搜档网
当前位置:搜档网 › 一元二次方程经典考题

一元二次方程经典考题

一元二次方程经典考题
一元二次方程经典考题

考点一:一元二次方程的定义

1、下列方程中是关于x 的一元二次方程的是( ) A. ()()12132

+=+x x B.

02112

=-+x x

C. 02=++c bx ax

D. 122

2+=+x x x 2、若方程013)2(|

|=+++mx x

m m 是关于x 的一元二次方程,则( )

A .2±=m

B .m=2

C .2-≠m

D .2±≠m

3、关于x 的一元二次方程(a -1)x 2

+x+a 2

-l=0的一个根是0。则a 的值为( )

A 、 1

B 、-l

C 、 1 或-1

D 、

12

4、若方程()112

=?+

-x m x m 是关于x 的一元二次方程,则m 的取值范围是

5、关于的方程是一元二次方程的条件是( )

A 、≠1

B 、≠-2

C 、≠1且≠-2

D 、≠1或≠-2 考点二:一元二次方程的解

1、关于x 的一元二次方程()0422

2

=-++-a x x a 的一个根为0,则a 的值为 。

2、已知方程0102=-+kx x 的一根是2,则k 为 ,另一根是 。

3、已知a 是0132=+-x x 的根,则=-a a 622 。

4、若方程ax 2

+bx+c=0(a ≠0)中,a,b,c 满足a+b+c=0和a-b+c=0,则方程的根是_______。 5、方程()()02

=-+-+-a c x c b x b a 的一个根为( )

A 1-

B 1

C c b -

D a -

6、已知一元二次方程x 2

+3x+m=0的一个根为-1,则另一个根为

7、已知x=1是一元二次方程x 2

+bx+5=0的一个解,则b 的值为 ,方程的另一个根为 . 8、已知322

-+y y 的值为2,则1242

++y y 的值为

9、已知关于x 的一元二次方程()002

≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为

考点三:一元二次方程的求解方法

1、如果二次三项式16)122

++-x m x (

是一个完全平方式,那么m 的值是_______________. 2、试说明代数式2

243x x -++有最大还是最小值,当x 为多少时取得最值.

3、已知x 、y 为实数,求代数式2

2

247x y x y -+++的最小值。

4、纯计算

x x 22= 0)32()1(22=--+x x 0862=+-x x 0822=--x x 01522=+-x x

x 0)2(2

2

=++-+b ax x a a a a a a a a

5、整体思想

例:若(

)()2

2

22

260a b

a

b +-+-=,则22a b +=

变式1:若()()032=+--+y x y x ,则x+y 的值为

变式2:若142=++y xy x ,282

=++x xy y ,则x+y 的值为 变式3:已知5)3)(1(2222=-+++y x y x ,则2

2y x +的值等于 考点四:一元二次方程中的代换思想(降次) 1、已知0232

=+-x x

,求代数式

()1

1

123

-+--x x x 的值。 2、如果012=-+x x ,那么代数式7223-+x x 的值。

3、已知βα,是方程012=--x x 的两个根,那么=+βα34

.

4、已知a 是一元二次方程0132

=+-x x 的一根,求1

1

522

23++--a a a a 的值。 考点五:根的判别式

1、若关于x 的方程0122

=-+x k x 有两个不相等的实数根,则k 的取值范围是 。

2、关于X 的方程有两个不相等的实数根,则的取值范围是( )

A 、>9

B 、<9且≠0

C 、<9

D 、≤9且≠0 3、关于x 的一元二次方程()0212

=++-m mx x m 有实数根,则m 的取值范围是( )

A.10≠≥且m m

B.0≥m

C.1≠m

D.1>m

4、对于任意实数m ,关于x 的方程2

2

2

(1)2(4)0m x mx m +-++=一定( )

A. 有两个正的实数根

B. 有两个负的实数根

C. 有一个正实数根、一个负实数根

D. 没有实数根 5、已知关于x 的方程02)12(2

2=++++m x m x 有两个不等实根,试判断直线x m y )32(-=74+-m 能否通过A (-2,4),并说明理由。

6、若关于x 的方程0342=+-x kx 有实数根,则k 的非负整数值是 。

3、已知关于x 的方程2

(2)60x k x k -++-=有两个相等的正实数根,则k 的值是 4、已知a 、b 、c 为ABC ?的三边,且关于x 的一元二次方程()()()04

3

22=---++c a x c a x b c 有两个相等的实数根,那么这个三角形是 。

5、如果关于x 的方程()05222

=+++-m x m mx 没有实数根,那么关于x 的方程()()0

2252

=++--m x m x m 的实根个数是 。

6、已知关于x 的方程()0222

=++-k x k x

(1)求证:无论k 取何值时,方程总有实数根;

(2)若等腰?ABC 的一边长为1,另两边长恰好是方程的两个根,求?ABC 的周长。

0162

=+-x kx k k k k k k k

*考点六:根与系数的关系(韦达定理)

1、若12,x x 是方程2220070x x +-=的两个根,试求下列各式的值:

(1) 22

12x x +; (2)

12

11x x +; (3) 12(5)(5)x x --;

(4) 12||x x -.

2、以71+与71-为根的一元二次方程是()

A .0622=--x x

B .0622=+-x x

C .0622

=-+y y

D .0622

=++y y

3、甲、乙两人同解一个一元二次方程,甲看错常数项,解得两根为8和2,乙看错一次项系数,解得两根为-9和-1,则这个方程是

4、已知m 、n 是方程0719992=++x x 的两个根,则=++++)82000)(61998(2

2

n n m m ( ) A 、1990 B 、1992 C 、-1992 D 、1999

5、方程02x 5x 2=+-与方程06x 2x 2=++的所有实数根的和为___________.

6、已知b a ,是方程042=+-m x x 的两个根,c b ,是方程0582=+-m y y 的两个根,则m 的值为 。

7、设方程0m x 5x 32=+-的两根分别为21x ,x ,且0x x 621=+,那么m 的值等于( ) A.3

2-

B.—2

C.92

D.—92

8、设12,x x 是方程20x px q ++=的两实根,121,1x x ++是关于x 的方程2

0x qx p ++=的两实根,则p = _____ ,

q = _____ .

9、若方程2

2(1)30x k x k -+++=的两根之差为1,则k 的值是 _____ .

