搜档网
当前位置:搜档网 › 高中数学第二章第10课时等比数列的概念和通项公式训练苏教版必修5

高中数学第二章第10课时等比数列的概念和通项公式训练苏教版必修5

高中数学第二章第10课时等比数列的概念和通项公式训练苏教版必修5
高中数学第二章第10课时等比数列的概念和通项公式训练苏教版必修5

第10课时 等比数列的概念和通

项公式

【分层训练】

1.下列各组数能组成等比数列的是( )

A. 111

,,369

B. lg3,lg9,lg 27

C. 6,8,10

D. 3,33,9- 2.等比数列{}n a 中,32a =,864a =,那

么它的公比q =( )

A. 4

B. 2

C. 52

D. 1

2

3. 考察下列数列,①a 1 =1,a n +1 =a n + 21,b 1 =2,b n +1 =b n ·2. ②a n +1 =a n ,b n +1 =2b n . ③

a n +1 =a n +n ,

b 1 =1,b n +1 =(b n )2 ,则{a n }是等差数列且{b n }是等比数列的有( )

A .1组

B .2组

C .3组

D .0组 4. 等差数列{a n }中,a n -m = A ,a n +m =B .等比

数列{b n }中,b n -m = A ,b n +m =B .则有( ) A .a n =A + B ,b n =A ·B

B .a n =2B A +,b n =AB

C .a n =2

B

A +,b n =±AB

D .a 2n =A + B ,b 2n =AB 5.等比数列中,首项为98,末项为1

3

,公比为

2

3

,则项数n 等于 . 6.在等比数列中,n a >0,且21n n n a a a ++=+,则该数列的公比q 等

于 .

7.在等比数列{}n a 中,n a >0,()n N +∈且

3698a a a =,则222426log log log a a a ++

28210log log a a ++= .

8.若{}n a 是等比数列,下列数列中是等比数列的所有代号为是 . ① {}2

n

a ② {}2n

a

③ 1n a ????

??

④{}

lg n a 【拓展延伸】

9.某地现有耕地10000公顷,规划10年后

粮食单产比现在增加22%,人均粮食占有量比现在提高10%.如果人口年增长率为1%,

那么耕地平均每年至多只能减少多少公顷

(精确到1公顷)?

(注:粮食单产=总产量/耕地面积,人均粮食占有量=总产量/总人口数)

10.如图,正方形ABCD 的边长为3a cm ,分

别作边AB ,BC ,CD ,DA 上的三等分点A1,B1,C1,D1,得正方形A1B1C1D1,再分

别取边A1B1,B1C1,C1D1,D1A1上的三

等分点A2,B2,C2,D2,得正方形A2B2

C2D2,如此继续下去,得正方形A3B3C3

D3…… (1)求边A1B1,A2B2,A3B3的长;

(2)求正方形An Bn Cn Dn 的边长.

学生质疑

教师释疑

高一数列通项公式常见求法

数列通项公式的常见求法 一、公式法 高中重点学了等差数列和等比数列,当题中已知数列是等差或等比数列,在求其通项公式时我们就可以直接利用等差或等比数列的公式来求通项,只需求得首项及公差公比。 1、等差数列公式 例1、已知等差数列{a n }满足a 2=0,a 6+a 8=-10,求数列{a n }的通项公式。 解:(I )设等差数列{}n a 的公差为d ,由已知条件可得 11 0,21210,a d a d +=??+=-? 解得11,1.a d =??=-? 故数列{}n a 的通项公式为2.n a n =- 2、等比数列公式 例2、设{}n a 是公比为正数的等比数列,12a =,324a a =+,求{}n a 的通项公式。 解:设q 为等比数列{}n a 的公比,则由21322,4224a a a q q ==+=+得, 即220q q --=,解得21q q ==-或(舍去),因此 2.q = 所以{}n a 的通项为1*222().n n n a n N -=?=∈ 3、通用公式 若已知数列的前n 项和n S 的表达式,求数列{}n a 的通项n a 可用公式 ?? ?≥-==-2 1 1n S S n S a n n n n 求解。一般先求出11S a =,若计算出的n a 中当n=1适合时可以合并为一个关系式,若不适合则分段表达通项公式。 例3、已知数列}{n a 的前n 项和12 -=n S n ,求}{n a 的通项公式。 解:011==s a ,当2≥n 时 12]1)1[()1(221-=----=-=-n n n s s a n n n 由于1a 不适合于此等式 。 ∴?? ?≥-==) 2(12)1(0 n n n a n

