搜档网
当前位置:搜档网 › Stratimagic地震相分析在二次开发研究中的应用

Stratimagic地震相分析在二次开发研究中的应用

Stratimagic地震相分析在二次开发研究中的应用
Stratimagic地震相分析在二次开发研究中的应用

87 Stratimagic地震相分析在二次开发研究中的应用

常敬德

(中油辽河油田公司,辽宁盘锦 124010)

摘要:Stratimagic地震相分析软件是基于沉积地层的任何物性参数的变化总是反映在地震道波形形

状的变化上的原理,建立单井与地震相模型道的对应关系,更精确地预测岩性和流体内容,将地震相

转换为沉积相。

关键词:Stratimagic软件;地震相;波形分类分析;储层发育程度;沉积相;二次开发

前言

辽河油田为裂谷型盆地,地质条件极其复杂,油藏类型丰富多样。碎屑岩储层是盆地内分布最广、最重要的储层。由于辽河裂谷断块活动的阶段性、持续性和多旋回沉积特征,决定了裂谷发育的不同时期和同一时期在裂谷盆地的不同部位形成各有特色的沉积体系。[1]

钻井统计表明,油田油气分布受沉积相带的控制作用明显,尤其是在油藏评价、开发阶段碎屑岩储层的油藏主要受沉积微相的控制[2]。因而沉积相、沉积微相的研究水平在很大程度上决定了油田的开发及下一步采取增产措施是否有效等。

1 研究思路

(1)建立了该区典型的岩电沉积相标志图板,为沉积相微相的基础研究打下良好的基础[4]。

(2)利用Stratimagic软件对目的层进行基于波形分类的地震属性提取和多属性地震提取,得到该区目的层段的地震相图。

(3)建立井旁地震道模型与井的岩电关系,分析不同模型道的地质含义、不同地震相所反映的沉积微相类型。

2 应用效果

2.1 开发区块存在的问题

茨34-茨4井区位于辽河盆地东部凹陷北部茨榆坨构造带的北端,包括茨34、茨100、茨4产能区块,由多个断块构成。该区为碎屑储层,从储集条件看,主要为扇三角洲相——冲积扇相的沉积体系为主,储层比较发育,储层物性较好;主要含油气层系是沙三中上段。

从茨34、茨13块开发区井位部署图(图1)上可以发现地质报废井较多,到目前为止,后期的地质核销井也较多。认为不同开发区块有不同的油水系统,主要原因是底部出水,在构造高部位的地质报废井原因不是很明确。这为该油区二次开发的研究造成很大影响。

该区的地质报废井及地质核销井,是否只是构造原因的底水造成,与沉积相带的横向变化是否有关联?带着这样的问题开展了利用Stratimagic地震相分析软件研究该区的沉积微相。

2.2 开发区研究效果

利用Stratimagic软件对该区进行波形分类和多属性地震相研究取得满意效果。

采用波形分类分析研究方法得到的地震相分析结果为:河道沉积的地震响应多为中强振幅钟形反射波;河道间、决口扇为若振幅扁形的复波反射;沟槽间泥、前缘泥、薄层砂微相地震相应多为极弱振幅反射波(图2)。利用地震道形状即波形特征对沙三二顶部油层24ms时窗(Interval)内的实际地震道进行逐道对比,细致刻画地震信号的横向变化,从而得到地震异常平面分布规可用不同的颜色反映、区分不同的地震相类型。由该图可以看出地质报废井(白色井圈的为地质报废井)大多落在粉色区,尤其是在茨34块及茨13块的高部位,对这些井的钻井揭示表明,该目地层段有砂层发育,但砂层较薄,多为指形测井响应,如茨14-149、茨12-149,反应为河道间微相沉积。储层不发育,这是这些井报废的主要原因。

2010年第2期2010年2月

化学工程与装备

Chemical Engineering & Equipment

88 常敬德:Stratimagic 地震相分析在二次开发研究中的应用

油井及一些地质核销报废井多数落在绿色区,

钻井揭示岩性多为大套的砂砾岩、粗砂岩,测井响应为箱型、齿状箱型,反应为扇中水道、前缘水道的沉积 微相。

3 结论与建议

通过对该开发区进行地震相研究认为该区井地质报废及地质核销,不仅仅是由于构造原因的底水造成,沉积相带的分布具有一定的控制作用,如何划分河道间沉积是沉积微相研究的关键。深入开展地质、测井、地震三方面相结合的地震相及微相研究可为油田增产措施的实施提供可靠的地质依据。其成功的范例也为相似油田的相关研究提供技术参考。

参考文献

[1] 廖兴明,等.辽河盆地构造演化与油气[M].北

京:石油工业出版社,1995:47-68.

[2] 李玉君,邓宏文,师振贵,刘淑侠.地震信息

在储层沉积微相随机建模中的应用[J].特种油气藏,2007;14(5):43-48.

[3] 邓传伟,李莉华,金银姬,赵秀红.波形分类

技术在储层沉积微相预测中的应用[J].石油物探,2008;47(3):262-265.

[4] 林小兵,刘莉萍.利用地震多属性分析技术预

测“暗点”型含气储层[J].新疆地质,2007;25(2):183-186.

地震相的识别剖析

通过层序的划分,可以大致确定不同类型的砂岩储集体在纵向上发育的有利层位。通过对有利层序内地震相的研究,可以确定砂岩储集体的沉积相及横向的分布范围,从而为砂岩储层的综合预测奠定基础。 一、地震相分析 (一)地震相概念 地震相是沉积相在地震剖面上表现的总和,是由沉积环境(如海相或陆相)所形成的地震特征,是指一定面积内的地震反射单元,该单元内的地震属性参数与相邻的单元不同.它代表产生其反射的沉积物的岩性组合、层理和沉积特征。 (二)地震相分析 地震相分析就是在划分地震层序的基础上,利用地震参数特征上的差别,将地震层序划分为不同的地震相区,然后作出岩相和沉积环境的推断。用来限定地震相单位的基本参数是那些涉及层系内部的反射形态和层系本身的几何外形的有关参数,目前在地震相分析中使用的地震反射参数及其地质解释如下: (1)反射结构:反射结构反映层理类型、沉积作用、剥蚀和古地貌以及流体类型。 (2)地震相单元外形和平面组合:不同沉积环境下形成的岩相组合有特定的层理模式和形态模式,导致反射结构和外形的特定组合,从而反映沉积环境、沉积物源和地质背景。 (3)反射振幅:反射振幅与波阻抗差有关,反映界面速度一密度差、地层间隔及流体成分和岩性变化。大面积的振幅稳定揭示上覆、

