搜档网
当前位置:搜档网 › 统计物理系综涨落复习知识点

统计物理系综涨落复习知识点

统计物理系综涨落复习知识点
统计物理系综涨落复习知识点

一、 系统相空间??Γ空间

Γ空间:以描述系统状态的广义坐标和广义动量为轴构成的笛卡尔坐标空间。(此空间有Nr 2个维数)

N N N z y x z y x N N N dP dP dP dP dP dP dz dy dx dz dy dx d 111111=Γ

自由度为Nr ,Nr

h d w τ

=

二、 两种统计平均(1)时间平均 (2)系综平均 三、统计系综

在相同的宏观条件下,各处在一定微观状态,大量结构完全相同的系统的集合。

根据外部条件的不同可以将系综分为三类: (1)微正则系综: 孤立系统 N 、E 、V 不变

(2)正则系综: N 、V 、T 不变,设想与大热源接触 (3)巨正则系综:

V 、T 、μ不变,设想与热源、粒子源接触。

微正则系综:

Ω

=

∴1

ρ (量子表达式) ?Γ=→?d B B E ρ0

lim

??+→Γ=

ΩE

E E Nr

d h N !1

,是(N 、E 、V )的函数,考虑半经典近似,其中N !是考虑

Ω=ln k S

其他热力学量→→ΩS

正则系综:

E e Z

βρ-=1

∑?∑Γ=

Ω==---l

Nr E E l E h

d e N e e Z l βββ!1,其中∑-E e β表示对各态求和,l Ω表示能级的简并度,N !表示粒子是不可分辨的。

y Z

Z Z E )ln (1β

β??-=??-

=

V

Z

P y Z Y ??=

??-

=ln 1,ln 1ββ )ln (ln β

β??-=Z

Z k S Z kT F ln -=

所以已知H (即系统能量E )可从∑-=E e Z β求其他热力学量→Z 巨正则系综:

∑∑------=

Ξ

=N

E

N

E N

E N E e

e e αβαβαβρ1

巨 ),,(!y d e h

N e E N Nr N

βαβαΞ=Γ=Ξ?∑-- α

?-

=ln N ]

ln ln [ln )ln 1(,ln 1,ln ββααβββ?Ξ

?-?Ξ?-Ξ=?Ξ

?=?Ξ?-=?Ξ?-

=k S V

P y Y E

应用:

实际气体的态方程 固体比热

粒子数涨落和能量涨落

kT

d d N

kT N N μαμα-

=??=??-

=?,)(2 y E

E ,2

)(

)(αβ??-=?巨 y N E

E ,2

)(

)(β

??-=?正 2,2

2

2

)()(

)()(N N

E E E y ???+?=?β正巨

涨落理论

)(I e

w kT

S

T V P E 基本公式?-?+?-

)(2)

)(())((II e

w kT

T S P V 基本公式??-??∝

)0)(

(0)(

)(2??-=?T T P

V

P

V

kT V v

C kT T 2

2

)(=? )0)(

()(

)(2

P

V

P kT P P kC S =?2)(

由基本公式可求得2)(T ?,2)(V ?,2)(P ?,2)(S ?,但对其他量,不能直接应用,但可用热力学关系进行相关变换后来求。

如何变换: 要注意到V T ??,或P S ??,分别是一对独立变量

1.用热力学公式:V S PT V P S T V P S T E ???-?+?=?-?=?2)()()()(222222 2.用泰勒展开,保留到一阶项:V V

S

T T S S T V ???+???=?)()(

复习注意点:

1.基本原理和公式的应用

2.常用的积分公式、分部积分的使用

a

dx e ax π

210

2

=?∞

- 1

120

!

212

++∞

-=?n n ax a

n dx x e 1

2120

2)12(312

++∞

--???????=?n n n ax a

n dx x e π

π=Γ=Γ-Γ-=Γ=Γ?∞--)2

1

(,1)1(),1()1()(,)(01n n n dx x e n n x

??????'

-'=''+'=''

+'='V U UV V U V U V U UV V U V U UV )()()(

热力学公式中的麦氏关系:

P T V T P S V S T V P S T P V S S

V P T S P V T )()()()()()()()(

??-=????=????=????-=??

如果忘记了只好现推:

要点:求偏导数的次序可以对易(交换):S

V U

V S U ???=???22 基本特性函数:U 、H 、F 、G

H=U+PV 、F=U-TS 、G=F+PV=U-TS+PV

V S S P V T PdV TdS dU )()(

??-=???-= P S S V

P T VdP TdS dH )()(??=???+=

V T T P

V S PdV SdT dF )()(??=???--=

P T T V

P S VdP SdT dG )()(??-=???+-=

公式PdV TdS dU -=可从S 的定义导出:T

Q

d dS =

,据热力学第一定律有:PdV TdS dW Q d dU -=+=

医学统计知识点整理(1)

医学统计学知识点整理 第一节统计学中基本概念 一、同质与变异 同质:统计研究中,给观察单位规定一些相同的因素情况。 如儿童的生长发育,规定同性别、同年龄、健康的儿童即为同质的儿童。 变异:同质的基础上个体间的差异。 “同质”是相对的,是客观事物在特定条件下的相对一致性,而“变异”则是绝对的 二、总体与样本 1、总体:是根据研究目的所确定的,同质观察对象(个体)所构成的全体。 2、样本:是从总体中随机抽取的部分观察单位变量值的集合。 三、参数与统计量 总体参数:根据总体个体值统计计算出来的描述总体的特征量。用希腊字母表示。μ.δ.π 样本统计量:根据样本个体值统计计算出来的描述样本的特征量。用拉丁字母表示。X.S.p 总体参数一般是不知道的,抽样研究的目的就是用样本统计量来推断总体参数,包括区间估计和假设检验 四、误差:实测值与真值之差★ 1.随机误差:是一类不恒定的、随机变化的误差,由多种尚无法控制的因素引起。随机测量误差、抽样误差。 2.系统误差:是一类恒定不变或遵循一定变化规律的误差,其产生原因往往是可知的或可能掌握的。 3.非系统误差:过失误差,可以避免或清除。 五、概率 是用来描述事件发生可能性大小的一个量值,常用P表示。概率取值0~1。 统计上一般将P≤0.05或P≤0.01的事件称为小概率事件,表示其发生的概率很小,可以认为在一次抽样中不会发生。 第二节统计资料的类型★

