搜档网
当前位置:搜档网 › 某高层建筑塔楼结构设计分析

某高层建筑塔楼结构设计分析

某高层建筑塔楼结构设计分析
某高层建筑塔楼结构设计分析

某高层建筑塔楼结构设计分析

作者:徐彪;秦艳华

作者机构:化工部长沙设计研究院珠海分院,广东,珠海,519040;江西理工大学建测学院,江西,赣州,341000

来源:辽宁建材

ISSN:1009-0142

年:2008

卷:000

期:004

页码:23-24

页数:2

中图分类:TU972.3

正文语种:chi

关键词:抗震;加强层;高层建筑;高层结构设计

摘要:某高层建筑塔楼结构采用型钢混凝土混合结构,裙楼为商业功能,平面功能比较灵活,故采用框架结构,地面以上裙楼和塔楼之间采用抗震缝进行分隔,结构上使塔楼和裙楼成为独立的结构体系.由于塔楼的高宽比较大,工程项目位于沿海地区,对风荷载较为敏感,结构侧向刚度较柔,经计算难以满足规范对水平位移的要求,考虑到结构体系的受力特点、刚度大小,经比较计算设置加强层,以达到设计的目的.

高层建筑结构设计分析王方成

高层建筑结构设计分析王方成 发表时间:2016-07-28T15:02:06.787Z 来源:《基层建设》2016年10期作者:王方成 [导读] 本文结合工程实际,对高层建筑结构设计分析。 深圳市建筑设计研究总院有限公司 摘要:随着我国科学技术的不断进步和经济的快速发展,城市中高楼耸立,高层建筑物已成为人们共同的追求。本文结合工程实际,对高层建筑结构设计分析。 关键词:高层建筑;结构设计 1 工程概况 该建筑总长46.10m,总宽35.90m,总高 111.563m,大屋面层高96.90m。地上共23层,地下 2 层。地下室层高 4.7m 与 3.75m。1~22 层层高 4.2m,23 层层高4.5m。上部均为办公室,地下部分为车库和设备用房。总建筑面积53065.79 m2,其中地上37307.59 m2,地下 15758.20 m2,建筑占地面积 10636m2。 2 自然地质情况 本工程场地地震基本烈度 7 度,设计地震分组第三组,设计基本地震加速度 0.1g,属于抗震不利地段,建筑场地类别Ⅱ类,设计特征周期取 0.45s。50 年遇基本风压 0.80kN/m2,场地地基土自上而下可划分为 7 层,从上至下依次为①层填石,层厚 2.7~19m;②层中砂,层厚 0.90~22.9m;②-A 层淤泥,层厚 1.70~1.90m;③层(含砾砂)粉质粘土,层厚 1.3~3.2m;④层残积砂质粘性土,层厚 2.6~8.0m;⑤层全风化花岗岩,层厚1.1~7.3m;⑥层强风化花岗岩:灰白、灰黄、灰褐色,饱和。⑥-1层砂土状强风化花岗岩,层厚 1.1~11.1m;⑥-2 层碎块状强风化花岗岩,层厚 0.8~11.5m;⑦层中风化花岗岩:灰、灰黄、灰白色,岩芯多呈短柱状和长柱状,局部呈块状,中粗粒花岗结构,块状构造,岩芯裂隙较发育,多呈闭合,岩芯采取率 67%~87%,RQD=38~71,岩石饱和单轴抗压试验为 64.60~70.10MPa,标准值为 66.03MPa,岩石坚硬程度为坚硬岩,岩体完整程度为破碎~较完整,岩体基本质量等级为Ⅱ~Ⅳ级。本次勘察所有钻孔均有揭示至该层,均未揭穿,揭露厚度为2.20~10.76m。 3 基础形式 由于办公楼及其周边纯地下室在基坑开挖后存在一定厚度的①层填石(厚度为 3.46~11.54m),采用预应力管桩时难以穿越填石层,另可供预应力管桩选择的桩端持力层④层残积砂质粘性土、⑤层全风化花岗岩和⑥-1 层砂土状强风化花岗岩分布不均匀,考虑到⑥-2层碎块状强风化花岗岩和⑦层中风化花岗岩分布较均匀,根据拟建场地岩土层特性、拟建物结构特点及荷载情况,采用冲(钻)孔灌注桩基础。 4 主体结构设计 4.1 结构选型 本建筑抗震设防类别为标准设防类(丙类)。由于建筑功能布局多为开敞办公区、大会议室等大空间,中间部分以及建筑外形要求美观、大方等方面因素,故本建筑主体部分采用钢筋混凝土框架———核心筒结构形式。框架———核心筒结构的周边框架与核心筒之间形成的可用空间较大,能使房屋空间布局灵活,又能使高层建筑结构满足较大刚度的要求,因此广泛用于写字楼、多功能建筑。具体做法是在建筑中部的电梯井筒及楼梯间四周布置抗震墙框筒,加大外框筒的柱距,减小梁的高度,周边形成稀柱框架。参照规范抗震设防烈度为7 度,确定抗震等级框架为二级,核心筒为二级。 4.2 主要荷载取值 高压配电房、电梯机房、通风机房活荷载为 7.0 kN/ m2,储藏间活荷载为 5.0 kN/m2,备餐间、车库活荷载为 4.0 kN/m2,商场、消防疏散楼梯活荷载为3.5 kN/ m2,办公室、卫生间、走廊、门厅、屋面花园、多功能厅大会议室活荷载为 3.0 kN/ m2,食堂活荷载为 2.5 kN/m2,上人屋面活荷载为 2.0 kN/m2,不上人屋面活荷载为 0.5 kN/m2。大型设备按实际情况考虑。 4.3 主要受力构件尺寸取值 地下室~1 层墙厚度为 400mm,2~23 层墙厚度为300mm。框架柱截面尺寸:地下室为 1200mm×1200mm,1~3层为1100mm×1100mm,4~6 层为 1000mm×1100mm,7~9 层为 1000mm×1000mm,10~12 层为 900mm×1000mm,13~15层为 800mm×900mm,16~18 层为 800mm×800mm,19~21 为700mm×700mm,22~23 层为 600mm×600mm。地下室负一层顶板的厚度为 200mm,地下室顶板除核心筒内板厚 180mm之外,其余部位板厚为 300mm,屋面层的板厚为 120mm,其它各楼层的板厚为 100mm。 4.4 主要结构材料选取 梁板混凝土强度等级为 C30,柱墙混凝土强度等级:-2~4层为C50,5~9层为C45,10~14 层为 C40,15~19 层为C35,20构架层为 C30。此外,圈梁、构造柱、挑檐、雨篷及楼梯均采用 C30 混凝土。主要用于基础梁、板,墙和柱以及楼面梁的纵筋选用 HRB400级钢筋。 4.5 计算软件及计算依据 本工程计算使用程序为中国建筑科学研究院开发的建筑结构三维设计与分析软件 SATWE。计算依据为建筑条件图以及《建筑结构荷载规范》GB50009-2012、《建筑抗震设计规范》GB50011-2010、《建筑地基基础设计规范》GB50007-2011、《高层建筑混凝土结构技术规程》JGJ3-2010等国家相关规范。 4.6 计算结果分析 (1)位移比。基于刚性楼板假定,考虑偶然偏心的条件下,X 方向最大层间位移与平均层间位移的比值:1.19 (第26层第1塔),Y 方向最大层间位移与平均层间位移的比值:1.28(第 26 层第 1 塔),属于平面不规则中的扭转不规则。位移比超过 1.2,需要考虑双向地震作用。 (2)层间位移。计算时不扣除整体弯曲变形,不考虑偶然偏心的影响,X 方向地震力作用下的楼层最大位移:1/1055<1/800;Y 方