下伏地层的良好连续性,反映低能级沉积;振幅快速变化,表示上覆和(或)下伏地层岩性快速变化,是高能环境的反映。 (4)反射频率:反射频率受多种因素的影响,如地层厚度、流体成分、埋深、岩性组合、资料处理参数等。视频率的快速变化往往说明岩性的快速变化,因而是高能环境的产物。 (5)同相轴连续性:它直接反映地层本身的连续性,与沉积作用有关。连续性越好,表明地层越是与相对较低的能量级有关;连续性越差,反映地层横向变化越快,沉积能量越高。 (6)层速度:层速度反映岩性、孔隙度、流体成分和地层压力。 由于同一地震相参数的变化可以由多种地质作用产生,因此地震相分析具有明显的多解性。但是既然地震相是沉积相的反映,地震相必然能够反映储集体或油气储集相带(刘震,1997)。 二、地震相划分标志 (一)外部几何形态 外部形态是一个重要的地震相标志。不同的沉积体或沉积体系,在外形上是有差别的,即使是相似的反射结构,因为外形的不同,也往往反映了完全不同的沉积环境。 目前常见的外部形态(图1)包括席状、席状披盖、楔形、滩形、透镜状、丘 形和充填型等。 1.席状 席状反射是地震剖面上最常见的外形之一,其主要特点是上下界

地震相定义、划分、识别及特征

地震相 通过层序的划分,可以大致确定不同类型的砂岩储集体在纵向上发育的有利层位。通过对有利层序内地震相的研究,可以确定砂岩储集体的沉积相及横向的分布范围,从而为砂岩储层的综合预测奠定基础。 一、地震相分析 (一)地震相概念 地震相是沉积相在地震剖面上表现的总和,是由沉积环境(如海相或陆相)所形成的地震特征,是指一定面积内的地震反射单元,该单元内的地震属性参数与相邻的单元不同.它代表产生其反射的沉积物的岩性组合、层理和沉积特征。 (二)地震相分析 地震相分析就是在划分地震层序的基础上,利用地震参数特征上的差别,将地震层序划分为不同的地震相区,然后作出岩相和沉积环境的推断。用来限定地震相单位的基本参数是那些涉及层系内部的反射形态和层系本身的几何外形的有关参数,目前在地震相分析中使用的地震反射参数及其地质解释如下: (1)反射结构:反射结构反映层理类型、沉积作用、剥蚀和古地貌以及流体类型。 (2)地震相单元外形和平面组合:不同沉积环境下形成的岩相组合有特定的层理模式和形态模式,导致反射结构和外形的特定组合,从而反映沉积环境、沉积物源和地质背景。(3)反射振幅:反射振幅与波阻抗差有关,反映界面速度一密度差、地层间隔及流体成分和岩性变化。大面积的振幅稳定揭示上覆、下伏地层的良好连续性,反映低能级沉积;振幅快速变化,表示上覆和(或)下伏地层岩性快速变化,是高能环境的反映。 (4)反射频率:反射频率受多种因素的影响,如地层厚度、流体成分、埋深、岩性组合、资料处理参数等。视频率的快速变化往往说明岩性的快速变化,因而是高能环境的产物。 (5)同相轴连续性:它直接反映地层本身的连续性,与沉积作用有关。连续性越好,表明地层越是与相对较低的能量级有关;连续性越差,反映地层横向变化越快,沉积能量越高。(6)层速度:层速度反映岩性、孔隙度、流体成分和地层压力。 由于同一地震相参数的变化可以由多种地质作用产生,因此地震相分析具有明显的多解性。但是既然地震相是沉积相的反映,地震相必然能够反映储集体或油气储集相带(刘震,1997)。 二、地震相划分标志 (一)外部几何形态 外部形态是一个重要的地震相标志。不同的沉积体或沉积体系,在外形上是有差别的,即使是相似的反射结构,因为外形的不同,也往往反映了完全不同的沉积环境。 目前常见的外部形态(图1)包括席状、席状披盖、楔形、滩形、透镜状、丘 形和充填型等。 1.席状 席状反射是地震剖面上最常见的外形之一,其主要特点是上下界面接近平行,厚度相对稳定。席状相单元内部通常为平行、亚平行或乱岗状反射结构,可代表深湖、半深湖等稳定沉积环境和滨浅湖、冲积平原等不稳定沉积环境。

paradigm-地震相分析工具stratimagic流程

Stratimagic地震相分析软件简易流程 Stratimagic地震相分析软件介绍 概述 stratimagic是帕拉代姆公司推出的专门用于岩性解释、油藏描述、地震相分析的软件包。它运用人工神经网络分析技术,统计聚类的分级分类技术、主组分分析(PCA)技术,以及层位尖灭识别等先进的技术和方法对地震属性及所反映的地质特征进行分析解释,利用Stratimagic软件可以实现地震道、多属性数据体以及变时窗/深度和等时窗/深度的层段内的地震相自动划分,地质相分层曲线约束下的微相划分,研究其与地质相的关系以及与岩石物性的关系,可以帮助我们从一个新的角度去进行储层预测和油藏描述,突破了只能进行构造解释的常规的地震解释模式。地震相自动划分技术的应用,使得解释人员摆脱了手工解释繁重的工作负担,使地震相划分更具有客观性。 Stratimagic地震相分析软件以其独一无二的专利技术和容易使用的特点,已成为石油天然气工业进行地震相分析的先进的商用软件。目前该软件最新版本是帕拉代姆公司于2006年释放的Stratimagic3.1。 一、 Stratimagic软件的基本方法原理 1、地震信号的分类 地震解释不仅仅是构造圈闭解释,而且要进行岩性和油藏特征描述,是一个从层位图到油藏特征描述的过程,要利用沉积学知识将井信息和可用模型与地震数据联合使用,确定地震与岩石地球物理特性的关系。 在使用Stratimagic之前,有两种地震属性方法用于油藏特征描述。 1、首先计算多种层段属性,进行井资料、沉积模型与属性成果图的对比分析,一般情况下也只有3到4种属性匹配较好。 2、通过地震反演获得波阻抗数据体。这里假设井资料完全代表着所含的地质信息的差别,而且没有考虑其它的地质相变化的存在。在上面处理中丢失了两个基本信息:即地震信号的总体变化和这种变化的分布规律。 没有地震信号的总体变化的知识,很难给出井位置的地震信号变化的可靠评