变量:确定总体之后,研究者应对每个观察单位的某项特征进行观察或测量,这种特征能表现观察单位的变异性,称为变量。 一、数值变量资料 又称为计量资料、定量资料:观测每个观察单位某项指标的大小而获得的资料。表现为数值大小,带有度、量、衡单位。如身高(cm)、体重(kg)、血红蛋白(g)等。 二、无序分类变量资料 又称为定性资料或计数资料:将观察对象按观察对象的某种类别或属性进行分组计数,分组汇总各组观察单位后得到的资料。 分类:二分类:+ -;有效,无效;多分类:ABO血型系统 特点:没有度量衡单位,多为间断性资料 【例题单选】某地A、B、O、AB血型人数分布的数据资料是( ) A.定量资料 B.计量资料 C.计数资料 D.等级资料 【答案】C 【解析】ABO血型系统人数分布资料属于无序分类变量资料,又称为计数资料。因为是按照变量的血型分类,血型表现为互不相容的属性。所以本题选C。 【例题单选】测量正常人的脉搏数所得的变量是() A.二分类变量 B.多分类变量 C.定量变量 D.定性变量 【答案】C 【解析】脉搏数有数值大小,有度量衡,所以这个资料属于定量资料。本题选C。 三、有序分类变量资料 半定量资料或等级资料:将观察对象按观察对象的某种属性的不同程度分成等级后分组计数,分组汇总各组观察单位后得到的资料。 特点:每一个观察单位没有确切值,各组之间有性质上的差别或程度上的不同举例:- + ++ +++ 第三节统计工作的基本步骤★ 1.统计设计 2.收集资料

统计学20个重点知识整理

一、统计的含义及其之间的关系 统计一词一般有三种含义,即统计工作、统计资料和统计学。 1、统计工作即统计实践活动,是指按照调查研究的任务,对社会经济现象的数量方面进行搜集资料、整理资料和分析运用资料等一系列调查研究的工作过程。 2、统计资料是指反映社会经济现象特征的各项数字资料以及与之有联系的其他资料,包括调查阶段搜集的原始资料,经过加工整理和分析后的图标和文字资料等系统资料。 3、统计学是研究怎样进行社会经济统计活动的方法论科学,它阐述了统计研究社会经济现象的数量和数量关系时应该遵循的原理、原则和采用的方法等,是系统化的知识体系。 4、关系:统计资料是统计工作的成果,是对社会经济现象进行统计研究的基础;统计学是统计活动经验的科学总结和理论概括,统计学来源于实践,又高于实践,对统计实践起着指导的作用;统计工作要以统计学的理论为指导,并检验和发展统计理论。 二、统计总体和统计单位及其之间的关系 1、统计总体:是由客观存在的、具有某种共同性质的许多个别单位所构成的整体,简称总体。 2、统计总体的特征:大量性、同质性、差异性 3、总体单位:构成统计总体的个别事物 4、例:要研究某一乡镇企业的职工素质情况,则该乡镇企业的全体人员构成一个总体,其中每一个职工就是总体单位。 5、关系:a.总体由总体单位组成; b.组成总体的个体是有差别的; C.根据统计研究目的的不同,总体与总体单位是可以相互转化的。 三、统计指标和统计标志之间的关系 两者之间既有明显的区别,又有密切的联系。主要区别在于: 1、指标说明总体特征;而标志则说明总体单位特征; 2、统计指标必须是可量的;统计标志未必都是可量的; 3、统计指标具有综合性;而统计标志一般不具有综合性; 两者之间的主要联系在于: 1、许多统计指标的指标数值是从总体单位的数量标志值汇总而来; 2、指标与标志之间存在着变换关系; 例如:要了解我国粮食生产状况,则我国的粮食总产量是指标,而某省的粮食总产量是标志。 四、一个完整的统计调查方案包括的内容 1、确定调查目的; 2、确定调查对象和调查单位; 3、确定调查项目,设计调查表; 4、确定调查时间和方法; 5、制定调查工作的组织实施计划 五、统计调查的分类 1、按统计调查方式的不同,可分为定期统计报表和专门调查; 2、按调查总体包括的范围不同,可分为全面调查和非全面调查; 3、按调查登记的时间是否具有连续性,可分为经常性调查和一次性调查; 4、按统计调查是否具有强制性,可分为政府统计调查、民间统计调查和涉外社会调查; 5、按收集资料的方法,可分为直接观察法、报告法、采访法和问卷法

统计学期末以及考研复习知识点内容详细

统计学知识点 第一章绪论 1、今天,“统计”一词有三种含义: ⒈统计工作:搜集、整理和分析统计数据的活动。 ⒉统计数据:统计工作的成果。 ⒊统计学:指导统计工作的理论。如数理统计学,社会统计学,经 济统计学,应用统计学等。 统计三个含义的关系十分密切:统计工作与统计数据是过程与成果的关系;统计工作与统计学是实践与理论的关系。 2、第一部统计学著作是英国人威廉·配第(1623—1687)的《政治算 术》(1690)一书。 3、统计学是一门搜集、整理、显示和分析统计数据的科学,其目的 是探索数据内在的数量规律性。 4、统计工作全过程一般可以划分为四个环节: 统计设计、统计调查、统计整理、统计分析 5.统计的基本方法 大量观察法、综合分析法(整理、分析)、归纳推断法(分析) 6、统计学与其他学科的关系 (一)统计学与数学的关系 区别:首先,数学研究抽象的数,统计学则研究具体事物的数量; 其次,数学使用纯粹的演绎方法,而统计学则使用演绎与归纳相结合的逻辑方法。