最新人教版高中数学必修五 等差数列通项公式优质教案

2.2.2 从容说课 本节课的主要内容是让学生明确等差中项的概念,进一步熟练掌握等差数列的通项公式及其推导的公式,并能通过通项公式与图象认识等差数列的性质;让学生明白一个数列的通项公式是关于正整数n的一次型函数,那么这个数列必定是一个等差数列,使学生学会用图象与通项公式的关系解决某些问题在学法上,引导学生去联想、探索,同时鼓励学生大胆质疑,学会探究.在教学过程中,遵循学生的认 知规律,充分调动学生的积极性,尽可能让学生经历知识的形成和发展过程,激发他们的学习兴趣,发挥他们的主观能动性及其在教学过程中的主体地位,通过等差数列概念的归纳概括,培养学生的观察、分析资料的能力,积极思维,追求新知的创新意识 通过对等差数列的研究,使学生明确等差数列与一般数列的内在联系,从而渗透特殊与一般的辩证唯物主义观点,通过等差数列的图象的应用,通过等差数列通项公式的运用,渗透方程思想,进一步渗透数形结合思想、函数思想.通过引导学生积极探究,主动学习,提高学生学习积极性,也提高了课堂的教学效果 教学重点等差数列的定义、通项公式、性质的理解与应用 教学难点等差数列的性质的应用、灵活应用等差数列的定义及性质解决一些相关问题 教具准备多媒体及课件 三维目标 一、知识与技能 1.明确等差中项的概念 2.进一步熟练掌握等差数列的通项公式及推导公式,能通过通项公式与图象认识等差数列的性质 3.能用图象与通项公式的关系解决某些问题 二、过程与方法

1.通过等差数列的图象的应用,进一步渗透数形结合思想、函数思想;通过等差数列通项公式的运用,渗透方程思想 2.发挥学生的主体作用,讲练相结合,作好探究性学习 3.理论联系实际,激发学生的学习积极性 三、情感态度与价值观 1.通过对等差数列的研究,使学生明确等差数列与一般数列的内在联系,从而渗透特殊与一般的辩证唯物主义观点 2.通过体验等差数列的性质的奥秘,激发学生的学习兴趣 教学过程 导入新课 师 同学们,上一节课我们学习了等差数列的定义,等差数列的通项公式,哪位同学能回忆一下什么样的 数列叫等差数列? 生 我回答,一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,即a n -a n -1=d (n ≥2,n ∈N *),这个数列就叫做等差数列,这个常数就叫做等差数列的公差(通常用字母“d ”表示 师 对,我再找同学说一说等差数列{a n }的通项公式的内容是什么? 生1 等差数列{a n }的通项公式应是a n =a 1+(n -1)d 生2 等差数列{a n }还有两种通项公式:a n =a m +(n -m)d 或a n =p n +q(p 、q 是常数 师 好!刚才两位同学说得很好,由上面的两个公式我们还可以得到下面几种计算公差d 的公式:①d =a n -a n -1;② 11--= n a a d n ;③m n a a d m n --=.你能理解与记忆它们吗? 生3 公式②11--=n a a d n 与③m n a a d m n --=记忆规律是项的值的差比上项数之间的差(下标之差 [合作探究] 探究内容:如果我们在数a 与数b 中间插入一个数A ,使三个数a ,A ,b 成等差数列,那么数A 应满足什么样的条件呢?

高中数学数列公式大全(很齐全哟~!)之欧阳数创编

一、高中数列基本公式:1、一般数列的通项an与前n项和Sn的关系:an=2、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。3、等差数列的前n项和公式:Sn=Sn= Sn=当d≠0时,Sn是关于n 的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。4、等比数列的通项公式:an= a1qn-1an= akqn-k (其中a1

为首项、ak为已知的第k项, an≠0)5、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);当q≠1时, Sn=Sn=三、高中数学中有关等差、等比数列的结论1、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍为等差数列。2、等差数列{an}中,若m+n=p+q,则 3、等比数列{an}中,若 m+n=p+q,则4、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m-

S3m、……仍为等比数列。5、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。6、两个等比数列{an}与{bn}的积、商、倒数组成的数列{an bn}、、仍为等比数列。7、等差数列{an}的任意等距离的项构成的数列仍为等差数列。8、等比数列{an}的任意等距离的项构成的数列仍为等比数列。9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法: a-3d,a-d,,a+d,a+3d10、三个数成等比数列的设法:a/q,a,aq;四个

