 (1)部分程序分析: f=[fs0*k2/m2,fs0*k1/m1]; %设置原信号的频率数组 axis([min(t),max(t),min(fx1),max(fx1)]) %画原信号幅度频谱 f1=[fs*k2/m2,fs*k1/m1]; %设置采样信号的频率数组 fz=eval(fy); %获取采样序列 FZ=fz*exp(-j*[1:length(fz)]'*w); %采样信号的离散时间傅里叶变换 TMN=ones(length(n),1)*t-n'*T*ones(1,length(t)); 由采样信号恢复原信号fh=fz*sinc(fs*TMN); %. (2)原信号的波形与幅度频谱:

电力系统分析实验报告

本科生实验报告 实验课程电力系统分析 学院名称核技术与自动化工程学院 专业名称电气工程及其自动化 学生姓名 学生学号 指导教师顾民 实验地点6C901 实验成绩

二〇一五年十月——二〇一五年十二月 实验一MATPOWER软件在电力系统潮流计算中的应用实例 一、简介 Matlab在电力系统建模和仿真的应用主要由电力系统仿真模块(Power System Blockset 简称PSB)来完成。Power System Block是由TEQSIM公司和魁北克水电站开发的。PSB是在Simulink环境下使用的模块,采用变步长积分法,可以对非线性、刚性和非连续系统进行精确的仿真,并精确地检测出断点和开关发生时刻。PSB程序库涵盖了电路、电力电子、电气传动和电力系统等电工学科中常用的基本元件和系统仿真模型。通过PSB可以迅速建立模型,并立即仿真。PSB程序块程序库中的测量程序和控制源起到电信号与Simulink程序之间连接作用。PSB程序库含有代表电力网络中一般部件和设备的Simulink程序块,通过PSB 可以迅速建立模型,并立即仿真。 1)字段baseMVA是一个标量,用来设置基准容量,如100MVA。 2)字段bus是一个矩阵,用来设置电网中各母线参数。 ①bus_i用来设置母线编号(正整数)。 ②type用来设置母线类型, 1为PQ节点母线, 2为PV节点母线, 3为平衡(参考)节点母线,4为孤立节点母线。 ③Pd和Qd用来设置母线注入负荷的有功功率和无功功率。 ④Gs、Bs用来设置与母线并联电导和电纳。 ⑤baseKV用来设置该母线基准电压。 ⑥Vm和Va用来设置母线电压的幅值、相位初值。 ⑦Vmax和Vmin用来设置工作时母线最高、最低电压幅值。 ⑧area和zone用来设置电网断面号和分区号,一般都设置为1,前者可设置范围为1~100,后者可设置范围为1~999。 3)字段gen为一个矩阵,用来设置接入电网中的发电机(电源)参数。 ①bus用来设置接入发电机(电源)的母线编号。 ②Pg和Qg用来设置接入发电机(电源)的有功功率和无功功率。 ③Pmax和Pmin用来设置接入发电机(电源)的有功功率最大、最小允许值。 ④Qmax和Qmin用来设置接入发电机(电源)的无功功率最大、最小允许值。 ⑤Vg用来设置接入发电机(电源)的工作电压。 1.发电机模型 2.变压器模型 3.线路模型 4.负荷模型 5.母线模型 二、电力系统模型 电力系统中输送和分配电能的部分称为电力网,它包括升降压变压器和各种电压等级的输电线路、动力系统、电力系统和电力网简单示意如图

通信原理实验

通信原理实验报告 学院:信息工程学院 专业:电子信息科学与技术 学号: 姓名:

实验一抽样定理实验 一、实验目的 1、了解抽样定理在通信系统中的重要性。 2、掌握自然抽样及平顶抽样的实现方法。 3、理解低通采样定理的原理。 4、理解实际的抽样系统。 5、理解低通滤波器的幅频特性对抽样信号恢复的影响。 6、理解低通滤波器的相频特性对抽样信号恢复的影响。 7、理解带通采样定理的原理。 二、实验器材 1、主控&信号源、3号模块各一块 2、双踪示波器一台 3、连接线若干 三、实验原理 1、实验原理框图 图1-1 抽样定理实验框图 2、实验框图说明 抽样信号由抽样电路产生。将输入的被抽样信号与抽样脉冲相乘就可以得到自然抽样信号,自然抽样的信号经过保持电路得到平顶抽样信号。平顶抽样和自然抽样信号是通过开关S1切换输出的。 抽样信号的恢复是将抽样信号经过低通滤波器,即可得到恢复的信号。这里滤波器可以选用抗混叠滤波器(8阶3.4kHz的巴特沃斯低通滤波器)或FPGA数字滤波器(有FIR、IIR两种)。反sinc滤波器不是用来恢复抽样信号的,而是用来应对孔径失真现象。