高层建筑结构设计常见问题探讨

高层建筑结构设计常见问题探讨 摘要:近年来,建筑高度的不断增加, 风格的变化多样,给高层结构设计提出了新的课题和挑战。本文就结构设计中特别要注意的几个问题进行了分析。 关键词:高层建筑; 结构设计;常见问题 一、高层建筑结构设计特点 1 高层建筑结构设计的特点 1.1 水平荷载成为决定因素。一方面,因为楼房自重和楼面使用荷载在竖向构件中所引起的轴力和弯矩的数值,仅与楼房高度的一次方成正比;而水平荷载对结构产生的倾覆力矩,以及由此在竖向构件中引起的轴力,是与楼房高度的两次方成正比;另一方面,对某一定高度楼房来说,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震作用,其数值是随结构动力特性的不同而有较大幅度的变化。 1.2 轴向变形不容忽视。高层建筑中,竖向荷载数值很大,能够在柱中引起较大的轴向变形,从而会对连续梁弯矩产生影响造成连续梁中问支座处的负弯矩值减小,跨中正弯矩和端支座负弯矩值增大;还会对预制构件的下料长度产生影响,要求根据轴向变形计算值对下料长度进行调整;另外对构件剪力和侧移产生影响,与考虑构件竖向变形比较,会得出偏于不安全的结果。 1.3 侧移成为控制指标。与较低楼房不同,结构侧移已成为高层建筑结构设计中的关键因素。随着楼房高度的增加,水平荷载下

结构的侧移变形迅速增大,因而结构在水平荷载作用下的侧移应被控制在某一限度之内。 1.4 结构延性是重要设计指标。相对于较低楼房而言,高层建筑结构更柔一些,在地震作用下的变形更大一些。为了使结构在进入塑性变形阶段后仍具有较强的变形能力,避免倒塌,特别需要在构造上采取恰当的措施,来保证结构具有足够的延性。 二、根据不同类型高层建筑,选择合理的结构体系 2.1结构的规则性问题 新旧规范在这方面的内容出现了较大的变动,新规范在这方面增添了相当多的限制条件,例如:平面规则性信息、嵌固端上下层刚度比信息等,而且,新规范采用强制性条文明确规定“建筑不应采用严重不规则的设计方案”。因此,结构工程师在遵循新规范的这些限制条件上必须严格注意,以避免后期施工图设计阶段工作的被动。 2.2结构的超高问题 在抗震规范与高规中,对结构的总高度都有严格的限制,尤其是新规范中针对以前的超高问题,除了将原来的限制高度设定为a 级高度的建筑外,增加了 b级高度的建筑,因此,必须对结构的该项控制因素严格注意,一旦结构为 b级高度建筑甚或超过了b 级高度,其设计方法和处理措施将有较大的变化。在实际工程设计中,出现过由于结构类型的变更而忽略该问题,导致施工图审查时未予通过,必须重新进行设计或需要开专家会议进行论证

高层建筑结构设计简答题

(1.)框筒,筒中筒和束筒结构的布置? a框筒性能以正多边形为最佳,边数越多越好,剪力滞后越不明显,结构的空间作用越大 b筒中筒高宽比不应小于3,宜大于4,适用于高度不宜低于80米 c筒中筒的外框筒宜做成密柱深梁,柱距为1-3米,不宜大于4米,框筒的开洞率不宜大于60% d框筒结构的柱截面宜做成正方形,矩形或T形 e筒中筒的内筒居中,面积不宜太小内筒应贯通建筑物的全高,竖向刚度均匀变化。 f框筒当相邻层的柱不贯通时,应设置转换梁 g.框筒中楼盖高度不宜太大。可做成平板或密肋楼盖。 (3).框架核心筒的布置原则? a核心筒宜贯通建筑物全高,当宽度不宜小于筒体总高的二分之一. b框架核心筒结构的周边逐渐必须设置框架梁,结构平面布置尽可能规则,对称以减小扭转影响 c框架核心筒结构外框构建的界面不宜过小结构总高度不宜过大 d非地震区的抗风设计采用伸臂加强结构对增大侧向侧度是有利的e框架--核心筒的楼盖,选用结构高度小,整体性强,结构自重轻有利于施工楼盖,宜选用现浇梁板式楼板,密肋式楼板以及叠合楼板。 (4).高层建筑主要承受那些作用?