(二)统计学与其他学科的关系 凡涉及处理实质性数据的学科都要以统计方法为工具。可以说,统计学是其他学科的工具。 第二章调查与整理 1、目前,数据的计量尺度由粗略(低级)到精确(高级)分为四个层次,即列名尺度、顺序尺度、定距尺度和定比尺度。 1.列名尺度:按照事物的某种属性对其进行平行的分类。例如,人按性别分为男、女,……。该尺度的数据不能比较大小、优 劣。 2.顺序尺度:对事物之间等级差或顺序差别的一种测度。例如,考试成绩可分为优、良、中、……。该尺度的数据能比较优劣,不能进行数学运算。 3.定距尺度:对事物之间等级差或顺序差别较精确地定量测度。 如考试成绩的95 分、86 分、……;天气温度的50C、00C、-50C、……。该尺度的“0”表示一个水平。该尺度的数据能 进行加、减运算。 4.定比尺度:用来表明数值中存在绝对零点状况下数量特征的描述尺度。例如,企业利润、产品数量等。该尺度的“0”表示“没有”或“不存在”。该尺度的数据能进行加、减、乘、除运算。 2、数据的类型 1.定性数据。也称品质数据,由列名尺度或顺序尺度计量形成,说明事物品质特征,通常用文字描述。

统计学知识点梳理

型;有下划线的重点记忆!当然整理的知识点都就是重点!都要背与理解!Fighting!) 第一章绪论 一.统计的含义 即统计工作、统计资料与统计学 统计工作:统计实践活动,搜集,整理,分析与提供关于社会现象数字资料工作总称 统计资料:统计实践活动过程中所取得的各项资料,包括原始资料与加工整理资料 统计学:关于认识客观现象总体数量特征与数量关系的科学 二.统计工作过程 就一次统计活动来讲,一个完整的认识过程一般可以分为统计调查、统计整理与统计分析三个阶段。 统计调查:第一阶段,就是认识客观经济现象的起点,就是统计整理与统计分析的基础。 统计整理:第二阶段,处于统计工作的中间环节,起着承前启后的作用。

统计分析:第三阶段,通过第三阶段,事物由感性认识上升到理性认识。 三.总体与总体单位(会辨析总体与总体单位即可) 总体,亦称统计总体,就是指客观存在的、在同一性质基础上结合起来的许多个别单位的整体;构成总体的这些个别单位称为总体单位。 总体由总体单位构成,要认识总体必须从总体单位开始,总体就是统计认识的对象。 例如:所有的工业企业就就是一个总体,其中的每一个工业企业就就是一个总体单位。 四.标志与指标 标志就是用来说明总体单位特征的名称。 指标,亦称统计指标,就是说明总体的综合数量特征的。一个完整的统计指标包括数量指标名称与指标数值两部分。(以上内容理解即可) 1、指标与标志的区别与联系(简答) 指标与标志的区别:(1)指标就是说明总体特征的,而标志就是说明总体单位特征的;(2)指标都能用数值表示,而标志中的品质标志不能用数值表示,就是用属性表示的;(3)指标数值就是经过一定的汇总取得的,而标志中的数量标志不一定经过汇总,可直接取得;(4)一个完整的统计指标,一定要讲时间、地点、范围,而标志一般不具备时间、地点等条件。 指标与标志的联系:(1)有许多统计指标的数值就是从总体单位的数量标志值汇总而来的; (2)两者存在着一定的变换关系,即由于研究目的不同,原来的统计总体如果变成总体单位了,则相应的统计指标也就变成数量标志了。 2、标志与标志值(会区分) 标志分为品质标志与数量标志,数量标志用来说明总体单位量的特征,可以用数值表示,即为标志值(如:年龄、工资额、身高) 3、变异与变量(会什么就是变异,什么就是变量) 变异:品质标志在总体单位之间的不同具体表现。如:性别表现为男、女,民族表现为汉、满、蒙等。 变量:数量标志抽象化即为变量,而数量标志的不同具体表现则称为变量值(或标志值)。如:某职工的年龄就是42岁,月工资2200元。 4、统计指标的划分 (1)统计指标按其所反映的总体内容的不同,可分为数量指标与质量指标。数量指标指说明总体规模与水平的各种总量指标。质量指标指反应现象总体的社会经济效益与工作质量的各种相对指标与平均指标。 (2)统计指标按其作用与表现形式的不同,有总量指标(绝对数)、相对指标(绝对数)、平均指标(平均数)三种。 第二章统计调查与整理 一、统计调查的含义 统计调查就是统计工作过程的第一阶段。它就是按照统计任务的要求,运用科学的调查方法,有组织的向社会实际搜索各项原始资料的过程。统计调查就是整个统计认识活动的基础,决定着统计认识过程及其结果的成败。 二、统计调查方案设计的内容+调查对象、调查单位的含义 ⒈确定调查目的;(为什么调查) 根据实际需要与可能确定 ⒉确定调查对象与调查单位;(向谁调查) 调查对象——社会现象的总体 调查单位——调查标志的承担者(总体单位)

