搜档网
当前位置:搜档网 › 2019高考数学考点突破——选考系列:参数方程学案

2019高考数学考点突破——选考系列:参数方程学案

2019高考数学考点突破——选考系列:参数方程学案
2019高考数学考点突破——选考系列:参数方程学案

参数方程

【考点梳理】

1.曲线的参数方程

一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数

?????

x =f t ,y =g

t

并且对于t 的每一个允许值,由这个方程组所确定的点M (x ,y )都在这条曲

线上,那么这个方程组就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称参数.

2.参数方程与普通方程的互化

通过消去参数从参数方程得到普通方程,如果知道变数x ,y 中的一个与参数t 的关系,例

如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么

?

??

??

x =f t ,y =g t

就是曲线的参数方程.在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致.

3.常见曲线的参数方程和普通方程

考点一、参数方程与普通方程的互化

【例1】已知曲线C 1:?????x =-4+cos t ,y =3+sin t (t 为参数),C 2:?

????x =8cos θ,

y =3sin θ(θ为参数).

(1)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线;

(2)若C 1上的点P 对应的参数为t =π

2

,Q 为C 2上的动点,求PQ 的中点M 到直线C 3:

?????x =3+2t ,y =-2+t (t 为参数)距离的最小值.

[解析] (1)由C 1消去参数t ,得曲线C 1的普通方程为(x +4)2+(y -3)2

=1. 同理曲线C 2的普通方程为x 264+y 2

9

=1.

C 1表示圆心是(-4,3),半径是1的圆,C 2表示中心是坐标原点,焦点在x 轴上,长半轴

长是8,短半轴长是3的椭圆.

(2)当t =π

2时,P (-4,4),又Q (8cos θ,3sin θ),

故M ? ????-2+4cos θ,2+32sin θ, 又C 3的普通方程为x -2y -7=0, 则M 到直线C 3的距离d =55|4cos θ-3sin θ-13|=5

5

|3sin θ-4cos θ+13| =

55|5(sin θ-φ)+13|?

????其中φ满足tan φ=43,所以d 的最小值为855.

【类题通法】

1.将参数方程化为普通方程,消参数常用代入法、加减消元法、三角恒等变换消去参数. 2.把参数方程化为普通方程时,要注意哪一个量是参数,并且要注意参数的取值对普通方程中x 及y 的取值范围的影响,要保持同解变形. 【对点训练】

在直角坐标系xOy 中,曲线C

的参数方程为?

????x =3cos θ,

y =sin θ(θ为参数),直线

l 的参数方

程为?

????x =a +4t ,

y =1-t (t 为参数).

(1)若a =-1,求C 与l 的交点坐标; (2)若C 上的点到l 距离的最大值为17,求a .

[解析] (1)a =-1时,直线l 的普通方程为x +4y -3=0. 曲线C 的标准方程是x 2

9

+y 2

=1,

联立方程?????x +4y -3=0,x 29+y 2

=1,解得?????x =3,y =0或?????x =-21

25,y =2425

.

则C 与l 交点坐标是(3,0)和? ??

??-2125,2425.

(2)直线l 的普通方程是x +4y -4-a =0. 设曲线C 上点P (3cos θ,sin θ).

则P 到l 距离d =|3cos θ+4sin θ-4-a |17=|5sin (θ+φ)-4-a |17,其中tan φ=3

4.

又点C 到直线l 距离的最大值为17. ∴|5sin(θ+φ)-4-a |的最大值为17. 若a ≥0,则-5-4-a =-17,∴a =8. 若a <0,则5-4-a =17,∴a =-16. 综上,实数a 的值为a =-16或a =8.

考点二、参数方程的应用

【例2】在平面直角坐标系xOy 中,曲线C 的参数方程为?

????x =2cos θ,

y =2+2sin θ(θ为参数),直线

l 的参数方程为?????x =1-2

2

t ,y =22t (t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐

标系.

(1)写出直线l 的普通方程以及曲线C 的极坐标方程;

(2)若直线l 与曲线C 的两个交点分别为M ,N ,直线l 与x 轴的交点为P ,求|PM |·|PN |的值.

[解析] (1)直线l 的参数方程为?????x =1-2

2

t ,y =22t (t 为参数),

消去参数t ,得x +y -1=0. 曲线C 的参数方程为???

?

?x =2cos θ,y =2+2sin θ

(θ为参数),

利用平方关系,得x 2

+(y -2)2

=4,则x 2

+y 2

-4y =0.

令ρ2

=x 2

+y 2

,y =ρsin θ,代入得C 的极坐标方程为ρ=4sin θ. (2)在直线x +y -1=0中,令y =0,得点P (1,0).

把直线l 的参数方程代入圆C 的方程得t 2

-32t +1=0, ∴t 1+t 2=32,t 1t 2=1.

由直线参数方程的几何意义,|PM |·|PN |=|t 1·t 2|=1. 【类题通法】

过定点P 0(x 0,y 0),倾斜角为α的直线参数方程的标准形式为?

????x =x 0+t cos α,

y =y 0+t sin α(t 为参数),

t 的几何意义是P 0P →

的数量,即|t |表示P 0到P

的距离,t 有正负之分.对于形如?

????x =x 0+at ,

y =y 0+bt (t

为参数),当a 2

+b 2

≠1时,应先化为标准形式后才能利用t 的几何意义解题. 【对点训练】

在平面直角坐标系xOy 中,曲线C 的参数方程为??

?x =5cos α,

y =sin α

(α为参数).以坐标原点

O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρcos ?

??

??θ+π4= 2.l 与C 交于A ,B 两点.

(1)求曲线C 的普通方程及直线l 的直角坐标方程; (2)设点P (0,-2),求|PA |+|PB |的值. [解析] (1)由曲线C :???x =5cos α,

y =sin α

(α为参数)消去α,

得普通方程x 2

5

+y 2

=1.

因为直线l 的极坐标方程为ρcos ? ????θ+π4=2,即ρcos θ-ρsin θ=2, 所以直线l 的直角坐标方程为x -y -2=0.