10、已知菱形ABCD 的边长为5,两条对角线交于O 点,且OA 、OB 的长分别是关于x 的方程2

2

(21)30x m x m +-++=的根,则m 等于( )

A .3-

B .5

C .53-或

D .53-或

特殊技巧:

1、已知b a ≠,0122=--a a ,0122=--b b ,求=+b a

变式:若0122=--a a ,0122

=--b b ,则

a

b

b a +的值为 。 变式:已知实数a 、b 满足b b a a 22,222

2-=-=,且a ≠b ,求a

b b a +的值。

变式:若ab ≠1,且有05201190

92011522

=++=++b b a a ,求b

a 的值。

变式:若实数、满足,,则的值是( )

A 、-20

B 、2

C 、2或-20

D 、

a b 0582=+-a a 0582

=+-b b 11

11--+--b a a b 21

1、关于x 的一元二次方程230x x k --=有两个不相等的实数根. (1)求k 的取值范围.

(2)请选择一个k 的负整数值,并求出方程的根.

2、关于的一元二次方程x 2

+2x+k+1=0的实数解是x 1和x 2. (1)求k 的取值范围;

(2)如果x 1+x 2-x 1x 2<-1且k 为整数,求k 的值。

3、关于x 的一元二次方程x 2

+3x+m ﹣1=0的两个实数根分别为x 1,x 2. (1)求m 的取值范围;

(2)若2(x 1+x 2)+x 1x 2+10=0,求m 的值.

4、关于x 的一元二次方程为(m-1)x 2

-2mx +m+1=0 (1)求出方程的根;

(2)m为何整数时,此方程的两个根都为正整数?

(1)求实数m 的最大整数值;

(2)在(1)的条下,方程的实数根是x 1,x 2,求代数式x 12+x 22

-x 1x 2的值. 6、已知关于

x 的方程222(1)740x a x a a +-+--=的两根为1x 、2x ,且满足12123320x x x x ---=.求

2

42

(1)4a a a

++

?-的值。 7、已知关于x 的方程()0132

=++-kx x k 。 (1)求证:不论k 取何值,方程总有实数根;

(2)当k=4时,设该方程的两个实数根为α、β,求作以1122++βα和1

122++αβ为根的一元二次方程。

8、已知12,x x 是一元二次方程24410kx kx k -++=的两个实数根.

(1) 是否存在实数k ,使12123

(2)(2)2

x x x x --=-成立?若存在,求出k 的值;若不存在,请您说明理由.

(2) 求使

12

21

2x x x x +-的值为整数的实数k 的整数值. 9、已知关于x 的方程2

30x x m +-=的两个实数根的平方和等于11.求证:关于x 的方程

22(3)640k x kmx m m -+-+-=有实数根.

一元二次方程经典测试题(附答案解析)

. . . 一元二次方程测试题 考试范围:一元二次方程;考试时间:120分钟;命题人:瀚博教育 第Ⅰ卷(选择题) 一.选择题(共12小题,每题3分,共36分) 1.方程x(x﹣2)=3x的解为() A.x=5 B.x1=0,x2=5 C.x1=2,x2=0 D.x1=0,x2=﹣5 2.下列方程是一元二次方程的是() A.ax2+bx+c=0 B.3x2﹣2x=3(x2﹣2)C.x3﹣2x﹣4=0 D.(x﹣ 1)2+1=0 3.关于x的一元二次方程x2+a2﹣1=0的一个根是0,则a的值为() A.﹣1 B.1 C.1或﹣1 D.3 4.某旅游景点的游客人数逐年增加,据有关部门统计,2015年约为12万人次,若2017年约为17万人次,设游客人数年平均增长率为x,则下列方程中正确的是() A.12(1+x)=17 B.17(1﹣x)=12 C.12(1+x)2=17 D.12+12(1+x)+12(1+x)2=17 5.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P的速度为1cm/秒,点Q的速度为2cm/秒,点Q移动到点C后停止,点P也随之停止运动.下列时间瞬间中,能使△PBQ的面积为15cm2的是() A.2秒钟B.3秒钟C.4秒钟D.5秒钟 6.某幼儿园要准备修建一个面积为210平方米的矩形活动场地,它的长比宽多12米,设场地的长为x 米,可列方程为() A.x(x+12)=210 B.x(x﹣12)=210 C.2x+2(x+12)=210 D.2x+2(x﹣12)=210 7.一元二次方程x2+bx﹣2=0中,若b<0,则这个方程根的情况是() A .有两个正根B.有一正根一负根且正根的绝对值大 C.有两个负根D.有一正根一负根且负根的绝对值大 8.x1,x2是方程x2+x+k=0的两个实根,若恰x12+x1x2+x22=2k2成立,k的值为() A.﹣1 B.或﹣1 C.D.﹣或1 9.一元二次方程ax2+bx+c=0中,若a>0,b<0,c<0,则这个方程根的情况是() A.有两个正根B.有两个负根 C.有一正根一负根且正根绝对值大D.有一正根一负根且负根绝对值大 10.有两个一元二次方程:M:ax2+bx+c=0;N:cx2+bx+a=0,其中a﹣c≠0,以下列四个结论中,错误的是() A.如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根 B.如果方程M有两根符号相同,那么方程N的两根符号也相同 C.如果5是方程M的一个根,那么是方程N的一个根 D.如果方程M和方程N有一个相同的根,那么这个根必是x=1 11.已知m,n是关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0的两实数根,则(m+2)(n+2)的最小值是() A.7 B.11 C.12 D.16

韦达定理及其应用竞赛题(完整资料).doc

【最新整理,下载后即可编辑】 韦达定理及其应用 【内容综述】 设一元二次方程有二实数根,则,。 这两个式子反映了一元二次方程的两根之积与两根之和同系数a,b,c的关系,称之为韦达定理。其逆命题也成立。韦达定理及其逆定理作为一元二次方程的重要理论在初中数学竞赛中有着广泛的应用。本讲重点介绍它在五个方面的应用。 【要点讲解】 1.求代数式的值 应用韦达定理及代数式变换,可以求出一元二次方程两根的对称式的值。 ★★例1若a,b为实数,且,,求 的值。 思路注意a,b为方程的二实根;(隐含)。 解(1)当a=b时, ; (2)当时,由已知及根的定义可知,a,b分别是方程的两根,由韦达定理得 ,ab=1. 说明此题易漏解a=b的情况。根的对称多项式,,等都可以用方程的系数表达出来。一般地,设,为方程的二根,,则有递推关系。 其中n为自然数。由此关系可解一批竞赛题。