统计学期末复习重点

统计总体:统计总体是根据一定目的确定的所要研究事物的全体,它是客观存在,并在某一相同性质基础上结合起来的由许多个别事物组成的整体,简称总体。 样本:是指在全及总体中按随机原则抽取的那部分单位所构成的集合体。 算术平均数:算术平均数是统计中最基本、最常用的一种平均数,它的基本计算形式是用总体的单位总数去除总体的标志总量。 调和平均数:是根据变量值的倒数计算的,是变量值倒数的算术平均数的倒数,也叫倒数平均数。 简单分组:是指对所研究的总体按一个标志进行分组。 复合分组:复合分组是指对所研究的总体按两个或两个以上的标志进行的多层次分组。 结构相对指标:结构相对指标是表明总体内部的各个组成部分在总体中所占比重的相对指标,也叫比重指标。 强度相对指标:是指两个性质不同,但有一定联系的总量指标数值之比。 类型抽样:又称分类抽样或分层抽样,它是先将总体按某个主要标志进行分组(或分类),再按随机原则从各组(类)中抽取样本单位的一种抽样方式。 机械抽样:它是将总体各单位按某一标志顺序排列,然后按固定顺序和相等距离或间隔抽取样本单位的抽样组织方式。 综合指数:凡是一个总量指标可以分解为两个或两个以上的因素指标时,为观察某个因素指标的变动情况,将其他因素指标固定下来计算出的指数称为综合指数。 平均指数:平均指数法是以个体指数为基础来计算总指数,根据选用的权数不同,平均指数法可以进一步分为加权算术平均法,加权调和平均法,固定权数加权平均法。 相关关系:是指现象之间客观存在的,在数量变化上受随机因素的影响,非确定性的相互依存关系。 回归分析:现象之间的相关关系,虽然不是严格的函数关系,但现象之间的一般关系值,可以通过函数关系的近似表达式来反映,这种表达式根据相关现象的实际对应资料,运用数学的方法来建立,这类数学方法称为回归分析。 统计调查:就是根据统计研究的目的、要求和任务,运用各种科学的调查方法,有计划、有组织的搜集有关现象的各个单位的资料,对客观事实进行登记,取得真实可靠的调查资料的活动过程。 统计指数:广义指数泛指社会经济现象数量变动的比较指标,及用来表明同类现象在不同空间、不同时间,实际与计划对比变动情况的相对数。狭义指数仅指反应不能直接想家的复杂社会经济现象在数量上综合变动情况的相对数。 简单随机抽样:简单随机抽样也叫纯随机抽样,它对总体单位不做任何分类排队,而是直接从总体中随机抽取一部分单位来组成样本的抽样组织方式。 季节分析的含义:是指某些现象由于自然因素和社会条件的影响在一年之内比较有规律的变动。 总量指标:是指反映一定时间、地点和条件下某种现象总体规模或水平的统计指标。 相对指标:是指说明现象之间数量对比关系的指标,用两个或两个以上有联系的指标数值对比来求得,其结果表现为相对数,故也将相对指标称为相对数。 平均指标:是同类社会经济现象总体内,各单位某一数量标志在一定时间、地点和条件下,数量差异抽象化的代表性水平指标,其数值表现为平均数。 1计算运用总量指标的原则。 (1)在计算实物指标时,应注意现象的同类性 (2)统计总量指标时要有明确的统计含义和合理的统计方法

生物统计学重要知识点

生物统计学重要知识点 (说明:下列知识点为考试内容,没涉及的不需要复习。注意加粗的部分为重中之重,一定要弄懂。大家要进行有条理性的复习,望大家考出好成绩!) 第一章概论(容易出填空题和名词解释) 1、生物统计学的目的、内容、作用及三个发展阶段 2、生物统计学的基本特点 3、会解释总体、个体、样本、样本容量、变量、参数、统计数、效应和互作 4、会区分误差(随机误差和系统误差)与错误以及产生的原因 5、会区分准确度和精确度 第二章试验资料的整理与特征数的计算(容易出填空和名词解释) 1、随机抽样必须满足的两个条件 2、能看懂次数分布表和次数分布图,会计算全距、组数、组距、组限和组中值 3、会求平均数(算数、加权和几何)、中位数、众数,算术平均数的重要特性 4、会求极差、方差、标准差和变异系数,理解标准差的性质 第三章概率与概率分布(选择、填空和计算) 1、理解事件、频率及概率,事件的相互关系,加法定理和乘法定理的运用 2、概率密度函数曲线的特点和大数定律 3、二项分布、泊松分布和正态分布的概率函数和标准分布图像特征,会计算概率值 4、理解分位数的概念,弄清什么时候用单尾,什么时候用双尾 5、样本平均数差数的分布 第四章统计推断(计算) 1、无效假设和备择假设、显著水平、双尾检验和单尾检验、假设检验的两类错误,会根据 小概率原理做出是否接受无效假设的判断 2、总体方差已知和未知情况下如何进行U检验 3、一个样本平均数的t检验(例4.5) 成组数据平均数比较的t检验(例4.6和4.7) 4、一个样本频率的假设检验(例4.11),知道连续性矫正 5、参数的区间估计(置信区间)和点估计

统计学课程知识点总结

1. 统计的研究对象的特点:数量性,总体性,变异性。 2. 统计研究的基本环节:统计设计,收集数据,整理与分析,统计资料的积累、开发与应用。 3. 统计总体:根据一定数目的确定的所要研究的的事物的全体。特点:同质性、大量性。 总体可分为有限总体和无限总体。 标志:总体各单位普遍具有的属性或特征。标志分为品质标志(表明单位属性,用文字、语言描述)和数量标志(表明单位数量,用数值表现)。 不变指标:一个总体中各单位有关标志的具体表现都相同。变异指标:在一个总体中,当一个标志在各单位的具体表现有可能都相同。 第二章 1. 统计调查方式:普查,抽样调查,重点调查,定期报表制度。 调查方式按调查的范围划分,可分为全面调查和非全面调查。 按时间标志可分为连续性(经常性)调查和不连续性(一次性)调查 (一) 普查是专门组织的一种全面调查。特点:非经常性调查、最全面调查。 (二) 抽样调查是一种非全面性调查,可分为概率调查和非概率调查。 (三) 重点调查是指在调查对象中,只选择一部分重点单位进行的非全面调查,它是一种不连续的调查。 (四) 定期报表制度又称统计报表制度,它是依照国家有关法规,自上而下地统一布置,按照统一的表式、统一的指标项目、统一的报送时间和报送程序,自下而上逐级地定期提供统计资料的一种调查方式。 2. 我国现行的统计调查体系:以必要的周期性普查为基础,经常性的抽样调查为主体,同时辅之以重点调查、科学推算和部分定期报表综合运用的统计调查方法体系。 3.调查对象是指需要调查的现象总体。调查单位是指所要调查的具体单位,它是进行调查登记的标志的承担者。 4. 统计分组的原则:穷尽原则和互斥原则。 (先分后组) 间断型分组和连续型分组,等距和异距注意事项 第三章 1. 简单算术平均数121 n i n i x x x x x n n =++ +== ∑ 2. 加权算术平均数 11221121 n i i n n i n n i i x f x f x f x f x f f f f ==+++== +++∑∑ 3. 组距数列的算术平均数 4. 相对数的算术平均数 5. 调和平均数 6. 几何平均数 7. 算术平均数的性质: 1 1 , ()0n n i i i i nx x x x ===-=∑∑ 8. 组距数列的众数112O O O M M M L d ?=+??+? 9. 组距数列的中位数12e e e e M e M M M f S M L d f --=+?∑ 11. 方差(注意与样本方差的区别)P102: 10,11题 第四章 1. 事件的关系和运算:包含 ,相等 ,和 ,差 ,积 ,逆 ,不相容 。 2. 概率的计算:古典概型 ,几何概型 加法法则 ,乘法公式 条件概率 ,全概率与贝叶斯公式 3. 常见的随机变量的期望与方差