数列.版块三.等比数列-等比数列的通项公式与求和.学生版

【例1】 在等比数列{}n a 中,22a =,5128a =,则它的公比q =_______,前n 项和n S =_______. 【例2】 等差数列{}n a 的前n 项和为n S ,且53655-=S S ,则4=a . 【例3】 设等比数列{}n a 的前n 项和为n S ,若 63 3S S =,则96=S S ( ) A .2 B . 7 3 C .83 D .3 【例4】 设{}n a 是公比为q 的等比数列,1>q ,令1(12)=+=L n n b a n , ,,若数列{}n b 有连续四项在集合{}5323193782--, ,,,中,则6=q . 【例5】 等比数列{}n a 的首项11a =-,前n 项和为n S ,公比1q ≠,若 105S S =31 32 ,则105a a 等于 . 【例6】 等比数列{}n a 中,1512a =,公比1 2 q =-,用n ∏表示它前n 项的积:12...n n a a a ∏=, 则1∏,2∏,…,n ∏中最大的是_______. 【例7】 已知数列{}n a 的前n 项和为n S ,1 (1)()3 N n n S a n *=-∈. ⑴求1a ,2a ,3a 的值; ⑵求n a 的通项公式及10S . 典例分析 等比数列的通项公式与求和

【例8】 在等比数列{}n a 中,12327a a a ??=,2430a a += 试求:⑴1a 和公比q ;⑵前6项的和6S . 【例9】 在等比数列{}n a 中,已知对任意正整数n ,有21n n S =-,则22212 n a a a +++=L ________. 【例10】 求和:2(1)(2)(),(0)n a a a n a -+-++-≠L . 【例11】 在等比数列{}n a 中,423a = ,35209a a +=.若数列{}n a 的公比大于1,且3log 2 n n a b =,求数列{}n b 的前n 项和n S . 【例12】 在各项均为正数的等比数列{}n b 中,若783b b ?=,则3132log log b b ++……314log b +等于( ) A .5 B .6 C .7 D .8 【例13】 等比数列}{n a 中,已知对任意自然数n ,=+?+++n a a a a 32121n -, 则222 12n a a a ++???+=( ) A .()221n - B .()1213n - C .41n - D .()1 413 n -

高中数学数列通项公式的求法(方法总结)

(1)主题:求数列通项n a 的常用方法总结 一、 形如:特殊情况:当n+11,n n A B C A a a A =*+*+≠,常用累加法。 (n n a a +-,z 构建等比数列()1y n z *++z ; 的通项公式,进而求得n a 。 二、 形n a a * ;

三、 形 ()x f x =) 情形1:1n n A B a a +=*+型。设λ是不动点方程的根,得数列 {}n a λ-是 以公比为A 的等比数列。 情形2:1*n n n A B C D a a a +*+=+型。 设1λ和2λ 是不动点方程 *A x B x C x D *+=+的两个根; (1)当12λλ≠时,数列n 12n a a λλ??-?? ??-????是以12 A C A C λλ -*-*为公比的等比数列; (2)当12 =λλλ =时,数列1n a λ???? ??-???? 是以2*C A D +为公差的等差数列。 【推导过程:递推式为a n+1= d ca b aa n n ++(c ≠0,a,b,c,d 为常数)型的数列 a n+1-λ= d ca b aa n n ++-λ= d ca c a d b a c a n n +--+ -) )((λλλ,令λ=-λ λc a d b --,可得λ=d c b a ++λλ ……(1)。(1)是a n+1=d ca b aa n n ++中的a n ,a n+1都换成λ后的不动点方程。 ○ 1当方程(1)有两个不同根λ1,λ2时,有 a n+1-λ1= d ca a c a n n +--))((11λλ,a n+1-λ2=d ca a c a n n +--) )((22λλ ∴ 2111λλ--++n n a a =21λλc a c a --?21λλ--n n a a ,令b n =21λλ--n n a a 有b n +1= 2 1 λλc a c a --?b n ○ 2当方程(1)出现重根同为λ时, 由a n+1-λ= d ca a c a n n +--))((λλ得λ-+11n a =))((λλ--+n n a c a d ca =λ c a c -+))((λλλ--+n a c a c d ( “分离常数”)。设c n =λ-n a 1 得c n +1= λ λc a c d -+?c n + λ c a c -】

