搜档网
当前位置:搜档网 › 化学热处理工艺及应用

化学热处理工艺及应用

化学热处理工艺及应用
化学热处理工艺及应用

一.化学热处理工艺及应用

除渗碳、渗氮外,渗金属主要有渗Al、Cr、V、Si、B、S等金属和非金属。下面简单介绍。

1.渗铬

适用于各种钢制件的耐磨性、耐蚀性和抗高温氧化能力。

渗后硬度:低碳钢为200~250HV;高碳钢为1250~1300HV。

渗层深度:一般为0.10~0.30mm。

渗层金相组织:低碳钢50%左右铬在铁素体中的固溶体;高碳钢由铬的碳化物(Cr7C3)、(CrFe)7C3组成。

渗铬方法:固、液、气体渗,还有真空渗等。

固体法:将以下配方研成粒度小于50目(约0.297mm)粉末,然后装箱进行。

配方1:50%~55%铬铁粉末+40~50%氧化铝+2~3%氯化铵。

配方2:60%~65%铬铁粉末+30~35%耐火土+3~4%氯化铵。

装炉温度为800~850℃,保温1~1.5h后升温到1000~1050℃.。保温12~15h(视层深要求而定)。然后随炉冷却600~700℃出炉空冷即可。

液体法:采用70%氯化钡+30%氯化钠为基盐。将金属铬或铬铁粉末经盐酸处理后放入基盐中,加热到1000~1050℃保温1.0~1.5h即开始渗,同时应不间断地用惰

性气体或还原气体保盐浴表面不被氧化。

气体法:利用干净铬块+氯化铵+氢气,在950~1100℃通入氯化铜蒸汽进行。渗铬后的处理:在一定载荷下工作并要求一定的强度的零件,渗铬后正火处理可细化晶

粒,提高基体强度和韧性,淬火和回火处理可根据需要调整基体的性能。

2、渗B

渗硼是指将工件放在一定比例的含硼介质中加热。

适用范围:提高各种钢、铸铁和粉末冶金等材料制作的工件耐磨性。

渗后硬度:900~1200H V0.1以上。

金相组织:为致密的单相Fe2B。

渗层深度:一般为40~100um

渗B方法:固体、液体、气体和膏剂渗。

固渗法:目前市场上有商品固体渗B剂可供应,并附有详细使用说明。也可按下面配方:5%KBF4+0.5~0.3%(NH2)CS(硫脲)+20~30%木炭+62~84BFe(硼的质量分数不

小于20%,铝和硅的质量分数分别不大于3.5%~4.0%)。

固渗温度和时间,根据渗B层深度确定。

盐浴渗B应用较为广泛:

配方:90~70%Na2B4O7+10~30%SiC或者5%B4C+15%NaBF+80%NaCL等。

使用温度为920~950℃,常用钢盐浴渗硼深度与温度及时间的关系见下表。

膏剂渗硼:即将渗硼膏剂涂敷于工件表面需渗硼的部位,干燥后放入盛有惰性填料的箱内,进行加热渗硼。可采用下列配方:50%B4C+35%CaF+15%Na2SiF6。在

920~940℃,保温4h后出炉。膏剂涂层厚度应为13mm左右,在120~150℃

烘干。惰性填料以在高温条件下无氧化脱碳为宜,如新铸铁屑、石英粉+炭

粉等均可。

几种钢膏剂渗硼温度、时间与层深及硬度的关系如下表

渗硼后根据心部硬度要求,直接淬火或缓冷均可。

渗硼在热锻模上的应用,见下表

渗硼与未渗硼滚压模的寿命比较见下表

3、渗V

渗钒是将工件放在产生钒原子的介质中,经一定温度加热和保温,将V 渗入其表面的热处理工艺。

使用范围:提高各种钢制作的工件的耐磨性和耐蚀性

(耐酸、盐腐蚀)。

渗后组织:表面组织为钒在铁素体中的固溶体,中高

碳钢为碳化钒或碳化钒与铁素体的混合物。

渗后硬度:中高碳钢渗V 后,硬度不低于2000HV 。

渗V 方法:目前有盐浴法、粉末法和气体法等。其中盐浴法处理温度较低,使用较为广

泛。

盐浴法:所用成分是在熔融的硼砂浴中加入质量分数为80%Na 2B 4O 7及20%钒铁(钒的

质量分数在43%以上)的混合物[粒度为100-150目(约为0.097-0.150mm )],其加入量以盐浴呈碱性(PH 值为9)为准。使用温度为930-970℃。

钢件渗V 后,表面由白亮层和过渡区组成。几种钢930-970℃渗V 后的硬度和白亮层厚度见下表:

为了使心部获得一定的强度和韧性,渗V后应空冷正火细化晶粒,然后按正常的强度进行淬火和回火。但高合金钢(如淬火温度在970℃以上的Cr12MoV和W18Cr4V等)可以渗钒后,继续升温到其正常淬火温度进行保温及冷却,然后回火。

粉末法:可以采用的渗剂成分(质量分数)为:60%钒铁+37%高岭土+3%的氯化铵。

装箱方法与固体渗碳相同。渗钒温度为1000~1100℃。低碳钢渗V后,表

层为钒在铁素体中的固溶体,中高碳钢渗V后,表面层为碳化钒或碳化钒

与铁素体的混合物。

气体渗V:通常使用氯化钒及氢气作介质,在专用炉中于1000~1100℃的温度下渗V。

二、多元共渗化学热处理工艺及其应用

多元共渗除碳氮共渗外,还有氮氧、氮硫、铬铝、硫碳氮、铝铬硅等共渗。下面简单介绍分别以铬为基、以硼为基的多元共渗及应用;固体和盐浴覆层工艺及其应用。1、以铬为基的多元共渗及应用

铬、铝、硅等是冶炼特殊性能(耐磨、耐蚀和抗高温氧化等)钢和铸铁时,不可缺的重要合金元素。如果工件的基体对性能没有特殊要求时,则可以在普通钢制作的工件表面,通过化学热处理方法增加这些元素,使其表面具有所要求的特殊性能。如此,在满足工件表面特殊性能要求的同时,又可节约昂贵的特殊钢。1-1铬铝共渗

铬铝共渗是通过渗入Cr提高工件的耐磨性和耐蚀性能;渗入Al提高抗高温氧化能力的化学热处理工艺。

铬铝共渗方式:可以先渗铬后渗铝,或先渗铝后渗铬,或两者同时共渗。

铬铝共渗方法:固体粉末法、气体法和盐浴法等。常用的是固体粉末法,共渗剂

成分及热处理工艺见下表:

铬铝共渗的抗氧化能力比单一渗铬或铝更好,主要取决于渗层中的铬与铝的比例。实践表明,渗入量以Cr:Al=5:1(质量比)的比例最佳。共渗层的脆性比单独渗Al 的少,950℃以下的耐热疲劳性能比渗Al的更好。其力学性能比单独渗Cr好。

1-2 铬硅共渗

铬硅共渗是利用渗铬提高工件的耐磨性、耐蚀性、渗硅是提高工件对酸类、海水等的耐蚀性的化学热处理工艺。铬硅共渗可以先渗Cr后渗硅,或者铬和硅同时渗入。

实例1,先渗铬后渗硅的固体复合渗工艺。先在成分(质量分数)为50%铬+38%三氧化二铝+2%氧化铵的渗剂中,进行1000℃加热保持4h的渗铬;然后再在通有氯气的硅粉中,进行900℃加热保持2h渗硅。

实例2,铬和硅同时渗的固体共渗工艺。

在成分(质量分数)为49%~55%铬+42%三氧化二铝+1%~7%硅+2%氯化铵的渗剂中,于900℃~1000℃加热保持10h。适用于工业纯铁。

1-3铝硅共渗

炼制高温合金、耐热钢和耐热铸铁时,铝和硅经常是铬和镍的代用元素,使其具有抗氧化能力。在普通钢鉄材料上进行铝硅共渗,可达到上述目的。

实例:20钢镀锌板的铝硅共渗采用膏剂共渗法。渗剂配方成分(质量分数):60%~70%铝铁+28%~38%硅+1%~2%氯化铵。

操作过程如下:

①清除工件表面油污和杂物。

②将渗剂和粘结剂混合均匀,调成悬浮液状;

③将渗剂刷涂于工件表面,厚度约3mm;

④在150℃的温度下烘干3~10min;

⑤工件表面包裹4mm厚度的耐火泥进行密封;