高层建筑结构主要承受竖向荷载,风荷载和地震作用等。竖向荷载包括结构构件自重,楼面活荷载,屋面雪荷载,施工荷载,与多层建筑结构有所不同,高层建筑结构的竖向荷载效应远大于多层建筑结构,水平荷载的影响显著增加,成为其设计的主要因素,同事对高层建筑结构应考虑竖向地震作用,高层建筑结构应考虑温度变化,材料收缩和徐变。地基不均匀沉降等间接作用在结构中产生的效应。 (5).结构承受的风荷载与哪些因素有关? 1基本风压 2风压高度变化系数 3风荷载体型系数 4群体风压体型,单体风压体系,局部风压体型系数 5风振系数。 (6)为什么水平荷载称成为设计的决定因素? 因为竖向荷载在结构的竖向构件中主要产生轴向压力其仅仅与结构高度的一次放成正比,而水平荷载对结构产生的倾覆力矩以及由此在竖向构件中所引起的轴力,数值与结构高度的二次方成正比。 (8)高层建筑结构平面布置基本原则? 尽量避免结构扭转和局部应力集中,平面简单规则对称,刚心与质心形心重合。

浅谈高层建筑结构设计的优化

浅谈高层建筑结构设计的优化 摘要:在社会经济快速发展的背景下,城市建筑用地资源日益紧张,高层乃至 超高层建筑项目不断兴起,在城市建筑领域中占据着相当重要的地位,并带动着 建筑行业的蓬勃发展。高层建筑项目建设中,结构设计的质量水平会对高层建筑 物的整体性能产生影响,如何对高层建筑结构进行优化设计是业内人士必须关注 的一项课题。本文即探讨在高层建筑结构优化设计中存在的不足之处,并提出了 高层建筑结构优化设计的解决措施与方法,望能够促进建筑结构设计方案的进一 步优化与发展。 关键词:高层建筑;结构;设计;优化 引言:高层建筑凭借着自身众多优势而成为当前城市建设中最重要的类型。 而结构设计的科学合理性对高层建筑的安全稳定性、适用性、耐久性及经济性等 有重大影响,因此优化高层建筑结构设计意义重大。高层建筑结构优化的主要目 的是在满足人们基本居住要求的前体下,实现对有限空间及资源的更合理分配, 以提升房屋的安全、舒适及美观性。建筑工程包含的内容众多,因此结构设计优 化的内容也是多方面的,在结构优化设计中,只有从多角度进行全面的优化设计,才能从整体上促进高层建筑结构优化设计水平的提高。 1、高层建筑历史与现状发展 在很早以前就有了结构化优化的思维,是在很多建筑设计者的实践中提炼出 来的,林同炎设计大师就是首次在国内提出结构化优化的方法。之后在我国高层 建筑迅速发展,目前发展已经十分惊人,各种优化方法也层出不穷。 在早前,手工画图时代,结构设计师都是依靠先把空间问题转换成平面问题。此时通过计算力学效应,逐步分析计算和考核,强度、整体受力情况都需要一一 验算核准,强调安全性,也要满足设计的基本要求。然后凭经验初取截面,再进 行强度验算校核、整体受力验算等步骤。由于受到当时条件制约,整体上要既要 实现经济,又要完全达到优化设计是很难达到的。随着计算机的普及,在建筑设 计上的应用,利用计算机来优化建筑设计结构,研究成果虽然取得了突破性的进展,但是应用上并不如人意。那是因为科研的结果与现实的运用在很大程度上有 一定的距离,现实中会考虑更多的约束条件,工程的复杂性在现实中得到体现。 不是科研中的简单函数关系就能处理完成,需要考虑实际情况。工程的复杂和不 可复制性,就决定了结构化优化的难度。 各种计算机语言和软件的出现,为建筑结构化设计提供了精准的计算,让设 计更有迅速。即便如此,科学研究的最优解和建筑实际的最优化还是有很大的区别,理论和实践区别在于实践的变化性。这就需要以实践为基础,更深入的去研究,从结构优化,到安全、美学、功能等方面进行优化。 2、设计高层建筑结构合理性所遵守的原则 2.1 高层建筑结构基础设计方案要合理 高层建筑场地的地址因素是决定高层建筑结构基础方案如何选择的参考依据。合理、有效的高层建筑结构基础方案的设计,必须结合相应的地址勘探条件,必 须切实、全面的考虑周边原有建筑群体、施工限制条件、地基荷载分布情况与高 层建筑结构类型等相互间的关联因素。 2.2 保证高层建筑结构设计方案的合理性

浅析高层建筑结构设计的难点

浅析高层建筑结构设计的难点 我国建筑行业发展至今,不管是其规模还是建筑技术在国际领域都是名列前茅。在建筑工程中,结构设计环节,是高层建筑未来施工的主要参考依据。它具有基础性、关联性、创新性等特征,在当代城市规划中,发挥着越来越重要的作用。基于此,结合国内高层结构设计的相关理论,着重对其设计难点进行分析,以达到降低高层建筑建设成本,保障结构设计质量的目的。 标签:高层建筑;结构设计;难点分析 一、高层建筑结构的特征 与普通建筑相比,高层建筑需承载垂直和水平两个方向的荷载,因此,其对结构的荷载承受能力要求更高,其中垂直荷载主要是由建筑物高度引起的,而水平荷载则是由外界风力产生的,外界风力和地震都是影响高层建筑结构稳定性的重要因素,另外,建筑层数的增高也会加快建筑物的位移速度,而过快得位移速度则会对建筑物的功能性和建筑物内住户的舒适度产生直接的影响,并且过大的侧移位还会对建筑的结构和非结构构件造成损害,因此,相关人员在进行高层建筑结构设计时,需合理控制建筑物的侧移范围,才能保证其结构功能性良好。 二、高层建筑结构的设计原则 (一)基础方案的合理性 高层建筑结构基础施工方案,是保证高层建筑施工整体性和良好性的基础保障,在实际的建筑结构方案设计当中,相关设计单位需要依照具体施工地质条件,依照具体的建筑施工要求来对结构实施设计。一方面,在建筑结构基础方案的配置上,需要和地质调查报告进行对接,保证其中各项调查数据充分符合工程施工标准。另一方面,在进行高层建筑施工过程中,还需要对建筑实施综合性进行分析,特别是对建筑整体结构的稳定程度、每一个环节的负载加以考虑,通过这种施工设计方式,充分保证工程施工的稳定性。 (二)结构措施完善 在高层建筑施工当中,除了需要对基础施工方案和施工图纸进行设计之外,其中还有一个比较重要的施工原则是相关施工单位经常忽略的问题,那就是需要保证建筑结构实施措施完善化。相关设计单位在对高层建筑结构进行设计的过程当中,需要充分地注意各部分组件相互之间的衔接程度。比如建筑体当中的钢筋锚固长度等,同时,设计单位还需要充分注意建筑体存在的一些薄弱环节,建筑体本身的温度对建筑体组件产生的影响等,对这几个方面的问题,在实际的设计工作当中,需要充分遵循“强柱弱梁、强剪弱弯、强压弱拉”的基本结构设计原则,保证高层建筑结构设计的稳定性。