高中数学必修五数列知识点

一、知识纲要 (1)数列的概念,通项公式,数列的分类,从函数的观点看数列. (2)等差、等比数列的定义. (3)等差、等比数列的通项公式. (4)等差中项、等比中项. (5)等差、等比数列的前n 项和公式及其推导方法. 二、方法总结 1.数列是特殊的函数,有些题目可结合函数知识去解决,体现了函数思想、数形结合的思想. 2.等差、等比数列中,1a 、n a 、n 、)(q d 、n S “知三求二”,体现了方程(组)的思想、整体思想,有时用到换元法. 3.求等比数列的前n 项和时要考虑公比是否等于1,公比是字母时要进行讨论,体现了分类讨论的思想. 4.数列求和的基本方法有:公式法,倒序相加法,错位相减法,拆项法,裂项法,累加法,等价转化等. 三、知识内容: 1.数列 数列的通项公式:?? ?≥-===-)2() 1(111n S S n S a a n n n 数列的前n 项和:n n a a a a S ++++= 321 1、数列:按照一定顺序排列着的一列数. 2、数列的项:数列中的每一个数. 3、有穷数列:项数有限的数列. 4、无穷数列:项数无限的数列. 5、递增数列:从第2项起,每一项都不小于它的前一项的数列. 6、递减数列:从第2项起,每一项都不大于它的前一项的数列. 7、常数列:各项相等的数列. 8、摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列. 9、数列的通项公式:表示数列 {}n a 的第n 项与序号n 之间的关系的公式. 10、数列的递推公式:表示任一项n a 与它的前一项1n a -(或前几项)间的关系的公式. 例1.已知数列{}n a 的前n 项和为n n S n -=2 2,求数列{}n a 的通项公式. 当1=n 时,111==S a ,当2n ≥时,34)1()1(222 2-=-+---=n n n n n a n ,经检验 1=n 时 11=a 也适 合34-=n a n ,∴34-=n a n ()n N +∈ 2.等差数列 等差数列的定义:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。 等差数列的判定方法: (1)定义法:对于数列 {}n a ,若d a a n n =-+1(常数),则数列{}n a 是等差数列。 (2)等差中项:对于数列{}n a ,若212+++=n n n a a a ,则数列{}n a 是等差数列。 等差数列的通项公式: 如果等差数列 {}n a 的首项是1a ,公差是d ,则等差数列的通项为d n a a n )1(1-+=。 说明:该公式整理后是关于n 的一次函数。 等差数列的前n 项和:①2)(1n n a a n S += ②d n n na S n 2 ) 1(1-+ = 说明:对于公式②整理后是关于n 的没有常数项的二次函数。 等差中项: 如果a , A ,b 成等差数列,那么A 叫做a 与b 的等差中项。即:2 b a A += 或b a A +=2 说明:在一个等差数列中,从第2项起,每一项(有穷等差数列的末项除外)都是它的前一项与后一项的等差中项;事实上等差数列中某一项是与其等距离的前后两项的等差中项。 等差数列的性质: (1)等差数列任意两项间的关系:如果n a 是等差数列的第n 项,m a 是等差数列的第m 项,且n m ≤,公差为d ,则有 d m n a a m n )(-+=

高中数学数列公式大全很齐全哟

高中数学数列公式大全 很齐全哟 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

一、数列基本公式: 1、一般数列的通项a n 与前n项和S n 的关系:a n = 2、等差数列的通项公式:a n =a 1 +(n-1)d a n =a k +(n-k)d (其中a 1 为首项、 a k 为已知的第k项) 当d≠0时,a n 是关于n的一次式;当d=0时,a n 是 一个常数。 3、等差数列的前n项和公式:S n =S n = S n = 当d≠0时,S n 是关于n的二次式且常数项为0;当d=0时(a 1 ≠0), S n =n a 1 是关于n的正比例式。 4、等比数列的通项公式:a n =a 1 q n-1a n =a k q n-k (其中a 1为首项、a k 为已知的第k项,a n ≠0) 5、等比数列的前n项和公式:当q=1时,S n =n a 1 (是关于n的正比例 式); 当q≠1时,S n =S n =

三、高中中有关等差、等比数列的结论 1、等差数列{a n }的任意连续m项的和构成的数列S m 、S 2m -S m 、S 3m -S 2m 、S 4m -S 3m 、……仍为等差数列。 2、等差数列{a n }中,若m+n=p+q,则 3、等比数列{a n }中,若m+n=p+q,则 4、等比数列{a n }的任意连续m项的和构成的数列S m 、S 2m -S m 、S 3m -S 2m 、S 4m -S 3m 、……仍为等比数列。 5、两个等差数列{a n }与{b n }的和差的数列{a n+ b n }、{a n -b n }仍为等差数列。 6、两个等比数列{a n }与{b n }的积、商、倒数组成的数列 {a n b n }、、仍为等比数列。 7、等差数列{a n }的任意等距离的项构成的数列仍为等差数列。 8、等比数列{a n }的任意等距离的项构成的数列仍为等比数列。 9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3 d 10、三个数成等比数列的设法:a/q,a,a q;四个数成等比的错误设法:a/q3,a/q,a q,a q3(为什么?)