⑥在150℃预热10~15min(如果表面有裂纹,再重新封补)。

共渗处理工艺:在电阻炉中,950℃加热保持2h。然后,清除表面耐火泥,重新加热至1050℃,保持1h后于水中淬火冷却。

处理结果:渗层深度为115um,清理后表面呈光滑的银灰色。

1-4铬铝硅共渗

对镍基合金和钴基合金制作的汽轮机零件,进行铬铝硅共渗可以提高其抗高温腐蚀和抗高温氧化的综合性能。

1-4-1高温铬铝硅共渗

高温铬铝硅共渗采用粉末装箱进行。渗剂配方(质量分数):15%铬[粒度为250目(约为0.057mm)]+5%铝[粒度为200目(约为0.074mm)]+79.4%碳化硅[粒度为240目(约为0.059)]+0.4%溴化铵及0.2%三氧化二铝[粒度为100目(约为

0.15mm)]。

操作过程如下:

①按上述配方将渗剂混合均匀后装箱;

②共渗工艺:在箱式炉中,于850℃加热透烧后,炉温升至1090℃保持7h,

然后冷至95℃取出工件。

③对冷却后的工件进行清刷,并用氢氧化铵液清洗。

处理结果:钴基合金共渗深度为25~75um;镍基合金共渗后深度为50~100um;

铁基合金共渗层深25~250um

1-4-2中温铬铝硅共渗

中温铬铝硅共渗也要用粉末装箱法进行,对渗剂技术要求如下:

①铝粉纯度为99.9%(质量分数),细度为0.09mm;

②三氧化二铝粉纯度为99%(质量分数);

③耐火粘土中含有不低于60%(质量分数)的二氧化硅;

④氯化铵和氯化钠均为化学纯试剂。

渗剂配方(质量分数)如下:

37%Al2O3+20%Al+32%Cr2O3+8%SiO2+2%NH4CL+1%NaF。共渗剂在混合罐内混合好后静置10min即可装箱。箱分双层,内箱装工件,外箱与内箱之间放渗剂。工件放在料架上,不得面与面相互接触。共渗剂装箱时,一层(5mm)渗剂再放一层钢纤维,逐层直至箱顶部,最后再放一层渗剂。

共渗工艺及操作过程:共渗箱在80~100℃的电阻炉中烘干2h后,将炉温升至750℃并保持1h,再升温至850℃并保持2h后出炉。待共渗箱冷却至200℃以下拆箱。

1-5铬钒共渗

铬钒共渗,旨在使工件获得比单一渗铬或钒更优良的耐磨性、耐蚀性和抗高温氧化性和抗热疲劳能力。生产实践中的铬钒共渗,经常采用盐浴共渗法。盐浴铬钒共渗的渗剂成分和工艺见下表:

2.以硼为基的多元共渗及其应用

2-1硼氮共渗

硼氮共渗的目的,是为了比单一渗硼进一步提高耐磨性、耐蚀性和热硬性等。

采用成分(质量分数)为5%B4C+5%KBF4+1%活性炭+0.5%NH4CL+

5%(NH2)2CO,余量为SiC的固体硼氮共渗剂。

操作过程:将工件清洗干净,烘干后装入共渗箱内。将工件加热到580~600℃保持2~3h预热的,升温到560~910℃,保持4~10h,然后随炉冷

却到400℃左右出炉空冷,在室温开箱。通常需要重新加热淬火,以

满足工件心部的使用性能要求和避免使用时极薄的共渗层被压裂。

实例:1Cr18Ni9Ti奥氏体不锈钢模具装入共渗箱内,经580℃预热3h后,升温到900℃并保持8h。

处理结果:表面显微硬度为1553~1980HV0.2;共渗层深度为0.05~0.08mm;最外层组织为FeB+Fe2B,次层为Fe2B+ɑ-Fe,第三层为Fe2B+ɑ-Fe+r-Fe 2-2硼铝共渗

比单一渗硼进一步提高耐磨性、耐蚀性和抗高温氧化性能等。

在生产中,常采用固体粉末装箱共渗法和膏剂共渗法。

①固体粉末法,其渗剂成分(质量分数)为:

21%B4C+4%Na2B4O7+72%FeAl+3%NH4CL

或49%Al2O3+29.4%B2O3+19.6%Al+2%Na2F。

处理工艺和操作:将渗剂和工件装在共渗箱内(工件摆放和渗剂添充与固体渗碳相同),用水玻璃调制耐火泥密封箱口。根据所处理的钢种和心部要求的性能,选择共渗温度,一般为800~1050℃;根据所要求的深度,保持4~6h。

②膏剂共渗法:采用的渗剂配方(质量分数)为:70%Al+30%B+粘结剂或

50%B4C+50%Na3AlF6+粘结剂。

粘结剂的配制和使用:

①以酚醛树脂为基+丙酮+胶的混合物,经聚乙醇缩丁醛处理后作为粘结剂。

②粘结剂与渗剂均匀混合后,涂刷在工件表面。

③在具有活性的膏剂上涂敷50%(质量分数)H2BO4+50%(质量分数)SiO2,并混有

水解硅酸乙酯的防护层。

④工艺操作:将工件表面涂刷厚度为2mm的膏剂涂层。烘干后装箱并密封。在

电阻炉中于950℃~1050℃加热,根据所要求的共渗层深度保持1~6h。然后根据工件工作条件要求,决定是否重新淬火。

2-3硼硅共渗

经常使用的方法有固体粉末装箱法和盐浴法

①固体粉末法:其渗剂成分(质量分数)为:(84%B4C+16Na2B4O7)和(95%Si+5%NH4CL),一般按各50%(质量分数)混合。

处理工艺和操作将渗剂和工件装在共渗箱内(工件摆放和渗剂添充与渗碳相

同),用水玻璃调制耐火泥密封箱口。根据所处理的钢种和心部要求的性能,选择共渗温度,一般为800℃~1050℃;根据所要求的渗层深度,保持4~6h。渗层深度可达200~300um。

②盐浴法:共渗剂成分(质量分数)为:65%Na2SiO3+7%B4C+28%SiC或

35%SiC+52%Na2SiO3+13%Na2B4O7。

处理方法和操作:前面介绍的渗硼部分。

2-4硼钛共渗

硼钛共渗采用电解法进行。其工艺为950℃~1050℃加热,保持3~4h,可获得130um 的共渗层厚度。

电解熔盐组成(质量分数)为:90%~95%Na2B4O7+5%~10%TiO2。电流密度为0.2~0.4A/cm2。

2-5硼锆共渗

电解法:其工艺为900℃加热,保持2h,可获得100um的共渗层深度。

电解熔盐组成(质量分数)为:90%~95%Na2B4O7+5%~10%ZrO。

电流密度为0.2A/cm2

3.固体和盐浴覆层工艺及其应用

固体和盐浴覆层工艺具有设备简单、操作方便,只要有盐浴炉即可实施的优势。

覆层处理,一般是将坚硬的金属碳化物或金属氮化物及特殊性能合金,通过热处理的固体法或盐浴法沉积于工件表面,使其获得极高的硬度,优异的耐磨性和耐蚀性等。

3-1碳化物覆层工艺

常用固体覆层法和熔盐覆层法

1.固体法覆层碳化钛工艺及实例

固体法覆层碳化钛所使用的介质组成(质量分数):35%工业用钛粉+5%AlCL3+(0.5~2)%ReCL3+2%NH4CL+余量Al2CL3。

覆层工艺:900℃~1000℃保持1~6h后,进行淬火+回火或正火+淬火+回火

操作过程

1)将工件除锈、脱脂、去污并烘干;

2)在能承受高温加热的铁箱里,将工件埋入按上述配方混合好的介质中,并在其上放一层5~10mm厚的工业用SiO2粉末和SiC粉末,然后加盖并用耐火泥将箱口密封;

3)放入可控温的电阻炉中加热并保温。

覆层处理后,可获得18~22um厚度的坚硬的碳化钛层。

2.盐浴法碳化物覆层工艺及应用

1)用85%~90%硼砂+10%~15%铁合金微粒进行碳化物覆层处理。根据欲覆层的金属碳化物种类不同,使用相应的钒铁、铬铁、铌铁、钛铁等的微粒或粉末。在900~1000℃处理5~10h,可获得厚度为5~15um的覆层,所得覆层的硬度分别为:VC层为:3200~3700HV,NbC层为2500~3000HV,Cr23C6层为1400~2000HV。

2)用下列盐浴成分(质量分数)进行覆层处理:

①95%BaCL2和KCL(质量比为:1:2)+5%K2TiF6为主,添加少量海绵

钛;

②70%BaCL2和KCL(质量比为1:2)+5%Ti粉+15%SiC+10%K2TiF6

按上述任一种配方,将用盐均匀混合后,放入不锈钢坩埚内,并加盖密封(留有排气孔)后,供电升温和通氩气。待温度达到950℃,并保持3h后,将清洗干净、脱脂、除绣的工件浸入盐浴中进行覆层处理。