附加:本题还有一种最基本方法即分别解出a,b值进而求出所求多项式值,但计算量较大。 ★★★例2若,且,试求代数式 的值。 思路此例可用上例中说明部分的递推式来求解,也可以借助于代数变形来完成。 解:因为,由根的定义知m,n为方程的二不等实根,再由韦达定理,得 , ∴ 2.构造一元二次方程 如果我们知道问题中某两个字母的和与积,则可以利用韦达定理构造以这两个字母为根的一元二次方程。 ★★★★例3设一元二次方程的二实根为和。 (1)试求以和为根的一元二次方程; (2)若以和为根的一元二次方程仍为。求所有这样的一元二次方程。 解(1)由韦达定理知 ,。 , 。 所以,所求方程为。 (2)由已知条件可得 解之可得由②得,分别讨论 (p,q)=(0,0),(1,0),(1-,0),(0,1),(2,1),(2-,1)或(0, 1-)。

一元二次方程应用题经典题 型汇总含答案

z一元二次方程应用题经典题型汇总 一、增长率问题 例1 恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率. 解 设这两个月的平均增长率是x.,则根据题意,得200(1-20%) (1+x)2=193.6, 即(1+x)2=1.21,解这个方程,得x1=0.1,x2=-2.1(舍去). 答 这两个月的平均增长率是10%. 说明 这是一道正增长率问题,对于正的增长率问题,在弄清楚增长的次数和问题中每一个数据的意义,即可利用公式m(1+x)2=n求解,其中m<n.对于负的增长率问题,若经过两次相等下降后,则有公式m(1-x)2=n即可求解,其中m>n. 二、商品定价 例2 益群精品店以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品售价a元,则可卖出(350-10a)件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400元,需要进货多少件?每件商品应定价多少? 解 根据题意,得(a-21)(350-10a)=400,整理,得a2-56a+775=0, 解这个方程,得a1=25,a2=31. 因为21×(1+20%)=25.2,所以a2=31不合题意,舍去. 所以350-10a=350-10×25=100(件). 答 需要进货100件,每件商品应定价25元. 说明 商品的定价问题是商品交易中的重要问题,也是各种考试的热点.

三、储蓄问题 例3 王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.(假设不计利息税) 解 设第一次存款时的年利率为x. 则根据题意,得[1000(1+x)-500](1+0.9x)=530.整理,得 90x2+145x-3=0. 解这个方程,得x1≈0.0204=2.04%,x2≈-1.63.由于存款利率不能为负数,所以将x2≈-1.63舍去. 答 第一次存款的年利率约是2.04%. 说明 这里是按教育储蓄求解的,应注意不计利息税. 四、趣味问题 例4 一个醉汉拿着一根竹竿进城,横着怎么也拿不进去,量竹竿长比城门宽4米,旁边一个醉汉嘲笑他,你没看城门高吗,竖着拿就可以进去啦,结果竖着比城门高2米,二人没办法,只好请教聪明人,聪明人教他们二人沿着门的对角斜着拿,二人一试,不多不少刚好进城,你知道竹竿有多长吗? 解 设渠道的深度为xm,那么渠底宽为(x+0.1)m,上口宽为 (x+0.1+1.4)m. 则根据题意,得 (x+0.1+x+1.4+0.1)·x=1.8,整理,得x2+0.8x-1.8=0. 解这个方程,得x1=-1.8(舍去),x2=1. 所以x+1.4+0.1=1+1.4+0.1=2.5. 答 渠道的上口宽2.5m,渠深1m.

一元二次方程典型例题解析

龙文教育学科辅导学案 教师: 学生: 年级: 日期:2013. 星期: 时段: 学情分析 课 题 一元二次方程章节复习及典型例题解析 学习目标与 考点分析 学习目标:1、通过对典型例题、自身错题的整理,抓住本章的重点、突破学习的难点; 2、通过灵活运用解方程的方法,体会四种解法之间的联系与区别,进一步熟练根据方程特征找出最优解法; 3、通过实际问题的解决,进一步熟练运用方程解决实际问题,体会方程思想在解决 问题中的作用 考点分析:1一元二次方程的定义 、解法、及根与系数的关系 学习重点 理解并掌握一元二次方程的概念及解法 学习方法 讲练说相结合 学习内容与过程 一 回顾梳理旧的知识点(这些知识点必须牢牢掌握) 一元二次方程 1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。 2、一元二次方程的一般形式:)0(02≠=++a c bx ax ,它的特征是:等式左边十一个关于未知数x 的二次多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。 一元二次方程的解法 1、直接开平方法: 利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。直接开平方法适用于解形如b a x =+2)(的一元二次方程。根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。 2、配方法: 配方法的理论根据是完全平方公式2 22)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。 配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式 3、公式法 公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。

(完整版)一元二次方程解法及其经典练习题

一元二次方程解法及其经典练习题 方法一:直接开平方法(依据平方根的定义) 平方根的定义:如果一个数 的平方等于a ( ),那么这个数 叫做a 的平方根 即:如果 a x =2 那么 a x ±= 注意;x 可以是多项式 一、 用直接开平方法解下列一元二次方程。 1.0142=-x 2、2)3(2=-x 3、()162812=-x 4..25)1(412=+x 5.(2x +1)2=(x -1)2. 6.(5-2x )2=9(x +3)2. 7..063)4(22 =--x 方法二:配方法解一元二次方程 1. 定义:把一个一元二次方程的左边配成一个 ,右边为一个 ,然后利用开平方数求解,这种解一元二次方程的方法叫做配方法。 2. 配方法解一元二次方程的步骤:(1) (2) (3) 4) (5) 二、用配方法解下列一元二次方程。 1、.0662=--y y 2、x x 4232=- 39642=-x x 、 4、0542=--x x 5、01322=-+x x 6、07232=-+x x