数学必修5公式

一、解三角形1.正弦定理 2sin sin sin a b c R A B C = = = 2.三角形面积公式 111sin sin sin 2 2 2 A B C S bc A ac B ab C = == 3.余弦定理2222cos a b c bc A =+- 222cos 2b c a A bc +-= 4.韦达定理1212b x x a c x x a ? +=-?????=?? 二、数列1.等差数列A P 定义:()12n n a a d n n N d -+-=≥∈,,是常数 通项公式:()()()111n m a a n d a n m d pn q p d q a d =+-=+-=+==-, 等差中项:2 a b A a A b A P += ?,,成 性质:若m n p q +=+,则()m n p q a a a a m n p q N ++=+∈,,, 若{}n a 为A P ,则123456789a a a a a a a a a ++++++,,,…仍成A P 前n 项和:() ()12 1112 2 22n n n a a n n d d d S na An Bn A B a +-??= =+ =+==- ?? ?, 性质:当项数为2n 时,S S nd -=偶奇22n n n n n S S S AP d n d --'=23,,成, 2.等比数列G P 定义: () 1 20n n a q n n N q a +-=≥∈≠,,通项公式: 1 1 10n n m n m n m a a a q a q c q c q ---??=?=?=?=≠ ??? 等比中项:)0g a b a g b GP =≠?,,,成 性质:若m n p q +=+,则()m n p q a a a a m n p q N +=∈,,,21122n n n n a a a a a -+-+=?=? 2 1726354a a a a a a a ?=?=?=前n 项和:()11111111 n n n a q a a q q S q q na q ?--?=≠=?--? =?,,性质:当项数为2n 时, S q S =偶奇 ;2n n n n n n S S S G P q q --'=23,,成,三、不等式1.性质a b b a >?>?>, a b a c b c >?+>+0a b c ac bc >>?>,0a b c ac bc >>?+>+, a b c d a c b d >-,00a b c d ac bd >>>>?>,01n n a b a b n N n +>>?>∈>,, 01a b n N n +>>? > ∈>, 2.均值不等式如果a b R + ∈, ,则 2 a b +≥,当且仅当 a b =时,等式成立如果a b R +∈,,则222a b ab +≥,当且仅当a b =时,等式成立

高中数学数列复习题型归纳解题方法整理

数列 一、等差数列与等比数列 1.基本量的思想: 常设首项、(公差)比为基本量,借助于消元思想及解方程组思想等。转化为“基本量”是解决问题的基本方法。 2.等差数列与等比数列的联系 1)若数列{}n a 是等差数列,则数列}{n a a 是等比数列,公比为d a ,其中a 是常数,d 是{}n a 的公差。 (a>0且a ≠1); 2)若数列{}n a 是等比数列,且0n a >,则数列{}log a n a 是等差数列,公差为log a q ,其中a 是常数且 0,1a a >≠,q 是{}n a 的公比。 3)若{}n a 既是等差数列又是等比数列,则{}n a 是非零常数数列。 3.等差与等比数列的比较

4、典型例题分析 【题型1】等差数列与等比数列的联系 例1 (2010陕西文16)已知{}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.(Ⅰ)求数列{}的通项;(Ⅱ)求数列{2}的前n项和. 解:(Ⅰ)由题设知公差d≠0, 由a1=1,a1,a3,a9成等比数列得12 1 d + = 18 12 d d + + , 解得d=1,d=0(舍去),故{}的通项=1+(n-1)×1=n. (Ⅱ)由(Ⅰ)知2m a=2n,由等比数列前n项和公式得 2+22+23+…+22(12) 12 n - - 21-2. 小结与拓展:数列{}n a是等差数列,则数列} {n a a是等比数列,公比为d a,其中a是常数,d是{}n a的公差。(a>0且a≠1). 【题型2】与“前n项和与通项”、常用求通项公式的结合 例2 已知数列{}的前三项与数列{}的前三项对应相同,且a1+2a2+22a3+…+2n-1=8n对任意的n∈N*都成立,数列{+1-}是等差数列.求数列{}与{}的通项公式。 解:a1+2a2+22a3+…+2n-1=8n(n∈N*) ① 当n≥2时,a1+2a2+22a3+…+2n-2-1=8(n-1)(n∈N*) ② ①-②得2n-1=8,求得=24-n, 在①中令n=1,可得a1=8=24-1, ∴=24-n(n∈N*).由题意知b1=8,b2=4,b3=2,∴b2-b1=-4,b3-b2=-2, ∴数列{+1-}的公差为-2-(-4)=2,∴+1-=-4+(n-1)×2=2n-6,

