搜档网
当前位置:搜档网 › 青岛海湾大桥混凝土涂层防腐蚀设计与施工技术规范标准

青岛海湾大桥混凝土涂层防腐蚀设计与施工技术规范标准

青岛海湾大桥混凝土涂层防腐蚀设计与施工技术规范标准
青岛海湾大桥混凝土涂层防腐蚀设计与施工技术规范标准

海湾大桥混凝土涂层

防腐蚀设计与施工技术规

Corrosion Prevention Special Technical

Specification

for Concrete Coating of Qingdao Bay Bridge

高速集团高速公路

二OO七年十二月

目录

1 工程概况 (1)

1.1 概述 (1)

1.2 环境气候 (1)

1.3 水文数据 (1)

1.4 水质数据 (2)

1.5 腐蚀环境 (3)

2 编制依据 (5)

3 基本规定 (6)

4 表湿区涂层配套设计 (6)

4.1涂层体系设计 (6)

4.2涂料性能要求 (7)

5表干区涂层配套设计 (9)

5.1涂层体系设计 (9)

5.2涂料性能要求 (9)

6 涂层涂装施工 (11)

6.1 混凝土表面处理 (11)

6.2 涂装施工 (11)

6.3 涂装小区试验 (12)

7施工质量控制与检查 (13)

8 检测与验收 (15)

8.1 涂料质量检测 (15)

8.2 涂层验收 (16)

9 管理及维修 (18)

10 安全、卫生和环境保护 (18)

10.1 安全、卫生 (18)

10.2 环境保护 (19)

1工程概况

1.1 概述

海湾大桥位于胶州湾北部,是市交通规划中东西岸跨海通道的“一路、一桥、一隧”中的一桥,是市道路交通网络布局中胶州湾东西岸跨海通道的重要组成部分,也是省“五纵四横一环”公路网主框架的重要组成部分。

海湾大桥横跨胶州湾海域,大桥起于侧胶州湾高速村河大桥北200m处,设计终于黄道侧胶州湾高速东1km处,中间设立红岛互通。主线全长约28.057km,其中跨海大桥长25.171km,是我国规模最大的海湾大桥之一。

1.2 环境气候

海湾大桥处于胶州湾畔,濒临黄海,属季风气候区,气候季节变化明显。冬半年(10月至第二年的3月)呈现大陆性气候特点,干燥、低温;夏半年(4月至9月)受到东南季风影响,空气潮湿,雨量充沛,日间温差小,呈现典型的海洋性气候特征。

常年平均气温12℃左右,7月平均温度为24.2℃,1月平均温度为-0.5℃,年历史最高温度为38.9℃,历史最低温度为-14.3℃,年最高温度大于32℃的平均天数为2.8天。终年多东南和西北两个风向,并以偏东南风为全年主导风向,年平均风速 4.9m/s。拟建工程区一年四季均有灾害性天气发生,主要灾害性天气有大风、冰雹、干旱、台风、寒潮、霜冻、浓雾、高温、暴雨等。

胶州湾在一般年份,12月下旬开始结冰,2月中旬消失,一般说来,1月上旬至2月上旬为胶州湾的重冰期。的年平均天然冻融循环次数为47次。

1.3 水文数据

1.3.1海湾特征

胶州湾东西宽27.8km,南北长33.3km,湾口开口向东南,口门最窄处为3.1km,岸线长187km,海湾面积382km2,其中0m以下深面积为256km2,5m以下深面积98km2,10m以下深面积49.94km2,海湾平均深度约为7.0m,最大水深64m。胶州湾以团岛和黄岛的嘴连线为界,分为湾和外湾,属于半封闭型强潮海湾。1.3.2潮汐特征

胶州湾属规则半日潮类型,两次高潮的高度基本一致,但低潮有日不等现象,两次低潮的高度略有差异。潮汐周期约为12小时25分,涨潮时间相对较短,落潮时间相对较长,两者相差1小时10分钟左右。详见表1.3-1。

1.3.3 设计水位

依据本工程所在红岛海区一个月的潮位资料,根据港30年的年最高、最低潮位资料来确定不同重现期年极值高、低水位。详见表1.3-2。

工程区设计潮位计算表1.3-2

1.4 水质数据

初勘胶州湾海水水质见表1.4-1。

胶州湾海水水质表表1.4-1

1.5 腐蚀环境

海湾大桥工程处于强腐蚀海洋大气环境与海水腐蚀环境,对应大桥混凝土结构腐蚀等级划分如下表1.5-1:

混凝土结构腐蚀等级表1.5-1

注:(1)由表1.3-1,平均水位取值为0m。

(2)潮汐区的底标高按《公路工程混凝土结构防腐蚀技术规》计算为平均低潮位以下1m。资料显示平均低潮位为-1.40m,红岛平均低潮位为-1.37m,这里取值-1.40m,故潮汐区底标高为:-2.40m。

(3)表中区域高程取值见表1.5-2,按《海港工程混凝土结构防腐蚀技术规》(JTJ 275-2000)。

混凝土结构腐蚀区域高程划分表1.5-2

注:(1)采用在设计潮位情况下100年一遇设计波要素计算给出的H1%(波列累积频率为1%的波高)波峰面高度数据中的最大值,η0=2.95m(红岛,S)。

(2)设计高水位和设计低水位分别为1.96m,-2.16m。

海湾大桥工程的海上段桩基采用了钢护筒保护,因此对于本工程承台及承台以上部位的腐蚀环境处于严重和很严重部位的可以涂装的混凝土结构,采用混凝土表面涂层防腐的附加防腐蚀措施。

处于海洋环境中的混凝土结构,由于钢筋腐蚀,引起混凝土结构过早破坏已成为全世界普遍关注并日益突出的一大灾害,国际上已经将钢筋锈蚀列为混凝土结构破坏的最重要原因。国外海工混凝土结构的使用情况反映,处于浪溅区混凝土结构中的钢筋腐蚀是最严重的。因此,在设计海工混凝土结构时应根据所处的环境,考虑不同的防腐蚀措施。

在海工混凝土表面采用涂层防腐,可以有效阻隔氯盐渗入混凝土中,避免钢

筋周围的氯离子浓度达到腐蚀的临界状态。同时,表面涂层还可以阻隔氧气、水分、二氧化碳等有害介质渗入混凝土中,提高混凝土的电阻率,降低钢筋腐蚀的速率,防止混凝土碳化,美观装饰等作用。总之,混凝土表面涂层可以防止混凝土中钢筋锈蚀,提高海工混凝土结构耐久年限,是一种经济、简便且行之有效的措施。

海湾大桥工程是国家重点工程,设计使用寿命为100年。在配制海工高性能混凝土、使用透水模板等措施的基础上,对混凝土结构采用表面涂层进行保护,可以起到叠加保护的效果,提高混凝土结构的耐久性,达到设计使用年限的要求。