地震属性分析技术综述

【全文】地震属性分析技术综述 [摘要] 地震属性是从地震资料中提取的隐藏有用信息,因而地震属性分析技术近几年在油气勘探开发中得到了广泛的应用与研究。本文对地震属性分析技术的发展状况进行了归纳、总结,简单阐述了地震属性分析技术的在不同时期所用到的基本原理和方法。特别对新地震属性进行了具体介绍。最后对该技术进一步的研究工作进行了总结和展望。 摘要:在勘探和开发周期的各个阶段,地震资料在复杂油藏系统的解释过程中,扮演着至关重要的角色。然而,缺少一种有效地将地质知识应用于地震解释中的上具。随着一系列属性新技术的出现,对地震属性进行充分研究,就给地质家提供了快速地从三维地震数据中获得地质信息的能力。尤其在用常规解释手段难以识别日的储层的情况下,属性分析技术更是给地质上作人员指出了新的方向。 [关键词] 地震属性储层预测叠前数据叠后数据 关键词:储层;波形分析;地震属性 1.引言 地震属性是指叠前或叠后的地震数据经过数学变换而导出的有关地震波的几何形态、运动学特征、动力学特征和统计学特征的特殊度量值。地震属性的发展大致从20世纪60年代的直接烃类检测和亮点、暗点、平点技术开始,经历了70年代的瞬时属性(主要是振幅属性)和复数道分析,90年代的多维属性(特别是相干体属性)分析,21世纪的地震相分析等阶段[1一SJ。随着地震属性分析技术的发展与研究,该技术已广泛应用于储层预测、油气藏动态监测、油气藏特征描述等领域,并取得了很好的效果。总之,地震属性分析技术可以从地震资料中提取隐藏其中的多种有用信息,这为油气勘探与开发提供了丰富宝贵的资料,也为解决复杂地质体评价提供了实用的分析手段。因此,对该技术进行深人调查研究具有很强的现实意义。 地震属性是指从地震数据中导出的关于儿何学、运动学、动力学及统计特性的特殊度量值。它可包括时问属性、振幅属性、频率属性和吸收衰减属性,不同的属性可指示不同的地质现象。地震属性分析则是从地震资料中提取其中的有用信息,并结合钻井资料,从不同角度分析各种地震信息在纵向和横向上的变化,以揭示出原始地震剖面中不易被发现的地质异常现象及含油气情况。 地震属性分析技术的研究已由线、面信息扩展到三维体信息,从分类提取扰化发展为一项系统的应用技术。随着地震技术的日趋成熟,地震属性技术近儿年也发展迅速,其中有多属性联合解释技术、波形分析技术、吸收滤波技术等。应用地震属性分析技术去完善勘探生产中的油藏描述工作,已经成为油藏地球物理的核心内容。利用地震属性分析技术预测岩性和有利储集体,描述油藏特征及孔隙度变化,寻找难以发现的隐蔽油区,以至于监测流体运动和进行其它综合研究,一直是石油工作人员追求的目标。 1波形分析技术的研究与应用 通常的层段属性只是表示了某儿个地震信号的物理参数(振幅、相位、频率等),但它们没有一个能够单独描述地震信号的异常,而地震信号的任何物理参数的变化总是对应着反映地震道形状的变化,所以,研究和分析地震资料中代表各种属性总体特征的地震道形状(波形),应该能有非常不错的效果[,]。 1. 1波形分析技术的原理及处理过程

GeoFrame_地震属性分析和应用

SIS 软件软件技术应用技术应用技术应用之一之一 斯伦贝谢伦贝谢科技服务科技服务科技服务((北京北京))有限公司 2007年3月 GeoFrame 地震属性分析和应用地震属性分析和应用

1 地震属性分析和应用 应用地震属性开展储层横向预测是地震资料综合解释的重要研究内容。随着地球物理理论、数学理论的不断发展,通过各种计算方法能够提取和分析的地震属性越来越多,如何从众多的地震属性中选择能够反映客观地质现象的属性对目的层储层开展分析,这是地球物理人员在实际工作中面对的一个主要问题。 GeoFrame 综合地学平台为地球物理人员开展储层横向预测研究提供了一套完善的工具。SATK 、SeisClass 、LPM 以及GeoViz 的组合应用,可以帮助研究人员完成从属性提取、属性优化、定性分析到定量计算的储层预测全过程。本文重点阐述GeoFrame 储层预测的基本思路及地震属性的地质应用。 1、地震属性储层预测的基本思路 地震地层学原理假定,地震剖面上的反射波同相轴具有年代分界面的意义,要研究地层岩性和沉积相主要依据的是地震反射特征及其横向变化,也就是地震属性的变化,这是应用地震属性进行储层预测的基本理论依据。 应用地震属性进行储层横向预测要解决的主要问题是多解性问题,即:一种地震属性参数的变化受多种地质因素的影响,而一种地质现象的改变,也会造成多种地震属性的异常。 因此,在对地震属性分析预测过程中,如何从众多的地球物理参数中选取能反映地质特征变化的参数,是地震属性预测的主要问题。实际工作表明,必须做好以下两项工作: ① 正确认识地震属性 正确认识地震属性是做好属性预测的基础,不同的地震属性参数,它的地球物理含义、数学含义不一样,反映的地质规律也不一样。如:半时能量和总能量,尽管都是振幅类参数,但具体的展布规律却不一样(图1)。 图1 1 相同地区相同地区相同地区半时能量半时能量半时能量和和总能量总能量对比图对比图对比图 半时能量半时能量((Energy half-time ) 总能量总能量((Total Energy )