在950℃保持5h,碳素钢可获得大于20um的TiC覆层,富碳合金钢获

得大于10um的TiC覆层。表面硬度为4000HV0.1以上,具有极佳的耐磨性

和耐蚀性及冲击韧度。

3-2镍磷覆层工艺

镍磷覆层工艺,即用化学还原方法使镍离子还原为金属镍,并覆层在具有催化作用的材料(钢铁、钴、镍、钯和钼等)制作的工件表面上,形成一定厚度的镍磷合金层,使工件具有高硬度、高耐磨性等性能。

在工业生产中,常在PH值为4.2~5.0,温度为85~90℃的酸槽中实施镍磷覆层工艺。

⑴覆层介质的组成,覆层介质的组成(质量分数)为:20%硫酸镍(NiSO

4●6H2O)+20%次磷酸钠(NaH2PO2●H2O)+10%柠檬酸钠(Ba3C6H5O7●6H2O)+10%氢氧化铝

[Al(OH)3]。

需要指出,不能直接使用市场供应的颗粒状氢氧化铝,必须用新生的胶状氢氧化铝。三氯化铝与氢氧化钠置换反应产物,过滤后即可获得胶状的氢氧化铝

Al(OH)3可供使用。

⑵工序过程:除锈→脱脂→水洗→酸洗→水洗→活化→化学覆层→水洗→吹干→热处

理→清洗→检验。

⑶热处理低磷(质量分数为4%~6%)者采用400℃加热,保持1h;高磷(质量分

数)为8.5%~10%者采用600~700℃加热,保持1h。

⑷处理结果:低磷覆层组织为Ni3P相从固溶体中析出,Ni3P相分布在镍固溶体基体

上;高磷覆层组织为镍固溶体分布在Ni3P相基体上。热处理前表面硬度为500~600HV;热处理的表面硬度为1000~1100HV.

金属热处理原理及工艺总结 整理版(精编文档).doc

【最新整理,下载后即可编辑】 5.实际晶体中的点缺陷,线缺陷和面缺陷对金属性能有何影响? 答:如果金属中无晶体缺陷时,通过理论计算具有极高的强度,随着晶体中缺陷的增加,金属的强度迅速下降,当缺陷增加到一定值后,金属的强度又随晶体缺陷的增加而增加。因此,无论点缺陷,线缺陷和面缺陷都会造成晶格崎变,从而使晶体强度增加。同时晶体缺陷的存在还会增加金属的电阻,降低金属的抗腐蚀性能。 6.为何单晶体具有各向异性,而多晶体在一般情况下不显示出各向异性? 答:因为单晶体内各个方向上原子排列密度不同,造成原子间结合力不同,因而表现出各向异性;而多晶体是由很多个单晶体所组成,它在各个方向上的力相互抵消平衡,因而表现各向同性。 7.过冷度与冷却速度有何关系?它对金属结晶过程有何影响?对铸件晶粒大小有何影响? 答:①冷却速度越大,则过冷度也越大。②随着冷却速度的增大,则晶体内形核率和长大速度都加快,加速结晶过程的进行,但当冷速达到一定值以后则结晶过程将减慢,因为这时原子的扩散能力减弱。③过冷度增大,ΔF大,结晶驱动力大,形核率和长大速度都大,且N的增加比G增加得快,提高了N与G的比值,晶粒变细,但过冷度过大,对晶粒细化不利,结晶发生困难。 8.金属结晶的基本规律是什么?晶核的形成率和成长率受到哪些因素的影响?答:①金属结晶的基本规律是形核和核长大。②受到过冷度的影响,随着过冷度的增大,晶核的形成率和成长率都增大,但形成率的增长比成长率的增长快;同时外来难熔杂质以及振动和搅拌的方法也会增大形核率。 9.在铸造生产中,采用哪些措施控制晶粒大小?在生产中如何应用变质处理?答:①采用的方法:变质处理,钢模铸造以及在砂模中加冷铁以加快冷却速度的方法来控制晶粒大小。②变质处理:在液态金属结晶前,特意加入某些难熔固态颗粒,造成大量可以成为非自发晶核的固态质点,使结晶时的晶核数目大大增加,从而提高了形核率,细化晶粒。③机械振动、搅拌。 第二章金属的塑性变形与再结晶 2.产生加工硬化的原因是什么?加工硬化在金属加工中有什么利弊? 答:①随着变形的增加,晶粒逐渐被拉长,直至破碎,这样使各晶粒都破碎成细碎的亚晶粒,变形愈大,晶粒破碎的程度愈大,这样使位错密度显著增加;同时细碎的亚晶粒也随着晶粒的拉长而被拉长。因此,随着变形量的增加,由于晶粒破碎和位错密度的增加,金属的塑性变形抗力将迅速增大,即强度和

金属材料热处理及其应用

金属材料热处理及其应用(一)---基本常识 金属材料热处理是机械制造中的重要工艺之一,与其它加工工艺相比,热处理一般不改变工件的形状和整体的化学成分,而是通过改变工件内部的显微组织,或改变工件表面的化学成分,赋予或改善工件的使用性能。其特点是改善工件的内在质量,而这一般不是肉眼所能看到的。为使金属工件具有所需要的力学性能、物理性能和化学性能,除合理选用材料和各种成形工艺外,热处理工艺往往是必不可少的。钢铁是机械工业中应用最广的材料,钢铁显微组织复杂,可以通过热处理予以控制,所以钢铁的热处理是金属热处理的主要内容。另外,铝、铜、镁、钛等及其合金也都可以通过热处理改变其力学、物理和化学性能,以获得不同的使用性能。 金属热处理是将金属工件放在一定的介质中加热到适宜的温度,并在此温度中保持一定时间后,又以不同速度冷却的一种工艺。 在从石器时代进展到铜器时代和铁器时代的过程中,热处理的作用逐渐为人们所认识。早在公元前770~前222年,中国人在生产实践中就已发现,铜铁的性能会因温度和加压变形的影响而变化。白口铸铁的柔化处理就是制造农具的重要工艺。 公元前六世纪,钢铁兵器逐渐被采用,为了提高钢的硬度,淬火工艺遂得到迅速发展。中国河北省易县燕下都出土的两把剑和一把戟,其显微组织中都有马氏体存在,说明是经过淬火的。随着淬火技术的发展,人们逐渐发现淬冷剂对淬火质量的影响。三国蜀人蒲元曾在今陕西斜谷为诸葛亮打制3000把刀,相传是派人到成都取水淬火的。这说明中国在古代就注意到不同水质的冷却能力了,同时也注意了油和尿的冷却能力。中国出土的西汉(公元前206~公元24)中山靖王墓中的宝剑,心部含碳量为0.15~0.4%,而表面含碳量却达0.6%以上,说明已应用了渗碳工艺。但当时作为个人“手艺”的秘密,不肯外传,因而发展很慢。1863年,英国金相学家和地质学家展示了钢铁在显微镜下的六种不同的金相组织,证明了钢在加热和冷却时,内部会发生组织改变,钢中高温时的相在急冷时转变为一种较硬的相。法国人奥斯蒙德确立的铁的同素异构理论,以及英国人奥斯汀最早制定的铁碳相图,为现代热处理工艺初步奠定了理论基础。与此同时,人们还研究了在金属热处理的加热过程中对金属的保护方法,以避免加热过程中金属的氧化和脱碳等。1850~1880年,对于应用各种气体(诸如氢气、煤气、一氧化碳等)进行保护加热曾有一系列专利。1889~1890年英国人莱克获得多种金属光亮热处理的专利。 二十世纪以来,金属物理的发展和其它新技术的移植应用,使金属热处理工艺得到更大发展。一个显着的进展是1901~1925年,在工业生产中应用转筒炉进行气体渗碳;30年代出现露点电位差计,使炉内气氛的碳势达到可控,以后又研究出用二氧化碳红外仪、氧探头等进一步控制炉内气氛碳势的方法;60年代,热处理技术运用了等离子场的作用,发展了离子渗氮、渗碳工艺;激光、电子束技术的应用,又使金属获得了新的表面热处理和化学热处理方法。 金属材料热处理的工艺 热处理工艺一般包括加热、保温、冷却三个过程,有时只有加热和冷却两个过程。这些过程互相衔接,不可间断。 加热是热处理的重要工序之一。金属热处理的加热方法很多,最早是采用木炭和煤作为热源,进而应用液体和气体燃料。电的应用使加热易于控制,且无环境污染。利用这些热源可以直接加热,也可以通过熔融的盐或金属,以至浮动粒子进行间接加热。 金属加热时,工件暴露在空气中,常常发生氧化、脱碳(即钢铁零件表面碳含量降低),这对于热处理后零件的表面性能有很不利的影响。因而金属通常应在可控气氛或保护气氛中、熔融盐中和真空中加热,也可用涂料或包装方法进行保护加热。 加热温度是热处理工艺的重要工艺参数之一,选择和控制加热温度,是保证热处理质量的主要问题。加热温度随被处理的金属材料和热处理的目的不同而异,但一般都是加热到相变温度以上,以获得高温组织。另外转变需要一定的时间,因此当金属工件表面达到要求的加热温度时,还须在此温度保持一定时间,使内外温度一致,使显微组织转变完全,这段时间称为保温时间。采用高能密度加热和表面热处理时,加热速度极快,一般就没有保温时间,而化学热处理的保温时间往往较长。