方法三:公式法 1.定义:利用求根公式解一元二次方程的方法叫做公式法 2.公式的推导:用配方法解方程ax 2+bx +c = 0(a ≠0) 解:二次项系数化为1,得 , 移项 ,得 , 配方, 得 , 方程左边写成平方式 , ∵a ≠0,∴4a 2 0,有以下三种情况: (1)当b 2-4ac>0时,=1x , =2x (2)当b 2-4ac=0时,==21x x 。 (3)b 2-4ac<0时,方程根的情况为 。 3.由上可知,一元二次方程ax 2+bx+c=0(a ≠0)的根由方程的系数a 、b 、c 而定,因 (1)式子ac b 42-叫做方程ax 2+bx +c = 0(a ≠0)根的 ,通常用字母 “△” 表示。当△ 0时, 方程ax 2+bx+c=0(a ≠0)有 实数根; 当△ 0时, 方程ax 2+bx+c=0(a ≠0)有 实数根; 当△ 0时, 方程ax 2+bx+c=0(a ≠0) 实数根。 (2)解一元二次方程时,可以先将方程化为一般形式ax 2+bx +c = 0,当ac b 42-≥0时,?将a 、b 、c 代入式子=x 就得到方程的根.这个式子叫做一元二次方程的求根公式,利用求根公式解一元二次方程的方法叫公式法. 4.公式法解一元二次方程的步骤:(1) (2) (3) (4) (5) 二、用公式解法解下列方程。 1、0822=--x x 2、22 314y y -= 3、y y 32132=+

七年级数学一元一次方程竞赛题

七 年 级 数 学 竞 赛 姓名: 得分: 分×12=36) 1.下列说法正确的是( ) A .ax+b=0是关于x 的一元一次方程 B .若a+c=b+c,则a b d d = C .若关于x 的方程mx+n=0只有一个解,则m ≠0 D .若(x+y )(x-y)=0,则x=y 2.如果方程3x+1=4与关于x 的方程302 a x --=的解相同,则a 的值是( ) A .5 B .6 C .7 D .8 3.若x=3是方程1()13 m x -=的解,则关于x 的方程(1)51m x x m -=+-的解是( ) A .14 B .13 C .12 D .11 4.若a 与b 互为相反数,则关于x 的方程0(0)ax b a +=≠的解是( ) A .1- B .1 C .1-或1 D .不能确定 5.某商品提价10%销售一段时间后,销量不大,于是降价10%销售,则下列说法正确的是( ) A .该商品通过两次调价恢复到原价 B .该商品第二次调价后的售价高于原价 C .该商品第二次调价后的售价低于原价 D .以上几种情况都有可能 6.若关于x 的方程2(3)(2)0m m x m --+=是一元一次方程,则方程的解是( ) A .12- B .2- C .12 D .2 7.方程12x x -=的同解方程是( ) A .322x x -=+ B .21x x =- C .21x x =+ D . 1213 x x -=+ 8.甲、乙两人去商场购物,他俩各自的钱数之比是5:4。甲用了350元,乙用了200元,他俩余下的钱数之比是3:4,则甲、乙两人分别余下( ) A .300元,400元 B .240元,320元 C .180元,240元 D .150元,200元 9.受季节影响,某种商品每件按原售价打九折后又降价5块,现在售价为175元,则这种商品每件原售价是( ) A.180元 B.190元 C.200元 D.210元 10.造一件假品牌衬衣成本只有40元,比正牌衬衣销售价的116还少10元,如

二元一次方程组竞赛题集答案解析

二元一次方程组典型例题 【例1】 已知方程组的解x ,y 满足方程5x-y=3,求k 的值. 【思考与分析】 本题有三种解法,前两种为一般解法,后一种为巧解法. (1) 由已知方程组消去k ,得x 与y 的关系式,再与5x-y=3联立组成方程组求出x ,y 的值,最后将x ,y 的值代入方程组中任一方程即可求出k 的值. (2) 把k 当做已知数,解方程组,再根据5x-y=3建立关于k 的方程,便可求出k 的值. (3) 将方程组中的两个方程相加,得5x-y=2k+11,又知5x-y=3,所以整体代入即可求出k 的值. 把代入①,得,解得 k=-4. 解法二: ①×3-②×2,得 17y=k-22, 解法三: ①+②,得 5x-y=2k+11. 又由5x-y=3,得 2k+11=3,解得 k=-4. 【小结】 解题时我们要以一般解法为主,特殊方法虽然巧妙,但是不容易想到,有思考巧妙解法的时间,可能这道题我们已经用一般解法解了一半了,当然,巧妙解法很容易想到的话,那就应该用巧妙解 二元一次方程组能力提升讲义 知识提要 1. 二元一次方程组???=+=+222 111c y b x a c y b x a 的解的情况有以下三种: ① 当2 12121c c b b a a ==时,方程组有无数多解。(∵两个方程等效)

② 当2 12121c c b b a a ≠=时,方程组无解。(∵两个方程是矛盾的) ③ 当 2121b b a a ≠(即a 1b 2-a 2b 1≠0)时,方程组有唯一的解: ??? ????--=--=12212 11212211221b a b a a c a c y b a b a b c b c x (这个解可用加减消元法求得) 2. 方程的个数少于未知数的个数时,一般是不定解,即有无数多解,若要求整数解,可按 二元一次方程整数解的求法进行。 3. 求方程组中的待定系数的取值,一般是求出方程组的解(把待定系数当己知数),再解 含待定系数的不等式或加以讨论。(见例2、3) 例题 例1. 选择一组a,c 值使方程组? ??=+=+c y ax y x 275 1.有无数多解, 2.无解, 3.有唯一的解 【例2】 解方程组 【思考与分析】 本例是一个含字母系数的方程组.解含字母系数的方程组同解含字母系数的方程一样,在方程两边同时乘以或除以字母表示的系数时,也需要弄清字母的取值是否为零. 解:由①,得 y=4-mx , ③ 把③代入②,得 2x+5(4-mx )=8, 解得 (2-5m )x=-12,当2-5m =0, 即m =时,方程无解,则原方程组无解. 当2-5m ≠0,即m ≠时,方程解为 将代入③,得 故当m ≠时, 原方程组的解为 例3. a 取什么值时,方程组? ??=+=+3135y x a y x 的解是正数?