浅析高层建筑结构设计的中震设计概念

浅析高层建筑结构设计的中震设计概念 发表时间:2016-06-27T14:51:54.553Z 来源:《基层建设》2016年5期作者:隆凡梅 [导读] 本文主要阐述了中中震设计的原理、设计方法及软件操作,并提出一些个人见解以供参考。 摘要:对于普通建筑物的结构抗震设计,目前我国是以小震为设计基础,中震和大震则是通过地震力的调整系数和各种抗震构造措施来保证的。但是对于较重要的、超高的、超限的建筑物则需要进行中震和大震的抗震计算。本文主要阐述了中中震设计的原理、设计方法及软件操作,并提出一些个人见解以供参考。 关键词:中震设计概念;地震影响系数;荷载 《建筑抗震设计规范》(GB50011-2001 2008年版)(下简称《抗规》)中对中震设计仅在总则中提到“小震不坏、中震可修、大震不倒”的抗震设防目标,但没有给出中震设计的设计要求和判断标准。 首先我们了解一下现行《抗规》存在几个问题: 1规范未对结构存在的薄弱构件进行分析并作出专门的设计规定,仅对框架类剪切型结构适用的薄弱层作了一些规定; 2在中震作用下,规范仅提出“中震可修”的概念设计要求,没有具体的抗震设计方法; 3“中震可修”的技术经济问题:可修的标准决定工程????造价、破坏损失、震后修复费用。 随着时代的进步,现在的建筑物体型复杂,结构新颖,超高超限越来越多,因此要求对结构进行中震的设计也越来越多。 2 中震设计 2.1 为何要进行中震设计呢? 《抗规》条文说明1.0.1条指出,对大多数结构,可只进行第一阶段设计(即小震下的弹性计算),而通过概念设计和抗震构造措施来实现“中震可修和大震不倒”的设计要求,但前提是建筑物的体型常规、合理,经验上一般能满足大中震的抗震要求。反之对于一些体型很不好的甚至超限的建筑物,在大震下的结构反应和小震完全不同,不进行相应的中震和大震计算是没法保证结构安全的。 为达到各阶段抗震要求,须对于上述体型异常、刚度变化大、超高超限等类型建筑物进行中震抗震设计,其余类型建筑物建议可按中震抗震进行验算。 2.2 中震设计的基本概念 抗震设计要达到的目标是在不同频数和强度的地震时,要求建筑物具有不同的抵抗能力。中震设计就是为了使建筑物满足该地区的基本设防烈度,即能够抵抗50年限期内可能遭遇超越概率为10%的地震烈度。 中震设计和大震设计都可称为性能设计。基于性能的抗震设计是建筑结构抗震设计的一个新的重要发展,它的特点是使抗震设计从宏观性、规范指定的目标向具体量化的多重目标过渡,业主(设计者)可选择所需的性能目标,而不仅仅是按现行规范通过分项系数、内力调整系数、抗震构造措施等粗略、定性的手段来满足中震和大震的设防要求。针对本工程的结构特点,设定本结构的抗震性能目标。对超限结构而言,利用这些指标能更合理地判断整体结构在中震、大震作用下的性能表现,给超限设计提供可靠的判断依据。 2.3 中震设计的分类 中震设计就是结构在地震影响系数按小震的2.875倍(αmax=0.23)取值下进行验算。目前工程界对于结构的中震设计有两种方法,第一种按照中震弹性设计,第二种是按照中震不屈服设计。 首先明确一点,中震弹性和中震不屈服是两个完全不同的概念,两者所采用的设计方法与设防目的均不相同。中震弹性设计,设计中取消《抗规》要求的各项地震组合内力调整系数,保留材料、荷载等分项系数,对应地保留了结构的安全度和可靠度,结构仍属于弹性阶段,属正常设计。中震不屈服设计,设计中除了地震内力不作调整,同时也取消了材料、荷载等分项系数,对应地不考虑结构的安全度和可靠度,结构已经处于弹塑性阶段,属承载力极限状态设计,是一种基于性能的设计方法。由此可见,中震弹性设计接近于平常的小震弹性设计,而中震不屈服设计则与大震设计同属于基于性能的设计。 3 基本方法及应用 根据中震设计的分类,以下分别阐述中震弹性及中震不屈服的具体设计方法,介绍如何在satwe、etabs、midas等软件中实现中震设计。 3.1 中震不屈服设计 3.3.1 不同抗震烈度下的各级屈服控制 若场地安评报告提供实际的地震影响系数,则应取用所提供的多遇地震、设防烈度地震下相应的地震影响系数,屈服判别地震作用1、2 的地震影响系数可相应插值求得。 3.3.2 SAWTE计算:地震信息中抗震等级均为四级;αmax按表3取值;总信息中风荷载不参加计算;勾选地震信息中的按中震(或大震)不屈服做结构设计选项;其它设计参数的定义均同小震设计。 3.3.3 MIDAS/Gen计算:主菜单→设计→钢筋混凝土构件设计参数→定义抗震等级:四级;主菜单→荷载→反应谱分析数据→反应谱函数:定义中震反应谱,在相应的小震反应谱基础上输入放大系数β即可,β值按表3计算所得;总信息中风荷载不参加计算;主菜单→结果→荷载组合:将各项荷载组合中的地震作用分项系数取为1.0;主菜单→设计→钢筋混凝土构件设计参数→材料分项系数:将材料分项系数取为1.0;其它同小震。 3.3.4 ETABS计算:选项→首选项→混凝土框架设计→定义抗震设计等级:四级;定义→反应谱函数→Add Chinese 2002 Spectrum→定义中震反应谱,地震影响系数最大值αmax取值,其余参数按《抗规》;静荷载工况中不定义风荷载作用;定义→荷载组合→各项荷载比例系数均取为荷载分项系数1.0x荷载组合系数φ;定义→材料属性→填写各材料的强度标准值其它同小震。 4 工程算例 4.1 示范算例 4.1.1 基本参数:二十二层框支剪力墙结构,三层楼面转换,无地下室,首、二层4.5米,标准层3.5米,总高79m。结构平面布置如图一所示。结构高宽比3.76,长宽比1.22;抗震参数,7 度,第一组,0.10g;场地II类;风荷载100年一遇为0.9kN/㎡。