数列通项公式和前n项和求解方法全

数列通项公式的求法详解 一、 观察法(关键是找出各项与项数n 的关系.) 例1:根据数列的前4项,写出它的一个通项公式: (1)9,99,999,9999, (2) ,1716 4,1093 ,542,21 1(3) ,52,21,32 ,1(4) ,5 4 ,43,32 ,21-- 答案:(1)110-=n n a (2);122++=n n n a n (3);12+=n a n (4)1 )1(1+? -=+n n a n n . 二、 公式法 公式法1:特殊数列 例2: 已知数列{a n }是公差为d 的等差数列,数列{b n }是公比为q 的(q ∈R 且q ≠1)的等比数列,若函数f (x ) = (x -1)2 ,且a 1 = f (d -1),a 3 = f (d +1),b 1 = f (q +1),b 3 = f (q -1),求数列{ a n }和{ b n }的通项公式。 答案:a n =a 1+(n -1)d = 2(n -1); b n =b ·q n -1=4·(-2)n -1 例3. 等差数列{}n a 是递减数列,且432a a a ??=48,432a a a ++=12,则数列的通项公式是( ) (A) 122-=n a n (B) 42+=n a n (C) 122+-=n a n (D) 102+-=n a n 答案:(D) 例4. 已知等比数列{}n a 的首项11=a ,公比10<

(完整版)高中数学必修5公式大全

高中数学必修5公式大全 1、正弦定理:在C ?AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ?AB 的外接圆的半径,则有 2sin sin sin a b c R C ===A B . 2、正弦定理的变形公式:①2sin a R =A ,2sin b R =B ,2sin c R C =; ②sin 2a R A = ,sin 2b R B =,sin 2c C R =;③::sin :sin :sin a b c C =A B ; ④sin sin sin sin sin sin a b c a b c C C ++=== A + B +A B . (正弦定理主要用来解决两类问题:1、已知两边和其中一边所对的角,求其余的量。2、已知两角和一边,求其余的量。) ⑤对于已知两边和其中一边所对的角的题型要注意解的情况。(一解、两解、无解三中情况) 如:在三角形ABC 中,已知a 、b 、A (A 为锐角)求B 。具体的做法是:数形结合思想 画出图:法一:把a 扰着C 点旋转,看所得轨迹以AD 有无交点: 当无交点则B 无解、 当有一个交点则B 有一解、 当有两个交点则B 有两个解。 法二:是算出CD=bsinA,看a 的情况: 当ab 时,B 有一解 注:当A 为钝角或是直角时以此类推既可。 3、三角形面积公式:111 sin sin sin 222 C S bc ab C ac ?AB = A == B . 4、余弦定理:在 C ?AB 中,有2 2 2 2cos a b c bc =+-A ,2 2 2 2cos b a c ac =+-B , 2222cos c a b ab C =+-. 5、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222 cos 2a b c C ab +-=. (余弦定理主要解决的问题:1、已知两边和夹角,求其余的量。2、已知三边求角) 6、如何判断三角形的形状:设a 、b 、c 是C ?AB 的角A 、B 、 C 的对边,则:①若222a b c +=,则90C =o ; ②若2 2 2 a b c +>,则90C o . 正余弦定理的综合应用:如图所示:隔河看两目标A 、B,

高中数学数列公式及结论总结

高中数学数列公式及结论总结 一、高中数列基本公式: 1、一般数列的通项a n与前n项和S n的关系:a n= 2、等差数列的通项公式:a n=a1+(n-1)d a n=a k+(n-k)d (其中a1为首项、a k为已知的第k项) 当d≠0时,a n是关于n的一次式;当d=0时,a n是一个常数。 3、等差数列的前n项和公式: S n=S n=S n= 当d≠0时,S n是关于n的二次式且常数项为0;当d=0时(a1≠0),S n=na1是关于n 的正比例式。 4、等比数列的通项公式:a n= a1 q n-1 a n= a k q n-k (其中a1为首项、a k为已知的第k项,a n≠0) 5、等比数列的前n项和公式:当q=1时,S n=n a1 (是关于n的正比例式); 当q≠1时,S n=S n= 三、高中数学中有关等差、等比数列的结论 1、等差数列{a n}的任意连续m项的和构成的数列S m、S2m-S m、S3m-S2m、S4m - S3m、……仍为等差数列。 2、等差数列{a n}中,若m+n=p+q,则 3、等比数列{a n}中,若m+n=p+q,则 4、等比数列{a n}的任意连续m项的和构成的数列S m、S2m-S m、S3m-S2m、S4m - S3m、……仍为等比数列。 5、两个等差数列{a n}与{b n}的和差的数列{a n+b n}、{a n-b n}仍为等差数列。 6、两个等比数列{a n}与{b n}的积、商、倒数组成的数列 {a n b n}、、仍为等比数列。 7、等差数列{a n}的任意等距离的项构成的数列仍为等差数列。 8、等比数列{a n}的任意等距离的项构成的数列仍为等比数列。 9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d 10、三个数成等比数列的设法:a/q,a,aq;