一元二次方程典型例题整理版

一元二次方程 专题一:一元二次方程的定义 典例分析: 例1、下列方程中是关于x 的一元二次方程的是( ) A ()()12132 +=+x x B 02112=-+x x C 02=++c bx ax D 1222+=+x x x 2、若方程013)2(||=+++mx x m m 是关于x 的一元二次方程,则( ) A .2±=m B .m=2 C .2-≠m D .2±≠m 3、关于x 的一元二次方程(a -1)x 2+x+a 2-l=0的一个根是0。则a 的值为( ) A 、 1 B 、-l C 、 1 或-1 D 、 1 2 4、若方程()112=?+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。 5、关于x 的方程0)2(2 2=++-+b ax x a a 是一元二次方程的条件是( ) A 、a ≠1 B 、a ≠-2 C 、a ≠1且a ≠-2 D 、a ≠1或a ≠-2 专题二:一元二次方程的解 典例分析: 1、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。 2、已知方程0102=-+kx x 的一根是2,则k 为 ,另一根是 。 3、已知a 是0132=+-x x 的根,则=-a a 622 。

4、若方程ax 2+bx+c=0(a ≠0)中,a,b,c 满足a+b+c=0和a-b+c=0,则方程的根是_______。 5、方程()()02=-+-+-a c x c b x b a 的一个根为( ) A 1- B 1 C c b - D a - 课堂练习: 1、已知一元二次方程x 2+3x+m=0的一个根为-1,则另一个根为 2、已知x=1是一元二次方程x 2+bx+5=0的一个解,求b 的值及方程的另一个根. 3、已知322-+y y 的值为2,则1242++y y 的值为 。 4、已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为 。 专题三:一元二次方程的求解方法 典例分析: 一、直接开平方法 ();0912=--x 二、配方法 . 难度训练: 1、如果二次三项式16)122++-x m x ( 是一个完全平方式,那么m 的值是_______________.

最全最新初中数学竞赛专题讲解一元二次方程的求解

初中数学竞赛专题讲解一元二次方程的求解 方程是一种重要的数学模型,也是重要的数学思想之一。有关方程的解的讨论问题一直是初中数学竞赛试题的热点与难点。解决有关方程的解的讨论问题往往涉及到分类讨论、数形结合等数学思想。 1.形如方程的解的讨论: ⑴若=0,①当=0时,方程有无数个解; ②当≠0时,方程无解; ⑵若≠0,方程的解为= 。 2.关于一元二次方程()0a ≠根的讨论,一般需应用到根的判别式、根与系数 的关系等相关知识。 ⑴若,则它有一个实数根1x =;若 ,则它有一个实数根1x =-。 ⑵运用数形结合思想将方程()0a ≠根的讨论与二次函数 ()0a ≠的图象结合起来考虑是常用方法。 几个基本模型 (1)设()()2 0f x ax bx c a =++≠,则()0f x =的两根12,x x ,满足12,m x x n <<的充要条件是202b m n a b af a ?<-???>?? (2)一般地设m n p <<,设()()20f x ax bx c a =++≠,则()0f x =的两根12,x x ,满 足12,m x n x p <<>的充要条件是()()()000af m af n af p >??? (3)一般地设m n p q <≤<设()()20f x ax bx c a =++≠,则()0f x =的两根12,x x , 满足12m x n p x q <<≤<<的充要条件是()()() ()0000af m af n af p af q >??? (4)一般地设m n ≤设()()2 0f x ax bx c a =++≠,则()0f x =的两根12,x x ,满足12x m n x ≤≤≤的充要条件是()()00af m af n ≤???≤??

一元二次方程经典考题难题

一元二次方程经典考题难题 用适当的方法解下列方程 16)5(42=-x 0)12(532=++x x 04222=-+x x 22)3(4)12(+=-x x 9)32(4)32(122++=+x x 11.02.02=+x x 0)2(2)2)(1(3)1(222=---+++x x x x 6)53)(43(22=++++x x x x x x x 9)1(22=- 20)7)(5)(3)(1(=++++x x x x

1、若t 是一元二次方程)0(02≠=++a c bx ax 的根,则判别式ac 4b 2 -=△和完全平方式2)2(b at M +=的关系式() A △=M B △>M C △<M D 大小关系不能确定 2、若关于x 的一元二次方程02=++c bx ax 中a,b,c 满足9a-3b+c=0,则该方程有一根是______ 3、已知关于x 的一元二次方程02=++c bx x 的两根为2,121=-=x x ,则c bx x ++2分解因式的结果是______ 4、在实数范围内因式分解:=--742x x __________________ 5、已知03442=+--x x ,则=-+31232x x __________________ 6、m mx x ++24是一个完全平方式,则m=________________________ 7、已知,)2 1(822m x a x ax ++=++则a 和m 的值分别是__________________ 8、当k=_________时,方程012)3(2=++--k x x k 是关于x 的一元二次方程? 9、关于x 的方程032)4()16(2 2=++++-m x m x m 当m______时,是一元一次方程:当m______时,是一元一次方程。 10、已知012=--x x ,则2009223++-x x 的值为__________ 11、已知012)()(22222=-+++y x y x ,则22y x +=_______ 12、试证明关于x 的方程012)208(22=+++-ax x a a ,无论a 取何值,该方程都是一元二次方程

一元二次方程竞赛题

一元二次方程的基本知识 形如ax2+bx+c=0(a ≠0)的方程 判别式:△=b2-4ac 求根公式: 韦达定理: 整系数一元二次方程有整数根的必要条件: (1)两个根都是整数;(2)判别式是整数; (3)判别式是整数的完全平方;(4)两根和是整数,两根积是整数. 策略一:利用判别式 例1.当m 是什么整数时,关于x 的一元二次方程 与 的根都是整数。 策略二:利用求根公式 例3.设关于x 的二次方程 的两根都是整数,求满足条件的所有实数k 的值。 策略三:利用方程根的定义 例4. b 为何值时,方程 有相同的整数根?并且求出它们的整数根? 策略四:利用因式分解 例5. 已知关于x 的方程 的根都是整数,那么符合条件的整数a 有__个. 2440mx x -+=2244450x mx m m -+--=2222(68)(264)4k k x k k x k -++--+=220x bx --=22(1)0x x b b ---=2(1)210a x x a -+--=

策略五:利用根与系数的关系 例6:求所有正实数a,使得方程 仅有整数根. 例7:当m 是何整数时,关于x 的方程 的两根都是整数? 例8:试确定一切有理数r ,使得关于x 的方程 有根且只有整数根 例9:已知p 、q 都是质数,且使得关于x 的一元二次方程 至少有正整数根, 求所有满足条件的质数对(p,q ) 例10:已知关于x 的一元二次方程5x 2-5px+12p-15=0的两个根 均为整数,求实数p 的所有可能的值. 2 40x ax a -+=2(1)10 x m x m --++=0 1)2(2=-+++r x r rx 05)108(2=+--pq x q p x