关于高层建筑结构设计的探讨

关于高层建筑结构设计的探讨 摘要:随着社会的不断进步和科技的不断发展,高层建筑越来越广泛的出现在城市建设中。在高层建筑结构设计方面出现了新的发展和变化。本文主要阐述了某高层建筑结构体系及其地基基础设计、结构计算结果分析,最后针对高位转换的加强措施进行分析论述,仅供参考。 关键词:高层建筑,结构设计,措施 1工程概况 该工程总建筑面积65182m2,主塔楼地面以上84米,共25层(1~6层为裙房),其中1~6层为商业用房,层高4.2~5.5米,7层为住宅会所,8至25层为住宅,层高2.9米。塔楼平面为U形。地面以下为两层地下室,底板顶面标高为-8.7米,地下室主要用于设备用房和小汽车库,其中地下二层为平战结合六级人防地下室。 本工程各土层(岩层)从上至下划分为:①人工堆积层:以素填土为主,平均厚度2.57米;②耕土层:主要成份为粘质粘土或粉土平均厚度1.6米;③冲积层:以粉土为主,局部夹有粉砂和中砂,平均厚度1.79米;④残积土:以粉土为主,平均厚度4.34米;⑤全风化岩:岩石已风化成粉土或粉质粘土平均厚度1.4米;⑥强风化岩:岩芯多呈半岩半土状,平均厚度2.67米:⑦中风化岩:以褐红色粉砂岩为主,局部夹微风化岩,层厚1.5~9.4米,平均厚度5.73米;⑧微风化岩:以砾岩为主,部分为粉砂岩,顶部埋深13~23.3米。 本工程基本风压值Wo =0.5KN/m2,按7度近震设防,Ⅱ类场地。 外墙及分户墙为190厚砌块,内隔墙为120厚砌块,砌块容重为13kN/m3。2结构体系及其设计

经综合分析和技术经济比较,本工程主塔楼及裙房均采用框架—剪力墙结构体系,裙楼竖向结构由电梯井筒、落地剪力墙及框架组成;主塔楼竖向结构由电梯井筒、剪力墙肢、短肢剪力墙组成。根据使用功能需要, 将主塔楼四周框架柱在7层以上转换为短肢剪力墙,第六层设梁式转换层。抗震等级按高层建筑正常提交一级采用:剪力墙取为一级,框架采用一级。 由于转换层高度受限制,为减小转换梁截面尺寸,改善结构的受力性态,经与建筑设计配合,尽量使短肢剪力墙一端支承在框支柱上,使得短肢剪力墙与转换梁协同工作,减小转换梁单独工作时的应力集中。 表1 墙柱截面取值及其变化层次 表2 砼强度等级取值及其变化层次

高层建筑结构设计试题及复习资料

高层建筑结构设计 名词解释 1. 高层建筑:10层及10层以上或房屋高度大于28m 的建筑物。 2. 房屋高度:自室外地面至房屋主要屋面的高度。 3. 框架结构:由梁和柱为主要构件组成的承受竖向和水平作用的结构。 4. 剪力墙结构:由剪力墙组成的承受竖向和水平作用的结构。 5. 框架—剪力墙结构:由框架和剪力墙共同承受竖向和水平作用的结构。 6. 转换结构构件:完成上部楼层到下部楼层的结构型式转变或上部楼层到下部楼层结构布置改变而 设置的结构构件,包括转换梁、转换桁架、转换板等。 7. 结构转换层:不同功能的楼层需要不同的空间划分,因而上下层之间就需要结构形式和结构布置 轴线的改变,这就需要在上下层之间设置一种结构楼层,以完成结构布置密集、墙柱较多的上层向结构布置较稀疏、墙术较少的下层转换,这种结构层就称为结构转换层。(或说转换结构构件所在的楼层) 8. 剪重比:楼层地震剪力系数,即某层地震剪力与该层以上各层重力荷载代表值之和的比值。 9. 刚重比:结构的刚度和重力荷载之比。是影响重力?-P 效应的主要参数。 10. 抗推刚度(D ):是使柱子产生单位水平位移所施加的水平力。 11. 结构刚度中心:各抗侧力结构刚度的中心。 12. 主轴:抗侧力结构在平面内为斜向布置时,设层间剪力通过刚度中心作用于某个方向,若结构产 生的层间位移与层间剪力作用的方向一致,则这个方向称为主轴方向。 13. 剪切变形:下部层间变形(侧移)大,上部层间变形小,是由梁柱弯曲变形产生的。框架结构的 变形特征是呈剪切型的。 14. 剪力滞后:在水平力作用下,框筒结构中除腹板框架抵抗倾复力矩外,翼缘框架主要是通过承受 轴力抵抗倾复力矩,同时梁柱都有在翼缘框架平面内的弯矩和剪力。由于翼缘框架中横梁的弯曲和剪切变形,使翼缘框架中各柱轴力向中心逐渐递减,这种现象称为剪力滞后。 15. 延性结构:在中等地震作用下,允许结构某些部位进入屈服状态,形成塑性铰,这时结构进入弹 塑性状态。在这个阶段结构刚度降低,地震惯性力不会很大,但结构变形加大,结构是通过塑性变形来耗散地震能量的。具有上述性能的结构,称为延性结构。 16. 弯矩二次分配法:就是将各节点的不平衡弯矩,同时作分配和传递,第一次按梁柱线刚度分配固 端弯矩,将分配弯矩传递一次(传递系数C=1/2),再作一次分配即结束。 第一章 概论 (一)填空题 1、我国《高层建筑混凝土结构技术规程》(JGJ3—2002)规定:把10层及10层以上或房屋高度大于28m 的建筑物称为高层建筑,此处房屋高度是指室外地面到房屋主要屋面的高度。 2.高层建筑设计时应该遵循的原则是安全适用,技术先进,经济合理,方便施工。 3.复杂高层结构包括带转换层的高层结构,带加强层的高层结构,错层结构,多塔楼结构。