(2)点P (0,-2)在l 上,则l 的参数方程为?????x =2

2

t ,y =-2+2

2t (t 为参数),

代入x 2

5

+y 2=1整理得3t 2

-102t +15=0,

由题意可得|PA |+|PB |=|t 1|+|t 2|=|t 1+t 2|=102

3

.

考点三、参数方程与极坐标方程的综合应用

【例3】在直角坐标系xOy 中,直线l 1的参数方程为?

????x =2+t ,

y =kt (t 为参数),直线l 2的参数

方程为????

?x =-2+m ,y =m k

(m 为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C .

(1)写出C 的普通方程;

(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cos θ+sin θ)-2=0,M 为与C 的交点,求M 的极径.

[解析] (1)由l 1:?

????x =2+t ,y =kt (t 为参数)消去t ,

化为l 1的普通方程y =k (x -2),① 同理得直线l 2的普通方程为x +2=ky ,② 联立①,②消去k ,得x 2

-y 2

=4(y ≠0). 所以C 的普通方程为x 2

-y 2=4(y ≠0). (2)将直线l 3化为普通方程为x +y =2, 联立???x +y =2,x 2

-y 2

=4得?????x =322,

y =-2

2

∴ρ2=x 2+y 2

=184+24=5,∴与C 的交点M 的极径为 5.

【类题通法】

1.参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.

2.数形结合的应用,即充分利用参数方程中参数的几何意义,或者利用ρ和θ的几何意义,直接求解,可化繁为简. 【对点训练】

已知曲线C 的参数方程为????

?x =2+2cos θ,y =2sin θ

(θ为参数),以坐标原点O 为极点,x 轴的正

半轴为极轴建立极坐标系,直线l 的极坐标方程为ρsin ?

????θ+π6=4.

高中数学极坐标与参数方程大题(详解)

参数方程极坐标系 解答题 1.已知曲线C:+=1,直线l:(t为参数) (Ⅰ)写出曲线C的参数方程,直线l的普通方程. (Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值. +=1 , , 的距离为 则 取得最小值,最小值为 2.已知极坐标系的极点在直角坐标系的原点处,极轴与x轴的正半轴重合,直线l的极坐标方程为: ,曲线C的参数方程为:(α为参数). (I)写出直线l的直角坐标方程; (Ⅱ)求曲线C上的点到直线l的距离的最大值. 的极坐标方程为: cos=

∴ y+1=0 ( d= 的距离的最大值. 3.已知曲线C1:(t为参数),C2:(θ为参数). (1)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线; (2)若C1上的点P对应的参数为t=,Q为C2上的动点,求PQ中点M到直线C3:(t为参数)距离的最小值. :(化为普通方程得:+ t=代入到曲线 sin =,),﹣

4.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立直角坐标系,圆C的极坐标方程为 ,直线l的参数方程为(t为参数),直线l和圆C交于A,B两点,P是圆C 上不同于A,B的任意一点. (Ⅰ)求圆心的极坐标; (Ⅱ)求△PAB面积的最大值. 的极坐标方程为,把 ,利用三角形的面积计算公式即可得出. 的极坐标方程为,化为= 把 ∴圆心极坐标为; (t , = 距离的最大值为 5.在平面直角坐标系xoy中,椭圆的参数方程为为参数).以o为极点,x轴正半轴为极轴建立极坐标系,直线的极坐标方程为.求椭圆上点到直线距离的最大值和最小值.

高中数学选修4-4极坐标与参数方程练习题

极坐标与参数方程单元练习1 一、选择题(每小题5分,共25分) 1、已知点M 的极坐标为?? ? ??35π,,下列所给出的四个坐标中能表示点M 的坐标是( )。 A. B. C. D. ?? ? ? ? -355π, 2、直线:3x-4y-9=0与圆:? ??==θθ sin 2cos 2y x ,(θ为参数)的位置关系是( ) A.相切 B.相离 C.直线过圆心 D.相交但直线不过圆心 3、在参数方程? ??+=+=θθ sin cos t b y t a x (t 为参数)所表示的曲线上有B 、C 两点,它们对应的参数值分别为t 1、 t 2,则线段BC 的中点M 对应的参数值是( ) 4、曲线的参数方程为???-=+=1 2 32 2t y t x (t 是参数),则曲线是( ) A 、线段 B 、双曲线的一支 C 、圆 D 、射线 5、实数x 、y 满足3x 2 +2y 2 =6x ,则x 2 +y 2 的最大值为( ) A 、 27 B 、4 C 、2 9 D 、5 二、填空题(每小题5分,共30分) 1、点()22-, 的极坐标为 。 2、若A ,B ?? ? ? ? -64π, ,则|AB|=___________,___________。(其中O 是极点) 3、极点到直线()cos sin 3ρθθ+=________ _____。 4、极坐标方程2sin 2cos 0ρθθ-?=表示的曲线是_______ _____。 5、圆锥曲线()为参数θθ θ ?? ?==sec 3tan 2y x 的准线方程是 。

6、直线l 过点()5,10M ,倾斜角是 3 π ,且与直线032=--y x 交于M ,则0MM 的长为 。 三、解答题(第1题14分,第2题16分,第3题15分;共45分) 1、求圆心为C ,半径为3的圆的极坐标方程。 2、已知直线l 经过点P(1,1),倾斜角6 π α=, (1)写出直线l 的参数方程。 (2)设l 与圆42 2=+y x 相交与两点A 、B ,求点P 到A 、B 两点的距离之积。 3、求椭圆14 92 2=+y x )之间距离的最小值,与定点(上一点01P 。 极坐标与参数方程单元练习1参考答案 【试题答案】一、选择题:1、D 2、D 3、B 4、D 5、B 二、填空题:1、??? ? ?-422π, 或写成?? ? ? ? 4722π,。 2、5,6。 3、。 4、()2 2sin 2cos 02y x ρθρθ-==,即,它表示抛物线。 5、13 13 9±=y 。6、3610+。 三、解答题 1、1、如下图,设圆上任一点为P ( ),则((((2366 OP POA OA π ρθ=∠=- =?=,, ((((cos Rt OAP OP OA POA ?=?∠中, 6cos 6πρθ? ?∴=- ???而点O )32,0(π A )6 ,0(π符合 2、解:(1)直线的参数方程是是参数)t t y t x (;211,23 1??? ????+=+= (2)因为点A,B 都在直线l 上,所以可设它们对应的参数为t 1和t 2,则点A,B 的坐标分别为 ),211,231(11t t A ++ )2 1 1,231(22t t B ++ 以直线L 的参数方程代入圆的方程42 2 =+y x 整理得到02)13(2=-++t t ① 因为t 1和t 2是方程①的解,从而t 1t 2=-2。所以|PA|·|PB|= |t 1t 2|=|-2|=2。 3、(先设出点P 的坐标,建立有关距离的函数关系)