地震波衰减文献综述

关于地震波衰减 一、地震波衰减的主要因素 地震波在地层中传播的过程中会存在能量衰减,这种衰减会受到许多因素的影响和制约。这些因素包括:频率、压力、温度、饱和度、应变振幅以及岩石的特性等。在研究地层吸收衰减特性的过程中,了解这些因素的影响作用对于衰减问题的研究是很有帮助的。 1. 频率 频率与衰减的关系目前尚未有定论。室内研究表明 Q值与频率有关,而一些对实际地震数据的研究则表明了衰减与频率无关。现有的资料表明:对不同特性的岩石,频率的影响不同。对干燥岩石,衰减与频率无关;对于部分饱和或完全饱和岩石,地震波以复杂的路线传播,由流体流动类型所决定,衰减通常与频率有关。Johnston等利用与地震勘探有关的孔隙流体的粘滞系数和标准线性粘滞性模型,计算出地震频段的衰减对频率的依赖关系;O’Connelland Budiansky(1977)分析了饱和碎屑岩石的弹性特征,提出了与频率相关的衰减模型,他们指出在两种特性频率条件下产生的衰减最大;White(1975)计算出了在部分饱和流体岩石的弹性波衰减,推断出 P波的衰减和频率有关,而 SH波的衰减和频率无关。 2.岩性 高速的岩石,吸收性弱,而低速的岩石,吸收性强。对于大多数地区,泥岩的平均吸收性比砂岩强,砂岩的吸收比页岩和灰岩的吸收强,砂岩含有油气时,其吸收性显著增强。总之,介质弹性越好,地震波在介质中传播的能量损耗 3.压力 P波、S波在所有饱和岩石中,随压力的增加Q增大(衰减减小),在高压下则保持为一稳定值。低频时增加较快,高频时趋于一稳定值。同时在干燥岩石中随压力的增加Q增大,主要是因为增加压力能减小岩石基质中的裂缝,从而减小摩擦。 4.孔隙度 同一种砂岩,孔隙度越高,Q值越小,衰减越强;对饱和流体砂岩:衰减峰的峰位随孔隙率的增加向低温方向移动,峰值增大,峰宽变窄. 总之,衰减随孔隙率的增加而增加,呈正比关系。

地震资料处理数据分级存储集群的建设与应用

地震资料处理数据分级存储集群的建设与应用 【摘要】本文分析了河南油田地震资料处理对存储系统的需求,根据地震资料处理的数据特点,通过对并行存储技术、分级存储技术的研究,设计并建设分级存储系统,满足地震资料处理中不同应用对存储性能的不同需求,在存储容量、存储速度和成本之间取得了平衡,建成了高效实用的分级存储环境。 【关键词】分级存储;地震资料处理;并行存储;数据备份 一、建设地震资料处理数据分级存储系统的必要性 随着勘探难度增加和技术的发展,野外三维高精度采集的数据量大规模的增长,加之地震资料处理新技术、新方法的应用,地震资料处理对存储系统的存储容量和存储性能有了更高的需求,目前河南油田地震资料处理的存储系统在性能和容量上还有待提高,但是存储系统的设计要考虑容量、速度和成本三个问题。容量是存储系统的基础,都希望配置尽可能大的存储系统;同时要求存储系统的读写速度能与处理器的速度相匹配;成本也应该在一个合适的范围之内。但这三个目标不可能同时达到最优。一般情况下,存储设备读写速度越快,平均单位容量的价格越高,存储容量越小;反

之,存储设备读写速度越慢,平均单位容量的价格越低,存储容量越大。 分析地震资料处理的数据流特点,我们发现: 1、在进行叠前时间偏移、深度偏移、逆时偏移等并行作业处理时,数据流表现为高并发IO和大聚合带宽,需要高性能存储系统的支撑。 2、在常规处理中的数据流相对平稳,IO吞吐量相对小,对带宽和存储的性能要求相对较低。 3、需要备份的原始数据及成果数据,需要一定数量安全级别较高的存储系统进行数据备份。 为了在容量、速度和成本这三者之间取得平衡,需要根据其地震资料处理数据的特点,采用分级存储为不同的应用提供不同性能的服务,建成高效实用的并行存储环境。 二、分级存储方案设计 (一)体系架构 地震资料处理数据分级存储系统采用开放式的存储体 系架构,基于分布式的Glusterfs并行文件系统,将多台存储设备的存储容量虚拟成一个具有统一访问接口的存储空间。按照一定的负载均衡策略存储用户的数据,将数据条带化的存储到多台物理存储设备上,从而获得更高的并发数据访问性能,同时可以制定存储策略进行数据分级存储,对所有的存储设备可以实现统一的管理和监控。

地震勘探技术的发展与应用

地球探测与信息技术 读书报告 课题名称:地震勘探的发展与应用 班级:064091 姓名:吴浩 学号:20091004040 指导老师:胡祥云

地震勘探的发展与应用 吴浩 (地球物理与空间信息学院,地球科学与技术专业) 摘要地震勘探是地球物理勘探中发展最快的一项技术,近年来,高分辨率地震勘探仪器装备、处理软件升级换代速度明显加快,地震资料采集、处理与解释出现了一体化的趋势。从常规的地震勘探发展到二维地震、三维地震、高精度地震勘探等先进技术,应用于石油、煤炭、采空区调查、地热普查等重要领域,由陆地不断向海洋发展。本文着重针对地震勘探过程和技术的发展几个重要阶段及应用进行展开。 关键字地震勘探三维地震石油勘探煤矿发展与应用 1 引言 地震勘探是利用岩石的弹性性质研究地下矿床和解决工程地质,环境地质问题的一种地球物理方法。地震勘探应用领域广泛,与其他物探方法相比,具有精度高、分层详细和探测深度大等优点,近年来,随着电子技术、计算机技术的高速发展,地震勘探的仪器装备、处理软件升级换代的速度明显加快,地震资料采集、处理与解释的一体化趋势得到加强。从常规的地震勘探发展到二维地震、三维地震、高精度地震勘探等先进技术,通常用人工激发地震波,地震波通过不同路径传播后,被布置在井中或地面的地震检波器及专门仪器记录下来,这些地震拨携带有所经过地层的丰富地质信息,计算机对这些地震记录进行处理分析,并用计算机进行解释,便可知道地下不同地层的空间分布,构造形态,岩性特征,直至地层中是否有石油、天然气、煤等,并可解决大坝基础,港口,路,桥的地基,地下潜在的危险区等工程地质问题,以及环境保护,考古等问题。 2 地震勘探过程及发展 地震勘探过程由地震数据采集、数据处理和地震资料解释3个阶段组成。 1.地震数据采集 在野外观测作业中,一般是沿地震测线等间距布置多个检波器来接收地震波信号。常规的观测是沿直线测线进行,所得数据反映测线下方二维平面内的地震信息。一般地讲,地震野外数据采集成本占勘探成本的80%左右,因此世界各国为了降低勘探成本、提高勘探效果,