要注意,这里的数字滤波器是借用的信源编译码部分的端口。在做本实验时与信源编译码的内容没有联系。 四、实验步骤 实验项目一抽样信号观测及抽样定理验证 概述:通过不同频率的抽样时钟,从时域和频域两方面观测自然抽样和平顶抽样的输出波形,以及信号恢复的混叠情况,从而了解不同抽样方式的输出差异和联系,验证抽样定理。 1、关电,按表格所示进行连线。 2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【抽样定理】。调节主控模块的W1使A-out输出峰峰值为3V。 3、此时实验系统初始状态为:被抽样信号MUSIC为幅度4V、频率3K+1K正弦合成波。抽样脉冲A-OUT为幅度3V、频率9KHz、占空比20%的方波。 4、实验操作及波形观测。 (1)观测并记录自然抽样前后的信号波形:设置开关S13#为“自然抽样”档位,用示波器分别观测MUSIC主控&信号源和抽样输出3#。 (2)观测并记录平顶抽样前后的信号波形:设置开关S13#为“平顶抽样”档位,用示波器分别观测MUSIC主控&信号源和抽样输出3#。

实验六抽样定理的MATLAB仿真

综合性、设计性实验报告 姓名贺鹤学号2 专业通信工程班级2013级1班 实验课程名称抽样定理的MATLAB仿真 指导教师及职称李玲香讲师 开课学期2014 至2015 学年第二学期 上课时间2015年6 月17、27日 湖南科技学院教务处编印

(2) 编程步骤(仿真实验) ①确定f(t)的最高频率fm。对于无限带宽信号,确定最高频率fm的方法:设其频谱的模降到10-5左右时的频率为fm。 ②确定Nyquist抽样间隔T N。选定两个抽样时间:T ST N。 ③滤波器的截止频率确定:ωm <ωC <ωS -ωm 。 ④采样信号f(nTs )根据MATLAB计算表达式的向量表示。 ⑤重建信号f(t) 的MATLAB中的计算机公式向量表示。 根据原理和公式,MATLAB计算为: ft=fs*Ts*wc/pi*sinc((wc/pi)*(ones(length(nTs),1)*t-nTs'*ones(1,length(t)))); (3)电路连接原理(硬件实验) 5.实验数据处理方法 ①自定义输入信号:f1=cos(2*pi*80*t)+2*sin(2*pi*30*t)+cos(2*pi*40*t-pi/3) ②改变抽样频率,实现欠抽样、临界抽样和过抽样,调试结果分析: (1)频率sf

通信原理抽样定理及其应用实验报告

实验1 抽样定理及其应用实验 一、实验目的 1.通过对模拟信号抽样的实验,加深对抽样定理的理解; 2.通过PAM 调制实验,使学生能加深理解脉冲幅度调制的特点; 3.学习PAM 调制硬件实现电路,掌握调整测试方法。 二、实验仪器 1.PAM 脉冲调幅模块,位号:H (实物图片如下) 2.时钟与基带数据发生模块,位号:G (实物图片见第3页) 3.20M 双踪示波器1台 4.频率计1台 5.小平口螺丝刀1只 6.信号连接线3根 三、实验原理 抽样定理告诉我们:如果对某一带宽有限的时间连续信号(模拟信号)进行抽样,且抽 样速率达到一定数值时,那么根据这些抽样值就能准确地还原原信号。这就是说,若要传输模拟信号,不一定要传输模拟信号本身,可以只传输按抽样定理得到的抽样值。 PAM 实验原理:它采用模拟开关CD4066实现脉冲幅度调制。抽样脉冲序列为高电平时, 模拟开关导通,有调制信号输出;抽样脉冲序列为低电平,模拟开关断开, 无信号输出 图1-2 PAM 信道仿真电路示意图 32W01 C1 C2 32P03 R2 32TP0