2编制依据

海湾大桥混凝土涂层防腐蚀除应符合本技术文件的规定外,尚应符合下列标准,被本技术文件引用的这些标准,可构成本技术文件的条文。本技术文件有关条文若与所列标准要求不一致时,应取用本技术文件的相应条文。

(1)《海湾大桥桥梁混凝土结构耐久性设计方案》;

(2)行业标准《海港工程混凝土结构防腐蚀技术规》(JTJ 275-2000);

(3)行业标准《公路工程混凝土结构防腐蚀技术规》(JTG/T B07-01—2006);(4)行业标准《混凝土桥梁结构表面涂层防腐技术条件》(JT/T 695—2007);(5)国家标准《漆膜颜色标准》(GB/T 3181-1995);

(6)国家标准《涂料粘度测定法》(GB/T 1723-93);

(7)国家标准《涂料固体含量测定法》(GB 1725-79);

(8)国家标准《涂料细度测定法》(GB 1724-79);

(9)国家标准《色漆和清漆密度的测定》(GB 6750-86);

(11)国家标准《漆膜、腻子膜干燥时间测定法》(GB 1728-79);

(12)国家标准《漆膜附着力测定法》(GB 1720-79);

(13)国家标准《漆膜柔韧性测定法》(GB/T 1731-93);

(14)国家标准《漆膜耐冲击测定法》(GB/T 1732-93);

(15)国家标准《漆膜耐磨性测定法》(GB 1768-79);

(16)国家标准《漆膜耐水性测定法》(GB 1733-93);

(17)国家标准《涂层附着力的测定法拉开法》(GB 5210-85);

(18)国家标准《色漆和清漆耐液体介质的测定》(GB 9274-88);

(19)国家标准《色漆和清漆漆膜厚度的测定》(GB/T 13452.4-92);

(20)国家标准《色漆和清漆人工气候老化和人工辐射暴露(滤过的氙弧辐射)》(GB/T 1865-1997);

(21)国家标准《涂装作业安全规程涂漆工艺安全及其通风净化》(GB 6514-1995);

(22)国家标准《涂装作业安全规程安全管理通则》(GB 7691-2003);(23)国家标准《涂装作业安全规程涂漆前处理工艺安全及其通风净化》(GB 7692-1999);

(24)国家标准《建筑防腐蚀工程施工及验收规》(GB 50212-2002);

(25)行业标准《交联型氟树脂涂料》(HG/T 3792-2005);

(26)行业标准《高压无气喷涂典型工艺》(/T 9188-1999)。

关于预应力混凝土简支箱梁桥设计分析

关于预应力混凝土简支箱梁桥设计分析 [摘要]桥梁作为公路的重要组成部分之一,在工程项目中,设计方案的合理性与规划指标的正确性是衡量整个道路工程施工质量、成本控制和使用功能的关键。本文就预应力混凝土简支箱梁桥设计要点分析,结合工程实例进行了全面的探讨和阐述。 【关键词】桥梁;预应力混凝土;简支箱梁桥 伴随着时间的不断推移,国民经济发展不断加快,各类交通荷载也在逐年增加。我国现有运营的早期设计修建的预应力混凝土桥梁和钢筋混凝土桥梁,受到过去国情、经济水平和人类认识水平的限制,在投入使用之后经常出现无法满足使用要求,出现了较为严重的裂缝、耐久性不足等重要问题,同时桥梁老化、陈旧和荷载能力不足的现象也日益凸显。结合现有工程中存在的这些问题,我们在工作中应当注重对混凝土简支箱梁桥设计的相关重点探讨,结合先进科学技术水平合理提高设计方法和观念,进而确保工程项目的质量和耐久性,提高工程效益。 1、工程概况 本工程项目位于某高速公路中段,桥梁在建设中总体长度为35m,桥面宽9.5m。在设计的过程中是对桥梁采用C40的混凝土进行施工的,而桥栏杆和桥面在铺设中是通过采用C20的混凝土。预应力在控制和设计中分别采用的是ASTM270级1524的底松弛钢绞线,在这设计过程中钢绞线的选择为12mm和R235的热轧光圈钢筋。在桥梁桥面施工的过程中是采用5cm厚的C20钢筋混凝土进行铺设和施工的,而最后又铺设了5cm厚的沥青混凝土。在设计的过程中,对桥梁的等级和应力化进行计算和分配,桥梁等级设置为1级,而汽车等相关荷载要求为3.535kN/m2,梯度温度引起的效按照T1=20℃,T2=6.7℃进行考虑。这种设计方法和手段的应用有效的确保了桥梁的使用寿命和耐久性。 2、桥梁总体设计 在桥梁设计的过程中,应当以安全、经济、实用、美观和环保为基础原则进行总体规划,以可持续发展和功能的良好发挥为最终目标进行全面设计。在桥梁设计的过程中,其设计方案的选择要具备相应的合理性,并且对其中存在的相关环节要严肃处理,要做到在设计中毫厘不差的设计要求。对于桥梁结构构造的处理,应当遵循相关的设计规范和国家的法律制度来全面协调和规范,同时合理的控制桥梁各个细小部位的尺寸和构造细节,使得桥梁设计能够满足强度、刚度.稳定性和耐久性的要求。 2.1在桥梁设计的过程中对线条的选择一般都选选择直线和标准跨径,这样能够提高桥梁工程的施工效率和降低施工成本。 2.2桥面净空应确保保证车辆、行人安全通过桥梁上方的空间界限。在该净

钢筋混凝土简支T梁与行车道板配筋设计桥梁工程课程设计书

配式钢筋混凝土简支T 型梁桥设计工程计算 课程设计书 一、课题与设计资料 (一)设计资料 1、装 (1)桥面净空 净—8+2×1m 人行道 (二)设计荷载 公路-II 级和人群荷载标准值为32m kN (三)主梁跨径和全长 标准跨径:墩中心距离); 支座中心距离); 主梁全长:主梁预制长度)。 (四)材料

1)主梁、横隔梁: 钢筋:主钢筋采用Ⅱ级钢筋,其它用钢筋采Ⅰ用级钢筋 混凝土:C30(容重为25KN/m3) 2)桥面铺装:沥青混凝土(容重为23KN/m3)混凝土垫层C25(容重为23KN/m) 3)人行道:人行道包括栏杆荷载集度6KN/m (五)缝宽度限值:Ⅱ类环境(允许裂缝宽度0.02mm)。 (六)设计依据及参考资料 ①《公路桥涵设计通甩规范》(JTGD60-2004) ②《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTGD62-2004) ③《桥梁工程》,姚玲森主编,人民交通出版社,北京。 ④《桥梁计算示例集—混凝土简支梁(板)桥》,易建国主编,人民 交通出版社,北京。 ⑤《结构设计原理》,沈浦生主编。 ⑥《结构力学》 二、设计内容 (一)主梁 1.恒载内力计算;