等比数列的通项公式

等比数列的通项公式 例1 已知{a n}为等比数列, 求证:当m+n=p+l时 a m·a n=a p·a l 证明: 设等比数列的首项a1,公比为q, ∵m+n=p+l ∴a m·a n=a p·a l得证. 评注: 本题证明过程并不难,但结论:等比数列中,下标之和相等则对应项之积相等,这在解决有关等比数列的问题时常使解决的过程变得很简捷. 例2 在等比数列{a n}中 (1)已知:a1+a2+a3=6,a2+a3+a4=-3,求a3+a4+a5+a6+a7+a8的值; (2)已知a1+a2+a3+a4+a5=31,a2+a3+a4+a5+a6=62,求通项a n. 分析:利用等比数列的定义和性质整体观察. 解 (1)不难看出a1+a2+a3,a2+a3+a4,a3+a4+a5,a4+a5+a6,a5+a6+a7,a6+a7+a8成等比数列,且公比为q(即数列{a n}的公比).

设为{A n},即A1=6,A2=-3, (2)由已知可以看到 ∴a1(1+2+4+8+16)=31,a1=1 ∴a n=2n-1. 评注: 以上二题均可用列方程和方程组解决,但掌握等比数列有关性质整体考虑问题会使运算更简捷. 例3 在各项均为正数的等比数列{a n}中,若a5a6=9,则log3a1+log3a2+…+log3a10= [ ] A.12 B.10 C.8 D.2+log35 解: 根据等比中项的性质, a5a6=a1a10=a2a9=a3a8=a4a7=9.

∴a1a2…a9a10=(a5a6)5=95. ∴log3a1+log3a2+…+log3a10 =log3(a1a2 (10) =log395 =5log39 =10. 故正确答案为(B). 评注: (1)应用等比中项求解某些等比数列问题,简便快捷. (2)对等比数列{a n},有以下结论: 例4 若{a n}为等比数列,且a n>0,已知a5a6=128 则log2a1+log2a2+…+log2a10的值为 [ ] A.5 B.28 C.35 D.40

求数列通项公式的十种方法

求数列通项公式的十种方法 一、公式法 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以1 2 n +,得 113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2n n a 是以1222a 1 1==为首项,以2 3 为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222 n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 113 222 n n n n a a ++-=,说明数列{}2 n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}n a 的通项公式。 二、利用 { 1(2)1(1) n n S S n S n n a --≥== 例2.若n S 和n T 分别表示数列{}n a 和{}n b 的前n 项和,对任意正整数 2(1)n a n =-+,34n n T S n -=.求数列{}n b 的通项公式; 解 : 22(1) 4 2 31a n a d S n n n n =-+∴=-=-=-- 23435T S n n n n n ∴=+=--… …2分 当1,35811n T b ===--=-时 当2,62 6 2.1n b T T n b n n n n n ≥=-=--∴=---时……4分 练习:1. 已知正项数列{a n },其前n 项和S n 满足10S n =a n 2+5a n +6且a 1,a 3,a 15成等 比数列,求数列{a n }的通项a n 解: ∵10S n =a n 2+5a n +6, ① ∴10a 1=a 12+5a 1+6,解之得a 1=2或a 1=3 又10S n -1=a n -12+5a n -1+6(n ≥2),② 由①-②得 10a n =(a n 2-a n -12)+6(a n -a n -1),即(a n +a n -1)(a n -a n -1-5)=0 ∵a n +a n -1>0 , ∴a n -a n -1=5 (n ≥2) 当a 1=3时,a 3=13,a 15=73 a 1, a 3,a 15不成等比数列∴a 1≠3; 当a 1=2时, a 3=12, a 15=72, 有 a 32=a 1a 15 , ∴a 1=2, ∴a n =5n -3 2.(2006年全国卷I )设数列{}n a 的前n 项的和