四、可调元件及测量点的作用 32P01:模拟信号输入连接铆孔。 32P02:抽样脉冲信号输入连接铆孔。 32TP01:输出的抽样后信号测试点。 32P03:经仿真信道传输后信号的输出连接铆孔。 32W01:仿真信道的特性调节电位器。 五、实验内容及步骤 1.插入有关实验模块: 在关闭系统电源的条件下,将“时钟与基带数据发生模块”、“PAM脉冲幅度调制模块”,插到底板“G、H”号的位置插座上(具体位置可见底板右下角的“实验模块位置分布表”)。注意模块插头与底板插座的防呆口一致,模块位号与底板位号的一致。 2.信号线连接: 用专用铆孔导线将P03、32P01;P09、32P02;32P03、P14连接(注意连接铆孔的箭头指向,将输出铆孔连接输入铆孔)。 3.加电: 打开系统电源开关,底板的电源指示灯正常显示。若电源指示灯显示不正常,请立即关闭电源,查找异常原因。

信号与系统实验报告六

一.实验目的 1.复习采样定理 2.掌握应用matlab 函数设计模拟滤波器的方法 3.掌握系统性能分析的方法 4.结合实际综合应用信号与系统的基础理论 二.实验原理 在数字语音系统中,需首先对语音信号(模拟信号)采样,语音信号频率范围[-fh ,fh],信号中一般含有干扰噪声,其频带宽度远大于fh 。本次实验以电话系统中的语音信号采样系统为对象,设计语音信号采样前滤波器。数字电话系统结构框图如图8.1,电话系统中一般要保证4kHz 的音频带宽,即取fh =4kHz ,但送话器发出的信号的带宽比fh 大很多。因此在A/D 转换之前需对其进行模拟预滤波,以防止采样后发生频谱混叠失真。为使信号采集数量尽量少,设模数转换器的采样频率为8kHz 。 图8.1 数字电话系统结构框图 滤波器的定义 在信号处理时,通常都会遇到有用信号中混入(叠加)噪声的问题,消除或减弱噪声对信号的干扰,是信号处理中的一种最基本且重要的技术。根据有用信号与噪声不同的特性,抑制不需要的噪声或干扰, 提取出有用信号的过程称为滤波,实现滤波功能的装置称为滤波器。 在A/D 变换前,常常需要设置一个模拟滤波器进行预滤波以限 制信号带宽,去掉高于1/2抽样频率以上的高频分量,防止频谱 混叠现象的发生,称为抗混叠滤波器或预抽样滤波器 模拟滤波器的设计 模拟滤波器的理论和设计方法已发展得相当成熟,且有若干典型的模拟滤波器供我们选择,这些滤波器都有严格的设计公式、现成的曲线和图表供设计人员使用。 典型的模拟滤波器

巴特沃斯 Butterworth 滤波器 幅频特性单调下降 切比雪夫 Chebyshev 滤波器 幅频特性在通带或者在阻带有波动 贝塞尔 Bessel 滤波器 通带内有较好的线性相位持性 椭圆 Ellipse 滤波器 以这些数学函数命名的滤波器是低通滤波器的原型 模拟滤波器按幅度特性可分成低通、高通、带通和带阻滤波器,它们的理想幅度特性如图所示。 模拟低通滤波器的设计指标有αp, Ωp,αs 和Ωs 。 Ωp ;通带截止频率 Ωs :阻带截止频率 αp :通带中最大衰减系数 αs ;阻带最小衰减系数 αp 和αs 一般用dB 数表示。对于单调下降的幅度特性,可表示成: 222 2 (0) (0) 10lg 10lg () () a a p s a s a p H j H j H j H j αα==ΩΩ 三.实验内容

PAM实验报告

信息工程学院实验报告 实验课名称通信原理实验实验内容 PAM编译码器系统成绩 班级、专业 09级通信工程一班姓名兰慧敏学号 0938033 组别 实验日期 2011 年11月 23日实验时间 18:30—21:30 指导教师雷老师合作者吴迪