地震仪器技术现状、发展方向及存在问题概述

地震仪器技术现状、发展方向及存在问题概述 发表时间:2019-10-29T09:05:24.317Z 来源:《基层建设》2019年第22期作者:张庆 [导读] 摘要:近年来,我国逐渐进入到大数据时代,大数据时代的石油地球物理勘探已全面进入“两宽一高”勘探时期,来自于宽频带、宽方位、高精度的数据采集记录,全地表、低成本、健康与安全环保的更高要求以及短作业周期的野外施工作业等多方面需求的升级,对地球物理勘探开发核心装备———地震数据采集记录系统提出了新的要求。 中国石油集团东方地球物理勘探有限责任公司装备服务处仪器服务中心河北省涿州市 072750 摘要:近年来,我国逐渐进入到大数据时代,大数据时代的石油地球物理勘探已全面进入“两宽一高”勘探时期,来自于宽频带、宽方位、高精度的数据采集记录,全地表、低成本、健康与安全环保的更高要求以及短作业周期的野外施工作业等多方面需求的升级,对地球物理勘探开发核心装备———地震数据采集记录系统提出了新的要求。本文从社会发展、物探技术发展的角度,分析了地震仪器技术现状、发展方向及存在问题。 关键词:两宽一高;地震仪器;有线传输;无线传输;地震数据本地存储 引言 地震仪器是油气勘探的关键设备,其勘探能力直接决定着野外地震数据采集的效率和质量。目前,业内常用的地震仪器大致可以概括为3类,即节点仪器、无线仪器以及有线遥测仪器,每种仪器都有各自的优缺点和适用范围,可独立使用,也可借助相关软硬件平台实现在同一项目的无缝联合采集,从而满足不同甲方和施工地表条件下的勘探需求。不同的地震仪器涉及数据的种类、量级不尽相同,如何在大数据背景下低成本、高效率和高质量地完成地震数据采集作业任务已经成为一个亟待解决的棘手问题。 1地震仪器标准化现状 (1)各地震仪器生产厂家自成体系,阻碍了地震仪器统一技术平台的建立,导致地震仪器不能健康有序发展。(2)不同地震仪器具备不同的功能和性能指标,使用户无法对不同种地震仪器技术水平做出准确评价,为合理选用地震仪器带来困难。(3)地震仪器输出数据格式的不统一,为现场质控和后期资料处理带来不便,影响生产效率。(4)用户缺乏客观、公正的地震仪器检验方法和验收手段,目前只能依赖生产厂家提供的仪器检测方法,且不同仪器产品的技术指标量值也不相同,如果检测结果失准,将会直接影响采集地震数据的质量。 2地震仪器大数据带来的挑战 相比于通常提到的计算机信息处理中的大数据,地震仪器大数据是一个特殊的概念,有其独特的特征和处理需求。在现场采集作业时,需要对多种不同类型、不同数据格式或编码方式的海量数据进行处理、信息挖掘和综合分析,使得地震仪器大数据时代的地震仪器作业面临更多的挑战。(1)海量生产资源的高效管理。随着“两宽一高”物探技术的规模化应用,野外地震勘探采集动用的资源愈发庞大,以国内某常规三维采集项目为例,项目满覆盖面积397km2,观测系统为44L*2S*220R正交,道距25米,线距100米,炮点距50米,炮线距125米,使用6台可控震源,有线采集设备3万道。如此大的采集规模,在低成本、高效率、高质量地震勘探的要求下,地震仪器作业面临着设备技术状态管理、排列动态管理、可控震源扫描属性数据的实时监控等方面的挑战。(2)高效、精准的现场质量控制。一方面,基于地震仪器主机激发控制的各种高效地震数据采集施工方法的规模化应用,使得传统以人工监控、回放纸质为主的质量控制方式转向了以质控软件为主、人工分析为辅的方式,但10万道以上的超大规模地震勘探会对质量分析准确度和实时性提出了新的要求;另外一方面,像ISS、独立激发等新的作业方法,以及节点仪器等新型地震采集系统的应用,也为现场地震数据质量控制带来新的课题。(3)地震数据的快速存取和安全管理。在野外地震数据采集作业时,会涉及大量地震数据(包括单炮记录和中间数据)的拷贝和转移。在地震勘探大数据时代,野外采集道密度和激发炮点密度均有大幅度的提高,每日生产炮数会是以往的几倍,单炮记录万道,甚至数万道,都会对地震数据的存取速率和安全管理提出新的要求。(4)多类型数据的综合信息分析与评价。地震仪器作业是囊括采集排列管理、炮点激发控制、数据采集记录、现场质量控制的综合性的过程,需要对不同格式或编码方式的数据进行及时的准确的综合分析和评价,从而确保采集数据的质量和勘探施工的效率。因此,地震仪器是汇集和处理多种信息或工作任务的一体化平台,超大规模的地震数据采集必会对其软硬件性能带来新的挑战。 3地震仪器的发展方向 地震仪器的发展受成熟先进技术的支持,电子、通讯、制造、测试、数据采集等技术的发展推动着地震仪器的发展,尤其是嵌入式技术的发展直接带动地震仪器地面设备的升级换代,基础技术发展对地震仪器技术问题的解决直接体现在:(1)计算机技术:海量数据存储管理(包括QC、转储)。(2)嵌入式技术:地面设备的智能化、小型化、稳定性、功耗等性能指标,缩短产品的开发进程、降低研发和制造成本。(3)通讯技术(包括移动通讯、有线通讯):百万个采集点与激发同步,大道数的同步、管理、采集及便利性(使用、管理)和效率。(4)电子技术:多功能、智能、高精度、低功耗和低成本。(5)先进制造技术:稳定性、可靠性、小体积等环保和高效要求。 4目前地震仪器发展存在的问题 4.1地震数据存储与管理 高密度高效采集对于地震数据的存储与管理主要有数据存取速率和安全性两个方面的需求。在数据存取速率方面,主要考虑现场数据写入性能,现有的主流地震仪器大都支持磁带、磁盘和NAS等存储媒介,在数据安全管理方面,除了使用的NAS盘、磁盘阵列使用RAID结构实现数据的安全保护以外,在用的G3i、428XL、508XT仪器均支持同时向多个存储媒介同时输出采集的地震数据,以实现数据的备份。 4.2地震信号的记录能力方面 地震信号的记录能力主要是与影响地震数据采集质量或精度方面的性能指标相关联,主要体现在任何扩展有效记录频带、降低信号畸变水平和提高信号记录精度。可进一步划分为地震信号传感(或转换)环节、地震检波器部分和地震信号数字记录环节、采集站的数字化记录通路即仪器部分。就地震仪器而言,目前地震仪器普遍采用Δ-Σ技术的24位或32位模/数转换器,简化地震信号调理电路,降低仪器本身噪声,使地震仪器的动态范围达到了120dB以上。相对来讲数据采集的性能指标水平较高,考虑到电子产品制作工艺及地球物理勘探中地震信号的特征,特别是考虑地球对高频信号的快速衰减及高次数叠加的勘探方法,可以通过对有效信号的放大来相对降低地震仪器的噪声水平,充分利用24位ADC的特点,达到提高记录精度并且扩展频宽的目的。但如何兼顾高频小信号和低频大信号是目前地震仪器攻关的课题。就检波器而言,目前物探行业5Hz等低频检波器与10Hz高精度检波器相比,存在灵敏度低、容差大、假频低、使用寿命短、