高考数学重点题型:参数取值题型与分析

高考数学重点题型:参数取值题型与分析 (Ⅰ)参数取值问题的探讨 一、若在等式或不等式中出现两个变量,其中一个变量的范围已知,另一个变量的范围 为所求,且容易通过恒等变形将两个变量分别置于等号或不等号的两边,则可将恒成立问题转化成函数的最值问题求解。 例1.已知当x ∈R 时,不等式a+cos2x<5-4sinx+45-a 恒成立,求实数a 的取值范 围。 分析:在不等式中含有两个变量a 及x ,其中x 的范围已知(x ∈R ),另一变量a 的范 围即为所求,故可考虑将a 及x 分离。 解:原不等式即:4sinx+cos2x<45-a -a+5 要使上式恒成立,只需45-a -a+5大于4sinx+cos2x 的最大值,故上述问题转 化成求f(x)=4sinx+cos2x 的最值问题。 f(x)= 4sinx+cos2x=-2sin2x+4sinx+1=-2(sinx -1)2+3≤3, ∴45-a -a+5>3即45-a >a+2 上式等价于 ?? ? ??->-≥-≥-2)2(450 450 2a a a a 或???≥-<-04502a a ,解得≤54a<8. 说明:注意到题目中出现了sinx 及cos2x ,而cos2x=1-2sin2x,故

若把sinx 换元成t,则 可把原不等式转化成关于t 的二次函数类型。 另解:a+cos2x<5-4sinx+45-a 即 a+1-2sin2x<5-4sinx+45-a ,令sinx=t,则t ∈[-1,1], 整理得2t2-4t+4-a+45-a >0,( t ∈[-1,1])恒成立。 设f(t)= 2t2-4t+4-a+45-a 则二次函数的对称轴为t=1, ∴ f(x)在[-1,1]内单调递减。 ∴ 只需f(1)>0,即45-a >a -2.(下同) 例2.已知函数f(x)在定义域(-∞,1]上是减函数,问是否存在实数k ,使不等式 f(k -sinx)≥f(k2-sin2x)对一切实数x 恒成立?并说明理由。 分析:由单调性与定义域,原不等式等价于k -sinx ≤k2-sin2x ≤1对于任意x ∈R 恒成 立,这又等价于 ? ????----≥+-----+≤)2()21(sin 41)1(sin 12222x k k x k 对于任意x ∈R 恒成立。 不等式(1)对任意x ∈R 恒成立的充要条件是k2≤(1+sin2x)min=1,即-1≤k ≤1----------(3) 不等式(2)对任意x ∈R 恒成立的充要条件是k2-k+41 ≥[(sinx -21)2]max=49 ,

2019高考数学考点突破——选考系列参数方程学案

参数方程 【考点梳理】 1.曲线的参数方程 一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数 ? ?? ?? x =f t ,y =g t 并且对于t 的每一个允许值,由这个方程组所确定的点M (x ,y )都在这条曲 线上,那么这个方程组就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称参数. 2.参数方程与普通方程的互化 通过消去参数从参数方程得到普通方程,如果知道变数x ,y 中的一个与参数t 的关系,例 如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么? ?? ?? x =f t ,y =g t 就是曲线的参数方程.在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致. 3.常见曲线的参数方程和普通方程 点的轨迹 普通方程 参数方程 直线 y -y 0=tan α(x -x 0) ? ?? ?? x =x 0+t cos α, y =y 0+t sin α(t 为参数) 圆 x 2+y 2=r 2 ? ?? ?? x =r cos θ,y =r sin θ(θ为参数) 椭圆 x 2a 2+y 2 b 2 =1(a >b >0) ? ?? ?? x =a cos φ,y =b sin φ(φ为参数) 考点一、参数方程与普通方程的互化 【例1】已知曲线C 1:?????x =-4+cos t ,y =3+sin t (t 为参数),C 2:? ????x =8cos θ,y =3sin θ(θ为参数). (1)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线; (2)若C 1上的点P 对应的参数为t =π 2 ,Q 为C 2上的动点,求PQ 的中点M 到直线C 3:

高中数学直线参数方程测试题

三直线的参数方程 (课前部分) 编写者: 【学习目标】 理解直线的参数式方程以及明确它的形式特征,明确参数t 的几何意思。 【学习重点】 直线的参数式方程以及参数t 的几何意义。 【学习难点】 理解直线的参数方程中t 的几何意义. 【学法指导】通过探究直线上两点间的距离及利用向量的有关知识,让学生积极、主动地参与观察,分析、进而得出直线的参数式方程,培养了学生运用类比法的数学思想方法解决问题 通过本节课的学习,不仅要让学生学会知识,更重要的是由学会变为会学,让学生在探究活动中,自主探究知识,逐步掌握自主获得知识的学习方法。 【复习回顾】 1 、我们知道经过平面内的定点M0(x0,y 0)及斜率k 应用直线方程的点斜式就可以写出直线方程,那么你认为有几种办法能确定斜率k 值呢? 2 、直线方程的方向向量如何确定?平面向量的共线定理是什么? 3 、数轴上两点对应的数分别为t1,t 2 ,则两点间的距离是什么? 【自主学习】 大家都知道,当我们把平面向量中所有的单位向量的起点放在坐标原点,那么他们的终点的轨迹是以坐标原点为圆心的单位圆。那么你能写出一个倾斜角为α的直线的一个方向单位向量吗? 已知直线上定点M 0,M 是直线上的任意一点,当M 移动时,M0M 发生了哪些变化?与直线L 的单位方向向量e 之间什么关系? 设直线l的倾斜角为,定点M 0、动点M 的坐标 分别为M0(x0,y0)、M (x,y) 如何用e和M 0的坐标表示直线上任意一点M的坐标? 通过对上面的问题的分析,你认为用哪个几何条件来建立参数方程比较好?又应当怎样选择参数呢?请同学们自己动手推导一下直线的参数方程的标准式,对比教材P35 的推导过程. 请同学们进一步思考直线的参数方程中哪些是变量?哪些是常量?每一个量的几何意义又是什么?形式上有什么要求? 根据直线的参数方程的公式请大家写出经过点M0(-2,3),倾斜角为30°的直线L 的参数方程? 通过这个方程请大家求出:(1)当t=1 时对应的点P1的坐标。(2)当t= -1 时对应的点P2的坐标。(3)当t=0 时对应的点P3的坐标。(4)求出直线L 上与点M0相距为 2 的点的坐标。 画图找到这些点,做好标注! 有人说t>0 时,t 表示向量M 0M 的长度,你同意吗?t<0 时又如何呢?通过对以上的分析你能总结出参数t 的几何意义吗?如有困难参看教材P36例 1 的上面部分。 由于直线的倾斜角α [0 ,),所以这个方向单位向量很特别,方向如何?请同学们自己动手 画出图形,写出这个向量e 的坐标。 当你竭尽全力,时间自会主持公道1

2019高考数学考点突破——空间向量与立体几何空间向量及其运算学案

空间向量及其运算 【考点梳理】 1.空间向量的有关概念 名称 定义 空间向量 在空间中,具有大小和方向的量 相等向量 方向相同且模相等的向量 相反向量 方向相反且模相等的向量 共线向量 (或平行向量) 表示空间向量的有向线段所在的直线互相平行或重合的向量 共面向量 平行于同一个平面的向量 (1)共线向量定理:对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使得a =λb . (2)共面向量定理:如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使p =x a +y b . (3)空间向量基本定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c ,其中,{a ,b ,c }叫做空间的一个基底. 3.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角 已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB → =b ,则∠AOB 叫做向量a 与b 的夹角,记作〈a ,b 〉,其范围是[0,π],若〈a ,b 〉=π 2 ,则称a 与b 互相垂直,记作a ⊥b . ②非零向量a ,b 的数量积a·b =|a ||b |cos 〈a ,b 〉. (2)空间向量数量积的运算律: ①结合律:(λa )·b =λ(a·b ); ②交换律:a·b =b·a ; ③分配律:a·(b +c )=a·b +a·c . 4.空间向量的坐标表示及其应用

设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3). 向量表示 坐标表示 数量积 a·b a 1 b 1+a 2b 2+a 3b 3 共线 a =λb (b ≠0,λ∈R ) a 1=λb 1,a 2=λb 2,a 3=λb 3 垂直 a·b =0(a ≠0,b ≠0) a 1 b 1+a 2b 2+a 3b 3=0 模 |a | a 21+a 22+a 2 3 夹角 〈a ,b 〉(a ≠0,b ≠0) cos 〈a ,b 〉= a 1 b 1+a 2b 2+a 3b 3 a 21+a 22+a 23· b 21+b 22+b 2 3 考点一、空间向量的线性运算 【例1】如图所示,在空间几何体ABCD -A 1B 1C 1D 1中,各面为平行四边形,设AA 1→=a ,AB → =b ,AD → =c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量: (1)AP →;(2)MP →+NC 1→. [解析] (1)因为P 是C 1D 1的中点,所以AP →=AA 1→+A 1D 1→+D 1P →=a +AD →+12D 1C 1→ =a +c +12AB →=a +c +1 2 b . (2)因为M 是AA 1的中点,所以MP →=MA →+AP → =12 A 1A →+AP → =-12a +? ? ???a +c +12b =12a +12b +c . 又NC 1→=NC →+CC 1→=12BC →+AA 1→

(完整)2020年高考理科数学《坐标系与参数方程》

2020年高考理科数学《坐标系与参数方程》 【题型归纳】 题型一 曲线的极坐标方程 例1 、在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求C 1,C 2的极坐标方程; (2)若直线C 3的极坐标方程为θ=π4 (ρ∈R ),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积. 【答案】(1)C 1的极坐标方程为ρcos θ=-2,C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0; (2)面积为12 . 【解析】(1)因为x =ρcos θ,y =ρsin θ,所以C 1的极坐标方程为ρcos θ=-2, C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0. (2)将θ=π4 代入ρ2-2ρcos θ-4ρsin θ+4=0, 得ρ2-32ρ+4=0,解得ρ1=22,ρ2= 2.故ρ1-ρ2=2,即|MN |= 2. 由于C 2的半径为1,所以△C 2MN 的面积为12 . 【易错点】互化公式:x =ρcos θ,y =ρsin θ,ρ2=x 2+y 2,tan θ=y x (x ≠0),要注意ρ,θ的取值范围及其影响. 【思维点拨】1.进行极坐标方程与直角坐标方程互化的关键是抓住互化公式:x =ρcos θ,y =ρsin θ,ρ2 =x 2+y 2,tan θ=y x (x ≠0),要注意ρ,θ的取值范围及其影响,灵活运用代入法等技巧. 2.由极坐标方程求曲线交点、距离等几何问题时,如果不能直接用极坐标解决,可先转化为直角坐标方程,然后求解. 题型二 参数方程及其应用 例2、已知曲线C :x 24+y 29=1,直线l :? ????x =2+t ,y =2-2t (t 为参数). (1)写出曲线C 的参数方程,直线l 的普通方程; (2)过曲线C 上任一点P 作与l 夹角为30°的直线,交l 于点A ,求|P A |的最大值与最小值. 【答案】(1)2x +y -6=0;(2)最大值为2255,最小值为255. 【解析】(1)曲线C 的参数方程为? ????x =2cos θ,y =3sin θ(θ为参数).直线l 的普通方程为2x +y -6=0. (2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为