的低通滤波器;当K702设置在NF 位置时(右端),信号不经过抗混迭滤波器直接送到抽样电路,其目的是为了观测混迭现象。 设置在交换模块内的跳线开关KQ02为抽样脉冲选择开关:设置在H 位置为平顶抽样(左端),平顶抽样是通过采样保持电容来实现的,且τ=Ts ;设置在NH 为自然抽样(右端),为便于恢复出的信号观测,此抽样脉冲略宽,只是近似自然抽样。平顶抽样有利于解调后提高输出信号的电平,但却会引入信号频谱失真 2 /) 2/(ωτωτSin , τ为抽样脉冲宽度。通常在实际设备里,收端必须采用频率响应为) 2/(2 /ωτωτSin 的滤波器来进行频谱校准,抵消 失真。这种频谱失真称为孔径失真。 该电路模块各测试点安排如下: 1、 TP701:输入模拟信号 2、 TP702:经滤波器输出的模拟信号 3、 TP703:抽样序列 TP704:恢复模拟信号 四、实验内容 准备工作:将交换模块内的抽样时钟模式开关KQ02设置在NH 位置(右端),将测试信号选择开关KQ01设置在外部测试信号输入2_3位置(右端)。 1. 近似自然抽样脉冲序列测量 (1) 首先将输入信号选择开关K701设置在T (测试状态)位置,将低通滤波器选择开关K702设置在F (滤波位置),为便于观测,调整函数信号发生器正弦波输出频率为200~1000Hz 、输出电平为2Vp-p 的测试信号送入信号测试端口J005和J006(地)。 (2) 用示波器同时观测正弦波输入信号(J005)和抽样脉冲序列信号(TP703),观测时以TP703做同步。 调整示波器同步电平和微调调整函数信号发生器输出频率,使抽样序列与输入测试信号基本同步。测量抽样脉冲序列信号与正弦波输入信号的对应关系。 2. 重建信号观测 TP704为重建信号输出测试点。保持测试信号不变,用示波器同时观测重建信号输出测试点和正弦波输入信

采样控制系统分析

北京联合大学 实验报告 实验名称:采样控制系统分析 学院:自动化专业:物流工程姓名:学号: 同组人姓名:学号: 班级:成绩: 实验日期:2014年12月18日

完成报告日期:2014年12月21日 实验5 采样控制系统分析 一.实验目的 1. 掌握判断采样控制系统稳定性的充要条件。 2. 掌握采样周期T对系统的稳定性的影响及临界值的计算。 3. 观察和分析采样控制系统在不同采样周期T时的瞬态响应曲线。 二、实验内容及步骤 1.闭环采样系统构成电路如图5-1所示。掌握采样周期T对系统的稳定性的影响及临界值的计算,观察和分析采样控制系统在不同采样周期T 时的瞬态响应曲线,填入表中。 2. 改变采样控制系统的被控对象,计算和测量系统的临界稳定采样周期T,填入表中。 图5-1 闭环采样系统构成电路 [a].闭环采样系统实验构成电路如图5-1所示,其中被控对象的各环节 参数: 积分环节(A3单元)的积分时间常数Ti=R2*C2=0.2S, 惯性环节(A5单元)的惯性时间常数T=R1*C1=0.5S,增益K=R1/R3=5。 实验步骤:注:(B5)单元的‘S ST’不能用‘短路套’短接! (1)用函数发生器(B5)单元的方波输出作为系统振荡器的采样周期信号。 (D1)单元选择“方波”,(B5)“方波输出”孔输出方波。调节“设定电位器1”控制相应的输出频率。

(2 ) 用信号发生器(B1)的‘阶跃信号输出’和‘幅度控制电位器’构造输入信号R(t): B1单元中电位器的左边K3开关拨下(GND),右边K4开关拨下(0/+5V 阶跃)。阶跃信号输出(B1单元的Y测孔)调整为2.5V(调节方法:调节电位器,用万用表测量Y测孔)。 (3)构造模拟电路:按图5-1安置短路套及测孔联线,表如下。 (4)运行、观察、记录: 三、数据处理(现象分析) ①运行LABACT程序,选择自动自动控制菜单下的采样系统分析实验项目,就会弹出虚拟示波器的界面,点击开始后将自动加载相应源文件,即可使用本实验机配套的虚拟示波器(B3)单元的CH1测孔测量波形。 ②调节“设定电位器1”,D1单元显示方波频率,将采样周期T(B5方波输出)依次调整为15ms(66.6Hz) 、30ms(33.3Hz)和90ms(11.1Hz),按下信号发生器(B1)阶跃信号按钮(0→+2.5V阶跃),使用虚拟示波器CH1观察A6单元输出点OUT(C)的波形。观察相应实验现象,记录波形,并判断其稳定性,填入表5-1。 T=66.6Hz