统计学原理考试知识点整理

第1章 绪论 1、统计的含义统计一词最基本的含义是对客观事物的数量方面进行核算和分析,是人们对客观事物的数量表现、数量关系和数量变化进行描述和分析的一种计量活动。 2、统计的特点P3 数量性 具体性 综合性 3、统计学的若干基本概念 总体与总体单位P10: 总体是指在某种共性的基础上由许多个别事物结合起来的整体,构成总体的个别事物叫总体单位; 总体的特征:同质性,大量性,差异性;总体的分类:有限总体与无限总体;标志、变异与变量P10: 标志,是指说明总体单位特征的名称。变异:总体单位之间品质和数量上的差异,即可变标志在总体各单位之间所表现出的差异。变量:可变的数量标志。 连续型变量与离散型变量联系和区别:连续型:变量值可作无限分割的变量离散型:变量值只能以整数出现的变量指标与标志P11 (指标,说明总体数量特征的概念)区别:第一,指标说明总体的特征,而标志则说明总体单位的特征。第二,指标只反映总体的数量特征,所有指标都要用数字来回答问题,没有用文字回答问题的指标。而标志既有反映数量也有反映品质。 第2 章统计调查 1、统计调查的含义及其在统计工作中的地位P13 含义:根据统计研究的目的,有组织、有计划地搜集统计资料的过程地位:是统计工作的第一阶段,是整个统计工作的基础一环 2、统计调查的基本原则P13-14 一、要实事求是,如实反映情况 二、要及时反映,及时预报 三、要数字与情况相结合 3、统计调查的组织形式:普查P14:含义:为搜集某种社会经济现象在某时某地的情况而专门组织的一次性全面调查、优缺点:,适用场合:主要用于一些重要项目呢的调查,如人口普查、耕地普查、基本单位普查、工业普查和库存普查等; 随机抽样调查P14:含义(按随机原则(机会均等原则)从总体中抽取部分单位进行调查,并借以推断和认识总体的一种统计方法)以及具体的抽样方法【第七章】系统抽样、多阶 简单随机、分层抽样、整群抽样、 段抽样)及适用场合;非随机抽样:含义(调查者有意识地或随意而 非随机地从总体中抽取部分单位进行调查的统计方法)以及具体的抽样方法P15 (重点抽样:只对总体中为数不多但影响颇大的重点单位进行研究的一种非

统计学知识点梳理

复习提纲:(计算部分全用红色标注了!其他红色的是我的推断,可能出什么题型;有下划线的重点记忆!当然整理的知识点都是重点!都要背和理解!Fighting!) 第一章绪论 一.统计的含义 即统计工作、统计资料和统计学 统计工作:统计实践活动,搜集,整理,分析和提供关于社会现象数字资料工作总称 统计资料:统计实践活动过程中所取得的各项资料,包括原始资料和加工整理资料 统计学:关于认识客观现象总体数量特征和数量关系的科学 二.统计工作过程 就一次统计活动来讲,一个完整的认识过程一般可以分为统计调查、统计整理和统计分析三个阶段。

统计调查:第一阶段,是认识客观经济现象的起点,是统计整理和统计分析的基础。 统计整理:第二阶段,处于统计工作的中间环节,起着承前启后的作用。 统计分析:第三阶段,通过第三阶段,事物由感性认识上升到理性认识。 三.总体与总体单位(会辨析总体与总体单位即可) 总体,亦称统计总体,是指客观存在的、在同一性质基础上结合起来的许多个别单位的整体;构成总体的这些个别单位称为总体单位。 总体由总体单位构成,要认识总体必须从总体单位开始,总体是统计认识的对象。 例如:所有的工业企业就是一个总体,其中的每一个工业企业就是一个总体单位。 四.标志和指标 标志是用来说明总体单位特征的名称。 指标,亦称统计指标,是说明总体的综合数量特征的。一个完整的统计指标包括数量指标名称和指标数值两部分。(以上内容理解即可) 1.指标和标志的区别和联系(简答) 指标与标志的区别:(1)指标是说明总体特征的,而标志是说明总体单位特征的;(2)指标都能用数值表示,而标志中的品质标志不能用数值表示,是用属性表示的;(3)指标数值是经过一定的汇总取得的,而标志中的数量标志不一定经过汇总,可直接取得;(4)一个完整的统计指标,一定要讲时间、地点、范围,而标志一般不具备时间、地点等条件。 指标与标志的联系:(1)有许多统计指标的数值是从总体单位的数量标志值汇总而来的;(2)两者存在着一定的变换关系,即由于研究目的不同,原来的统计总体如果变成总体单位了,则相应的统计指标也就变成数量标志了。 2.标志与标志值(会区分) 标志分为品质标志和数量标志,数量标志用来说明总体单位量的特征,可以用数值表示,即为标志值(如:年龄、工资额、身高) 3.变异与变量(会什么是变异,什么是变量) 变异:品质标志在总体单位之间的不同具体表现。如:性别表现为男、女,民族表现为汉、满、蒙等。 变量:数量标志抽象化即为变量,而数量标志的不同具体表现则称为变量值(或标志值)。如:某职工的年龄是42岁,月工资2200元。 4.统计指标的划分 (1)统计指标按其所反映的总体内容的不同,可分为数量指标和质量指标。数量指标指说明总体规模和水平的各种总量指标。质量指标指反应现象总体的社会经济效益和工作质量的各种相对指标和平均指标。 (2)统计指标按其作用和表现形式的不同,有总量指标(绝对数)、相对指标(绝对数)、平均指标(平均数)三种。 第二章统计调查与整理 一.统计调查的含义 统计调查是统计工作过程的第一阶段。它是按照统计任务的要求,运用科学的调查方法,有组织的向社会实际搜索各项原始资料的过程。统计调查是整个统计认识活动的基础,决定着统计认识过程及其结果的成败。 二.统计调查方案设计的内容+调查对象、调查单位的含义 ⒈确定调查目的;(为什么调查) 根据实际需要和可能确定