1.1恒载集度 主梁: m kN g /85.1425)]22.098.1(2 18 .012.05.122.0[1=?-?++?= 横隔梁: m kN g /132.25 .1952518.0)22.098.1()218 .012.020.1(2=???-?+- = 人行道和栏杆:m kN g /2.15 6 3== 桥面铺装:m kN g /368.05 23 0.102.0230.106.04=??+??= 作用于主梁上的全部恒载集度: 35.17368.0132.285.144321=++=+++=g g g g g KN/m 1.2恒载内力 跨中截面 m kN l l g l gl M ?=??-???=??-?= 667.82445.1925.1935.1725.195.1935.172142221 1/4跨截面 m kN l l l g M ?=-??=-??= 50.618)45.195.19(45.1935.1721)4(421 kN l l g Q 58.84)25.194 1 5.19(35.1721)241(21=??-??=?-= 支点截面 0=M kN Q 16.169)205.19(35.172 1 =?-??=

青岛海湾大桥栈桥设计、施工及监测

青岛海湾大桥栈桥设计、施工及监测 1栈桥设计 1.1设计依据 对于栈桥设计,我国目前尚没有可以遵循的规范。为此,在栈桥设计中,我们遵循业主发布的青岛海湾大桥土建工程施工招标文件及相关要求和规定,同时遵守国家及相关行业标准、当地水文地质资料和有关设计手册。 国家及相关行业标准: ①《公路桥涵设计通用规范》(JTJ021-89) ②《公路桥涵地基与基础设计规范》(JTJ 024-85) ③《公路桥涵钢结构及木结构设计规范》(JTJ025-86) ④《港口工程桩基规范》(JTJ 254-98)及2001年局部修订 ⑤《港口工程荷载规范》(JTJ 254-98) ⑥《海港水文规范》(JTJ213-98) ⑦《港口工程混凝土结构设计规范》(JTJ267-98) ⑧《海港工程混凝土结构防腐蚀技术规范》(JTJ275-2000) ⑨青岛水利研究院所提供资料 ⑩青岛海湾大桥工程区波浪基本特征. 1.2结构设计 栈桥采用多跨连续梁方案,主要跨径为15m。 贝雷梁结构:采用7×15m一联“321”型贝雷桁架,每联之间设立双墩,断面采用8片贝雷桁架,其间距采用0.9m;桥面宽8.0m; 桥面系:由钢板和型钢组成的正交异性板桥面系; 桩基础:φ600和φ800,δ=10mm厚钢管桩;钢管桩所用钢管,材质为Q235,采用钢板卷焊。 详见: 图1:栈桥桥式平面布置图 图2:一联栈桥结构立面图 图3:栈桥支座处断面图 图4:单孔桥面系构造图

图4单孔桥面系构造图(15m) 1.3结构计算 栈桥的结构设计计算,详细内容见栈桥的结构计算书(附件),在本施工组织正文中只做

①设计荷载组合与设计验算准则 根据业主提出的栈桥施工荷载要求,参照《公路桥涵设计通用规范》(JTJ021-89)及《港口工程荷载规范》,经反复研究讨论,将栈桥设计,取3种状态、5种最不利工况进行设计验算。 “工作状态”是指:栈桥正常使用车辆荷载与对应工作状态标准的其它可变荷载(风、浪、流)作用的组合。 “非工作状态”是指:在恶劣海洋气候条件下,栈桥上不允许通行车辆,仅承担相应其它可变荷载(风、浪、流)作用的组合。 栈桥施工状态是指:栈桥在自身施工期间可能出现的最不利施工荷载组合,经反复计算,以单跨栈桥通行履带吊施工荷载及履带吊在前端打桩时控制设计。 栈桥作为一种重要的临时结构,根据相关规范要求和具体工程情况,确定设计验算准则:a在工作状态下,栈桥应满足正常车辆通行的安全性和适用性要求,并具有足够的安全储备。b在非工作状态下,栈桥停止车辆荷载通行,此时栈桥应能满足整体安全性的要求,允许出现局部可修复的损坏。 c在栈桥施工状态下,栈桥应满足自身施工过程的安全,但6级风以上时,应停止栈桥施工。 其中工况Ⅰ-工况Ⅲ(贝雷梁)以及提供下部钢管桩的竖向计算荷载,工况Ⅴ用于验算施工状态下上部结构的应力,工况Ⅳ仅用于计算下部钢管桩的横向计算荷载,与前三种荷载组合情况下计算的竖向荷载一同验算下部的钢管桩基础。 表1栈桥的设计状态与最不利工况 设计状态工况 荷载组合 恒载基本可变荷载其它可变荷载 工作状态 I 结构自重汽车超20 对应工作状态标准的风、 波浪和潮流作用 II 结构自重100t履带吊 III 结构自重挂120 非工作状态Ⅳ结构自重— 对应非工作状态标准的 风、波浪和潮流作用栈桥施工状态Ⅴ结构自重100t履带吊— ②设计荷载参数 a 车辆荷载 (1)汽-超20(单列);设计行车速度为15km/h,不计冲击作用。

C30混凝土配合比设计

编号:PB-002 拉林铁路4标藏木双线特大桥 混凝土配合比设计说明书 C30混凝土配合比 (建高水泥P·O42.5) 二O一5年11月 中铁港航局集团拉林铁路工程指挥部 藏木特大桥工地试验室

C30混凝土配合比设计 一、设计目的: 拉林铁路4标藏木双线特大桥C30混凝土,用于藏木双线特大桥桩基础等,混凝土要求现场施工坍落度为160~200mm,工作性能良好,易于施工。 二、设计依据: 1、施工图纸, 2、《桥涵施工技术规》 JTG/T F50-2011 3、《普通混凝土配合比设计规程》 JGJ55-2011 三、组成材料: 1、水泥:建高水泥P·O 42.5 ,经检验,水泥细度、凝结时间、安定性及抗折、抗压强度等指标均符合规要求。 2、砂:加查县民发砂场,其颗粒级配、含泥量、表观密度等各项指标均Ⅱ类砂要求。 3、碎石: 加查县民发石场,其颗粒级配、压碎值、含泥量及针片状等各项指标均符合5~31.5mm连续级配Ⅱ类碎石要求。 掺配比例为( 5~16mm : 16~31.5mm = 20% : 80%。) 4、水:自来水(可饮用水) 5、减水剂:(缓凝型)。 四、组成设计参数的选定及组成材料用量的确定: 1、试配强度 根据招标文件及《公路桥涵施工技术规》,取σ=5MPa.