(三)采样定理实验

实验三采样定理实验 一、实验目的 (4) 通过数据采集加深对采样定理的理解; (5) 熟悉DSP 对AD 采样频率的控制方法; (6) 熟悉数字信号到模拟信号的转换方法; 二、实验内容 本试验要求使用AD 将模拟信号变换成数字信号,使用DSP 对转换后的数字信号读取保存,并利用CCS 对这些采集到的数据进行分析,然后从DA 将采集到的数据送出。根据分析的结果确定适合信号频率的AD 的采样频率,对同一信号设置不同的采样频率来验证香农采样定理。 三、实验原理 香农采样定理指出:如果AD 转换器的输入信号具有有限带宽,并且有直到ωk 的频率分量,则只需要AD 转换器的采样周期T 满足如下条件:T ≤π/ωK,信号就可以完全从采样信号中恢复出来。反之,如果采样频率低于信号频率的 2 倍,基本上不能恢复原始信号。根据采样定理,对于一个单正弦的模拟信号,假设其频率为f0 ,当采样率fs≥2 f0 时就可保证采样后的信号无失真地保持原模拟信号的信息,即可重现原模拟信号;如果采样率低于2 f0 就会发生频域的混叠失真。在实际的情况中,一般的情况下首先要使模拟信号通过一个截止频率不高于0.5 f0 的低通滤波器,使其成为一个限带信号。然后,对其采样就可以保证信号无混叠失真。该低通滤波器又叫抗混叠滤波器。 实验中,我们选择对一个确定的信号进行采样,然后将采样后的数据从DA 输出,从DA 的输出使用示波器查看输出后的波形。如果满足采样定理,可以从示波器看到和原始信号一样的波形;反之,如果不满足采样定理,就不能从示波器看到和原始信号一样的波形。实验中,我们调整AD 转换器的采样频率,将以上两种情况分别进行,以验证采样定理。 四、实验方法 本实验的主要内容是设置AD 的采样频率,对于不同的AD 有不同的设置方法。DSP 提供一个采样时钟发生电路,通过设置DSP 内部的寄存器来设置不同的时钟信号以供AD 选择。图3.1 是DSP 时钟发生器,对于使用DSP 的缓冲串口的AD 都可以使用该时钟发生电路设置AD 的采样频率。 图3.1 DSP 时钟发生器 从图3.1 可以看出,基本的时钟信号可以来自CPU 时钟,也可以来自晶振的时钟,这是在DSP 寄存器SRGR2 中的第13 位设置。基本时钟输入后,经过CLKGDV(寄存器SRGR1 的第0 位到第7 位)所设置的值进行第一次分频,得到位时钟信号。注意的是,位时钟信

实验六maab采样定理的建模和验证

实验六 题目:采样定理的建模和验证 实验目的:通过建模与仿真验证采样定理,理解采样定理的物理实质实验要求:学习和回顾采样定理内容,对采样定理作建模和仿真实验内容: 1、采样定理原理的回顾 Fh 卷 乘 Ts fs= 1/Ts fs=1/Ts

2、建模参数要求: 设计模型,验证采样定理. 设基带波形频谱在 0Hz~200Hz 内. Fh=200Hz(信号最高频率),采样率就应该大于 400Hz 。用窄脉冲采样,要求窄脉冲宽度是采样周期的 1/10。从而得到系统仿真步长: 小于等于 1/4000,仿真系统的仿真步长取 1/4000。 采样器用乘法器实现. 而恢复时用低通滤波器实现. 低通滤波器的带宽等于信号最高频率 Fh,即等于 200Hz. 3、仿真模型和结果 信号最高频率为100Hz,采样率为 400 次/秒情况下的波形结果:采样之前,采样后以及恢复的波形(scope 中)