高层建筑结构设计分析论文

关于高层建筑结构设计分析 摘要:随着社会经济的迅速发展,人民物质生活水平的不断提高,居住条件的不断改善,高层住宅如雨后春笋一座座拔地而起。一个优秀的建筑结构设计往往是适用、安全、经济、美观便于施工的最佳结合。 关键词:建筑结构结构设计 abstract: with the rapid development of social economy, the people’s material life level unceasing enhancement, the constant improvement of the living conditions, high-rise residential have mushroomed place have sprung up. a good structure design is often apply, safety, economy, beautiful is advantageous for the construction of the best combination. keywords: building structure design 中图分类号: tu3文献标识码:a 文章编号: 一、高层建筑各专业设计的协调 高层建筑设计是个多专业、多程序的复杂系统工程,涉及“建筑、结构、设备”三个基本环节,参与高层建筑设计的工程师都深深体会到,对于每个专业单独而言是最完美的设计,但结合在一起却不是优秀的设计。各专业之间的矛盾如不妥善处理!高层建筑就无法施工,建成后也无法使用。“建筑、结构、设备”是互相制约的三个有机组成部分,高层建筑设计既是各个专业自我完善的过

高层建筑结构设计分析论文

高层建筑结构设计分析论文 1结构分析及设计分析 1.1分析三种重要的体系 1.1.1剪力墙体系 剪力墙结构是利用建筑的内、外墙做成剪力墙以承受垂直和水平荷载的结构体系。剪力墙的变形状态和受力特性同剪力墙的开洞情况联系密切,其中依据轧受力特性的不同,单片剪力墙可以分为特殊开洞墙和单肢墙。类型不同的剪力墙,对应的也会有不同的截面应力分布,所以,在对位移和内力进行计算时,也应该对不同的计算和设计方法进行使用,将平面有限元法应用到剪力墙的结构计算中。此种方法能够比较准确地完成计算,能够应用到各类剪力墙之间,然而,也有一定的弊端存在于这种方法中,其有着较多的自由度。所以,在具体的应用时,较为普遍地应用了开洞墙这一类型。 1.1.2筒体结构 筒体结构分为框架—核心筒、筒中筒等结构体系,其中框架—核心筒受力特点为框架主要承受竖向荷载,筒体主要承受水平荷载,变性特点类似于框架剪力墙,但抗侧刚度较大。依据不同的计算机模型处理手段,有三种类型的分析方法:主要为离散化方法、三维空间分析和连续化方法,其中三维空间方法的精确性会更高。 1.1.3框架—剪力墙体系 框架—剪力墙结构,是由若干个框架和剪力墙共同作为竖向承重结构的建筑结构体系。此种结构位移和内力等计算方法尽管种类较

多,然而,连梁连续化假定方法会经常被使用,在对位移协调条件进行计算时,应该按照框架水平位移和剪力墙转角进行设计,将外荷载和位移的关系用微分方程建立起来。然而,应该考虑需求和因素量会存在的差异,所以,也会有着不同形式的解答方式。 1.2具体的设计与分析 1.2.1合理地确定水平荷载 每一个建筑结构都应该一同承受风产生的水平荷载和垂直荷载,对于抵抗地震的能力也应该具备。高层建筑中,尽管结构设计会较大程度上受到竖向荷载的影响,然而,水平荷载却占据着重大的比重。随着不断增多的高层建筑层数,在高层建筑的结构设计中,水平荷载成为了其中一个重要的影响因素。首先,由于楼面使用荷载和楼房自重在竖构件中发挥的功能,对应水平荷载会将一定的倾覆作用施加到结构中,并且竖构件中就会出现高层建筑结构的作用力;其次,就高层建筑结构而言,地震作用和竖向荷载,也会跟着建筑结构的动力情况而出现较大的改变。 1.2.2合理地确定侧控 同低层建筑不同,在高层建筑结构设计中,结构侧移已经成为 了其中一个非常重要的影响因素。随着不断增加的楼层数量,结构侧移在水平荷载侧向变形下会逐渐增大。在高层建筑结构进行设计中,不但规定结构要有一定的强度,对于荷载作用带来的内力能够有效的予以承受,同时,还应该确保具备一定的抗侧刚度,确保在某一限度内控制结构在水平荷载作用出现的侧移情况。

高层建筑结构设计习题

一、简答题 1..试述高层建筑结构的受力特点。 2. .框架结构抗震延性设计的原则是什么? 3..剪力墙按受力特性的不同分为哪几类?各类的受力特点是什么? 4.对于剪力墙结构,平面及竖向结构布置有哪些基本要求? 5.在什么情况下,框架——剪力墙结构的计算简图应采用刚接体系? 二、选择题 1、计算框架结构梁截面惯性矩I时考虑楼板影响,对现浇楼盖,中框架取I= ()。 A.2 I B.05.1I C.02.1I D.0I 2、整体小开口剪力墙计算宜选用()分析方法。 A. 连续化方法 B. 材料力学分析法 C. 壁式框架方法 D. 有限元法 3、在下列地点建造相同高度的高层建筑,什么地点所受的风力最大?() A. 建在大城市郊区 B. 建在小城镇 C. 建在有密集建筑群的大城市市区 D. 建在海岸

4、对现浇框架支座处弯矩可以进行调幅,以下不正确的论述是( ) A.负弯矩调幅系数为0.8—0.9 B.只需对竖向荷载作用下的弯矩进行调幅 C.调幅必须在荷载效应组合之前完成 D.对水平和竖向荷载效应均需要调幅 5、关于框架结构的变形,哪个结论是正确的( ) A. 框架结构的整体变形主要呈现为弯曲型 B. 框架结构的层间变形一般为下大上下 C. 框架结构的层间变形一般为下小上大 D.框架结构的层间位移仅与柱的线刚度有关,而与梁的线刚度无关 6、在有地震作用组合设计表达式RE E E R S γ≤中,承载力抗震调整系数RE γ满足 ( ) A. 大于1 B. 小于1 C. 不一定 D. 1 7、剪力墙中,墙肢刚度不变时,如果增加连梁刚度,整体系数α将( ) A 、增加 B 、减小 C 、不减 D 、不增 8、结构在水平静荷载的作用下其内力计算方法为( ) A 、底部剪力法 B 、力矩分配法 C 、反弯点法 D 、时程分析法 9 ) A. 框架结构体系 B. 剪力墙结构体系 C. 筒体结构 D. 框架剪力墙结构