一元二次方程及解法经典习题及解析

一元二次方程及解法经典习题及解析 知识技能: 一、填空题: 1.下列方程中是一元二次方程的序号是 . 42=x ① 522=+y x ② ③01332=-+x x 052=x ④ 5232=+x x ⑤ 412=+x x ⑥ x x x x x x 2)5(0143223-=+=+-。。。。⑧⑦ 2.已知,关于2的方程12)5(2=-+ax x a 是一元二次方程,则a 3.当=k 时,方程05)3()4(22=+-+-x k x k 不是关于X 的一元二次方程. 4.解一元二次方程的一般方法有 , , , · 5.一元二次方程)0(02=/=++a c bx ax 的求根公式为: . 6.(2004·沈阳市)方程0322=--x x 的根是 . 7.不解方程,判断一元二次方程022632 =+--x x x 的根的情况是 . 8.(2004·锦州市)若关于X 的方程052=++k x x 有实数根,则k 的取值范围是 . 9.已知:当m 时,方程0)2()12(22=-+++m x m x 有实数根. 10.关于x 的方程0)4(2)1(222=++-+k kx x k 的根的情况是 . 二、选择题: 11.(2004·北京市海淀区)若a 的值使得1)2(42 2-+=++x a x x 成立,则a 的值为( ) A .5 8.4 C .3 D .2 12.把方程x x 332-=-化为02=++c bx ax 后,a 、b 、c 的值分别为( ) 3.3.0.--A 3.3.1.--B 3.3.1.-C 3.3.1.--D 13.方程02=+x x 的解是( ) x A .=土1 0.=x B 1,0.21-==x x C 1.=x D

一元二次方程经典例题集锦有答案

一元二次方程经典例题集锦 一、一元二次方程的解法 1.开平方法解下列方程: (1)012552=-x (2)289)3(1692=-x (3)03612=+y (5,521-==x x ) (13 22,135621== x x ) (5)(4)0)31(2 =-m (6) 85 )13(22 =+x (021==m m ) (3521±-=x ) 2.配方法解方程: (3)(1)0522=-+x x (2)0152=++y y (3)3422-=-y y (61±-=x ) (2215±-= x ) (2101±=y ) 3.公式法解下列方程: (1)2632-=x x (2)p p 3232=+ (3)y y 1172= (333±= x ) (321==p p ) (0,71121==y y ) (4)2592-=n n (5)3)12)(2(2---=+x x x (2 153±= x ) 4.因式分解法解下列方程:

(1)094 12=-x (2)04542=-+y y (3)031082=-+x x (6±=x ) (5,921=-=y y ) (23,4121-== x x ) (4)02172=-x x (5)6223362-=-x x x (3,021==x x ) (32,2321== x x ) (6)1)5(2)5(2--=-x x (7)08)3(2)3(222=-+-+x x x (621==x x ) (1,4,1,24321=-=-=-=x x x x ) 5.解法的灵活运用(用适当方法解下列方程): (1)128)72(22=-x (2)222)2(212m m m m -=+- (3))3)(2()2(6+-=-x x x x (227±=x ) (262±=m ) (5 3,221==x x ) (4)3 )13(2)23(332-+-=+y y y y y (5)22)3(144)52(81-=-x x (2,2321==y y ) (2 3,102721==x x ) 6.解含有字母系数的方程(解关于x 的方程): (1)02222=-+-n m mx x (2)124322+-=+a ax a x

《一元一次方程》竞赛试题(可编辑修改word版)

1 / 8 1 1 ? 1 1 ? 《一元一次方程》竞赛试题 1.已知 x =一 1 是关于 x 的方程 7x 3 一 3x 2+kx+5=0 的解,则 k 3+2k 2-11k-85= . (“信利杯”竞赛题) 2. 方 程 1 (20x + 50) + 2 (5 + 2x ) - 1 (4x + 10) = 0 的 解 为 ; 解 方 程 6 3 2 ? ? ? ? ( x - 3) - 3? - 3? - 3 = 0 ,得 x= . A .正数 B .非正数 C .负数 D .非负数 8.解关于 x 的方程: (1)ax-1=bx (2)4x+b=ax-8 (3)k(kx-1)=3(kx-1) 9.A 为何值时,方程 x + a = x - 1 (x - 12) 有无数个解?无解? 2 ? 2 ? 2 2 ? ? 3 2 6 3. 已知关于 x 的方程 2a(x 一 1)=(5 一 a)x+3b 有无数多个解,那么 a = . (“希望杯”邀请赛试题) 4. 和方程 x 一 3=3x+4 不同解的方程是( ). 10. 已知方程 2(x+1)=3(x-1)的解 为 a+2, 那么方程 2[2(x+3)-3(x-a)]=3a 的解 为 . 11.已知关于 x 的方程 9x-3=kx+14 有整数解,那么满足条件的所有整数 k = . 1 12.已知 1 + 4( 1 + 1 ) = 1 3 ,那么代数式1872 + 48 ? ( 1999x ) 的值为 . A .79—4=59—11 B . + 2 = 0 x + 3 4 1999 x 4 1999 + x C .(a 2+1)(x 一 3)=(3x+4)(a 2+1) D .(7x 一 4)(x —1)=(5x 一 11)(x 一 1) 5.已知 a 是任意有理数,在下面各题中(1)方程 ax=0 的解是 x=1 13. 若(3a+2b)x 2+ax+b=0 是关于 x 的一元一次方程,且有唯一解,则 x = . 14. 有 4 个关于 x 方程 (1)x-2=-1 (2)(x-2)+(x-1)=-1+(x-1) (3)x=0 (4) x - 2 + 1 = -1 + 1 (2) 方程 ax =a 的解是 x =1 其中同解的两个方程是( ) x - 1 x - 1 (3) 方程 ax=1 的解是 x = 1 A .(1)与(2) B .(1)与(3) C .(1)与(4) D .(2)与(4) a x x x (4) 方程 a x = a 的解是 x =±1 结论正确的个数是( ). A.0 B .1 C . 2 D .3 (江苏省竞赛题) 15.方程1? 2 + 2 ? 3 + + 1995 ?1996 = 1995 的解是( ) A .1995 B .(1996 C .1997 D . 1998 16.已知a + 2 = b - 2 = c = 2001 ,且a + b + c = 2001k ,那么k 的值为( ). 2 1 ? 3 ? 1 A . 1 B .4 C . - 1 D .-4 6.方程 x - 6 ?36 - 12(5 x + 1)? = 3 x - 2 的解是( ) 4 4 A . 15 14 ? B . - 15 14 ? C . 45 14 D . - 45 14 17.若 k 为整数,则使得方程(k-1999)x=2001-2000x 的解也是整数的 k 值有 A .4 个 B .8 个 C .12 个 D .16 个