钢的表面热处理,钢的化学热处理简介,热处理技术发展简介教案

金属工艺学电子教案(13) 【课题编号】 13-5.4 【课题名称】 钢的表面热处理,钢的化学热处理简介,热处理技术发展简介。 【教材版本】 郁兆昌主编.中等职业教育国家规划教材—金属工艺学(工程技术类).第2版.北京:高等教育出版社,2006 【教学目标与要求】 -.知识目标 了解表面热处理的目的、种类、特点、应用;化学热处理概念、过程、种类与应用。了解热处理技术发展简况,开阔思路。 二、能力目标 通过学习和反复练习,初步学会在零件加工工艺编制中安排感应淬火、渗碳、氮化和相应的热处理工序。 三、素质目标 了解表面热处理、化学热处理的目的、种类、特点与应用,学会选用高频淬火、渗碳和氮化工序。了解热处理技术发展简况,开阔思路,树立创新意识。 四、教学要求 一般了解钢的表面热处理、化学热处理及热处理新技术。 【教学重点】 感应淬火、气体渗碳、气体渗氮。 【难点分析】 感应淬火原理。 【分析学生】 1.具有学习的知识基础。 2.具有学习的能力基础。 3.钢的表面热处理、化学热处理是钢的整体热处理(退火、正火、淬火、回火)的补充和完善,相互配合,全面达到零件多种多样的使用性能要求。虽不是重点,也要引导学生认真学习,努力掌握。 【教学设计思路】 教学方法:讲练法,演示法、讨论法,归纳法。 【教学资源】 1.郁兆昌,潘展,高楷模研编制作.金属工艺学网络课程.北京:高等教育出版社,2005

2、郁兆昌主编。金属工艺学教学参考书(辅助学光盘)。北京:高等教育出版 社,2005 【教学安排】 2学时(90分钟) 教学步骤:讲授主要内容、讲授中穿插练习与设问,穿插讨论,最后进行归纳。 【教学过程】 一、复习旧课(15分钟) 1.简述 淬火方法分类、特点与应用。 2.讲评作业批改情况; 1.提问: 题5-7;5-14。 二、导入新课 钢的表面热处理、化学热处理主要解决零件的表面强化问题。与零件的整体热处理(退火、正火、淬火、回火)相配合,以满足零件多种使用性能和不同的强化需要。介绍热处理技术发展,能使我们开阔眼界,培养创新意识。 三、新课教学(70分钟) 1.钢的表面热处理(20分钟) 教师讲授感应淬火原理、种类、组织、性能、特点及应用;讲授火焰淬火基本概念、特点及应用。 演示网络课程中感应加热基本原理、感应器结构与种类、火焰淬火方法等视频。 学生课堂练习:题5-16;5-19。教师巡回指导、设问、提问,学生回答、讨论; 教师讲评。 2.钢的化学热处理(35分钟) 教师讲授钢的渗碳、气体渗碳;钢的渗氮,气体氮化;钢的其他化学热处理。 演示化学热处理过程、气体渗碳工艺过程、离子氮化过程等视频。 学生课堂练习:题5-21;5-17;5-18。教师巡回指导;设问、提问;学生回答、讨论;教师讲评。 3、热处理技术发展简介(15分钟) 教师讲述热处理技术发展趋势,介绍真空热处理等具体热处理新技术。 演示网络课程真空热处理、激光热处理,机器人在高频淬火中应用等照片和视频。 四、小结( 5分钟) 简要叙述感应淬火、气体渗碳、气体渗氮的目的、特点与应用。 五、作业布置

化学镀镍与电镀镍工艺相互之间的区别

化学镀镍与电镀镍工艺及相互之间的区别 1 电镀镍 电镀是一种电化学过程,也是一种氧化还原过程。电镀镍是将零件浸入镍盐的溶液中作为阴极,金属镍板作为阳极,接通直流电源后,在零件上就会沉积出金属镍镀层。电镀镍的配方及工艺条件见表1。 电镀镍的工艺流程为:①清洗金属化瓷件;②稀盐酸浸泡;③冲净;④浸入镀液; ⑤调节电流进行电镀; ⑥自镀液中取出;⑦冲净;⑧煮;⑨烘干。 表1 电镀镍的配方及工艺条件 成分含量/g/L 温度 /0C PH值电流密度 /A/dm2 硫酸镍硫酸镁硼酸氯化钠 100-170 21-30 14-30 4-12 室温5-6 0.5 电镀镍的优点是镀层结晶细致,平滑光亮,内应力较小,与陶瓷金属化层结合力强。电镀镍的缺点是:①受金属化瓷件表面的清洁和镀液纯净程度的影响大,造成电镀后金属化瓷件的缺陷较多,例如起皮,起泡,麻点,黑点等;②极易受电镀挂具和在镀缸中位置不同的影响,造成均镀能力差,此外金属化瓷件之间的相互遮挡也会造成瓷件表面有阴阳面的现象;③对于形状复杂或有细小的深孔或盲孔的瓷件不能获得较好的电镀表面;④需要用镍丝捆绑金属化瓷件,对于形状复杂、尺寸较小、数量多的生产情况下,需耗费大量的人力。 2 化学镀镍 化学镀镍又称无电镀或自催化镀,它是一种不加外在电流的情况下,利用还原剂在活化零件表面上自催化还原沉积得到镍层,当镍层沉积到活化的零件表面后由于镍具有自催化能力,所以该过程将自动进行下去。一般化学镀镍得到的为合金镀层,常见的是Ni-P合金和Ni-B合金。相较Ni-P合金而言,Ni—B合金的熔焊能力更好,共晶温度高,内应力较小,是一种更为理想的化学镀镍方式。但本文着重讨论的是Ni-P合金镀层。 化学镀镍的配方及工艺条件见表2。 表2化学镀镍的配方及工艺条件 成分含量/g/L 温度 /0C PH值 硫酸镍次磷酸钠柠檬酸钠氯化铵 45-50 45-60 20-30 5-8 85 9.5 化学镀镍的工艺流程为:①清洗金属化瓷件;②冲洗;③活化液浸泡;④冲净; ⑤还原液浸泡;⑥浸入镀液并不时调节pH值;⑦自镀液中取出;⑧冲净;⑨煮;

第四章 有色金属热处理原理与工艺

第四章有色金属热处理原理与工艺 一、概述 热处理是有色加工的重要组成部分 有色金属材料:黑色金属以外的所有金属及其合金。 分类:轻有色、重有色、稀有色、贵金属 作用:改善工艺性能,保证后续工序顺利进行;提高使用性能,充分发挥材料潜力。 类型:退火、淬火、时效、形变热处理 退火:加热到适当温度,保温一定时间,缓慢速度冷却。 有色中的退火:去应力退火、再结晶退火、均匀化退火 二、均匀化退火 对象:铸锭、铸件—→浇铸冷速大,造成成分偏析以及内应力 目的:提高铸件的性能,消除内应力,稳定尺寸与组织,消除偏析枝晶,改善性能。 非平衡铸态组织特征:晶内偏析or枝晶偏析;伪共晶or离异共晶;非平衡第二相;最大固溶度偏移。非平衡组织对性能的影响:枝晶偏析&非平衡脆性相—→塑性↓; 晶内偏析、浓度差微电池—→耐腐蚀性↓; 粗大的枝晶和严重的偏析—→各向异性&晶间断裂倾向↑; 非平衡针状组织—→性能不稳定。 固相线以下100~200℃长时间保温—→也称为扩散退火 组织变化:获得均匀的单相、晶粒长大、过饱和固溶体的分解、第二相聚集与球化 性能变化:塑性↑、改善冷变形的工艺性能、耐蚀性↑、尺寸形状稳定、消除残余应力 缺点:加热温度高,时间长,耗时耗能;高温长时间出现变形、氧化以及吸气缺陷;产品强度下降。制定均匀化推过规程的原则: (1)加热温度:温度越高,原子扩散越快,均匀化过程越快,但不宜过高,易发生过烧。一般为 0.90~0.95T m ①高温均匀化退火:在非平衡相线温度以上但在平衡固相线温度以下进行均匀化退火。 适用:大截面工件or铝合金 ②分级加热均匀化退火:现在低于非平衡固相线温度加热,待非平衡相部分溶解及固溶体 内成分不均匀部分降低,从而非平衡固相线温度升高后,再加热 至更高温度保温,在此温度下完成均匀化退火过程。 目的:均匀化更迅速、更彻底,且避免过烧 适用:镁合金 (2)保温时间:包括非平衡相溶解及消除晶内偏析所需的时间 取决于退火温度:T↑,D↑,时间↓; 铸锭原始组织特征:合金化程度、第二相分散度、尺寸 铸锭的致密程度 (3)加热速度与冷却速度 原则:铸锭不产生裂纹和大的变形,不能过快or过慢 主要采用均匀化退火的合金:Al合金、Mg合金、Cu合金中的锡磷青铜、白铜