由公式f cu,0=f cu,k+1.645σ =30+1.645×5 ≈38.2MPa 2确定胶凝材料强度: 经实测,水泥28天强度为47.5MPa,因此 ?b=47.5MPa 3 根据实际经验选取水胶比0.39。 (注:αa、αb为回归系数,αa=0.53,αb=0.2。) 4每立方米混凝土用水量 该C30混凝土要求坍落度为160~200mm,根据试拌调整选择用水量为m w=167(㎏/ m3)。当减水剂掺量为0.8%,实际试拌砼坍落度为160~200mm时用水量为m w0= 155㎏/m3。 5 每立方米混凝土胶凝材料用量 m b0= m w0/(W/B)=155/0.39≈397㎏/m3 m c0= m b0×85%=397×0.85≈337㎏/m3 m f0= m b0- m c0 =397-337=60㎏/m3 符合规及图纸设计文件要求。 5、每立方米混凝土中减水剂用量为397×0.8%=3.176㎏/m3 6、根据试拌调整取砂率βs=40%。 7、采用质量法,假定1m3砼质量m cp=2400㎏/m3 m w0+ m c0+ m f0 + m g0+ m s0= m cp 砂石总用量:m g0+m s0= m cp-m w0-m c0-m f0 =2400-397-155=1848㎏ 砂率为βS =40%,砂用量:m s0=( m g0+m s0)×βS=1848×0.40≈739㎏

预应力混凝土简支梁桥的毕业设计(25m跨径)

目录 《桥梁工程》课程设计任务书---------------------------------------------2 桥梁设计说明------------------------------------------------------------------3 计算书---------------------------------------------------------------------------4 参考文献------------------------------------------------------------------------24 桥梁总体布置图---------------------------------------------------------------25 主梁纵、横截面布置图-----------------------------------------------------26 桥面构造横截面图-----------------------------------------------------------27

《桥梁工程》课程设计任务书 一、课程设计题目(10人以下为一组) 1、钢筋混凝土简支梁桥上部结构设计(标准跨径为25米,计算跨径为24.5米,预制梁长 为24.96米,桥面净空:净—8.5+2×1.00米) 二、设计基本资料 1、设计荷载:公路—Ⅱ级,人群3.0KN/m2,每侧栏杆及人行道的重量按4.5 KN/m计 2、河床地面线为(从左到右):0/0,-3/5,-4/12,-3/17,-2/22, -2/27,0/35(分子为高程,分母为离第一点的距离,单位为米);地质假定为微风化花岗岩。 3、材料容重:水泥砼23 KN/m3,钢筋砼25 KN/m3,沥青砼21 KN/m3 4、桥梁纵坡为0.3%,桥梁中心处桥面设计高程为2.00米 三、设计内容 1、主梁的设计计算 2、行车道板的设计计算 3、横隔梁设计计算 4、桥面铺装设计 5、桥台设计 四、要求完成的设计图及计算书 1、桥梁总体布置图,主梁纵、横截面布置图(CAD出图) 2、桥面构造横截面图(CAD出图) 3、荷载横向分布系数计算书 4、主梁内力计算书 5、行车道板内力计算书 6、横隔梁内力计算书 五、参考文献 1、《桥梁工程》,姚玲森,2005,人民交通出版社. 2、《梁桥》(公路设计手册),2005,人民交通出版社. 3、《桥梁计算示例集》(砼简支梁(板)桥),2002,人民交通出版社. 4、中华人民共和国行业标准.公路工程技术标准(JTG B01-2003).北京:人民交通出版社,2004 5、中华人民共和国行业标准.公路桥涵设计通用规范(JTG D60-2004)含条文说明.北京:人民交通出版社,2004 6、中华人民共和国行业标准.公路钢筋混凝土及预应力混凝土桥涵设计规范(JTG D62-2004)含条文说明 六、课程设计学时 2周

青岛海湾大桥桥墩施工方案(doc 12页)

青岛海湾大桥桥墩施工方案(doc 12页)

更多企业学院: 《中小企业管理全能版》183套讲座+89700份资料《总经理、高层管理》49套讲座+16388份资料《中层管理学院》46套讲座+6020份资料《国学智慧、易经》46套讲座 《人力资源学院》56套讲座+27123份资料《各阶段员工培训学院》77套讲座+ 324份资料《员工管理企业学院》67套讲座+ 8720份资料《工厂生产管理学院》52套讲座+ 13920份资料

SD匝道桥:2010年5月15日~2010年10月31日 6#、7#、8#主桥:2010年3月1日~2010年4月31日 SA1-SA3匝道:2010年3月25日~2010年4月30日 SA4#、SA5#匝道:2010年7月10日~2010年8月31日一、施工方案 承台施工前,对墩身中心进行测量控制,定出墩身控制线和标高控制点以及墩身钢筋笼预埋承台内准确位置。对承台与墩身的交接面进行凿毛,做好施工缝的处理;在承台内按设计要求埋设墩身钢筋及必要的固定墩身模板用的钢筋;搭设吊装模板用双排脚手架及人行爬梯,脚手架采用碗口式脚手杆件组装。 因6#、7#、8#主桥位于河道内,SA1#-SA3#匝道桥跨越主河道,为减小汛期施工影响,确保6#、7#、8#主桥、匝道SA1#-SA3#桥、1#主桥在2010年5月底箱梁施工完,并落架清理完河道。6#、7#、8#主桥、匝道SA1#-SA3#桥、1#主桥墩柱同步施工,项目部计划6#、7#、8#主桥投10套墩柱模板,匝道2套墩柱模板,1#主桥2套墩柱模板。2#、3#、4#、5#主桥及SD匝道墩柱紧跟6#、7#、8#主桥、SA匝道平行推进。 全桥墩柱拟配备14套墩柱模板循环进行施工。墩柱模板采用工厂制作定型大钢模板,模板与加固背带焊接为一体,按墩身高度确定每节高0.5米、1米及3米,采用汽车吊进行拼装,墩身四角对称设钢丝绳拉紧锚定。 墩柱混凝土采用商品混凝土,汽车吊吊2m3料斗浇注,墩柱一次

浅谈预应力混凝土连续箱梁桥设计中的问题

浅谈预应力混凝土连续箱梁桥设计中的问题 摘要桥梁设计是一项综合的工程,设计过程中会遇到一些问题,如桥位选择、桥面标高的确定、确定桥梁分孔、主梁截面选择、确定墩台基础形式、墩台基础埋置深度、结构尺寸的拟定,以及有关桥梁的其他问题,如主梁截面普通钢筋及预应力钢筋的布置、桥墩、桥台和桩基的配筋设计、桥面系的布置等。 关键词桥梁设计,预应力结构,连续箱梁桥,总体布置,结构计算 相对于简支梁桥,连续梁桥结构体系和受力特点具有明显的优势,其跨中正弯矩降低很多,同时支点出现负弯矩。混凝土材料耐久性较好,能够适应桥梁结构后期运营使用过程中产生的磨损,钢结构在使用过程中,应做好防腐措施,工程造价过高。在桥梁结构形式选择过程中,大多数设计单位会优先考虑混凝土连续箱梁桥,设计过程中遇到的问题,可以通过查阅桥梁规范,或者借鉴相似工程在设计过程中的经验取值,能够对设计具有指导作用。 1.桥梁总体布置 1.1 桥位设计 桥位的选择常与桥梁结构体系、原有或新建道路线形及周围环境等众多方面。桥位设计应能够保证原有或既定交通的正常运营,能够通过设计的洪水流量,满足通航要求,并与桥址周围的工农业、自然环境等相协调。桥位选择需要注意保护文物、保护生态环境,同时要注意尽量少占用耕地和农田,尽量做到对有意义及有价值的建筑物的保护。 桥位确定后,应进行桥孔布置。桥孔的大小和长度,应与天然状态桥下河槽或河滩流量分配相协调,并能满足泄洪排沙的要求。桥孔的布置,应该针对不同桥位进行不同的设计,河槽稳定不会扩宽或河槽不稳定时,桥孔布置需考虑以上因素。桥孔布置后桥墩的选择也应满足一定的要求,尽可能小的减小对河流的影响,充分考虑桥墩阻水的影响。 桥面标高的确定,应该根据该桥的使用要求进行选择,注意与既定道路之间的衔接。若桥面标高与既定道路高差过大,可以考虑设置引桥以克服高差。且河流通过设计水位时,须保证支座不受水流侵袭,同时还需要考虑桥墩阻水等各种因素引起的各类升高值,若桥梁结构有通航要求,还应该满足通航净空的要求。 1.2结构形式