4、修改基带信号最高频率,如最高频率为200Hz、250Hz 等等,观察采样前后 以及恢复的波形和频谱。请用实验方法得到频谱混叠后的频谱图和相应的波形。 5. 将被采样信号修改为正弦波、三角波和方波,观察采样前后和恢复非波形和频谱。 实验报告内容和要求:(!!注意每部分得分情况!!) 1.建立采样和恢复模型,说明关键模块的参数设置(30 分) 仿真模型建立: 参数设置: 信源与滤波器参数:

2.修改采样率,如采样率为 150Hz,200Hz、300Hz 等等,观察采样前后以及恢复的波形和频谱。请用实验方法得到频谱混叠后的频谱图和相应的波形。(40 分) 150Hz: 200Hz: 300Hz: 3.将被采样信号修改为正弦波、三角波和方波,观察采样前后和恢复非波形和频谱。(30分) 三角波: 方波: 正弦波:

频谱分析与采样定理

数字信号处理实验报告实验一:频谱分析与采样定理 班级:10051041 姓名: 学号:

一实验目的 1.观察模拟信号经理想采样后的频谱变化关系。 2.验证采样定理,观察欠采样时产生的频谱混叠现象 3.加深对DFT算法原理和基本性质的理解 4.熟悉FFT算法原理和FFT的应用 二、实验原理 根据采样定理,对给定信号确定采样频率,观察信号的频谱 奈奎斯特抽样定律:为了避免发生混叠现象,能从抽样信号无失真的恢复出原信号,抽样频率必须大于或等于信号频谱最高频率的2倍。 三、实验内容 在给定信号为: 1.x(t)=cos(100*π*at) 2.x(t)=exp(-at) 3.x(t)=exp(-at)cos(100*π*at) 其中a为实验者的学号,记录上述各信号的频谱,表明采样条件,分析比较上述信号频谱的区别。 四、实验步骤 1.复习采样理论、DFT的定义、性质和用DFT作谱分析的有关内容。 2.复习FFT算法原理和基本思想。 3.确定实验给定信号的采样频率,编制对采样后信号进行频谱分析的程序五、实验设备 计算机、Matlab软件 六、实验程序和结果 1、学号为57,原信号频率为2850Hz,根据抽样定理,取采样频率大于2倍的原最大频率,即大于5700Hz,采样间隔小于0.00018s,取T=0.0002s进行抽样,程序为: %实验一:频谱分析与采样定理 %褚耀欣 T=0.00001; %采样间隔T=0.00001 F=1/T; %采样频率为F=1/T L=0.001 %记录长度L=0.001 N=L/T; t=0:T:L; a=57; f1=0:F/N:F; f2=-F/2:F/N:F/2; %%%%%%%%%%%%%%%%%%%%%%%%%

采样控制系统的分析

东南大学自动化学院 实验报告 课程名称:自动控制原理 实验名称:串联校正研究、采样控制系统的分析 院(系):电气工程学院专业:电气工程及其自动化姓名:学号: 同组人员:实验时间:2011.12.16 评定成绩:审阅教师:

实验八采样控制系统的分析 一、实验目的 (1) 熟悉用LF398组成的采样控制系统; (2) 通过本实验进一步理解香农定理和零阶保持器ZOH 的原理 及其实现方法; (3) 研究开环增益K 和采样周期T 的变化对系统动态性能的影 响; 二、实验仪器 THBDC-1实验平台 THBDC-1虚拟示波器 三、实验原理 (1) 采样定理即香农采样定理,其证明要使被采样后的离散信号 X *(t)能不失真地恢复原有的连续信号X(t),其充分条件为: max 2ωω≥S 式中S ω为采样的角频率,max ω为连续信号的最高角频率。由于T S πω2=,因而式可为 max ωπ≤T T 为采样周期。 (2)采样控制系统稳定的充要条件是其特征方程的根均位于Z 平 面上以坐标原点为圆心的单位圆内,且这种系统的动、静态性能均只与采样周期T 有关。根据上式可判别该采样控制系