地震相识别学习笔记

地震参数(地震相标志)按其属性可分为四大类: ①几何参数:反射结构、外形; ②物理参数:反射连续性、振幅、频率、波的特点; ③关系参数:平面组合关系; ④速度-岩性参数:层速度、岩性指数、砂岩含量。 一、内部反射结构 (Seismic Reflection Configuration) 指层序内部反射同相轴本身的延伸情况及同相轴之间的相互关系反映物源方向、沉积过程、侵蚀作用、古地理、流体界面等 ②发散反射结构(Divergent) 往往出现在楔形单元中,反射层在楔形体收敛方向上常出现非系统性终止现象(内部收敛),向发散方向反射层增多并加厚。它反映了由于沉积速度的变化造成的不均衡沉积或沉积界面逐渐倾斜,反映沉积时基底的差异沉降,常出现于古隆起的翼部,盆地边缘、或同生断层下降盘,盐丘翼部,往往是油气聚集的有利场所。 ③前积反射结构(Progradational) 由沉积物定向进积作用产生的,为一套倾斜的反射层,与层序顶底界呈角度相交,每个反射层代表某地质时期的等时界面并指示前积单元的古地形和古水流方向。在前积反射的上部和下部常有水平或微倾斜的顶积层和底积层,常见近端顶超和远端下超。代表三角洲沉积。上部是浅水沉积,下部则是深水沉积。 d.叠瓦状前积(shingled),它表现为在上下平行反射之间的一系列叠瓦状倾斜反射,这些斜反射层延伸不远,相互之间部分重叠。它代表斜坡区浅水环境中的强水流进积作用,是河流、缓坡三角洲或浪控三角洲的特征。也称之为羽状前积。 在同一三角洲沉积中,不同部位可表现为不同类型的前积。如受主分支河道控制的建设性三角洲朵状体可能表现为斜交前积,无顶积层也无底积层,只有前积层,较低能的朵状体侧缘或朵状体之间可能呈现S形前积。 前积在不同方向的测线上表现不同,倾向剖面表现为前积,走向剖面表现为丘形。 ④乱岗状反射结构(hummocky) 它是由不规则、连续性差的反射段组成,常有非系统性反射终止的同相轴分叉现象。常出现在丘形或透镜状反射单元中。维尔把它解释为三角洲或三角洲间湾沉积的反射特征,代表分散性弱水流沉积。冲积扇及扇三角洲沉积中也会出现这种反射结构。 乱岗结构的波状起伏幅度较小,接近于地震分辨率极限(乱中有规则),乱岗状与杂乱反射的名称易混淆,在实际上有很大差别,有人亦称之为波状反射。

地震振幅属性

1.均方根振幅(RMS Amplitude ) 均方根振幅是将振幅平方的平均值再开平方。由于振幅值在平均前平方了,因此,它对特别大的振幅非常敏感。适合于地层的砂泥岩百分比含量分析,也用于地层岩性相变分析,计算薄砂层厚度,识别亮点、暗点,指示烃类显示,识别火成岩等特殊岩性。 2.平均绝对值振幅(Average Absolute Amplitude ) 平均绝对值振幅没有均方根振幅那样,对特别大的振幅敏感。 适于地层的岩性变化趋势分析,地震相分析,也可用于地层岩性相变分析,计算薄砂层厚度,识别亮点、暗点,指示烃类显示,识别火成岩等特殊岩性。 3.最大波峰振幅(Maximum Peak Amplitude ) 最大波峰振幅的求取方法是,对于每一道,PAL 在分析时窗里做一抛物线,恰好通过最大正的振幅值和它两边的两个采样点,沿着这曲线内插可得到最大波峰值振幅值。 √

PAL画一个使这三个采样点适合曲线并且 沿这一曲线确定出最大值。 最大波峰振幅= 125 最大波峰振幅是分析时窗内的最大正振幅,最适合绘制层序内或沿着特定的反射体上的振幅异常图;这些异常可能是由于气体和流体的聚集,不整合,或是调谐效应而引起的。 适于沿某一层面进行储层分析,也可用于地层岩性相变分析,计算薄砂层厚度,识别亮点、暗点,指示烃类显示,识别火成岩等特殊岩性。 4.平均波峰振幅 (Average Peak Amplitude) 平均峰值振幅是对每一道在分析时窗里的所有正振幅值相加,得到总数除以时窗里的正振幅值采样数得到的。 适合研究某一层的岩性变化,也可用于地层岩性相变分析,计算薄砂层厚度,识别亮点、暗点,指示烃类显示,识别火成岩等特殊岩性。 5.最大波谷振幅 (Maximum Trough Amplitude) 最大波谷振幅的求取方法是,对于每一道,PAL在分析时窗里做一抛物线,恰好通过最大负的振幅值和它两边的两个采样点,沿着这曲线内插可得到最大波谷振幅值。 PAL 画一个适合这三个采样点的曲线 并且沿着这一曲线确定出最大值。 最大波谷振幅= |-90| = 90

地震属性原理

地震属性原理 振幅统计类属性能反映流体的变化、岩性的变化、储层孔隙度的变化、 河流三角洲砂体、某种类型的礁体、不整合面、地层调协效应和地层层序变化。反映反射波强弱。用于地层岩性相变分析,计算薄砂层厚度,识别亮点、暗点,指示烃类显示,识别火成岩等特殊岩性。 1. 均方根振幅(RMS Amplitude 均方根振幅是将振幅平方的平均值再开平方。由于振幅值在平均前平方了,因此,它对特别大的振幅非常敏感。适合于地层的砂泥岩百分比含量分析,也用于地层岩性相变分析,计算薄砂层厚度,识别亮点、暗点,指示烃类显示,识别火成岩等特殊岩性。 2. 平均绝对值振幅(Average Absolute Amplitude ) 平均绝对值振幅没有均方根振幅那样,对特别大的振幅敏感。 适于地层的岩性变化趋势分析,地震相分析,也可用于地层岩性相变分析, 计算薄砂层厚度,识别亮点、暗点,指示烃类显示,识别火成岩等特殊岩性。 Average Absolute二和凶讥^ Amplitude number of samples =1045/16 = 65.31 3. 最大波峰振幅(Maximum Peak Amplitude )