化学热处理工艺及应用

一.化学热处理工艺及应用 除渗碳、渗氮外,渗金属主要有渗Al、Cr、V、Si、B、S等金属和非金属。下面简单介绍。 1.渗铬 适用于各种钢制件的耐磨性、耐蚀性和抗高温氧化能力。 渗后硬度:低碳钢为200~250HV;高碳钢为1250~1300HV。 渗层深度:一般为0.10~0.30mm。 渗层金相组织:低碳钢50%左右铬在铁素体中的固溶体;高碳钢由铬的碳化物(Cr7C3)、(CrFe)7C3组成。 渗铬方法:固、液、气体渗,还有真空渗等。 固体法:将以下配方研成粒度小于50目(约0.297mm)粉末,然后装箱进行。 配方1:50%~55%铬铁粉末+40~50%氧化铝+2~3%氯化铵。 配方2:60%~65%铬铁粉末+30~35%耐火土+3~4%氯化铵。 装炉温度为800~850℃,保温1~1.5h后升温到1000~1050℃.。保温12~15h(视层深要求而定)。然后随炉冷却600~700℃出炉空冷即可。 液体法:采用70%氯化钡+30%氯化钠为基盐。将金属铬或铬铁粉末经盐酸处理后放入基盐中,加热到1000~1050℃保温1.0~1.5h即开始渗,同时应不间断地用惰 性气体或还原气体保盐浴表面不被氧化。 气体法:利用干净铬块+氯化铵+氢气,在950~1100℃通入氯化铜蒸汽进行。渗铬后的处理:在一定载荷下工作并要求一定的强度的零件,渗铬后正火处理可细化晶 粒,提高基体强度和韧性,淬火和回火处理可根据需要调整基体的性能。 2、渗B 渗硼是指将工件放在一定比例的含硼介质中加热。 适用范围:提高各种钢、铸铁和粉末冶金等材料制作的工件耐磨性。 渗后硬度:900~1200H V0.1以上。 金相组织:为致密的单相Fe2B。

化学镀工艺流程详解.

化学镀工艺流程 化学镀是一种在无电流通过的情况下,金属离子在同一溶液中还原剂的作用下通过可控制的氧化还原反应在具有催化表面(催化剂一般为钯、银等贵金属离子的镀件上还原成金属,从而在镀件表面上获得金属沉积层的过程,也称自催化镀或无电镀。化学镀最突出的优点是无论镀件多么复杂,只要溶液能深入的地方即可获得厚度均匀的镀层,且很容易控制镀层厚度。与电镀相比,化学镀具有镀层厚度均匀、针孔少、不需直流电源设备、能在非导体上沉积和具有某些特殊性能等特点;但化学镀镀层质量不很好,厚度上不去,且可镀的品种不多,故主要用于不适于电镀的特殊场合。 近年来, 化学镀技术得到了越来越广泛的应用,在各种非金属纤维、微球、微粉等粉体材料上施镀成为研究的热点之一;用化学镀方法可以在非金属纤维、微球、微粉镀件表面获得完整的非常薄而均匀的金属或合金层,而且镀层厚度可根据需要确定。这种金属化了的非金属纤维、微球、微粉镀件具有良好的导电性,作为填料混入塑料时能获得较好的防静电性能及电磁屏蔽性能,有可能部分取代金属粉用于电磁波吸收或电磁屏蔽材料。美国国际斯坦福研究所采用在高聚物基体上化学镀铜来研制红外吸收材料。毛倩瑾等采用化学镀的方法对空心微珠进行表面金属化改性研究,发现改性后的空心微珠具有较好的吸波性能,可用于微波吸收材料、轻质磁性材料等领域。 化学镀所需仪器:电热恒温水浴锅;8522型恒温磁力搅拌器控温搅拌;增力电动搅拌机。化学镀工艺流程:机械粗化→化学除油→水洗→化学粗化→水洗→敏化→水洗→活化→水洗→解胶→水洗→化学镀→水洗→干燥→镀层后处理。 1化学镀预处理 需进行化学镀的镀件一般不溶于水或者难溶于水。化学镀工艺的关键在于预处理,预处理的目的是使镀件表面生成具有显著催化活性效果的金属粒子,这样才能最终在基体表面沉积金属镀层。由于镀件微观表面凸凹不平,必须进行严格的镀前预处理,否则易造成镀层不均匀、密着性差,甚至难于施镀的后果。

“钢的热处理原理及工艺”作业题

“钢的热处理原理及工艺”作业题 第一章固态相变概论 1、扩散型相变和无扩散型相变各有哪些特点? 2、说明晶界和晶体缺陷对固态相变成核的影响。 3、说明相界面和应变能在固态相变中的作用,并讨论它们对新相形状的影响。 4、固-固相变的等温转变动力学曲线是“C”形的原因是什么? 第二章奥氏体形成 1、为何共析钢当奥氏体刚刚完成时还会有部分渗碳体残存?亚共析钢加热转变时是否也存在碳化物溶解阶段? 2、连续加热和等温加热时,奥氏体形成过程有何异同?加热速度对奥氏体形成过程有何影响? 3、试说明碳钢和合金钢奥氏体形成的异同。 4、试设计用金相-硬度法测定40钢和T12钢临界点的方案。 5、将40、60、60Mn钢加热到860℃并保温相同时间,试问哪一种钢的奥氏体晶粒大一些? 6、有一结构钢,经正常加热奥氏体化后发现有混晶现象,试分析可能原因。 第三章珠光体转变 1、珠光体形成的热力学特点有哪些?相变主要阻力是什么?试分析片间距S与过冷度△T的关系。 2、珠光体片层厚薄对机械性能有什么影响?珠光体团直径大小对机械性能影响如何? 3、某一GCr15钢制零件经等温球化退火后,发现其组织中除有球状珠光体外,还有部分细片状珠光体,试分析其原因。 4、将40、40Cr、40CrNiMo钢同时加热到860℃奥氏体化后,以同样冷却速度使之发生珠光体转变,它们的片层间距和硬度有无差异? 5、试述先共析网状铁素体和网状渗碳体的形成条件及形成过程。 6、为达到下列目的,应分别采取何热处理方法? (1)为改善低、中、高碳钢的切削加工性; (2)经冷轧的低碳钢板要求提高塑性便于继续变形; (3)锻造过热的60钢毛坯为细化其晶粒; (4)要消除T12钢中的网状渗碳体; 第四章、马氏体转变