浅谈高层建筑结构设计_0

浅谈高层建筑结构设计 上世纪末以来,城市化进程加速,城市人口激增,社会经济蓬勃发展,高层建筑在城市中越来越多。如今,城市中的高层建筑已经成为当地经济繁荣的重要标志。 标签结构设计;高层建筑;控制参数;载荷;抗震 1 高层建筑的特点 《高层建筑混凝土结构技术规程》规定,10层及10层以上和高度超过28 m 的钢筋混凝土民用建筑属于高层建筑。相比多层建筑而言,高层是向空中发展,容积率一定的情况下,建造高层建筑可以节省规划用地面积,提高城市绿化率,还可以缓解城市用地紧张的局面。 高层建筑基础需要计算确定深度,独立的高层建筑单体而言,基础埋深比较容易确定,但现今住宅多为数十栋高层建筑群,地下车库相互连接,这时,既要充分考虑地下车库应的侧向刚度作为高层建筑的侧限。 高层建筑比多层建筑多出较多的设备用房,如电梯、管道井等,这样就会增加建筑物的造价,增加公共面积;从建筑防火的角度看,高层筑的防火要求要高于中低层建筑,也会增加高层建筑的工程造价和运行成本。 2 高层结构设计体系特点 地震作用和风荷载的影响下高度的增加,水平作用对高层建筑结构安全的控制作用更加显著。高层建筑的抗震性能、抗侧刚度、承载能力、造价高低,与所采用的结构系统密切相连。不同的层数、高度应采用不同的结构体系。 2.1 筒体结构 单个筒体可分为实腹筒、框筒和桁筒。平面剪力墙组成空间薄壁筒体,即为实腹筒;框架通过减小肢距,形成空间密柱框筒,即框筒;筒壁若用空间桁架组成,则形成桁筒。实际结构中除烟囱等构筑物外不可能存在单筒结构,而常常以框架—筒体结构、筒中筒结构、多筒体结构和成束筒结构形式出现。在层数很多或设防烈度要求很高时,可用筒体结构。 2.2 剪力墙结构体系 利用建筑物墙体作为承受竖向荷载、抵抗水平荷载的结构,称为剪力墙结构体系。剪力墙结构体系于钢筋混凝土结构中,由墙体承受全部水平作用和竖向荷载。现浇钢筋混凝土剪力墙结构的整体性好,刚度大,在水平荷载作用下侧向变形小,承载力要求也容易满足。但剪力墙结构体系平面布置不灵活,结构自重往

浅谈高层建筑结构设计的重点和难点

林业科技情报2014Vol.46No.1 浅谈高层建筑结构设计的重点和难点 梅雅莉 (黑龙江省林业设计研究院) [摘要]由于我国人口数量的增多,为解决住房等问题需要发展建筑行业,尤其是要发展高层建筑行业。随着建筑高度的不断增加,建筑的形式和结构功能也变得复杂多样,因此,高层建筑的结构设计工作便成为建筑工程师在设计过程中的重点和难点。本文着重对高层建筑结构设计过程中应注意的问题进行分析。 [关键词]高层建筑;结构设计;重点问题 Discussion On The Emphasis And Difficulty Of The Structure Design For High-Rise Building Mei Yali (Forest Designing AndResearch Institute Of Heilongjiang Province) Abstract:With the increasing for the population in our country,it is necessary to develop architecture industry,es-pecially the high-rise buildings,to solve the housing problem.Associated with the increasing number for the high -rise building,the type of the architecture and the structure function has got much more complex.As a result,the design for high-rise building becomes the emphasis and difficulty for the architecture engineering worker.The par-ticle mainly analyzes the problem emerging from the high-rise building design process. Key words:high-rise building;structure design;emphasis problem 1高层建筑结构设计的概况及意义 随着我国城市化进程不断加快,城市人口显著增多,高层建筑在城市建设中发挥着越来越重要的作用。即使在建筑设计理念和方法日益先进的今天,仍会因为高层建筑复杂的结构,较广的学术知识涉及和较大的工程量而出现设计失误的现象。高层建筑结构设计的意义有:首先,如果建筑所使用的面积一定,设计和建造高层建筑可以获得相对多一些的使用面积,可以解决城市用地紧张、房价高涨等问题。另一方面,精美的高层建筑设计还可以改善城市的外观,或者说成为城市的一道风景。比如马来西亚的石油大厦和上海的金茂大厦等等。而如果设计的建筑高层密度、结构不合理,就会给城市带来热岛效应,影响城市居民的生活环境,甚至由于高层的玻璃因反光而发生光污染的现象。其次,如果是在建筑面积与建设场地面积的比值一定,那么建造高层建筑就会有效地节约城市土地面积,得到更多的空闲地面,用这些空闲出来的地面来进行城市绿化或者供人们休息娱乐。与此同时,建筑高层的土地结构设计会为城市带来更充足的日照、更良好的采光和通风效果。在新加坡新建的居住区中,由于建造了很多的高层建筑群,得到了许多空闲的地面,使人们的休闲活动空间也得到了拓展。最后,一般情况下,高层建筑也可以使人们的内心得到舒展,所以说高层建筑对于城市人们的生活非常重要。因此,高层建筑的结构设计也非常重要,良好的建筑结构可以使人们生活得更加安全,更加舒心。也会使城市更加美观,拥有良好的生态环境。高层建筑结构设计师们要发挥自己的所学所能,设计出美观、经济、实用的高层建筑。 2高层建筑结构设计中应注意的问题 在高层建筑结构的设计中,我们需要注意一些问题,主要有以下几方面。 2.1剪力墙的设计 在高层建筑中,剪力墙对建筑有着重要的影响,所以,在剪力墙的设计过程中,要充分考虑剪力墙的结构体系。也就是以建筑物墙体作为承受水平、竖向荷载的结构,要求混凝土剪力墙具有较好的结构,较强的刚度,以满足其承载力的要求。在对剪力墙进行计算配筋时,切记要为墙肢一端配筋。在短肢剪力墙相对较多的结构中,将较短的墙段划为约束边缘的构件是不妥的,这会使墙肢中和轴附近的钢筋无法发挥作用。另外,剪力墙间距也不能过大,因为这会使得平面的布置显得死板,无法满足公共建筑功能需求。此外,一旦剪力墙自身的结构过大,高度超过标准就会引起悬臂墙变形, · 03 ·