最大波峰振幅的求取方法是,对于每一道, PAL 在分析时窗里做一抛物线, 恰好通过最大正的振幅值和它两边的两个采样点,沿着这曲线内插可得到最大波 峰值振幅值。 画一个使这三个采样点适合曲线并且 沿这一曲线确 定出最大值。 最大波峰振幅=125 最大波峰振幅是分析时窗内的最大正振幅, 最适合绘制层序内或沿着特定的 反射体上的振幅异常图;这些异常可能是由于气体和流体的聚集,不整合,或是 调谐效应而引起的 适于沿某一层面进行储层分析,也可用于地层岩性相变分析,计算薄砂层厚 度,识别亮点、暗点,指示烃类显示,识别火成岩等特殊岩性。 4. 平均波峰振幅(Average Peak Amplitude) 平均峰值振幅是对每一道在分析时窗里的所有正振幅值相加,得到总数除 以时窗里的正振幅值采样数得到的。 Average Peak 二 右口口 凶 mrnplitucle 吕 Amplitude number of posrtive samples ■ 802/11 =72.91 适合研究某一层的岩性变化,也可用于地层岩性相变分析,计算薄砂层厚度, 识别亮点、暗点,指示烃类显示,识别火成岩等特殊岩性。 5. 最大波谷振幅 (Maximum Trough Amplitude) 最大波谷振幅的求取方法是,对于每一道, PAL 在分析时窗里做一抛物线, 恰好通 过最大负的振幅值和它两边的两个采样点,沿着这曲线内插可得到最大波 谷振幅值。 5' >117 46 -3B

常用地震属性的意义

常用地震属性的意义 地震反射波来自地下地层,地下地层特征的横向变化,将导致地震反射波特征的横向变化,进而影响地震属性的变化,因此,地震属性中携带有地下地层信息,这是利用地震属性预测油气储层参数的物理基础。随着地震属性处理及提取技术的大量涌现,属性种类多达几百种,实际应用人员应用起来遇到了很大困难,迫切需要按实用的角度,总结各地震属性参数与储层特征参数间的在联系,为进一步研究建立地震信息与储层参数之间的关系提供可靠的前提条件,做到信息提取有方向、有目标。为了达到这一目的,首先按类别较全面总结了目前常用地震属性,从算法开始,分析了各属性所表达的在地震波波形上的意义,从正向上分析地震属性变化与油气储层特征变化的关系,进而探讨总结了它的潜在地质应用。 1、属性体、属性剖面 这类属性是按剖面(或体)处理的,是一个体文件(或剖面文件),属性值对应空间位置,即(x、y、t0、属性值),可以用于常规地震剖面的方式显示与使用,常用的属性有:相干体(方差体、相似体等)、波阻抗、道积分数据体,经希尔伯特变换得到的瞬时属性体、倾角、倾向数据体等,这些属性体可以直接应用于解释,也可以用解释层位提取出来转变为属性层,下表为常用属性体属性意义及潜在地质应用一览表。

反射强度交流 分量相位余 弦(Perigram cosine of Phase) GRPXPERI(缩 写) 2、沿层地震属性 这种属性是用解释层位在地震数据体(剖面)中提取出来的属性,它的数值对应一个层位或一套地层,每个属性值对应一个x、y坐标。提取方式有两类:沿一

个解释层开一个常数时窗,在此时窗提取地震属性,提取方式有4种(图2-1a)。用两个解释层提取某一段地层对应的地震属性,提取方式也有4种(图2-1b)。 常用地震属性的计算方法总结如下: (1)、均方根振幅(RMS Amplitude) 均方根振幅是将振幅平方的平均值开平方。由于振幅值在平均前平方了,因此,它对特别大的振幅非常敏感。 (2)、平均绝对值振幅(Average Absolute Amplitude)

地震属性及其提取方法

地震属性及其提取方法 地震属性及其提取方法 1绪论 1.1 选题的必要性及重要性 地震属性分析技术作为油气藏勘探的核心技术之一,其作用主要为:岩性及岩相、储层参数和油气的预测。地震数据体中含有丰富的地下地质信息,不同的地震属性组合可能与某些地质参数具有很大的相关性,因此利用地震属性参数可以有效地进行储层预测。常用的地震属性主要有瞬时类参数、振幅统计类参数、频能谱统计类、相关统计类、层序统计类。在层序界而内追踪闭合基础上,将地震属性分析技术、储集层反演技术、相干体切片技术等许多新技术综合应用于分析论证,可以预测有利的区带,进行油气藏勘探。 1.2 重要研究内容 地震属性包括剖面属性、层位属性及体属性,目前层属性最为常用和具有实际意义。剖面属性提取就是在地震剖面沿目的层拾取各种地震信息,主要通过特殊处理来完成;层位属性就是沿目的层的层面并根据界面开一定长度的时窗提取各种地震信息。提取的方式有:瞬时提取、单道时窗提取和多道时窗提;体属性提取方法与层位属性相同,只是用时间切片代替层位。 地震属性提取选择合理的时窗很重要,时窗过大,包含了不必要的信息;时窗过小,会丢失有效成分。时窗选取应该遵循以下原则: (1) 当目的层厚度较大时,准确追出顶底界面,并以顶底界面限定时窗,提取层间各种属性,也可以内插层位进行属性提取; (2) 当目的层为薄层时,应该以目的层顶界面为时窗上限,时窗长度尽可能的小,因为目的层各种地质信息基本集中反映在目的层顶界面的地震响应中。 1.3地震属性分析的难点问题 (1)地震属性分析的间接性。地震数据中所含的储层信息往往是十分间接的,至今无法建立明确的物理或数学模型,这种关系通常是定性的、模糊的、不唯一的,