医学统计学考试重点整理

一、基本概念 1.总体与样本 总体:所有同质观察单位某种观察值(即变量值)的全体 样本:是总体中抽取部分观察单位的观察值的集合 2.普查与抽样调查 普查:就是全面调查,即调查目标总体中全部观察对象 抽样调查:是一种非全面调查,即从总体中抽取一定数量的观察单位组成样本,对样本进行调查 3.参数与统计量 参数:总体的某些数值特征 统计量:根据样本算得的某些数值特征 4.Ⅰ型与Ⅱ型错误 假设检验的结论 真实情况拒绝H0不拒绝H0 H0正确Ⅰ型错误(ɑ) 推断正确(1 ?ɑ) H0不正确推断正确(1?β) Ⅱ型错误(β) Ⅰ型错误(ɑ错误): H0为真时却被拒绝,弃真错误 Ⅱ型错误(β错误): H0为假时却被接受,取伪错误 5.随机化原则与安慰剂对照 随机化原则:是将研究对象随机分配到实验组和对照组,使每个研究对象都有同等机会被分配到各组中去,以平衡两组中已知和未知的混杂因素,从而提高两组的可比性,避免造成偏倚。(意义:①是提高组间均衡性的重要设计方法;②避免有意扩大或缩小组间差别导致的偏倚;③各种统计学方法均建立在随机化基础上) 安慰剂对照:是一种常用的对照方法。安慰剂又称伪药物,是一种无药理作用的制剂,不含试验药物的有效成分,但其感观如剂型、大小、颜色、质量、气味及口味等都与试验药物一样,不能被受试对象和研究者所识别。(安慰剂对照主要用于临床试验,其目的在于控制研究者和受试对象的心理因素导致的偏倚,并提高依从性。安慰剂对照还可以控制疾病自然进程的影响,显示试验药物的效应) 6.误差与标准误(区分率与均数) ㈠均数 抽样误差:由个体变异产生的、随机抽样引起的样本统计量与总体参数间的差异。 标准误:是指样本均数的标准差,反映抽样误差大小的定量指标,其公式表示为S x =S/√n ㈡样本率 率的抽样误差:样本率p和总体率π的差异 率的标准误:样本率的标准差,公式为σp=√π(1-π)/n

统计学知识点汇总情况

统计学知识点汇总 一、统计学 统计学是一门关于数据资料的收集、整理、分析和推断的科学。 三、统计的特点 (1)数量性: 社会经济统计的认识对象是社会经济现象的数量方面,包括现象的数量表现、现象之间的数量关系和质量互变的数量界限。 (2)总体性: 社会经济统计的认识对象是社会经济现象的总体的数量方面。例如,国民经济总体的数量方面、社会总体的数量方面、地区国民经济和社会总体的数量方面、各企事业单位总体数量方面等等。 (3)具体性: 社会经济统计的认识对象是具体事物的数量方面,而不是抽象的量。这是统计与数学的区别。(4)社会性: 社会经济现象是人类有意识的社会活动,是人类社会活动的条件、过程和结果,社会经济统计以社会经济现象作为研究对象,自然具有明显的社会性。 四、统计工作过程 (1)统计设计 根据所要研究问题的性质,在有关学科理论的指导下,制定统计指标、指标体系和统计分类,给出统一的定义、标准。同时提出收集、整理和分析数据的方案和工作进度等。 (2)收集数据 统计数据的收集有两种基本方法,实验法和调查法。 (3)整理与分析

描述统计是指对采集的数据进行登记、审核、整理、归类,在此基础上进一步计算出各种能反映总体数量特征的综合指标,并用图表的形式表示经过归纳分析而得到的各种有用的统计信息。 推断统计是在对样本数据进行描述的基础上,利用一定的方法根据样本数据去估计或检验总体的数量特征。 (4)统计资料的积累、开发与应用 对于已经公布的统计资料需要加以积累,同时还可以进行进一步的加工,结合相关的实质性学科的理论知识去进行分析和利用。 五、统计总体的特点 (1)大量性 大量性是指构成总体的总体单位数要足够的多,总体应由大量的总体单位所构成,大量性是对统计总体的基本要求; (2)同质性 同质性是指总体中各单位至少有一个或一个以上不变标志,即至少有一个具有某一共同标志表现的标志,使它们可以结合起来构成总体,同质性是构成统计总体的前提条件; (3)变异性 变异性就是指总体中各单位至少有一个或一个以上变异标志,即至少有一个不同标志表现的标志,作为所要研究问题的对象。变异性是统计研究的重点。 六、标志与指标的区别与联系 ■区别: 标志是说明总体单位特征的;指标是说明总体特征的。 标志中的品质标志不能用数量表示;而所有的指标都能用数量表示。 标志(指数量标志)不一定经过汇总,可直接取得;而指标(指数量指标)一定要经过汇总才能取得。

统计学重点知识点复习

1.统计的三种含义:统计活动、统计数据和统计学 2.统计活动:指收集、整理和分析统计数据,并探索数据的内在数量规律性的活动过程。 3.总体:总体是指客观存在的,在同一性质基础上结合起来的许多个别事务的整体,亦称统计总体。 4.总体单位:总体单位是指构成统计总体的个别事物的总称。 5.指标:指标是反映总体现象数量特征的概念。 6.标志:标志是说明总体单位特征的名称。 7.标志和指标: 主要区别:①标志是说明总体单位特征的,二而指标是说明总体特征的;②标志中的数量标志是可以用数值表示,而品质标志是不能用数量表示的。所有的统计指标都是用数值表示,不存在不能用数值表示的统计指标。