2019高考数学考点突破——导数及其应用与定积分:导数与函数的单调性 Word版含解析

导数与函数的单调性 【考点梳理】 函数的导数与单调性的关系 函数y =f (x )在某个区间内可导,则 (1)若f ′(x )>0,则f (x )在这个区间内单调递增; (2)若f ′(x )<0,则f (x )在这个区间内单调递减; (3)若f ′(x )=0,则f (x )在这个区间内是常数函数. 【考点突破】 考点一、判断或证明函数的单调性 【例1】已知函数已知函数f (x )=ln x +a (1-x ),讨论f (x )的单调性. [解析] f (x )的定义域为(0,+∞),f ′(x )=1x -a . 若a ≤0,则f ′(x )>0恒成立, 所以f (x )在(0,+∞)上单调递增. 若a >0,则当x ∈??? ?0,1a 时,f ′(x )>0; x ∈??? ?1a ,+∞时,f ′(x )<0, 所以f (x )在? ????0,1a 上单调递增,在? ?? ??1a ,+∞上单调递减. 【类题通法】 用导数判断或证明函数f (x )在(a ,b )内的单调性的步骤 (1)一求.求f ′(x ); (2)二定.确认f ′(x )在(a ,b )内的符号; (3)三结论.作出结论:f ′(x )>0时为增函数;f ′(x )<0时为减函数. 【对点训练】 已知函数f (x )=x 3+ax 2+b (a ,b ∈R),试讨论f (x )的单调性. [解析] f ′(x )=3x 2 +2ax ,令f ′(x )=0, 解得x 1=0,x 2=-2a 3 . 当a =0时,因为f ′(x )=3x 2≥0,所以函数f (x ) 在(-∞,+∞)上单调递增; 当a >0时,x ∈? ????-∞,-2a 3∪(0,+∞)时,f ′(x )>0,

【高考冲刺】2020年高考数学(理数) 坐标系与参数方程 大题(含答案解析)

【高考复习】2020年高考数学(理数) 坐标系与参数方程 大题 1.在平面直角坐标系xOy 中,⊙O 的参数方程为? ?? ?? x =cos θ, y =sin θ(θ为参数),过点(0,-2) 且倾斜角为α的直线l 与⊙O 交于A ,B 两点. (1)求α的取值范围; (2)求AB 中点P 的轨迹的参数方程. 2.平面直角坐标系xOy 中,倾斜角为α的直线l 过点M(-2,-4),以原点O 为极点,x 轴的正 半轴为极轴,建立极坐标系,曲线C 的极坐标方程为ρsin 2 θ=2cos θ. (1)写出直线l 的参数方程(α为常数)和曲线C 的直角坐标方程; (2)若直线l 与C 交于A ,B 两点,且|MA|·|MB|=40,求倾斜角α的值.

3.在直角坐标系xOy 中,已知倾斜角为α的直线l 过点A(2,1).以坐标原点为极点,x 轴的正 半轴为极轴建立极坐标系.曲线C 的极坐标方程为ρ=2sin θ,直线l 与曲线C 分别交于P ,Q 两点. (1)写出直线l 的参数方程和曲线C 的直角坐标方程; (2)若|PQ|2 =|AP|·|AQ|,求直线l 的斜率k. 4.在直角坐标系xOy 中,曲线C 1的参数方程为?? ? x =3cos α, y =3sin α (α为参数),以坐标原点O 为 极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρcos ? ????θ+π4=3 2. (1)求曲线C 1的普通方程和曲线C 2的直角坐标方程; (2)若点M 在曲线C 1上,点N 在曲线C 2上,求|MN|的最小值及此时点M 的直角坐标.

高中数学极坐标与参数方程试题精选(8套)选修4-4

极坐标与参数方程单元练习3 一.选择题(每题5分共60分) 1.设椭圆的参数方程为()πθθ θ ≤≤?? ?==0sin cos b y a x ,()1 1 ,y x M ,()2 2 ,y x N 是椭圆上两点,M ,N 对应的参数为2 1 ,θθ且21 x x <,则 A .21 θθ < B .21θθ> C .21θθ≥ D .21θθ≤ 2.直线:3x-4y-9=0与圆:?? ?==θ θ sin 2cos 2y x ,(θ为参数)的位置关系是( ) A.相切 B.相离 C.直线过圆心 D.相交但直线不过圆心 3.经过点M(1,5)且倾斜角为3 π的直线,以定点M 到动 点P 的位移t 为参数的参数方程是( ) A.???????-=+=t y t x 235211 B. ???????+=-=t y t x 235211 C. ???????-=-=t y t x 235211 D. ??? ????+=+=t y t x 235211 4.参数方程????? -=+ =2 1y t t x (t 为参数)所表示的曲线是 ( ) A.一条射线 B.两条射线 C.一条直线 D.两条直线

5.若动点(x ,y )在曲线1422 2=+b y x (b >0)上变化,则 x 22y 的最大值为 (A) ?????≥<<+)4(2)40(442b b b b ; (B) ?????≥<<+)2(2) 20(442 b b b b ;(C) 442+b (D) 2b 。 6.实数x 、y 满足3x 2+2y 2=6x ,则x 2+y 2的最大值为( ) A 、2 7 B 、4 C 、2 9 D 、5 7.曲线的参数方程为???-=+=1 2 32 2t y t x (t 是参数),则曲线是 A 、线段 B 、双曲线的一支 C 、圆 D 、射线 8. 已知动园: ),,(0sin 2cos 222是参数是正常数θθθb ,a b a by ax y x ≠=--+,则圆心的 轨迹是 A 、直线 B 、圆 C 、抛物线的一部分 D 、椭圆