关于地震属性应用的几点认识

第25卷第5期2002年10月 勘探地球物理进展 Progress in Exploration G eophysics Vol.25,No.5 Oct.,2002关于地震属性应用的几点认识 曹 辉 (中国石化石油勘探开发研究院南京石油物探研究所,江苏南京210014) 摘要:讨论了应用地震属性研究油藏(或储层)特征时存在的问题,指出了通过运用属性的综合标定、先验模型的约束以及改进属性算法等手段,可以在一定程度对地震属性进行优化,减少地震属性应用的不确定性,提高地震属性预测油藏特征的应用效果。 关键词:地震属性;属性标定;属性优化;模型约束;油藏特征 中图分类号:TE19 文献标识码:A Discussion on the application of seismic attributes Cao Hui (Institute of G eophysical Prospecting,SINOPEC Research Institute of Petroleum Ex ploration and Development,Nan2 jing210014,China) Abstract:Limitations in using seismic attributes to reservoir characterization are discussed in the paper.By a combina2 tion of seismic attribute calibration,model2based constraint and refinement of algorithms of seismic attribute extraction, the limitations and uncertainties in using seismic attributes to reservoir characterization can be reduced greatly.There2 fore,the efficiency and accuracy of reservoir characterization by using seismic attributes are improved accordingly. K ey w ords:seismic attribute;attribute calibration;attribute o ptimization;model2based constrain;reservoir char 2acterization 近年来地震属性的研究进展很快,有关地震属性研究的文章很多。翻开地球物理杂志,无论是国外的还是国内的,都有大量的有关地震属性应用的文章发表。可以毫不夸张地说,地震属性技术已广泛应用于地震构造解释、地层分析、油藏特征描述以及油藏动态检测等各个领域,地震属性在油气勘探与开发中所发挥的作用越来越大。地球物理学中的一门新兴学科———地震属性学已初步形成。 但是,任何事物都是一分为二的,地震属性的应用也不例外。地震属性应用的领域越多,由此而引发的问题也越多。从20世纪70年代初开始,到80年代中期的迅速发展,再到近年来的基本成熟,地震属性的研究与应用走过了一条不平坦的道路。特别是在80年代的一段时期内,提取地震属性的方法五花八门,提取出的地震属性信息多达几十种。但是,由于没有将这些信息赋予明确的地质意义,解释起来难度极大,部分从事地球物理学的人员将地震属性研究做成了“黑匣子”,更有甚者将其神化,将储层预测说成是“神学、心理学、地球物理学与地质学的结合”,以致于国外有的专家将地震属性研究与巫术相提并论,称地震属性分析为“地震炼金术”,国内也有不少专家对地震属性研究的前景表示担忧。这种状况使不少地球物理学家对地震属性的研究感到迷惘,更不用说其它相关行业的专家们[1,2]。这段时间,地震属性的研究虽然有一定发展,但大都集中在研究提取属性的计算方法上,对属性应用条件与效果的研究却较少,多少有些舍本逐末。应该说此时的地震属性研究走了一段弯路。 时至今日,仍有不少同志对应用地震属性研究油藏(或储层)特征存有疑虑。曾有很多人问过同样的问题:地震属性在油藏特征研究中到底有多大作用?我自己也曾不止一次地问过类似的问题。 对于这一问题,确实难以回答。但是,如果我们换一种思路,问一问如果不用地震属性,我们又能用什么来研究油藏的空间特征呢?对于这一问题,相信大多数人都认为:就目前技术现状而言,地 收稿日期:20020605。 作者简介:曹辉(1959),男,教授级高级工程师,1986年毕业于长春地质学院应用地球物理专业,获硕士学位。现主要从事地震综合解释工作和地震新方法新技术研究。

(完整版)地震属性分析技术在储层预测中的应用_zyz

地震属性分析技术在储层预测中的应用新疆油田公司勘探开发研究院地物所

地震属性分析技术在储层预测中的应用 新疆油田公司勘探开发研究院地物所 2007.5 乌鲁木齐

目录 前言 (1) 1、地震属性的分类 (1) 2、地震属性提取方法及影响因素 (2) 2.1、信躁比 (2) 2.2、时窗的选取 (5) 2.3、属性色标的使用原则 (7) 3、结论及认识 (9)

前言 近年来,随着计算机技术和地震采集、处理、解释技术的进步,地震技术在油气勘探、开发工作中的重要性日益显著。地震属性分析预测以其独到的技术优势,在油田得到了广泛的应用,已成为油气勘探开发,油气藏描述所不可或缺的重要技术手段,发挥着关键性作用。 地震属性是对地震资料的几何学、运动学、动力学及统计学特征的度量,其应用是通过各类地震解释软件来提取、统计分析、验证,进行地层分析、岩性特征描述。 准噶尔盆地的油气勘探开发经历了50余年,目前的勘探目标已经由显性的构造型油气藏全面转向隐蔽型油气藏。配套的地震勘探解释技术已经从单纯的构造解释,向高精度构造解释下的储层预测、油藏描述和油藏监测延伸。近几年准噶尔盆地众多油气田的发现(例如车89井区、石南21井区、石南31井区),地震属性技术起到了非常关键的作用。 准噶尔盆地多旋回的构造运动,多期湖平面升降,造就了多种类型沉积体系的发育,为多种类型的岩性圈闭的发育奠定了雄厚的资源基础。但是,由于地震勘探技术本身的精度限制,识别并描述出各种类型的岩性圈闭,存在预测结果的多解性和可靠性低的问题。 本项目的设立,期望通过对已知典型油气藏发现过程的解剖分析,总结地震属性提取时应注重的关键环节(信躁比、时窗、色标的正确使用),建立起储层分析技术针对不同沉积类型的储层的研究工作流程。

关于地震属性技术的研究和分析

关于地震属性技术的研究和分析 西安科技大学计算机系王龙军张群会叶琴 [摘要]地震属性分析是储层描述的一项重要内容.目前地震属性分析技术发展迅速,在油气田开发中应用广泛,并 起到越来越重要的作用.地震属性分析希望从地震数据中拾取隐藏在这些数据中的有关岩性和储层物性的信息,从而 加强地震数据在油田开发领域的应用. [关键词]地震属性属性提取属性优选 1.前言 随着地震属性在油气勘探与开发中发挥的作用越来越大, 地震资料的属性解释分析逐渐形成了一项专门的地震属性技 术,并且也初步形成了一门新兴学科—地震属性学(Se ism i2 cA t t r ibu to lo gy). 2.地震属性的定义 到目前为止,对地震属性还没有统一的定义,大家引用较多 的是W e ste rnA t la sIn te rna t io na l公司的Q u incyChen与 S teveS idney所给出的定义:”地震属性是地震资料的几何学,运 动学,动力学及统计学特征的一种量度”.这也是本文所引用的 地震属性定义. 3.地震属性分类 目前,地震属性的分类方法有很多,但没有一个公认的地震 属性分类,也很难建立一个完整的地震属性列表,概括起来主要 有以下五种: (1)是在我国学术界较为流行的分类方法,即从运动学与动 力学的角度,将地震属性分为振幅,频率,相位,能量,波形,相 关,衰减和比率等几大类. (2)是按属性拾取的方法将地震属性分为剖面属性,时窗属 性和体积属性三类的分类方法. (3)是由T ap e r等人(1995)提出的将地震属性分为几何属 性和物理属性两大类. (4)是由B row n(1996)提出的将地震属性分为时间,振幅,

相关主题