跨径20m钢筋混凝土简支梁桥课程设计计算书

桥梁工程课程设计计算书题目:跨径20m钢筋混凝土简支梁桥设计 院(系):土木建筑工程学院 专业班级: 学号: 学生姓名: 指导教师:

目录 一.选择结构尺寸-------------------------------1二.主梁翼缘板计算-----------------------------2三.活载横向分布系数的计算---------------------2四.主梁内力计算-------------------------------4五.横隔梁内力计算-----------------------------7六.挠度计算-----------------------------------9七.支座设计-----------------------------------10

一.选择结构尺寸 1.桥梁的跨径及桥宽 主梁全长:19.96m(标准跨径为30m) 计算跨径:19.5m 桥宽:9+2 1.0m人行道 2.主梁尺寸的确定(梁肋) 主梁间距1.8m~2.5m ,取1.8m 六根主梁 高跨比1/14~1/25梁高取h=1.5m 3.横隔梁尺寸的确定 中横隔梁的高度可作成主梁高的3/4左右, 取1.0m 横隔梁的肋宽通常取15~18cm,上宽下窄,上取16cm,下取15cm 4.主梁肋板尺寸 翼板厚度根部不小于梁高1/10,取18cm;边缘厚度不小于10cm,取14cm腹板厚度b=15cm 图1 横断面图 (单位:cm) 图2纵断面图 (单位:cm)

图3 T 梁横断面 (单位:cm ) 二.主梁作用效应计算 1.恒载及内力 桥面铺装为3c m厚的沥青表面处治(容重23kN/m 3)和平均厚9cm 的混凝土垫层(容重24 kN/m 3),T 板材料容重25 k N/m 3 ① 每延米板上的恒载g : 沥青表面处治: 1g =0.03?1.0?23=0.69 kN/m 防水混凝土面层:2g =16.2240.109.0=?? kN/m T 梁翼板自重: g 3=75.2250.12 14 .008.0=??+ k N/m 合计: 6.5=∑=i g g kN/m ② 每延米板条的恒载内力 弯矩m kN gl M Ag ?-=??-=-=?06.38.06.52 1 2122 剪力48.48.06.5=?==?gl Q Ag kN 2.公路Ⅰ级汽车荷载产生的内力 将加重车后轮作用于铰缝轴线上,后轴作用力140=P kN,着地长度m a 2.02=着地宽度m b 6.02=,则板上荷载压力面的边长为: m a a 44.012.022.0221=?+=H +=, 图4 汽车荷载计算图式(单位:cm ) m b b 84.012.026.0221=?+=H += 荷载作用于悬臂根部的有效分布宽度 双轮时m l d a a 64.321=++=? 冲击系数3.11=+μ 作用于每米宽板条上的弯矩为:

青岛海湾大桥建设工程项目管理信息系统介绍

青岛海湾大桥建设工程项目管理信息系统介绍 易建科技针对青岛海湾大桥项目的实际情况,设计并实施的工程项目管理信息系统主要包括:工程项目管理子系统、4D形象进度子系统、GPS船舶调度子系统、视频监控子系统、办公自动化系统和公共网站等子系统。该信息系统遵循Java EE行业标准的技术体系,采用三层架构的B/S分布式结构,运用JAVA与XML等语言技术。工程三维形象进度系统采用了清华大学的最新研究成果——建筑工程4D施工管理系统(4D-GCPSU 2006)作为施工管理信息平台。施工现场视频监控系统运用当前最先进网络视频技术,实现无缝的远程监控扩展,系统以IP地址为标识,可直接连入网络,没有线缆长度和信号衰减的限制,实现远程监控和管理。 青岛海湾大桥建设工程管理信息系统建设分为几个层次:面向公众的青岛海湾大桥网站;面向参建单位的工程项目管理系统、青岛海湾大桥4D施工管理系统、施工现场视频监控系统、施工船舶监控调度系统等。通过将现代项目管理学的知识体系与大桥建设项目特点、建设流程以及成熟的工程监理程序相结合,使该项目管理系统具有统筹管理、指挥协同、目标控制和预测等功能,探索出一套适合大型桥梁工程建设的项目管理体系。 工程项目管理子系统 由投资控制、合同管理、进度控制、质量控制、安全控制、招投标管理、材料管理、文档管理、设计管理、工作流等模块组成,全面控制大桥的概算与实际合同执行对比,通过实际投资与概算进行对比,达到有效控制投资目的。通过业主总控制计划来控制施工单位实施计划,达到有效控制大桥施工进度,使工程能够安全施工和更好的控制施工质量,有效跟踪控制大桥建设质量,为大桥建设的质量提供有力保障。通过安全控制,对大桥建设过程进行安全检查与培训,完成对施工安全的严格管理,建立有效的安全保障体系、预防措施和紧急预案,保障大桥的施工建设安全。通过材料管理,对大桥建设的主要材料进行跟踪控制,保障主要材料的质量以及及时供应,既能保证了大桥施工材料的品质、也保障了大桥的建设工期。 4D形象进度子系统 根据系统的功能组成,4D-GCPSU系统可以分为创建3D模型、创建WBS和进度计划、3D工程构件的创建及管理、创建4D模型、4D进度管理、4D资源管理、OpenGL图

桥梁混凝土配合比方案

QW工程 公路桥梁工程混凝土配合比设计试验大纲 批准: 审核: 编制: 2020年4月1日

目录 一、工程概述 (2) 二、试验目的 (2) 三、试验依据 (3) 四、试验内容 (3) 五、配合比试验委托 (3) 六、试验室检测项目 (3) 七、所用材料的品质检测指标 (4) 八、配合比设计指标 (7) 九、混凝土材料的选用 (7) 十、配合比设计 (8)