2019高考数学考点突破——函数的应用函数的图象学案

函数的图象 【考点梳理】 1.利用描点法作函数的图象 方法步骤:(1)确定函数的定义域; (2)化简函数的解析式; (3)讨论函数的性质(奇偶性、单调性、周期性、最值等); (4)描点连线. 2.利用图象变换法作函数的图象 (1)平移变换 (2)对称变换 ①y =f (x )的图象―――――→关于x 轴对称 y =-f (x )的图象; ②y =f (x )的图象――――――→关于y 轴对称 y =f (-x )的图象; ③y =f (x )的图象――――――→关于原点对称 y =-f (-x )的图象; ④y =a x (a >0且a ≠1)的图象――――――――→关于直线y =x 对称 y =log a x (a >0且a ≠1)的图象. (3)伸缩变换 ①y =f (x )的图象 y =f (ax )的图象; ②y =f (x )的图象 ―――――――――――――――――――――→a >1,纵坐标伸长为原来的a 倍,横坐标不变 0<a <1,纵坐标缩短为原来的a ,横坐标不变y =af (x )的图象. (4)翻转变换 ①y =f (x )的图象―――――――――――→x 轴下方部分翻折到上方 x 轴及上方部分不变y =|f (x )|的图象;

②y =f (x )的图象―――――――――――――→y 轴右侧部分翻折到左侧 原y 轴左侧部分去掉,右侧不变y =f (|x |)的图象. 【考点突破】 考点一、作函数的图象 【例1】作出下列函数的图象: (1)y =|lg(x -1)|;(2)y =2x +1 -1; (3)y =x 2-|x |-2. [解析] (1)首先作出y =lg x 的图象C 1,然后将C 1向右平移1个单位,得到y =lg(x -1)的图象C 2,再把C 2在x 轴下方的图象作关于x 轴对称的图象,即为所求图象C 3:y =|lg(x -1)|.如图①所示(实线部分). (2)y =2 x +1 -1的图象可由y =2x 的图象向左平移1个单位,得y =2 x +1 的图象,再向下 平移一个单位得到,如图②所示. (3)y =x 2 -|x |-2=? ???? x 2 -x -2x ≥0,x 2 +x -2x <0, 其图象如图③所示. 【类题通法】 画函数图象的一般方法 (1)直接法.当函数表达式(或变形后的表达式)是熟悉的基本函数时,就可根据这些函数的特征直接作出; (2)图象变换法.若函数图象可由某个基本函数的图象经过平移、翻折、对称得到,可利用图象变换作出. 【对点训练】 分别画出下列函数的图象: (1)y =|log 2(x +1)|;(2)y =|x -1|,x ∈R ;(3)y =2x -1 x -1 . [解析] (1)将函数y =log 2x 的图象向左平移一个单位,再将x 轴下方的部分沿x 轴翻折上去,即可得到函数y =|log 2(x +1)|的图象,如图①. (2)可先作出y =x -1的图象,将x 轴下方的图象沿x 轴翻折到x 轴上方,x 轴上方的图象保持不变可得y =|x -1|的图象.如图②中实线部分所示. (3)∵y =2+ 1x -1,故函数图象可由y =1 x 图象向右平移1个单位,再向上平移2个单位

高考数学参数方程大题

高考数学参数方程大题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高三最后一题 1、以平面直角坐标系的原点为极点,x 轴正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,设点A 的极坐标为)6 ,2(π ,直线l 过点A 且与极轴成角 为 3π,圆C 的极坐标方程为)4 cos(2πθρ-=. (1)写出直线l 参数方程,并把圆C 的方程化为直角坐标方程; (2)设直线l 与曲线圆C 交于B 、C 两点,求AC AB .的值. 【答案】(1)直线l C 的直角坐标方程为02222=--+y x y x ;(2 2、已知曲线C 的参数方程为31x y α α ?=+??=+??(α为参数),以直角坐标系原点 为极点,x 轴正半轴为极轴建立极坐标系. (1)求曲线C 的极坐标方程,并说明其表示什么轨迹. (2)若直线的极坐标方程为1 sin cos θθρ -= ,求直线被曲线C 截得的弦长. 【答案】(1)6cos 2sin ρθθ=+(2 3、在直角坐标系xOy 中,直线l 的参数方程为t t y t x (22522 5??? ??? ?+=+ -=为参数),若以 O 点为极点,x 轴正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为 θρcos 4=。 (1)求曲线C 的直角坐标方程及直线l 的普通方程; (2)将曲线C 上各点的横坐标缩短为原来的 2 1 ,再将所得曲线向左平移1个单位,得到曲线1C ,求曲线1C 上的点到直线l 的距离的最小值 【答案】(1)() 422 2 =+-y x ,052=+-y x (2 )

高考数学专题—参数方程

高考数学专题——参数方程 一、基本知识要求 1.参数方程和普通方程的互化 (1通过消去参数,从参数方程得到普通方程. (2)寻找变量x ,y 中的一个与参数t 的关系,令x =f (t ),把它代入普通方程,求出另一个变 数与参数的关系y =g (t ),那么? ????x =f (t ), y =g (t )就是曲线的参数方程,在参数方程与普通方程的 互化中,必须使x ,y 的取值范围保持一致. 2.直线、圆和圆锥曲线的参数方程形式 直线参数方程:{x =x 0+t cos α y =y 0+t sin α (t 为参数) 圆的参数方程:{x =x 0+acos θ y =y 0+asin θ (θ为参数且0≤θ<2π) 椭圆的参数方程:{x =m cos t y =n sin t (t 为参数且0≤t <2π) 抛物线的参数方程:{x =2pt 2 y =2pt (t 为参数) 二、常考题型要求 常考题型:共4种大题型(包含参数方程与普通方程转化问题、求距离问题、 直线参数方程t 的几何意义、与动点有关的取值范围和最值问题) 1、参数方程与普通方程互化问题:(1)参数方程中可通过代入法、加减法、平方法等直接消去参数时,则直接消参;(2)参数方程中参数为角时,则通过构造sin 2θ+cos 2θ=1消去参数。 例1、【2020年高考全国II 卷理数】[选修4—4:坐标系与参数方程] 已知曲线C 1,C 2的参数方程分别为 C 1:(θ为参数),C 2:(t 为参数).