浅析高层建筑结构设计存在的问题及对策

浅析高层建筑结构设计存在的问题及对策 发表时间:2016-05-25T10:16:41.620Z 来源:《工程建设标准化》2016年2月供稿作者:吴志星[导读] (山西平阳重工机械有限责任公司,山西,侯马,043003)众所周知,高层建筑的最大优势就是能够充分提高土地的利用率,这一优势在一定程度上充分缓解了当前我国土地资源短缺的压力。(山西平阳重工机械有限责任公司,山西,侯马,043003) 【摘要】在实行改革开放以后,随着时代的发展和科技的进步,我国的建筑业不仅与时俱进,楼层不断向高处扩展,而且在一定程度上取得了不小的成就,然而在高层建筑结构设计上各种问题频发,这也成为了一个亟待解决的问题。本文通过着重介绍高层建筑结构设计的原则、当前高层建筑结构设计中存在的问题和改进建筑结构设计中常见问题的对策,来强化和确保高层建筑结构设计的不断完善。 【关键词】高层建筑;结构设计;问题;对策 众所周知,高层建筑的最大优势就是能够充分提高土地的利用率,这一优势在一定程度上充分缓解了当前我国土地资源短缺的压力,但是,高层建筑的质量会受到多重因素的影响,一旦产生安全事故,必将对人们的生命和财产带来极大的影响,因此,对建筑的结构设计提出了更高的要求,只有高层建筑的结构设计科学合理,其质量才能有保障,才会有利于社会和谐稳定发展。 一、高层建筑结构的设计原则 1、选择合理的结构方案 只有结构方案经济合理,才能让一个建筑设计合理,可行性强的结构形式和传力简捷、受力明确的结构体系也会促进一个良好设计的形成。因此在进行结构设计时应当具体分析建筑所处的地理环境、材料和设计的需求及施工条件等,充分考虑高层建筑自身的特点,根据实际情况来选择一个合理的结构方案。 2、选择合适的基础方案 在设计过程中要注意最大程度地发挥地基的潜力,在基础设计时要形成详尽的地质勘察报告,如果缺少报告,必须进行现场勘查来制定设计方案,要先通过综合分析工程的地质地貌、施工条件、上部结构类型、相邻建筑物的影响及荷载分布等因素的考虑再进行基础设计,只有这样,才能设计出经济合理的基础方案。 3、进行正确的分析计算 随着科技的发展,计算机技术在结构设计方面已得到广泛应用,种类繁多的计算软件都存在不同程度的缺陷,因此在结构设计的计算过程中会出现不精确的情况,这就要求设计师在使用软件过程中细致认真,对产生的结果认真分析和校对,作出合理判断。 二、当前高层建筑结构设计中存在的问题 1、结构体系选用不科学 由于我国所处地球的板块较为活跃,因此地震频发,对与这些地震多的地区建设高层建筑就应当选用抗震性强的结构体系和建筑材料,一些发达国家通常是使用的钢结构,而我国大多使用的钢筋混凝土结构或者混合结构,但钢框架的刚度较小,钢结构会产生一定程度的负担,也不会起到较好的效果,钢筋混凝土很容易产生弯曲变形而导致侧移,因此在进行结构设计时必须注意使用加强层把侧移量降低或者加大混凝土制土桶刚度。 2、高层建筑普遍超高 高层建筑对抗震能力的要求较高,因此国家严格规定了建筑物的高度,但是实际需求的不断改变使得建筑的高度不断发生改变,因此国家又对A级高度和B级高度进行新的规定和细致划分。即使如此,一些设计师在进行结构设计时往往会忽视高度的问题,对于一些不适合建设高层建筑的地段或条件也会出现为了追求利益的最大化而违反相关规定进行施工,这种情况对整个建筑的成本预计和建设进度都会造成诸多不良影响。 3、结构设计的刚度问题 楼层竖向结构的规则性与平面刚度问题是高层建筑结构设计过程中一个经常遇到的问题,由于在高层建筑的设计过程中每位设计师都有自己的想法和设计理念,因此在设计时就会产生差异,导致结构设计产生矛盾和分歧,在建筑施工过程中很容易出现一味追求独特新颖的外观而忽视抗侧移的刚度对高层建筑能否抗震的影响。 4、材料配备和资源配置不科学 高层建筑的结构特点非常明显,其结构设计的复杂性是由其功能的复杂性决定的,传统的建筑选材多为可燃性材料,这种材料很可能增加高层建筑火灾发生的可能性,对于建筑施工过程中劳动力等资源的配置如果未能提前进行预计和计算,还会对后期的施工造成一定的难度,对于其引发的一系列突发状况也很难及时处理和解决,造成施工进度无法按期完成。 三、改进建筑结构设计中常见问题的对策 1、选用科学的结构体系 受自然灾害的影响,人们对建筑的稳定性能要求逐渐提高,对高层建筑的要求越来越严格,由于高层建筑限制性较大,因此必须对高层建筑结构设计中选用的结构体系进行严格限制,以免在后期的项目施工的设计阶段发生不必要的变动,对计算简图也要慎重选择和使用,根据建筑物的影响因素和自身特点来选用一套科学合理的的结构体系。 2、注重建筑的设计高度 设计师在进行高层建筑的结构设计过程中,要明确意识到有关的高度规范,严格审查设计图纸,确保结构设计与相关的要求和规范相符合,对于建筑施工过程中出现的问题要及时调集有关专家加以具体分析,对高层建筑重新进行设计和评估,以免对建筑的施工进度和质量产生不良影响。国家相关部门也应当加大对高层建筑的审查力度,对不合乎规范的行为进行严加处理,确保高层建筑结构的稳定性和安全性。 3、选择合理的刚度设计

相关主题