QW工程 公路桥梁工程混凝土配合比设计试验大纲 一、工程概述 二、试验目的 混凝土配合比试验的目的:在满足混凝土的强度,抗渗、抗冻等耐久性和拌和物工作性能条件下,根据集料级配与和易性要求选择最优砂率,合理利用水泥的富裕强度,选择合适的水灰比,尽量降低混凝土原材料成本,使混凝土配合比进一步优化;在此基础上提出满足设计要求的各项技术指标的混凝土配合比,同时为监理单位审查混凝土施工配合比提供参考。 三、试验依据 本次试验依据以下标准、规范、规程和文件,但不仅限于此。 4.01《普通混凝土配合比设计规程》JGJ55-2000; 4.02《公路工程集料试验规程》JTG E42—2005 ; 4.03《中热硅酸盐水泥、低热硅酸盐水泥、低热矿渣硅酸盐水泥》GB200-2003; 4.04《通用硅酸盐水泥》GB175-2007; 4.05《公路工程水泥及水泥混凝土试验规程》JTGE30-2005; 4.06《普通混凝土拌合物性能试验方法标准》GB/T50080-2002 ; 4.07《公路桥涵施工技术规范》JTJ041-2000; 4.08《公路工程质量检验评定标准》JTGF80/1-2004; 4.09《普通混凝土用砂、石质量及检验方法标准》JGJ52—2006; 4.10《混凝土外加剂》GB8076-2008; 4.11《混凝土外加剂均匀性试验方法》GB8077-2000; 4.12《混凝土拌和用水标准》JGJ63-2006; 4.13 关于进一步加强混凝土配合比设计和使用的通知(x局工【2019】75号); 4.14Qx干线工程混凝土输水箱涵施工操作指南(试行)2019年06月01日; 4.15《预防混凝土工程碱骨料反应技术条例(试行)》; 4.16《招标文件》等相关合同技术文件。 四、试验内容

《混凝土桥梁结构课程设计》课程教学大纲(实践环节)

混凝土桥梁结构课程设计》课程教学大纲(实践环节) (建议学时36,2 学分031364) 一、课程性质与目的 《混凝土桥梁结构课程设计》是土木工程专业桥梁课群组实践环节课,是一门重要的专业设计基础课,起着承上启下的作用。本课程包括桥梁超静定预应力结构的构造布置、受力分析和强度应力验算等的学习,并进行施工图的绘制训练。因此,本课程是一门理论和实践并重的课程。 通过本课程的学习,熟悉桥梁设计规范,掌握超静定预应力混凝土桥梁结构的基本计算理论和方法,具有桥梁结构设计的初步能力。为后续专业课《毕业设计》以及今后工作中遇到各种交通工程结构物的设计奠定必要的基础。 二、二、课程基本要求 (一)掌握超静定预应力混凝土桥梁结构的设计步骤、结构构造和设计计算方法; (二)熟悉并掌握桥梁工程现行规范运用; (三)通过本课程的学习,具有设计一般桥梁结构的能力。 三、三、课程教学基本内容 (一)总论 1.桥梁的基本组成部分 2.桥梁的主要类型 3.桥梁的设计荷载 4.课程设计的基础资料介绍 (二)预应力混凝土连续梁的基本构造和施工方法 1.预应力混凝土连续梁的基本构造 2.预应力混凝土连续梁的施工方法 (三)行车道板的设计计算 1.1.行车道板的有效分布宽度计算 2.2.行车道板的设计验算 (四)主梁的内力计算 1.1.主梁的荷载横向分布系数计算 2.2.主梁施工内力计算和活载计算 3.3.结构内力包络图计算 (五)连续梁的配筋设计原则 1.1.连续梁预应力钢束布设与施工方法的关系 2.2.预应力钢束的设计 (六)超静定结构的预应力损失计算和次内力计算 1.1.预应力损失的计算 2.2.预应力次内力计算 3. 3.混凝土徐变次内力计算 (七)预应力混凝土结构的强度与变形计算 1.按承载能力极限状态的强度计算 2.按正常使用极限状态的应力计算 3.预应力混凝土受弯构件的变形计算 (八)桥梁设计图纸的绘制 四、实验内容 无

混凝土桥课程设计

混凝土桥课程设计计算书 第一章混凝土桥课程设计任务书 1.设计题目:客运专线40m预应力混凝土双线简支箱梁设计 2.设计资料 (1)桥面布置如图1所示,桥面宽度:; (2)设计荷载:ZK活载; (3)桥面二恒:190KN/m (4)主梁跨径:主梁全长40m (5)结构尺寸图,根据预应力混凝土简支箱梁桥的构造要求设计,可参照图 1 图1桥面布置图 3.设计依据 (1)《铁路桥涵设计基本规范》(); (2)《铁路桥涵钢筋混凝土和预应力混凝土结构设计规范》); (3)《铁路混凝土结构耐久性设计暂行规定》(铁建设函(2005)157号); (4)《新建铁路桥上无缝线路设计暂行规定》(铁建设函(2003)205号); (5)《高速铁路设计规范(试行)》(TB 10621-2009); 4.设计内容 (1 )进行上部结构的构造布置并初步拟定各部分尺寸。 (2)主梁的设计: <1> 主梁内力计算 <2> 主梁预应力钢筋配置及验算 <3> 行车道板内力计算及设计 <4> 绘制主梁设计图(包括主梁构造图和配筋图)

5. 设计成果要求: 设计计算书:设计计算说明书用Word文档或手写。整个说明书应满足计算过程完整、计算步骤清楚、文字简明、符号规范的要求。封面、任务书和计算说明书用A4 纸张打印,按封面、任务书、计算说明书的顺序一起装订成册,交指导老师评阅。 图纸:要求图面整洁美观,比例适当,图中字体采用仿宋体,严格按制图标准作图。图幅为A3 图 第二章主梁纵向计算 一、设计依据及设计资料 1、设计依据: (1)《铁路桥涵设计基本规范》(); (2)《铁路桥涵钢筋混凝土和预应力混凝土结构设计规范》(); (3)《京沪高速铁路设计暂行规定》(铁建设函(2004)157号)。 2、设计条件: (1)线路情况:有砟桥面,双线,线间距;。 (2)环境类别及作用等级:环境作用等级为L1 级;(3)施工方法:支架现浇施工。 3. 结构形式: (1)截面类型为单箱单室等高度简支箱梁,直线梁,梁端顶板、底板及腹板局部向内侧加强; (2)桥跨布置:梁长为40m计算跨度为; (3)桥面宽度:挡砟墙内侧净宽,挡砟墙宽;人行道宽,人行道采用悬臂板方式;上顶板宽为。 4、设计荷载: (1 )恒载: ①结构构件自重:按《铁路桥涵设计基本规范》()第条采用; ②附属设施(二期恒载):二期恒载包括桥上轨道线路设备自重、道砟、防水层、人行道栏杆、挡砟墙、 电缆槽及盖板、电气化立柱等附属设施重量。桥面二期恒载取190+815/1000=m。 (2)活载: ①列车竖向活载纵向计算采用ZK 活载; ②列车竖向活载横向计算采用ZK 特种活载; ③横向摇摆力:取100kN集中荷载作用在最不利位置,以水平方向垂直线路中线作用于钢规顶面。 ④人行道竖向静荷载:按5kN/m。 (3)附加力: ①风力:风力按《铁路桥涵设计基本规范》()第条采用; ②结构温度变化影响力:按《铁路桥涵设计基本规范》()办理,整体升降温25C,纵向温度荷载按 顶板升温5C考虑。横向计算按升温、降温两种情况考虑温度变化的影响力,其计算模式如下: 图1-1 温度变化计算模式图 ③列车制动力:桥上列车制动力和牵引力按单线竖向静活载的10%+算。 (4)特殊荷载: ①脱轨荷载:不计动力系数,亦不考虑离心力,只考虑一线脱轨荷载,其他线路上不作用列车活载; ②地震力:按《铁路工程抗震设计规范》办理,地震基本烈度为七度。 5、材料:

胶州湾跨海大桥资料

青岛海湾大桥 青岛海湾大桥又称胶州湾跨海大桥,它是国家高速公路网G22青岛/url到兰州高速公路的起点段,是山东省“五纵四横一环”公路网上框架的重要组成部分,是青岛市规划的胶州湾东西两岸跨海通道“一路、一桥、一隧”中的“一桥”。起自青岛主城区海尔路经红岛到黄岛,大桥全长千米,投资100亿,历时4年,全长超过我国杭州湾跨海大桥与美国切萨皮克跨海大桥,是当今世界上最长的跨海大桥。大桥于2011年6月30日全线通车。是我国建桥者自行设计、施工、建造,具有独立知识产权的特大跨海大桥。中国与世界建桥史又翻开了崭新的一页。 建筑简介 青岛海湾大桥,东起青岛主城区黑龙江路杨家群入口处,跨越胶州湾海域,西至黄岛红石崖,(一期工程)路线全长新建里程公里,(二期工程12公里。)其中海上段长度公里,青岛侧接线749 米、黄岛侧接线米、红岛连接线长公里。工程概算投资亿元。2010年12月22日青岛海湾大桥主桥贯通,大桥于2011 年6月30号下午14点正式通车。 青岛海湾大桥工程包括三座可以通航的航道桥和两座互通立交,以及路上引桥、黄岛侧接线工程和红岛连接线等,全长公里,为世界第一跨海长桥。大桥为双向六车道高速公路兼城市快速路八车道,设计行车时速80公里,桥梁宽35米,设计基准期100年。 大桥从1993年4月开始规划研究。2007年5月全面开工以来,共用掉钢材约45万吨,相当于一个年钢产量过千万吨的特大型钢企一个多月的钢产量;共需混凝土约230万方。目前海湾大桥已完成投资84亿多元,占投资总额的88%。青岛海湾大桥(北桥位)是国家高速公路路网规划中的“青岛至州高速(M36)”青岛段的起点,也是我市道路交通规划网络布局中,胶州湾东西岸跨海通道中的“一路、一桥、一隧”重要组成部分。海湾大桥的建设,将实现半岛城市群区域内各中心城市之间形成“四小时经济圈”,区域内中心城市与本地市内各县市形成“一小时经济圈”的道路网络规划目标。本项目由山东高速投资经营,与胶州湾高速捆绑经营。山东高速集团投资建设的青岛海湾大桥是我国目前国有独资单一企业投资最大规模的交通基础设施项目,是我国北方冰冻海区域首座特大型桥梁集群工程,加上引桥和连接线,总体规模为世界第一大桥,工程全长超过38公里,一期工程全长公里,二期工程公里。本桥为双向六车道高速公路兼城市快速路8车道,设计车速为80公里/小时,桥梁宽度35米,设计基准期为100年。 建筑结构 大沽河航道桥: 据介绍,整个海湾大桥工程包括沧口、红岛和大沽河航道桥、海上非通航孔桥和路上引桥、黄岛两岸接线工程和红岛连接线工程,李村河互通、红岛互通以及青岛、红岛和黄岛三个主线收费站及管理设施。据负责大沽河航道桥施工的青岛海湾大桥第七合同段工作人员介绍,大沽河航道桥的主塔为独塔,高达149米,是海湾大桥上的最高塔。航道桥建成后,主塔将成为大沽河航道桥的主要标志物,而大沽河航道桥也会因此成为海湾大桥的标志性建筑物。据测算,大沽河航道桥箱梁由22种55个钢箱梁装焊组成,每个标准梁段长12米、宽47米、高米,其中最大梁段重达1000余吨,这在国内跨海大桥上是首次采用。 自锚式悬索桥: 悬索桥指的是以通过索塔悬挂并锚固于两岸(或桥两端)的缆索(或钢链)作为上部结构主要承重构件的桥梁。现代悬索桥的悬索一般均支承在两个塔柱上。塔顶设有支承悬索的鞍形支座。承受很大拉力的悬索的端部通过锚碇固定在地基中,个别也有固定在刚性梁的端部者,称为自锚式悬索桥。

中南大学混凝土桥课程设计资料

精品文档 混凝土桥课程设计 指导教师: 班级:

学生姓名: 精品文档. 精品文档 设计时间: 2013.09.04 中南大学土木工程学院桥梁系 二〇一三年九月 第一部分混凝土桥课程设计任务书 1. 设计题目:客运专线预应力混凝土双线简支箱梁设计 2. 设计资料(1)桥面布置如图1所示,桥面宽度:12.6m; (2)设计荷载:ZK活载; (3)桥面二恒:120KN/m; (4)主梁跨径:主梁全长36m; (5)结构尺寸图,根据预应力混凝土简支箱梁桥的构造要求设计,可参照图1。 精品文档. 精品文档

桥面布置图图1 设计依据3. );TB10002.1-20051)《铁路桥涵设计基本规范》(();2)《铁路桥涵钢筋混凝土和预应力混凝土结构设计规范》TB10002.3-2005(;)157号)(铁建设函((3)《铁路混凝土结构耐久性设计暂行规定》2005 ;205号))《新建铁路桥上无缝线路设计暂行规定》(铁建设函(2003)4(;》(TB 10621-2009)(5)《高速铁路设计规范(试行) 设计内容4. )进行上部结构的构造布置并初步拟定各部分尺寸。(1 2)主梁的设计:(主梁内力计算<1> <2>主梁预应力钢筋配置及验算行车道板内力计算及设计<3> 精品文档. 精品文档 <4>绘制主梁设计图(包括主梁构造图和配筋图) 5. 设计成果要求: 设计计算书:设计计算说明书用Word文档或手写。整个说明书应满足计算过程完整、计算步骤清楚、文字简明、符号规范的要求。封面、任务书和计算说明书用A4纸张打印,按封面、任务书、计算说明书的顺序一起装订成册,交指导老师评阅。