统否稳定,并可用迭代法求出该系统的阶跃输出响应。 四、实验内容 (1)利用实验平台设计一个对象为二阶环节的模拟电路,并与采 样电路组成一个数-模混合系统。 (2)分别改变系统的开环增益K 和采样周期T S ,研究它们对系统 动态性能及稳态精度的影响。 五、实验结果及分析 (1)零阶保持器 模拟电路图如下: 其中输入的连续波形图的信号为: c ω=2π×10=10π≈31.4 rad/s 以下通过改变采样周期T ,来观察比较输出信号的变化。 ① T S =0.003s ,即S ω=2π× 31000≈2094.4 rad/s ,远远大于输入信号的。 输入输出波形图如下:可见此时输入波形图得到完全复现。

通信原理实验-抽样定理

学生实验报告

) 实际上,考虑到低通滤波器特性不可能理想,对最高频率为3400Hz的语言信号,通常采用8KHz 抽样频率,这样可以留出1200Hz的防卫带。见图4。如果fs<fH,就会出现频谱混迭的现象,如图5所示。 在验证抽样定理的实验中,我们用单一频率fH的正弦波来代替实际的语音信号。采用标准抽样频率fs=8KHZ。改变音频信号的频率fH,分别观察不同频率时,抽样序列和低通滤波器的输出信号,体会抽样定理的正确性。 验证抽样定理的实验方框图如图6所示。在图8中,连接(8)和(14),就构成了抽样定理实验电路。由图6可知。用一低通滤波器即可实现对模拟信号的恢复。为了便于观察,解调电路由射随、低通滤波器和放大器组成,低通滤波器的截止频率为3400HZ

2、多路脉冲调幅系统中的路际串话 ~ 多路脉冲调幅的实验方框图如图7所示。在图8中,连接(8)和(11)、(13)和(14)就构成了多路脉冲调幅实验电路。 分路抽样电路的作用是:将在时间上连续的语音信号经脉冲抽样形成时间上离散的脉冲调幅信号。N路抽样脉冲在时间上是互不交叉、顺序排列的。各路的抽样信号在多路汇接的公共负载上相加便形成合路的脉冲调幅信号。本实验设置了两路分路抽样电路。 多路脉冲调幅信号进入接收端后,由分路选通脉冲分离成n路,亦即还原出单路PAM信号。 图7 多路脉冲调幅实验框图 冲通过话路低通滤波器后,低通滤波器输出信号的幅度很小。这样大的衰减带来的后果是严重的。但是,在分路选通后加入保持电容,可使分路后的PAM信号展宽到100%的占空比,从而解决信号幅度衰减大的问题。但我们知道平顶抽样将引起固有的频率失真。 PAM信号在时间上是离散的,但是幅度上趋势连续的。而在PAM系统里,PAM信只有在被量化和编码后才有传输的可能。本实验仅提供一个PAM系统的简单模式。 3、多路脉冲调幅系统中的路标串话 路际串话是衡量多路系统的重要指标之一。路际串话是指在同一时分多路系统中,某一路或某几路的通话信号串扰到其它话路上去,这样就产生了同一端机中各路通话之间的串话。 在一个理想的传输系统中,各路PAM信号应是严格地限制在本路时隙中的矩形脉冲。但是如果传输PAM信号的通道频带是有限的,则PAM信号就会出现“拖尾”的现象。当“拖尾”严重,以至入侵邻路时隙时,就产生了路标串话。 在考虑通道频带高频谱时,可将整个通道简化为图9所示的低通网络,它的上截止频率为:f1=1/(2

system_view抽样定理、PCM实验报告

信息学院 现代交换实验报告 姓名:王磊 学号: 2012080331140 专业:通信工程 2015年6月30日

实验一:抽样定理仿真 一、实验目的 1、掌握Systemview 软件的使用 2、熟练使用软件的图符库,能够构建简单系统 二、实验内容 1、熟悉软件的工作界面; 2、用Systemview 软件建立仿真电路 3、进行参数设置 4、观测过程中各关键点波形 5、对仿真结果进行分析 三、实验原理 所谓抽样。就是对时间连续的信号隔一定的时间间隔T抽取一个瞬时幅度值(样值),抽样是由抽样门完成的。 在一个频带限制在(0,f h)内的时间连续信号f(t),如果以小于等于1/(2 f h)的时间间隔对它进行抽样,那么根据这些抽样值就能完全恢复原信号。或者说,如果一个连续信号f(t)的频谱中最高频率不超过f h,这种信号必定是个周期性的信号,当抽样频率f S≥2 f h 时,抽样后的信号就包含原连续信号的全部信息,而不会有信息丢失,当需要时,可以根据这些抽样信号的样本来还原原来的连续信号。根据这一特性,可以完成信号的模-数转换和数-模转换过程。 四、实验结果