高中数学必修五公式大全

高中数学必修五公式大全 一、解三角形:ΔABC 的六个元素A, B, C, a , b, c 满足下列关系: 1、角的关系:A + B + C =____, 特殊地,若ΔABC 的三内角A, B, C 成等差数列,则∠B =_____, ∠A +∠C =____. 2、诱导公式的应用:sin ( A + B ) =________, cos ( A + B ) = ________, sin (22B A +) = cos 2C , cos (22B A +) = sin 2 C . 3、边的关系:a + b > c , a – b < c (两边之和大于第三边,两边之差小于第三边.) 4、边角关系:(1)正弦定理:2R === (R 为ΔABC 外接圆半径), 分体型:2sin a R A =??=? ?=? ,推论::::: a b c =. (2)余弦定理:22 2 __________________, __________________,__________________.a b c ??????? =+-=+-=+- 变形:c o s , c o s ,c o s . A B C ?= ?? ?=???=?? 5、面积公式:_____________________.ABC S ?=== 二、数列 (一)、等差数列{ a n }:定义:______________()-=常数 1、通项公式:1________,n a a =+推广:________.n m a a =+( m , n ∈N ) 2、前n 项和公式:____________.n S == 3、等差数列的主要性质 ① 若m + n = 2 p ,则 _________________(等差中项)( m , n ∈N ) ② 若m + n = p + q ,则 __________________ ( m , n , p , q ∈N ) ③S n , S 2 n -- S n , S 3 n – S 2 n 组成等差数列,公差为n d (二)、等比数列{ a n }:定义: ____,0q =≠ 1、通项公式:1____,n a a =推广:____.n m a a =( m , n ∈N ) 2、等比数列的前n 项和公式: _____,1,1 n q S q =? ?=?= ≠?? 3、等比数列的主要性质 ① 若m + n = 2 p ,则______________(等比中项)( m , n ∈N ) ② 若m + n = p + q ,则___________________ ( m , n , p , q ∈N ) ③ 232,,n n n n n S S S --组成等比数列,公比为______. (三)、一般数列{ a n }的通项公式:记S n = a 1 + a 2 + … + a n ,则恒有 ______________n a ?=?? ()()N n n n ∈≥=,21 三、不等式 (一)、均值定理及其变式(1)a , b ∈ R , a 2 + b 2 ≥ _________, (2)a , b ∈______ , a + b ≥ ________ , (3)a , b ∈ R + , a b ≤ _________ , (4)22112 22b a b a ab b a +≤ +≤≤+ , 以上当且仅当 a = b 时取“ = ”号。 (二).一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠?=->,如果a 与2ax bx c ++同号,则其解集在两根之外;如果a 与2ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间. 设12x x < 12()()0___________x x x x --?.

高中数学数列公式大全(很齐全哟~)

一、高中数列基本公式: 1、一般数列的通项a n与前n项和S n的关系:a n= 2、等差数列的通项公式:a n=a1+(n-1)d a n=a k+(n-k)d (其中a1为首项、a k为已知的第k项) 当d≠0时,a n是关于n的一次式;当d=0时,a n是一个常数。 3、等差数列的前n项和公式:S n= S n= S n= 当d≠0时,S n是关于n的二次式且常数项为0;当d=0时(a1≠0),S n=na1是关于n的正比例式。 4、等比数列的通项公式: a n= a1 q n-1a n= a k q n-k (其中a1为首项、a k为已知的第k项,a n≠0) 5、等比数列的前n项和公式:当q=1时,S n=n a1 (是关于n 的正比例式); 当q≠1时,S n= S n= 三、高中数学中有关等差、等比数列的结论 1、等差数列{a n}的任意连续m项的和构成的数列S m、S2m-S m、S3m-S2m、S4m - S3m、……仍为等差数列。 2、等差数列{a n}中,若m+n=p+q,则 3、等比数列{a n}中,若m+n=p+q,则

4、等比数列{a n}的任意连续m项的和构成的数列S m、S2m-S m、S3m-S2m、S4m - S3m、……仍为等比数列。 5、两个等差数列{a n}与{b n}的和差的数列{a n+b n}、{a n-b n}仍为等差数列。 6、两个等比数列{a n}与{b n}的积、商、倒数组成的数列 {a n b n}、、仍为等比数列。 7、等差数列{a n}的任意等距离的项构成的数列仍为等差数列。 8、等比数列{a n}的任意等距离的项构成的数列仍为等比数列。 9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d 10、三个数成等比数列的设法:a/q,a,aq; 四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?) 11、{a n}为等差数列,则 (c>0)是等比数列。 12、{b n}(b n>0)是等比数列,则{log c b n} (c>0且c 1) 是等差数列。 13. 在等差数列中: (1)若项数为,则 (2)若数为则,, 14. 在等比数列中:

高中数学求数列通项的常用方法

求数列通项公式的方法 本文章总结了求数列通项公式的几种常见的方法,分别有: 公式法,累加法,累乘法,待定系数法,对数变换法,迭代法,数学归纳法,换元法。 希望对大家有所帮助~~~ 关键字:数列,通项公式,方法 一、公式法 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以1 2 n +,得 113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2n n a 是以1222a 11==为首项,以2 3 为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222 n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为113222n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出3 1(1)22 n n a n =+-,进而求出数列{}n a 的通项公式。 二、累加法 例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 11232211 2 ()()()()[2(1)1][2(2)1](221)(211)1 2[(1)(2)21](1)1(1)2(1)1 2 (1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++?++?++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2n a n =。 评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出 11232211()()()()n n n n a a a a a a a a a ----+-++-+-+ ,即得数列{}n a 的通项公式。 例3 已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。

相关主题