青岛海湾大桥混凝土耐久性设计方案研究

青岛海湾大桥混凝土耐久性设计方案研究 朱晓庆’,王耀青’ (1.青岛海湾大桥工程项目建设办公室,山东青岛266108; 2.中交第一公路勘察设计研究院,陕西西安710075) 摘要:青岛海湾大桥整体耐久性要求很高(设计使用年限为l00a),所处环境较为恶劣(海洋环境并遭受冻融等外部环境荷载),混凝土结构的耐久性很难通过单一措施保证,这就必然要求根据具体的环境条件和设计要求,有机组合多种技术措施,以保证整体耐久性达到设计要求。根据青岛海湾大桥所处的特殊环境,介绍其对混凝土耐久性影响的作用机理,从而采取相应的耐久性设计方案,为今后特殊环境下桥梁混凝土结构耐久性方案设计提供参考。 关键词:耐久性;高性能混凝土;青岛海湾大桥 中图分类号:U448.35 文献标识码:B 1 工程概况 青岛海湾大桥是青岛市道路交通网络布局中胶州湾东西岸跨海通道的重要组成部分。青岛海湾大桥设计起点位于青岛侧胶州湾高速公路李村河大桥北200m处,北距环太原路立交720m,设李村河互通立交与胶州湾高速公路相接;终点位于黄岛侧胶州湾高速公路东]km处,顺接济青南线设计起点;中间设立红岛互通与拟建的红岛连接线相接。路线全长26.707km,其中跨海大桥25.880km。 青岛海湾大桥全线设立三座主航道桥、两座互通立交,其中非通航孔桥均为50m或60m跨径的预应力混凝土连续箱梁或刚构,基础型式为群桩和独桩独柱两种,在互通范围内匝道桥分别为30m、50m左右不同跨径的预应力混凝土连续箱梁。 2 桥梁工程耐久性设计要求 所谓混凝土的耐久性,是指在使用过程中,在内部的或外部的,人为的或自然的因素作用下,混凝土保持自身工作能力的一种性能。或者说结构在设计使用年限内,抵抗外界环境或内部本身所产生的侵蚀破坏作用的能力。 青岛海湾大桥桥梁工程按照l00a设计基准期设计,对混凝土结构工程而言,要求使用寿命达到100a。 3 环境条件调查分析 影响混凝土耐久性的因素有混凝土结构的内在因素和外在环境因素两个方面。外在环境因素主要指气候、潮湿、高温、氯离子侵蚀、化学介质(酸、酸盐、海水、碱类等)侵蚀、冻融、磨蚀破坏等。影响混凝土耐久性的外在环境因素与工程所处的环境条件有着密切的关系,环境条件调查分析的目的就是调查青岛海湾大桥桥梁工程混凝土结构所在地域环境条件,分析影响其耐久性的主要因素。 4 混凝土工程耐久性影响因素及其作用机理 影响混凝土结构使用寿命的荷载可分为两大类,第一类是物理外力,如疲劳荷载、风荷载、海浪和水流冲击、地震力及意外事故撞击等等;第二类主要是化学或物理化学作用力,如:腐蚀、碳化、冻融、碱骨料反应等。物理外力荷载主要由结构设计解决,本方案主要考虑化学或物理化学作用力荷载对耐久性的影响。 一般地,钢筋混凝土的破坏因素主要有:钢筋锈蚀作用、碳化作用、冻融循环作用、碱一集料反应、溶蚀作用、盐类侵蚀作用、冲击磨损等机械破坏作用。 对照环境负荷和腐蚀特点,青岛海湾大桥桥梁工程的环境条件属于典型的北方海洋性环境,其耐久性的主要影响因素是:首先,其处于北方地区,每年均有2—3个月左右的冰期,存在冻融循环引起混凝土破坏的可能;其次,从化学侵蚀和腐蚀方面,主要存在SO “侵蚀的混凝土腐蚀作用和C1 引起的 钢筋锈蚀作用。 4.1 影响因素 对于混凝土的耐久性问题,通常并不是冻融、化学腐蚀和碳化性能等单一破坏因素作用下的耐久性。在实际工程中,结构混凝土的耐久性问题是一种在荷载的作用下碳化、CI 侵蚀、硫酸盐腐蚀或冻融等多种

桥梁混凝土配合比试验大纲

.专业资料分享. 南水北调中线一期工程总干渠 桥梁混凝土配合比设计试验大纲 批准: 审核: 编制: 2011年4月1日

目录 一、前言 (2) 二、混凝土的设计参数 (2) 三、桥梁混凝土配合比设计 (10) (一) 混凝土配合比设计用原材料检验 (11) (二)混凝土配合比设计 .................... 错误!未定义书签。 (三)混凝土碱含量计算 .................... 错误!未定义书签。

南水北调中线一期工程总干渠陶岔~沙河南(委托建管项目) 南水北调中线工程方城段第五施工标段 桥梁混凝土配合比设计试验大纲 一、前言 根据我局承建的南水北调中线工程工程合同文件及施工组织设计要求,需对本工程所使用的各类别混凝土配合比进行设计和室内拌合试验。通过配合比设计试验,选择和确定混凝土组成材料的合理比例,设计出既满足施工要求又经济合理的混凝土配合比。公路桥梁混凝土配合比委托具备交通部公路工程试验检测综合甲级资质的中交国通公路工程技术有限公司进行设计。 二、混凝土的设计参数 根据设计、招标文件和相关委托方的要求,此次混凝土配合比设计参数见表1。 表1 南阳试验段桥梁工程混凝土配合比清单 使用部位骨料级配强度等级 坍落度 (mm) 备注 桩基5-31.5mm C25F150 180-220 加粉煤灰、外 加剂普通硅酸盐42.5水泥 墩柱、盖梁、耳 墙5-31.5mm C30F150 30-50 加粉煤灰、外 加剂 普通硅酸盐 42.5水泥 垫石5-20mm C40F150 50-70 加粉煤灰、外普通硅酸盐

加剂52.5水泥 主梁、桥面板5-20mm C50F150 50-70 加粉煤灰、外 加剂普通硅酸盐52.5水泥 三、桥梁工程混凝土配合比设计 (一)、混凝土配合比设计用原材料检验 南水北调中线一期工程工程混凝土配合比设计用原材料均由委托方提供。C25F150、C30F150配合比使用的水泥为南阳中联普通硅酸盐42.5级水泥,C40F150、C50F150配合比使用的水泥为南阳中联普通硅酸盐52.5级水泥;粉煤灰为南阳鸭河口Ⅰ级F类粉煤灰;外加剂选用西卡(中国)建筑材料有限公司天津分公司生产的Sika Viscocrete1210W 高效减水剂(液体)及AER50-C引气剂;骨料采用南阳本地5-20mm、5-31.5mm碎石和本地河砂。 1、水泥 按照《硅酸盐水泥、普通硅酸盐水泥》(GB175-2007)标准,检测①比表面积;②密度;③标准稠度用水量;④凝结时间;⑤安定性;⑥胶砂强度;⑦碱含量。 2、粗骨料 依据《公路桥涵施工技术规范》(JTJ041-2000)对粗集料的品质要求,按《公路工程集料试验规程》(JTGE42-2005)对粗集料的颗粒级配、含泥量、泥块含量、坚固性、硫化物及硫酸盐含量、表观密度、压碎值、针片状颗粒含量进行检验。

相关主题