化学镀镍工艺

化学镀镍工艺——镀前处理需知 化学镀镍的对象是具体的工件,进厂待镀的工件状况,包括工件材质、制造或维护方法,工件尺寸和最终使用情况是不同的;因此前处理方法应有所不同。在确定正确的前处理工艺流程时,必须对工件善有充分的了解。 合金类型为保证镀层足够的结合力以及镀层质量,必须鉴定基体材质。某些含有催化毒性合金成分的材料在镀前处理时加以表面调整,保证除去这些合金成分后才能进行化学镀镍。例如:铅(含铅钢)、硫(含硫钢)、过量的碳(高碳钢)、碳化物(渗碳钢)等。因为这些物质的残留会产生结合力差和起泡问题。而且,在未除净这些物质的表面、镀层会产生针孔和多孔现象。另一种处理方法是在镀前采用预镀的方法隔离基体才料中有害合金元素的影响。在不清楚待镀工件材质而且又不可能进行材料分析的情况下,必须进行预先试验,试合格后方可处理工作。 工件的制造历史钢件表面状况由于渗碳、渗氮、淬火硬化后提高表面硬度是重要的变化途径之一。通常化学镀镍在硬度范围HRC58-62的铁件表面上镀层的结合力是难以合格的。一方面,上述硬度范围的工件必须进行特别的清洗方法,即在含氰化物的溶液中周期换向电解活化或其它合适的电解清洗,以便溶解除去表面的无机物质诸如碳化物。另一方面,在施镀中产生的表面应力,诸如航天工业用的表面有较高张应力的工件,必须在镀前镀后进行去应力处理,以获得合格的结合力。在制造过程中工件表面大量通讯以除去的机械润滑油和抛光剂等也必须在镀前清除干净。 工件的维修历史工件维修时为除去表面的有机涂层、铁锈或氧化皮,采用喷砂处理,这种工件是化学镀前最难处理的。因为这些工件表面不仅嵌进了残留物质,而且腐蚀产物附着得很牢。在这种情况下,应先采用机械方法清洁表面,以保证后续化学清洗和活化工序的质量。为除去工件表面嵌进的油脂和化学脏污,有时预先烘工件十分有效,尽管这不是唯一的好用的清除方法。 工件的几何尺寸许多工件的几何赃妨碍了采用某前处理技术,如大尺寸的容器以及内表面积很大的管件就是如此。通常清洗和活化钢件应包括电解清洗和活化,在上述情况下,应采用机械清洗、化学清洗和活化更为可行。对于具有盲孔和形状复杂的零件,需要加强清洗工序以解决除去污垢、氢气泡逸出和溶液带出的问题。在工件吊挂和放置方法上也应考虑解决上述问题。 工件非镀面的阻镀问题许多工件要求局部化学镀镍,因此必须彩屏蔽材料将非镀部分保护起来。屏蔽材料可用压敏胶带、涂料、专用塑料夹具等。当然市场上现在有商品的阻镀涂料(或叫保护漆)出售,并且高级一点的,可以镀后轻松除去,用专用溶剂溶解后可以反复使用。 化学清洗浸洗是化学镀前处理的重要步骤之一,其重要的功能在于清除工件表面的污垢,为保证清洗效果,通常使用清洗剂、机械搅拌和加温。采用碱性清洗剂时必须加热至60-80℃,以便彻底清洗污垢,大多数碱性清洗采取浸洗并且强力搅拌,也可以采用喷淋清洗方式。市售的浸洗清洁剂的质量和去污能力差异很大,因此根据工件污染程度选用清洁剂是很重要的。 电解清洗电解清洗化学镀镍活化处理前的末道清洗方法,多适用于精密零件。直流电解清洗即阻极电解清洗的优点在于工件表面产生大量的氢气增加了洗涤效果;其缺点在于工件带负电,因而吸附清洗溶液中的铜、锌和其它金属离子、皂类和某些胶体物质,在工件上形成疏松的电极泥以致带去。电解清洗时采用周期换向电注,当工件为阳极时,迫使工件表面带正电荷的离子和污垢脱离。而且工件表面生成的氧气有利于有效地洗涤掉嵌牢在工件上的污垢,由清洗溶液中的清洁剂去润湿污垢,乳化转换掉污垢。

金属热处理原理与工艺复习提纲精选版

金属热处理原理与工艺 复习提纲 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

一、名词解释 1.正火:把零件加热到临界温度以上30-50℃,保温一段时间,然后在空气中冷却的热处理工艺。 2.退火:将钢加热、保温后,随炉冷却后,获得接近平衡状态组织的热处理工艺。 3.回火:将淬火钢重新加热到A1线以下某一温度,保温一定时间后再冷却到室温的热处理工艺。 4.淬火:将钢加热到AC1或AC3以上某一温度,保温一定时间,以大于临界冷却速度进行快速冷却,获得马氏体或下贝氏体组织的热处理工艺。 5.淬硬性:钢淬火后的硬化能力。 6.淬透性:钢淬火时获得马氏体的能力。 7.贝氏体:过冷奥氏体中温转变的产物。 8.马氏体:C原子溶入 -Fe形成的饱和间隙固溶体。 9.贝氏体转变:奥氏体中温转变得到贝氏体的过程。 10.马氏体转变:将奥氏体快速冷却到Ms点以下得到马氏体组织的过程。 11.脱溶:从过饱和固溶体中析出第二相(沉淀相)、形成溶质原子聚集区以及亚稳定过渡相的过程称为脱溶或沉淀,是一种扩散型相变。 12.固溶:将双相组织加热到固溶度线以上某一温度保温足够时间,获得均匀的单相固溶体的处理工艺。 13.固溶强化:当溶质原子溶入溶剂原子而形成固溶体时,使强度、硬度提高,塑性、韧性下降的现象。 14.渗碳:向钢的表面渗入碳原子的过程。

15.渗氮:向钢的表面渗入氮原子的过程。 16.化学热处理:将零件放在特定的介质中加热、保温,以改变其表层化学成分和组织,从而获得所需力学或化学性能的工艺总称。 17.表面淬火:在不改变钢的化学成分及心部组织情况下,利用快速加热将表层奥氏体化后进行淬火以强化零件表面的热处理方法。 二、简答题 1.材料的强韧化机制及其应用 答:固溶强化; 位错强化; 第二相强化; ④细晶强化。 2.相变应力/组织应力是什么对组织性能有什么影响 3. 答:组织应力又称相变应力:金属制品在加热和冷却时发生相变,由于新旧相之间存在着结构和比容差异,制品各部分又难以同时发生相变,或者各部分的相变产物有所不同,也会引起应力,这种因组织结构转变不均均而产生的应力称为组织应力。 热应力:金属制品在加热和冷却过程中,由于各部分加热速度或冷却速度不同造成制品各部分温度差异,从而热胀冷缩不均匀所引起的内应力。4.奥氏体化的形成及控制(形成过程、机理、及控制措施)其中包含的化学反应有哪些? 答:奥氏体:C溶于γ–Fe的八面体间隙形成间隙式固溶体

2021版热处理工艺在模具制造过程中的应用

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 2021版热处理工艺在模具制造 过程中的应用 Safety management is an important part of production management. Safety and production are in the implementation process

2021版热处理工艺在模具制造过程中的应 用 现代工业的快速发展离不开模具,模具被广泛用于航空航天、船舶等各个行业,对制造业影响巨大,特别是对生产金属制品行业,工厂需要采用热处理技术,利用模具制造出高质量产品。 模具是一种制造用的模型,模具的制造程序可以分为多种类型的机械制造和热制造两道程序,众多类型程序中都用到了热处理技术,可以说热处理被应用在模具制作的整个过程,对模具进行加热处理可以增强模具的性能。采用同种结构的模具材料和结构及相同的客观条件,运用了热处理就能使模具的材料得到充分利用,且能够增加模具的使用时间。如果应用不正确的热处理方式,不仅不能弥补原有的材料缺陷,还会使缺陷加大,进而导致整个模具的变形,所以,热处理技术对模具的制造起着重要的作用。本文将讲述热处

理技术的含义,热处理技术对模具的制造的重要意义及热处理技术在模具的制造中的应用进行论述。 热处理技术的含义 热处理是通过把某些金属在特定环境下进行加热、保持恒温,然后冷却等一系列方法,从而是金属表面或内在结构发生变化,进而达到改变性能的技术。模具热处理大致分为模具制作前的热处理、最后热处理和表面修整处理。前期热处理为后期成品热处理打下基础,为提高模具产品的加工性能做准备;最后热处理是对模具进行回火处理来加大模具的强度、硬度和韧度;对模具的表面修整处理是通过对模具施加某些化学和物理作用改善模具性能,进而达到模具表面更加完好。热处理的手段包括退火、正火和淬火。退火依据不同材料应用不等的时间,慢慢冷却产品,使其接近金属的内部组织,取得良好的性能。正火是加热工件后使其在空中冷却,通过正火达到的内部组织更细腻,因此,正火经常用来改善工料削割性能。淬火是把工件在油、水等某些物质介质力冷却,冷却耗时短,淬火和回火经常结合一起使用。

化学镀镍工艺

化学镀镍工艺 化学镀镍机理: 1)原子氢析出机理。原子氢析出机理是1946年提出的,核心是还原镍的物质是原子氢,其反应过程如下: H2P02-+H20→HP032-+H++2H Ni2++2H→Ni+2H+ H2P02-+H++H→2H20+P 2H→H2 水和次磷酸根反应产生了吸附在催化表面上的原子氢,吸附氢在催化表面上还原镍离子。同时,吸附氢在催化表面上也产生磷的还原过程。原子态的氢相互结合也析出氢气。2)电子还原机理(电化学理论)电子还原机理反应过程如下: H2P02-+H20→HP032-+H++2e Ni2++2e→Ni H2P02-+2H++e→2H20+P 2H++2e→H2 酸性溶液中,次磷酸根与水反应产生的电子使镍离子还原成金属镍。在此过程中电子也同时使少部分磷得到还原。 3)正负氢离子机理。该理论最大特点在于,次磷酸根离子与磷相连的氢离解产生还原性非常强的负氢离子,还原镍离子、次磷酸根后自身分解为氢气。 H2P02-+H20→HP032-+H++H- Ni2++2H-→Ni+H2 H2P02-+2H++H-→2H20+P +1/2H2 H-+H+→H2 分析上述机理,可以发现核心在于次磷酸根的P-H键。次磷酸根的空间结构是以磷为中心的空间四面体。空间四面体的4个角顶分别被氧原子和氢原子占据,其分子结构式为: 各种化学镀镍反应机理中共同点是P-H键的断裂。P-H键吸附在金属镍表面的活性点上,在镍的催化作用下,P-H键发生断裂。如果次磷酸根的两个P-H键同时被吸附在镍表面的活性点上,键的断裂难以发生,只会造成亚磷酸盐缓慢生成。对于P-H键断裂后,P-H间共用电子对的去向,各种理论具有不同的解释。如电子在磷、氢之间平均分配,这就是原子氢析出理论;如果电子都转移至氢,则属于正负氢理论;而电子还原机理则认为电子自由游离出来参与还原反应。因此,可以根据化学镀镍机理的核心对各种宏观工艺问题进行分析解释。 化学镀镍工艺过程 化学镀镍前处理工艺 一:除油:

热处理工艺的特点

热处理工艺的特点 金属热处理是机械制造中的重要工艺之一,与其他加工工艺相比,热处理一般不改变工件的形状和整体的化学成分,而是通过改变工件内部的显微组织,或改变工件表面的化学成分,赋予或改善工件的使用性能。其特点是改善工件的内在质量,而这一般不是肉眼所能看到的。 为使金属工件具有所需要的力学性能、物理性能和化学性能,除合理选用材料和各种成形工艺外,热处理工艺往往是必不可少的。钢铁是机械工业中应用最广的材料,钢铁显微组织复杂,可以通过热处理予以控制,所以钢铁的热处理是金属热处理的主要内容。另外,铝、铜、镁、钛等及其合金也都可以通过热处理改变其力学、物理和化学性能,以获得不同的使用性能。 热处理的发展史 在从石器时代进展到铜器时代和铁器时代的过程中,热处理的作用逐渐为人们所认识。早在公元前770至前222年,中国人在生产实践中就已发现,铜铁的性能会因温度和加压变形的影响而变化。白口铸铁的柔化处理就是制造农具的重要工艺。 公元前六世纪,钢铁兵器逐渐被采用,为了提高钢的硬度,淬火工艺遂得到迅速发展。中国河北省易县燕下都出土的两把剑和一把戟,其显微组织中都有马氏体存在,说明是经过淬火的。 随着淬火技术的发展,人们逐渐发现淬冷剂对淬火质量的影响。三国蜀人蒲元曾在今陕西斜谷为诸葛亮打制3000把刀,相传是派人到成都取水淬火的。这说明中国在古代就注意到不同水质的冷却能力了,同时也注意了油和尿的冷却能力。中国出土的西汉(公元前206~公元24)中山靖王墓中的宝剑,心部含碳量为0.15~0.4%,而表面含碳量却达0.6%以上,说明已应用了渗碳工艺。但当时作为个人“手艺”的秘密,不肯外传,因而发展很慢。 1863年,英国金相学家和地质学家展示了钢铁在显微镜下的六种不同的金相组织,证明了钢在加热和冷却时,内部会发生组织改变,钢中高温时的相在急冷时转变为一种较硬的相。法国人奥斯蒙德确立的铁的同素异构理论,以及英国人奥斯汀最早制定的铁碳相图,为现代热处理工艺初步奠定了理论基础。与此同时,人们还研究了在金属热处理的加热过程中对金属的保护方法,以避免加热过程中金属的氧化和脱碳等。 1850~1880年,对于应用各种气体(诸如氢气、煤气、一氧化碳等)进行保护加热曾有一系列专利。1889~1890年英国人莱克获得多种金属光亮热处理的专利。 二十世纪以来,金属物理的发展和其他新技术的移植应用,使金属热处理工艺得到更大发展。一个显著的进展是1901~1925年,在工业生产中应用转筒炉进行气体渗碳;30年代出现露点电位差计,使炉内气氛的碳势达到可控,以后又研究出用二氧化碳红外仪、氧探头等进一步控制炉内气氛碳势的方法;60年代,热处理技术运用了等离子场的作用,发展了离子渗氮、渗碳工艺;激光、电子束技术的应用,又使金属获得了新的表面热处理和化学热处理方法。

热处理种类应用

1.热处理工艺的分类 金属热处理工艺大体可分为整体热处理、表面热处理和化学热处理三大类。 整体热处理是对工件整体加热,然后以适当的速度冷却,获得需要的金相组织,以改变其整体力学性能的金属热处理工艺。钢铁整体热处理大致有退火、正火、淬火和回火四种基本工艺。

渗入碳、氮、硼和铬等元素。渗入元素后,有时还要进行其它热处理工艺如淬火及回火。化学热处理的主要方法有渗碳、渗氮、渗金属。 8.5补充手段之二 1.退火:指金属材料加热到适当的温度,保持一定的时间,然后缓慢冷却的热处理工艺。常见的退火工艺有:再结晶退火、去应力退火、球化退火、完全退火等。退火的目的:主要是降低金属材料的硬度,提高塑性,以利切削加工或压力加工,减少残余应力,提高组织和成分的均匀化,或为后道热处理作好组织准备等。 2.正火:指将钢材或钢件加热到或(钢的上临界点温度)以上,30~50℃保持适当时间后,在静止的空气中冷却的热处理的工艺。正火的目的:主要是提高低碳钢的力学性能,改善切削加工性,细化晶粒,消除组织缺陷,为后道热处理作好组织准备等。 3.淬火:指将钢件加热到Ac3 或Ac1(钢的下临界点温度)以上某一温度,保持一定的时间,然后以适当的冷却速度,获得马氏体(或贝氏体)组织的热处理工艺。常见的淬火工艺有盐浴淬火,马氏体分级淬火,贝氏体等温淬火,表面淬火和局部淬火等。淬火的目的:使钢件获得所需的马氏体组织,提高工件的硬度,强度和耐磨性,为后道热处理作好组织准备等。 4.回火:指钢件经淬硬后,再加热到Ac1 以下的某一温度,保温一定时间,然后冷却到室温的热处理工艺。常见的回火工艺有:低温回火,中温回火,高温回火和多次回火等。回火的目的:主要是消除钢件在淬火时所产生的应力,使钢件具有高的硬度和耐磨性外,并具有所需要的塑性和韧性等。 5.调质:指将钢材或钢件进行淬火及高温回火的复合热处理工艺。使用于调质处理的钢称调质钢。它一般是指中碳结构钢和中碳合金结构钢。 6.渗碳:渗碳是指使碳原子渗入到钢表面层的过程。也是使低碳钢的工件具有高碳钢的表面层,再经过淬火和低温回火,使工件的表面层具有高硬度和耐磨性,而工件的中心部分仍然保持着低碳钢的韧性和塑性。

化学镀镍一般工艺

化学镀镍一般工艺 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

化学镀镍一般工艺 在化学镀镍前,金属制品表面前处理包括:研磨抛光、除油、除锈、活化等过程,化学镀镍中经常使用的金属前处理方法与电镀工艺中的类似。研磨、抛光等物理方法,我们不做讨论。下面主要介绍一些化学处理方法。 1、除油 除油方法可分为有机溶剂除油、化学除油。 有机溶剂除油的特点是除油速度快,不腐蚀金属,但除油不彻底,需用化学法或电化学方法进行补充除油,常用的有机溶剂有:汽油、煤油、苯类、酮类、某些氯化烷烃及烯烃。有机溶剂除油还有一个优点即经除油后的溶剂还可回收再利用。有机溶剂一般属易燃品,使用时要格外小心。 化学除油是利用碱溶液的皂化作用和表面活性物质对非皂化性油脂的乳化作用,除去工件表面上的各种油污的。化学除油的温度通常取在60-80度之间,工件除油效果一般为目测,即工件表面能完全被水润湿就是油污完全除尽的标志。一般的除油液由氢氧化钠、碳酸钠、磷酸三钠、水玻璃、乳化剂等组成。 电化学除油分阴极除油和阳极除油,在相同的电流下,阴极除油产生的氢气比阳极除油产生的氧气多一倍,气泡小而密,乳化能力大,除油效果更好。但容易造成工件氢脆和杂质在阴极析出的现象。阳极除油虽没有这些缺点但可能造成工件表面氧化和溶解。目前常用正负极交换的化学除油法。电化学除油液配方与化学除油的配方相似。 2、除锈? 除锈方法有机械法、化学法和电化学法。 机械法除锈是对工件表面进行喷砂、研磨、滚光或擦光等机械处理,在工件表面得到整平的同时除去表面锈层。 化学法除锈是用酸或碱溶液对金属制品进行强浸蚀处理使制品表面的锈层通过化学作用和浸蚀过程所产生氢气泡的机械剥离作用而除去。 电化学除锈是在酸或碱溶液中对金属制品进行阴极或阳极处理除去锈层。阳极除锈是化学溶解、电化学溶解和电极反应析出的氧气泡的机械剥离作用而去除。阴极除锈是化学溶解和阴极析出氢气的机械剥离作用而去除。 用于化学镀镍前处理除锈工艺基本与电镀的除锈工艺相同。 3、活化? 活化是使零件能获得充分活化的表面,这种酸蚀对于不同材质的零件所用的酸液是不同的。 一般钢铁件的活化可用10%的硫酸或1:1的盐酸进行,活化的标准一般为工件表面冒出细小均匀的气泡。不锈钢件的活化可加大酸的浓度,并且加热进行酸蚀。严格讲,不锈钢的化学镀镍应该进行闪镀后再进行化学镀镍,也就是先打一个电解镍或电解铜的底层。