联系:①有些统计指标是在总体单位数量标志值基础上直接汇总得到的;②在一定条件下,指标和标志之间可以相互转化。 8.数量变量还可以细分为离散变量和连续变量。离散变量的取值是有限的,连续变量的取值是无限的。 9.定类(名类)尺度:按照它可对研究客体进行平行的分类或分组,按照研究对象的某种属性将其划分,使同类同质,异类异质。 10.定序尺度(顺序):是按照某种逻辑顺序将调查对象排列出高低或大小,确定其等级及序列的一种尺度 11.定距尺度(区间):是一种不仅能将变量(社会现象)区分类别和等级,而且可以确定变量之间的数量差别和间隔距离的方法。 12.定比尺度:也称比例尺度或等比尺度,是一种除

有上述三种尺度的全部性质之外,还有测量不同变量(社会现象)之间的比例或比率关系的方法。13.统计调查的组织方式:普查、抽样调查、统计报表、重点调查和典型调查等。 普查:为某一特定目的而专门组织的一次性全面调查方式,如人口普查、工业普查。 统计报表:按照国家有关法规规定,自上而下统一布置,自下而上住逐级填报。 14.数据分组的关键:选择分组标志;划分各组界限 15.

(完整word版)高中必修三统计知识点整理(20190607191608)

高中数学必修3 知识点总结 第二章统计 2.1.1 简单随机抽样 1 .简单随机抽样,也叫纯随机抽样。就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。特点是:每个 样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。简单随机抽样是其 它各种抽样形式的基础。通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。 2.简单随机抽样常用的方法: ( 1 )抽签法;⑵ 随机数表法;⑶ 计算机模拟法;⑷ 使用统计软件直接抽取。 在简单随机抽样的样本容量设计中,主要考虑:① 总体变异情况;② 允许误差范围;③ 概率保证程度。 3.抽签法: ( 1 )给调查对象群体中的每一个对象编号; ( 2 )准备抽签的工具,实施抽签 ( 3 )对样本中的每一个个体进行测量或调查 例:请调查你所在的学校的学生做喜欢的体育活动情况。 4.随机数表法: 例:利用随机数表在所在的班级中抽取10 位同学参加某项活动。 2.1.2 系统抽样 1 .系统抽样(等距抽样或机械抽样): 把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。第一个样本采用简单随机抽样的 办法抽取。 K(抽样距离)=N(总体规模)/n(样本规模)

前提条件:总体中个体的排列对于研究的变量来说,应是随机的,即不存在某种与研究变量相关的规则分布。可以在调查允许的条件下,从不同的样本开始抽样,对比几次样本的特点。如果有明显差别,说明样本在总体中的分布承某种循环性规律,且这种循环和抽样距离重合。 2.系统抽样,即等距抽样是实际中最为常用的抽样方法之一。因为它对抽样框的要求较低,实施也比较简单。更为重要的是, 如果有某种与调查指标相关的辅助变量可供使用,总体单元按辅助变量的大小顺序排队的话,使用系统抽样可以大大提高估 计精度。 2.1.3 分层抽样 1 .分层抽样(类型抽样) 先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用 简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。 两种方法: 1 .先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。 2.先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,最后用系统抽样的方法抽取样本。 2.分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代表该子总体,所有 的样本进而代表总体。 分层标准: ( 1 )以调查所要分析和研究的主要变量或相关的变量作为分层的标准。 (2)以保证各层内部同质性强、各层之间异质性强、突出总体内在结构的变量作为分层变量。 (3)以那些有明显分层区分的变量作为分层变量。 3.分层的比例问题: ( 1 )按比例分层抽样:根据各种类型或层次中的单位数目占总体单位数目的比重来抽取子样本的方法。 (2)不按比例分层抽样:有的层次在总体中的比重太小,其样本量就会非常少,此时采用该方法,主要是便于对不同层次 的子总体进行专门研究或进行相互比较。如果要用样本资料推断总体时,则需要先对各层的数据资料进行加权处理,调整样 本中各层的比例,使数据恢复到总体中各层实际的比例结构。

2018年【统计学原理】考试必备知识点复习考点归纳总结(计算题)(新)1

统计学原理复习(计算题) 1.某单位40名职工业务考核成绩分别为: 68 89 88 84 86 87 75 73 72 68 75 82 97 58 81 54 79 76 95 76 71 60 90 65 76 72 76 85 89 92 64 57 83 81 78 77 72 61 70 81 单位规定:60分以下为不及格,60─70分为及格,70─80分为中,80─90 分为良,90─100分为优。 要求: (1)将参加考试的职工按考核成绩分为不及格、及格、中、良、优五组并 编制一张考核成绩次数分配表; (2)指出分组标志及类型及采用的分组方法; (3)计算本单位职工业务考核平均成绩 (4)分析本单位职工业务考核情况。 解:(1) (2)分组标志为"成绩",其类型为"数量标志";分组方法为:变量分组中的开放组距式分组,组限表示方法是重叠组限; (3)本单位职工业务考核平均成绩 (4)本单位的职工考核成绩的分布呈两头小, 中间大的" 正态分布"的形态,说明大多数职工对业务知识的掌握达到了该单位的要求。 2.2004年某月份甲、乙两农贸市场农产品价格和成交量、成交额资料如下: 试问哪一个市场农产品的平均价格较高?并说明原因。 解:

解:先分别计算两个市场的平均价格如下: 甲市场平均价格()375.14 5 .5/==∑∑= x m m X (元/斤) 乙市场平均价格325.14 3.5==∑∑=f xf X (元/斤) 说明:两个市场销售单价是相同的,销售总量也是相同的,影响到两个市场 平均价格高低不同的原因就在于各种价格的农产品在两个市场的成交量不同。 3.某车间有甲、乙两个生产组,甲组平均每个工人的日产量为36件, 标准差为9.6件;乙组工人日产量资料如下: 要求:⑴计算乙组平均每个工人的日产量和标准差; ⑵比较甲、乙两生产小组哪个组的日产量更有代表性? 解:(1) 50.291001345343538251515=?+?+?+?== ∑∑f xf X (件) 986.8) (2 =-= ∑∑f f X x σ(件) (2)利用标准差系数进行判断: 267.0366.9===X V σ甲 305.05 .29986.8===X V σ乙 因为0.305 >0.267 故甲组工人的平均日产量更有代表性。 4.某工厂有1500个工人,用简单随机重复抽样的方法抽出50个工人作为样本,调查其月平均产量水平,得每人平均产量560件,标准差32.45 要求:(1)计算抽样平均误差(重复与不重复);