(精品)一元二次方程典型例题整理版

一元二次方程典型例题整理版 专题一:一元二次方程的定义 典例分析: 例1、下列方程中是关于x 的一元二次方程的是( ) A ()()12132 +=+x x B 02112=-+x x C 02=++c bx ax D 1222+=+x x x 2、若方程013)2(||=+++mx x m m 是关于x 的一元二次方程,则( ) A .2±=m B .m=2 C .2-≠m D .2±≠m 3、关于x 的一元二次方程(a -1)x 2+x+a 2-l=0的一个根是0。则a 的值为( ) A 、 1 B 、-l C 、 1 或-1 D 、 1 2 4、若方程()112=?+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。 5、关于x 的方程0)2(2 2=++-+b ax x a a 是一元二次方程的条件是( ) A 、a ≠1 B 、a ≠-2 C 、a ≠1且a ≠-2 D 、a ≠1或a ≠-2 专题二:一元二次方程的解 典例分析: 1、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。 2、已知方程0102=-+kx x 的一根是2,则k 为 ,另一根是 。 3、已知a 是0132=+-x x 的根,则=-a a 622 。

4、若方程ax 2+bx+c=0(a ≠0)中,a,b,c 满足a+b+c=0和a-b+c=0,则方程的根是_______。 5、方程()()02=-+-+-a c x c b x b a 的一个根为( ) A 1- B 1 C c b - D a - 课堂练习: 1、已知一元二次方程x 2+3x+m=0的一个根为-1,则另一个根为 2、已知x=1是一元二次方程x 2+bx+5=0的一个解,求b 的值及方程的另一个根. 3、已知322-+y y 的值为2,则1242++y y 的值为 。 4、已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为 。 专题三:一元二次方程的求解方法 典例分析: 一、直接开平方法 ();0912=--x 二、配方法

二次函数与一元二次方程经典教学案+典型例题

二次函数与一元二次方程教学案 1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况): 一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数: ① 当240b ac ?=->时,图象与x 轴交于两点()()1200A x B x , ,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离 21AB x x =-= . ② 当0?=时,图象与x 轴只有一个交点; ③ 当0?<时,图象与x 轴没有交点. 1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ; 3. 二次函数常用解题方法总结: ⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程; 例:二次函数y=x2-3x+2与x 轴有无交点?若有,请说出交点坐标;若没有,请说明理由: ⑵ 根据图象的位置判断二次函数中a ,b ,c 的符号,或由二次函数中a ,b , c 的符号判断图象的位置,要数形结合; ⑶ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑴一元二次方程02=++c bx ax 的实数根就是对应的二次函数

c bx ax y ++=2与 x 轴交点的 . ⑵二次函数与一元二次方程的关系如下:(一元二次方程的实数根记为 21x x 、) ⑶二次函数c bx ax y ++=2与y 轴交点坐标是 . 【例1】 已知:关于x 的方程23(1)230mx m x m --+-=. ⑴求证:m 取任何实数时,方程总有实数根; ⑵若二次函数213(1)21=--+-y mx m x m 的图象关于y 轴对称. ①求二次函数1y 的解析式; ②已知一次函数222=-y x ,证明:在实数范围内,对于x 的同一个值,这两个函数所对应的函数值12y y ≥均成立; ⑶在⑵条件下,若二次函数23y ax bx c =++的图象经过点(50)-,,且在实数范 围内,对于x 的同一个值,这三个函数所对应的函数值132y y y ≥≥,均成立,求

一元二次方程竞赛题

一元二次方程竞赛题解题 一. 升次 例1.(2006年海南初赛)已知a,b 是一元二次方程 x 2 -X-1=0 的两个根,则代数式3a 2+2b 2-3a -2b 的值等于 ________________________________________________ . 二. 降次 例2.(江苏第8届数学竞赛)已知a,3是方程 X 2 -X-仁 0的两根,求 4 +3 的值。 三. 配偶 例3.(2001年黄冈中考)已知a ,3是方程X 2+2X -7=0 的两个实数根,求 2+3 2+4 的 值. 四. 减元 例4. (2005年湖州市“期望杯”数学竞赛题)设 的两根,则 X i 3-4X 22+19 等于( 五.正难则反 ⑴x 2-2(m-1)x+m 2=0 例5.若下列三个关于的方程: (2) X 2-2(m+1)x+m (m+3)=0 (3) x 2+2mx+m 2-2m+4=0 至少有一个方程有实数根,求实数 m 的取值范围. 六. 巧用ab+a+b+1和ab-a-b+1的因式分解 例6.(第17届江苏初中数学竞赛题)求满足如下条件的所有 kx 2 +(k+1)x+(k-1)=0 的根都是整数。 七. 巧用结论“当a+b+c=0时,一元二次方程 ax 2+bx+c=0 必有一根是1 例7.(第18届江苏初中数学竞赛题)若关于X 的方程rx 2-(2r+7)x+(r+7)=0 的根是正整数,则 整数 r 的值可以是 ______________________________ . 八. 反客为主 例8.(1998年香港数学竞赛题)求所有正整数a,使得方程x 2 -a x+4a=0 仅有整数根. X 1,X 2是一元二次方程 X 2+X -3=0 )A.-4 B.8 C.6 D.0 k 值:使关于X 的方程