(1)将C1,C2的参数方程化为普通方程; 【解析】(1)的普通方程为. 由的参数方程得,,所以. 故的普通方程为. 例2、【2020·广东省高三其他(理)】在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为=(>0),过 点的直线的参数方程为(t为参数),直线与曲线C相交 于A,B两点. (Ⅰ)写出曲线C的直角坐标方程和直线的普通方程; 【答案】(Ⅰ), 【解析】(Ⅰ)根据可将曲线C的极坐标方程化为直角坐标,两式相减消去参数得直线的普通方程为. 得,由韦达定理有.解之得:或(舍去) 试题解析:(Ⅰ)由得, ∴曲线的直角坐标方程为. 直线的普通方程为. 例3、【2020·山西省太原五中高三其他(理)】在直角坐标系中,曲线的参数方程为 (为参数).以为极点,轴的正半轴为极轴建立极坐标系,直线的

2019高考数学考点突破——平面向量:平面向量的数量积 Word版含解析

平面向量的数量积 【考点梳理】 1.平面向量的数量积 (1)定义:已知两个非零向量a 和b ,它们的夹角为θ,则数量|a ||b |cos θ叫做a 与b 的数量积(或内积).规定:零向量与任一向量的数量积为0. (2)几何意义:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. 2.平面向量数量积的运算律 (1)交换律:a ·b =b ·a ; (2)数乘结合律:(λa )·b =λ(a ·b )=a ·(λb ); (3)分配律:a ·(b +c )=a ·b +a ·c . 3.平面向量数量积的性质及其坐标表示 设非零向量a =(x 1,y 1),b =(x 2,y 2),θ=〈a ,b 〉. 考点一、平面向量数量积的运算 【例1】(1)已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则AF →·BC → 的值为( ) A .-58 B .18 C .14 D .118 (2)已知点P 在圆x 2 +y 2 =1上,点A 的坐标为(-2,0),O 为原点,则AO →·AP → 的最大值为________. [答案](1)B (2) 6 [解析](1)如图所示,AF →=AD →+DF →. 又D ,E 分别为AB ,BC 的中点,

且DE =2EF ,所以AD →=12AB →,DF →=12AC →+14AC →=34AC → , 所以AF →=12AB →+34AC → . 又BC →=AC →-AB → , 则AF →·BC →=? ????12AB →+34AC →·(AC →-AB →) =12AB →·AC →-12AB →2+34AC →2-34AC →·AB → =34AC →2-12AB →2-14 AC →·AB →. 又|AB →|=|AC → |=1,∠BAC =60°, 故AF →·BC →=34-12-14×1×1×12=1 8.故选B. (2)设P (cos α,sin α), ∴AP → =(cos α+2,sin α), ∴AO →·AP → =(2,0)·(cos α+2,sin α)=2cos α+4≤6, 当且仅当cos α=1时取等号. 【类题通法】 1.求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义. 2.解决涉及几何图形的向量数量积运算问题时,可先利用向量的加减运算或数量积的运算律化简再运算.但一定要注意向量的夹角与已知平面角的关系是相等还是互补. 【对点训练】 1.线段AD ,BE 分别是边长为2的等边三角形ABC 在边BC ,AC 边上的高,则AD →·BE → =() A .-32B .32 C .-332 D .332 [答案]A [解析]由等边三角形的性质得|AD →|=|BE →|=3,〈AD →,BE →〉=120°,所以AD →·BE →=|AD →||BE →|cos 〈AD → ,BE →〉=3×3×? ?? ??-12=-32,故选A.

高考极坐标与参数方程大题题型汇总(附详细答案)

高考极坐标与参数方程大题题型汇总 1.在直角坐标系xoy 中,圆C 的参数方程1cos (sin x y ? ?? =+??=?为参数) .以O 为极点,x 轴的非负半轴为极轴建立极坐标系. (1)求圆C 的极坐标方程; (2)直线l 的极坐标方程是 C 的交点为 O 、P ,与直线l 的交点为Q ,求线段PQ 的长. 解:(1)圆C 的普通方程是22(1)1x y -+=,又cos ,sin x y ρθρθ==; 所以圆C 的极坐标方程是2cos ρθ=. ---5分 (2)设11(,)ρθ为点P 的极坐标,则有 设22(,)ρθ为点Q 的极坐标,则有 由于12θθ=,所以,所以线段PQ 的长为2. 2.已知直线l 的参数方程为431x t a y t =-+??=-? (t 为参数),在直角坐标系xOy 中,以O 点为极 点, x 轴的非负半轴为极轴,以相同的长度单位建立极坐标系,设圆M 的方程为 26sin 8 ρρθ-=-. (1)求圆M 的直角坐标方程; (2)若直线l 截圆M a 的值. 解:(1)∵2 222268(36si )n 81x y y x y ρρθ+--=-?=-?+-=, ∴圆M 的直角坐标方程为2 2 (3)1x y +-=;(5分)

(2)把直线l的参数方程 4 31 x t a y t =-+ ? ? =- ? (t为参数)化为普通方程得:34340 x y a +-+=, ∵直线l截圆M所得弦长 为,且圆M的圆心(0,3) M到直线l的距 离 |163|19 522 a d a - ===?=或 37 6 a=,∴ 37 6 a=或 9 2 a=.(10分)3.已知曲线C的参数方程为 ?? ? ? ? + = + = α α sin 5 1 cos 5 2 y x (α为参数),以直角坐标系原点为极点,Ox轴正半轴为极轴建立极坐标系。 (1)求曲线c的极坐标方程 (2)若直线l的极坐标方程为 ρ (sinθ+cosθ)=1,求直线l被曲线c截得的弦长。 解:(1)∵曲线c的参数方程为 ?? ? ? ? + = + = α α sin 5 1 cos 5 2 y x (α为参数) ∴曲线c的普通方程为(x-2)2+(y-1)2=5 将? ? ? = = θ ρ θ ρ sin cos y x 代入并化简得: ρ =4cosθ+2sinθ 即曲线c的极坐标方程为 ρ =4cosθ+2sinθ (2)∵l的直角坐标方程为x+y-1=0 ∴圆心c到直线l的距离为d=2 2 =2∴弦长为22 5-=23 4.已知曲线C: 2 21 9 x y += ,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为 sin() 4 π ρθ-= (1)写出曲线C的参数方程,直线l的直角坐标方程; (2)设P是曲线C上任一点,求P到直线l的距离的最大值.