金属材料热处理工艺的应用与发展趋势

金属材料热处理工艺的应用与发展趋势 摘要:伴随着我国制造业的发展,机械加工发展越加趋于重要地位。而在重视环境和人文一体的我国,必须在保证生态情况下,减少耗能污染,引进先进的热处理新技术是必要的。 关键词:金属材料;热处理技术;应用发展 先进的热处理技术是我国制造金属业的重点整改项目之一。在社会提倡节约能源,低能易耗,保护环境的政策下,开发和应用新的金属材料热处理工艺是势在必行的。我国以前的制造业中,对热处理的能耗极高,并且用电量大,据研究统计,制造业用电量占机械总用电的30%。可想而知,庞大的用电量致使废气排放量大,对环境造成大幅的污染危害。而引进应用先进的热处理技术,缩短加热处理时间,降低周期,无疑是大大降低了用电能耗,不仅节约电能源、煤能源、石油能源,还减少了环境污染,促进的生态环境,大大提高了制造业和社会环境的统一、和谐和交融。此外,先进的热处理技术应用还可以给企业节约生产成本,缩短生产周期,减少人工浪费和返工手续,提高经济效益和保证产品的质量,从而保证产品的市场竞争力和耐用性。 1.热处理的薄层渗入技术 热处理薄层渗入技术打破了人们原有传统的固有思想---认为各化学元素渗透更深、加热时间更长会对金属制件材料的韧性和耐磨性更好。而经过一系列的实践研究表明并非如此,反而在对金属制件材料进行热处理时,减少金属制件材料表面涂层的厚度,即薄层厚度,反而能得到金属制件材料更好的韧性和综合性能。在热处理中还能缩短对金属制件材料的加热时间,减少用电量,降低排放污染,节约大量的能源消耗。根据实践证明:金属制件材料表面的渗碳层相较减小百分之三十,用电能源就会节约到百分之三十,对煤炭和甲醇资源而言,更能达到百分之五十的节约。而对金属材料的综合性能没有任何影响。我国自行车行业中对钢球的使用已经应用了热处理薄层渗入技术,并经实践证明有了显著的成效。既节约了成本,提高了生产力,还减少了废气排放和环境污染,促进了生态环保的发展。 2.热处理的超硬涂层技术 热处理超硬涂层技术是指在机械制造业中利用高新技术装置设备,摒除传统的人工盯进控制,实行电脑自动化运行监控技术,对超硬金属制件材料工具零件运用热处理的离子轰击法,使其在刀具、模具表面上沉积硬化后,再用2umTIN 的专业技术方法进行溅射处理,成品极快,产品质量过硬,产品的使用寿命也有显著提高。通过实践证明,新技术的应用不仅使产品质量提高,还节约时间成本,做到高效环保生产。 3.热处理的振动时效处理技术

铝合金热处理原理及工艺

铝合金热处理原理及工艺 3.1铝合金热处理原理 铝合金铸件得热处理就是选用某一热处理规范,控制加热速度升到某一相应温度下保温一定时间以一定得速度冷却,改变其合金的组织,其主要目的是提高合金的力学性能,增强耐腐蚀性能,改善加工型能,获得尺寸的稳定性。 3.1.1铝合金热处理特点 众所周知,对于含碳量较高的钢,经淬火后立即获得很高的硬度,而塑性则很低。然而对铝合金并不然,铝合金刚淬火后,强度与硬度并不立即升高,至于塑性非但没有下降,反而有所上升。但这种淬火后的合金,放置一段时间(如4~6昼夜后),强度和硬度会显著提高,而塑性则明显降低。淬火后铝合金的强度、硬度随时间增长而显著提高的现象,称为时效。时效可以在常温下发生,称自然时效,也可以在高于室温的某一温度范围(如100~200℃)内发生,称人工时效。 3.1.2铝合金时效强化原理 铝合金的时效硬化是一个相当复杂的过程,它不仅决定于合金的组成、时效工艺,还取决于合金在生产过程中缩造成的缺陷,特别是空位、位错的数量和分布等。目前普遍认为时效硬化是溶质原子偏聚形成硬化区的结果。 铝合金在淬火加热时,合金中形成了空位,在淬火时,由于冷却快,这些空位来不及移出,便被“固定”在晶体内。这些在过饱和固溶体内的空位大多与溶质原子结合在一起。由于过饱和固溶体处于不稳定状态,必然向平衡状态转变,空位的存在,加速了溶质原子的扩散速度,因而加速了溶质原子的偏聚。 硬化区的大小和数量取决于淬火温度与淬火冷却速度。淬火温度越高,空位浓度越大,硬化区的数量也就越多,硬化区的尺寸减小。淬火冷却速度越大,固溶体内所固定的空位越多,有利于增加硬化区的数量,减小硬化区的尺寸。 沉淀硬化合金系的一个基本特征是随温度而变化的平衡固溶度,即随温度增加固溶度增加,大多数可热处理强化的的铝合金都符合这一条件。沉淀硬化所要求的溶解度-温度关系,可用铝铜系的Al-4Cu合金说明合金时效的组成和结构的变化。图3-1铝铜系富铝部分的二元相图,在548℃进行共晶转变L→α+θ(Al2Cu)。铜在α相中的极限溶解度5.65%(548℃),随着温度的下降,固溶度急剧减小,室温下约为0.05%。 在时效热处理过程中,该合金组织有以下几个变化过程: 3.1.2.1 形成溶质原子偏聚区-G·P(Ⅰ)区 在新淬火状态的过饱和固溶体中,铜原子在铝晶格中的分布是任意的、无序的。时效初期,即时效温度低或时效时间短时,铜原子在铝基体上的某些晶面上聚集,形成溶质原子偏聚区,称G·P(Ⅰ)区。G·P(Ⅰ)区与基体α保持共格关系,这些聚合体构成了提高抗变形的共格应变区,故使合金的强度、硬度升高。 3.1.2.2 G·P区有序化-形成G·P(Ⅱ)区 随着时效温度升高或时效时间延长,铜原子继续偏聚并发生有序化,即形成G·P(Ⅱ)区。它与基体α仍保持共格关系,但尺寸较G·P(Ⅰ)区大。它可视为中间过渡相,常用θ”表示。它比G·P(Ⅰ)区周围的畸变更大,对位错运动的阻碍进一步增大,因此时效强化作用更大,θ”相析出阶段为合金达到最大强化的阶段。 3.1.2.3形成过渡相θ′ 随着时效过程的进一步发展,铜原子在G·P (Ⅱ)区继续偏聚,当铜原子与铝原子比为1:2时,形成过渡相θ′。由于θ′的点阵常数发生较大的变化,故当其形成时与基体共格关系开始破坏,即由完全共格变为局部共格,因此θ′相周围基体的共格畸变减弱,对位错运动的阻碍作用亦减小,表现在合金性能上硬度开始下降。由此可见,共格畸变的存在是造成合金时效强化的重要因素。 3.1.2.4 形成稳定的θ相 过渡相从铝基固溶体中完全脱溶,形成与基体有明显界面的独立的稳定相Al2Cu,称为θ相此时θ相与基体的共格关系完全破坏,并有自己独立的晶格,其畸变也随之消失,并随时效温度的提高或时间的延长,θ相的质点聚集长大,合金的强度、硬度进一步下降,合金就软化并称为“过时效”。θ相聚集长大而变得粗大。 铝-铜二元合金的时效原理及其一般规律对于其他工业铝合金也适用。但合金的种类不同,形成的G·P区、过渡相以及最后析出的稳定性各不相同,时效强化效果也不一样。几种常见铝合金系的时效过程及其析出的稳定相列于表3-1。从表中可以看到,不同合金系时效过程亦不完全都经历了上述四个阶段,有的合金不经过G·P(Ⅱ)区,直接形成过渡相。就是同一合金因时效的温度和时

相关主题