一元二次方程经典练习题及答案

练习一 一、选择题:(每小题3分,共24分) 1.下列方程中,常数项为零的是( ) A.x2+x=1 B.2x2-x-12=12; C.2(x2-1)=3(x-1) D.2(x2+1)=x+2 2.下列方程:①x2=0,② 中, 一元二次方程的个数是( ) A.1个 D.4个 3.把方程(+(2x-1)2=0化为一元二次方程的一般形式是( ) A.5x2-4x-4=0 B.x2-5=0 C.5x2-2x+1=0 D.5x2-4x+6=0 4.方程x2=6x的根是( ) A.x1=0,x2=-6 B.x1=0,x2=6 C.x=6 D.x=0 5.方2x2-3x+1=0经为(x+a)2=b的形式,正确的是( ) C. D.以上都不对 6.若两个连续整数的积是56,则它们的和是( ) A.11 B.15 C.-15 D.±15 7.不解方程判断下列方程中无实数根的是( ) A.-x2=2x-1 B.4x2 C. D.(x+2)(x-3)==-5 8.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为( ) A.200(1+x)2=1000 B.200+200×2x=1000 C.200+200×3x=1000 D.200[1+(1+x)+(1+x)2]=1000 二、填空题:(每小题3分,共24分) 9.________,它的一次项系数是______. 10.关于x的一元二次方程x2+bx+c=0有实数解的条件是__________. 11.用______法解方程3(x-2)2=2x-4比较简便. 12.如果2x2+1与4x2-2x-5互为相反数,则x的值为________. 13.如果关于x的一元二次方程2x(kx-4)-x2+6=0没有实数根,那么k 的最小整数值是__________. 14.如果关于x的方程4mx2-mx+1=0有两个相等实数根,那么它的根是_______. 15.若一元二次方程(k-1)x2-4x-5=0 有两个不相等实数根, 则k 的取值范围是_______. 16.某种型号的微机,原售价7200元/台,经连续两次降价后,现售价为3528元/台,则平均每次降价的百分率为______________. 三、解答题(2分) 17.用适当的方法解下列一元二次方程.(每小题5分,共15分) (1)5x(x-3)=6-2x; (2)3y2(3)(x-a)2=1-2a+a2(a是常数)

最新一元二次方程经典测试题(含答案)

更多精品文档 一元二次方程测试题 考试范围: 一元二次方程;考试时间:120分钟;命题人:瀚博教育 第Ⅰ卷(选择题) 一.选择题(共12小题,每题3分,共36分) 1.方程x (x ﹣2)=3x 的解为( ) A .x=5 B .x 1=0,x 2=5 C .x 1=2,x 2=0 D .x 1=0,x 2=﹣5 2.下列方程是一元二次方程的是( ) A .ax 2+bx +c=0 B .3x 2﹣2x=3(x 2﹣2) C .x 3﹣2x ﹣4=0 D .(x ﹣1)2+1=0 3.关于x 的一元二次方程x 2+a 2﹣1=0的一个根是0,则a 的值为( ) A .﹣1 B .1 C .1或﹣1 D .3 4.某旅游景点的游客人数逐年增加,据有关部门统计,2015年约为12万人次,若2017年约为17万人次,设游客人数年平均增长率为x ,则下列方程中正确的是( ) A .12(1+x )=17 B .17(1﹣x )=12 C .12(1+x )2=17 D .12+12(1+x )+12(1+x )2=17 5.如图,在△ABC 中,∠ABC=90°,AB=8cm ,BC=6cm .动点P ,Q 分别从点A , B 同时开始移动,点P 的速度为1cm/秒,点Q 的速度为2cm/秒,点Q 移动到点 C 后停止,点P 也随之停止运动.下列时间瞬间中,能使△PBQ 的面积为15cm 2的是( ) A .2秒钟 B .3秒钟 C .4秒钟 D .5秒钟 6.某幼儿园要准备修建一个面积为210平方米的矩形活动场地,它的长比宽多12米,设场地的长为x 米,可列方程为( ) A .x (x +12)=210 B .x (x ﹣12)=210 C .2x +2(x +12)=210 D .2x +2(x ﹣12)=210 7.一元二次方程x 2+bx ﹣2=0中,若b <0,则这个方程根的情况是( ) A .有两个正根 B .有一正根一负根且正根的绝对值大 C .有两个负根 D .有一正根一负根且负根的绝对值大 8.x 1,x 2是方程x 2+x +k=0的两个实根,若恰x 12+x 1x 2+x 22=2k 2成立,k 的值为( ) A .﹣1 B .或﹣1 C . D .﹣或1 9.一元二次方程ax 2+bx +c=0中,若a >0,b <0,c <0,则这个方程根的情况是( ) A .有两个正根 B .有两个负根 C .有一正根一负根且正根绝对值大 D .有一正根一负根且负根绝对值大 10.有两个一元二次方程:M :ax 2+bx +c=0;N :cx 2+bx +a=0,其中a ﹣c ≠0,以下列四个结论中,错误 的是( ) A .如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根 B .如果方程M 有两根符号相同,那么方程N 的两根符号也相同 C .如果5是方程M 的一个根,那么是方程N 的一个根 D .如果方程M 和方程N 有一个相同的根,那么这个根必是x=1 11.已知m ,n 是关于x 的一元二次方程x 2﹣2tx +t 2﹣2t +4=0的两实数根,则(m +2)(n +2)的最小值是( ) A .7 B .11 C .12 D .16 12.设关于x 的方程ax 2+(a +2)x +9a=0,有两个不相等的实数根x 1、x 2,且x 1<1<x 2,那么实数 a 的取值范围是( ) A . B . C . D . 第Ⅱ卷(非选择题) 二.填空题(共8小题,每题3分,共24分) 13.若x 1,x 2是关于x 的方程x 2﹣2x ﹣5=0的两根,则代数式x 12﹣3x 1﹣x 2﹣6的值是 . 14.已知x 1,x 2是关于x 的方程x 2+ax ﹣2b=0的两实数根,且x 1+x 2=﹣2,x 1?x 2=1,则b a 的值是 . 15.已知2x |m |﹣2+3=9是关于x 的一元二次方程,则m= . 16.已知x 2+6x=﹣1可以配成(x +p )2=q 的形式,则q= . 17.已知关于x 的一元二次方程(m ﹣1)x 2﹣3x +1=0有两个不相等的实数根,且关于x 的不等式组 的解集是x <﹣1,则所有符合条件的整数m 的个数是 . 18.关于x 的方程(m ﹣2)x 2+2x +1=0有实数根,则偶数m 的最大值为 .

相关主题