高考数学参数方程所有经典类型

高考数学参数方程所有经典类型(必刷题) 1.极坐标系与直角坐标系xoy 有相同的长度单位,以原点O 为极点,以x 轴正半轴为 极轴.已知直线l 的参数方程为1222 x t y ?=+????=??(t 为参数),曲线C 的极坐标方程为 2sin 8cos ρθθ=. (Ⅰ)求C 的直角坐标方程; (Ⅱ)设直线l 与曲线C 交于,A B 两点,求弦长||AB . 2.已知直线l 经过点1 (,1)2P ,倾斜角α=6 π,圆C 的极坐标方程为)4πρθ=-. (1)写出直线l 的参数方程,并把圆C 的方程化为直角坐标方程; (2)设l 与圆C 相交于两点A 、B ,求点P 到A 、B 两点的距离之积. 3.在平面直角坐标系xOy 中,已知曲线1C :cos sin θθ=??=? x y (θ为参数),将1C 上的所有 和2倍后得到曲线2C .以平面直角坐标系xOy 的原点O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l :sin )4ρθθ+=. (1)试写出曲线1C 的极坐标方程与曲线2C 的参数方程; (2)在曲线2C 上求一点P ,使点P 到直线l 的距离最小,并求此最小值. 4.在直角坐标系xoy 中,直线l 的方程为40x y -+=,曲线C 的参数方程为

x 3cos y sin ααα ?=??=??(为参数). (1)已知在极坐标系(与直角坐标系xoy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,点P 的极坐标为(4,)2π ,判断点P 与直线l 的位置关系; (2)设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值. 5.在平面直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐V 标方程为πcos =13ρθ? ?- ??? ,M ,N 分别为曲线C 与x 轴、y 轴的交点. (1)写出曲线C 的直角坐标方程,并求M ,N 的极坐标; (2)求直线OM 的极坐标方程. 6.(本小题满分10分)选修4-4:坐标系与参数方程 已知曲线 (为参数),(为参数). (1)化 的方程为普通方程; (2)若上的点P 对应的参数为为上的动点,求中点到直线 (为参数)距离的最小值.

2019高考数学考点突破——集合与常用逻辑用语集合学案

集合 【考点梳理】 1.元素与集合 (1)集合中元素的三个特性:确定性、互异性、无序性. (2)元素与集合的关系是属于或不属于,表示符号分别为∈和?. (3)集合的三种表示方法:列举法、描述法、Venn图法. 2.集合间的基本关系 (1)子集:若对任意x∈A,都有x∈B,则A?B或B?A. (2)真子集:若A?B,但集合B中至少有一个元素不属于集合A,则A?≠B或B?≠A. (3)相等:若A?B,且B?A,则A=B. (4)空集的性质:?是任何集合的子集,是任何非空集合的真子集. 3.集合的基本运算 并集交集补集 图形表示 符号表示A∪B A∩B ?U A 意义{x|x∈A或x∈B} {x|x∈A且x∈B}{x|x∈U且x?A} 4. (1)若有限集A中有n个元素,则A的子集有2n个,真子集有2n-1个. (2)子集的传递性:A?B,B?C?A?C. (3)A?B?A∩B=A?A∪B=B. (4)?U(A∩B)=(?U A)∪(?U B),?U(A∪B)=(?U A)∩(?U B). 【考点突破】 考点一、集合的基本概念 【例1】(1)已知集合M={1,2},N={3,4,5},P={x|x=a+b,a∈M,b∈N},则集合P 的元素个数为( ) A.3 B.4 C.5 D.6 (2)若集合A={x∈R|ax2-3x+2=0}中只有一个元素,则a=( )

A .92 B .98 C .0 D .0或9 8 [答案] (1) B (2) D [解析] (1) 因为a ∈M ,b ∈N ,所以a =1或2,b =3或4或5.当a =1时,若b =3,则x =4;若b =4,则x =5;若b =5,则x =6.同理,当a =2时,若b =3,则x =5;若b =4,则 x =6;若b =5,则x =7,由集合中元素的特性知P ={4,5,6,7},则P 中的元素共有4个. (2)若集合A 中只有一个元素,则方程ax 2 -3x +2=0只有一个实根或有两个相等实根. 当a =0时,x =2 3 ,符合题意; 当a ≠0时,由Δ=(-3)2 -8a =0得a =98, 所以a 的取值为0或9 8. 【类题通法】 与集合中的元素有关的解题策略 (1)确定集合中的代表元素是什么,即集合是数集还是点集. (2)看这些元素满足什么限制条件. (3)根据限制条件列式求参数的值或确定集合中元素的个数,但要注意检验集合是否满足元素的互异性. 【对点训练】 1. 已知集合A ={(x ,y )|x 2 +y 2 =1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( ) A .3 B .2 C .1 D .0 [答案] B [解析] 因为A 表示圆x 2 +y 2=1上的点的集合,B 表示直线y =x 上的点的集合,直线y =x 与圆x 2 +y 2 =1有两个交点,所以A ∩B 中元素的个数为2. 2. 已知集合A ={x ∈R|ax 2 +3x -2=0},若A =?,则实数a 的取值范围为________. [答案] ? ????-∞,-98 [解析] ∵A =?,∴方程ax 2+3x -2=0无实根,

相关主题