结果没有还原。

结果还原。 参数: 1.幅度 2.频率 3.相位 功能: 产生一个正弦波:y(t)=Asin(2PIfct+*) 参数: 1.幅度 2.频率(HZ) 3.脉冲宽度(秒) 4.偏置 5.相位 功能: 产生具有设定幅度和频率的周期性脉冲串,脉宽由设置决定。 y(t)=+-A*PT(t)+Bias 有方波选项。 实时显示 Real Time 功能: 能在系统仿真运行同时,实时地在系统窗口显示接收到的波形。 加法器 Adder 参数: 1.寄存器大小N 2.分数大小F 3.指数大小K 4.输出类型T 5.整型数转换选择 功能: 将输入的一个或多个值求和,并给出适当的标志。 结论:由此证明了证明了抽样定理的正确性,抽样信号在fs>=2fh时可以还原,抽样频率越 高效果越好。

实验一 低通采样定理和内插与抽取实现

实验报告 哈尔滨工程大学教务处制

实验一:低通采样定理和内插与抽取实现一.实验目的 1. 连续信号和系统的表示方法,以及仿真方法。 2.用MATLAB实现连续信号采用与重构的方法, 3. 采样信号的插值和抽取等重采样实现方法。 4. 用时域采样信号重构连续时域信号的原理和方法。 5. 用MATLAB绘图函数表示信号的基本方法,实验数据的可视化表示。二.原理 1 、时域抽样定理 令连续信号xa(t)的傅里叶变换为Xa(jΩ),抽样脉冲序列p(t)傅里叶变换为P(jΩ),抽样后的信号x^(t)的傅里叶变换为X^(jΩ)若采用均匀抽样,抽样周期Ts,抽样频率为Ωs=2πfs,由前面分析可知:抽样的过程可以通过抽样脉冲序列p(t)与连续信号xa(t)相乘来完成,即满足:x^(t)=xa(t) p(t),又周期信号f(t)傅里叶变换为: 故可以推得p(t)的傅里叶变换为: 其中: 根据卷积定理可知: 得到抽样信号x(t)的傅里叶变换为: 其表明:信号在时域被抽样后,他的频谱X(jΩ)是连续信号频谱X(jΩ)的形状以抽样频率Ω为间隔周期重复而得到,在重复过程中幅度被p(t)的傅里叶级数Pn

加权。因为Pn只是n的函数,所以X(jΩ)在重复的过程中不会使其形状发生变化。 假定信号x(t)的频谱限制在-Ωm~+Ωm的范围内, 若以间隔Ts对xa(t)进行抽样,可知抽样信号X^(t)的频谱X^(jΩ)是以Ωs为周期重复。显然,若在抽样的过程中Ωs<2Ωm,则X^(jΩ)将发生频谱混叠现象,只有在抽样的过程中满足Ωs>=2Ωm条件,X^(jΩ)才不会产生频谱的混叠,接收端完全可以由x^(t)恢复原连续信号xa(t),这就是低通信号抽样定理的核心内容。 2、信号的重建 从频域看,设信号最高频率不超过折叠频率: Xa(jΩ)=Xa(jΩ) |Ω|<Ωs/2 Xa(jΩ)=0 |Ω|>Ωs/2 则理想取样后的频谱就不会产生混叠,故有: 让取样信号x^(t)通过一带宽等于折叠频率的理想低通滤波器: H(jΩ)=T |Ω|<Ωs/2 H(jΩ)=0 |Ω|>Ωs/2 滤波器只允许通过基带频谱,即原信号频谱,故: Y(jΩ)=X^(jΩ)H(jΩ)=Xa(jΩ) 因此在滤波器的输出得到了恢复的原模拟信号: y(t)=xa(t) 从时域上看,上述理想的低通滤波器的脉冲响应为: 根据卷积公式可求得理想低通滤波器的输出为: 由上式显然可得:

相关主题