卫生统计学知识点总结

卫生统计学知识点总结-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

卫生统计学 统计工作基本步骤:统计设计(调查设计和实验设计)、资料分析{收集资料、整理资料、分析资料【统计描述和统计推断(参数估计和假设检验)】。 ★统计推断:是利用样本所提供的信息来推断总体特征,包括:参数估计和假设检验。a参数估计是指利用样本信息来估计总体参数,主要有点估计(把样本统计量直接作为总体参数估计值)和区间估计【按预先设定的可信度(1-α),来确定总体均数的所在范围】。b假设检验:是以小概率反证法的逻辑推理来判断总体参数间是否有质的区别。 变量资料可分为定性变量、定量变量。不同类型的变量可以进行转化,通常是由高级向低级转化。 资料按性质可分为计量资料、计数资料和等级资料。 定量资料的统计描述 1频率分布表和频率分布图是描述计量资料分布类型及分布特征的方法。离散型定量变量的频率分布图可用直条图表达。 2频率分布表(图)的用途:①描述资料的分布类型;②描述分布的集中趋势和离散趋势;③便于发现一些特大和特小的可疑值;④便于进一步的统计分析和处理;⑤当样本含量足够大时,以频率作为概率的估计值。 ★3集中趋势和离散趋势是定量资料中总体分布的两个重要指标。 (1)描述集中趋势的统计指标:平均数(算术均数、几何均数和中位数)、百分位数(是一种位置参数,用于确定医学参考值范围,P50就是中位数)、众数。算术均数:适用于对称分布资料,特别是正态分布资料或近似正态分布资料;几何均数:对数正态分布资料(频率图一般呈正偏峰分布)、等比数列;中位数:适用于各种分布的资料,特别是偏峰分布资料,也可用于分布末端无确定值得资料。 (2)描述离散趋势的指标:极差、四分位数间距、方差、标准差和变异系数。四分位数间距:适用于各种分布的资料,特别是偏峰分布资料,常把中位数和四分位数间距结合起来描述资料的集中趋势和离散趋势。方差和标准差:都适用于对称分布资料,特别对正态分布资料或近似正态分布资料,常把均数和标准差结合起来描述资料的集中趋势和离散趋势;变异系数:主要用于量纲不同时,或均数相差较大时变量间变异程度的比较。 标准差的应用:①表示变量分布的离散程度;②结合均数计算变异系数、描述对称分布资料;③结合样本含量计算标准误。 定性资料的统计描述 1定性资料的基础数据是绝对数。描述一组定性资料的数据特征,通常需要计算相对数。定性变量可以通过频率分布表描述其分布特征。 2 指标频率型指标强度型指标相对比型指标 概念近似反映某一时间出现概率单位时间内某现象的发生 率 两个有关联的指标A和B之比 计算 公式 A/B 有无 量纲 无有可有、可无 取值 范围 【0,1】可大于1无限制 本质大样本时作为概率近似值分子式分母的一部分频率强度,即概率强度的 似 值 表示相对于B的一个单位,A有多少 位 A和B可以是绝对数、相对数和平均

统计学复习重点

1、统计学:是收集、汇总和分析统计数据的科学和艺术。 2、统计数据的分析是统计学的核心内容,它是通过统计描述和统 计推断的方法探索数据内在规律的过程。 3、普查:是为某一特定目的而专门组织的一次性全面调查,如人口普查、工业普查、农业普查等。 4、抽样调查的特点:经济性;时效性高;适应面广;准确性高。 5、调查方案:是指导整个过程的纲领性文件,其内容包括调查目的、调查对象和调查单位、调查项目和调查表等内容。 6、组距分组的几个步骤:一、确定组数二、确定组距三、确定组限和进行次数分配四、绘制统计图五、分析。) 7、为消除组距不同对频数分布的影响,需要计算频数密度,即频数密度=频数/组距,用频数密度才能准确反映频数分布的实际情况。8、以组中值作为代表值有一个必要的假定条件,即各组数据在本组内呈均匀分布或在组距中值两侧呈对称分布。 9、描述统计的内容也包括频数分布、但主要是关于集中趋势和离中趋势的描述问题。 10、众数:是一组数据中出现次数最多的变量值。从分布的角度看,众数是具有明显集中趋势点的数值,一组数据分布的最高峰点所对应的数值即为众数,记为M。 11、众数是一组数据中心位置的一个代表值。当然,如果数据的分布没有明显的集中趋势或最高峰点,众数也可以不存在;如果有多个高峰点,实际上也可以认为有多个众数。

12、协方差的大小会受到计量单位和数据均值水平的影响,从而使不同相关总体之间的相关程度缺乏可比性。 13、时间系列:是反映现象随时间的变化而变化的数据系列,也称为时间数列或动态数列。 14、用报告期水平减去基期水平,就等于增长量。其中,当基期水平为上期水平时,就称为逐期增长量,当基期水平为某个时期的固定发展水平时,就称为累计增长量。 15、报告水平与基期水平之比,称为发展速度。其中,当基期水平为上期水平时,就称为环比发展速度;当基期水平为某个时期的固定发展水平时,就称为定基发展速度。 16、序时平均数也称为动态平均数,它反映现象在一定时期内发展水平达到的一般水平。由于指标形式分绝对数、相对数和平均数等,所以对其平均的方法存在差异性。 17、绝对数有时期数和时点数之分,两者的区别主要在于是否具有可加性。 18、几何平均法的应用条件是要求现象呈现均匀变动。如果现象发生大起大落的变化,用几何平均法所计算的平均发展速度将失去代表性。 19、累计法考虑各时期的发展状况,不只是受最初和最末两个极端值的影响。 20、移动平均法是趋势变动分析的一种较简单的常用方法。该方法的基本思想和原理是,通过扩大原时间序列的时间间隔,并按一定的间

统计学贾俊平考研知识点总结

统计学重点笔记 第一章导论 一、比较描述统计和推断统计: 数据分析是通过统计方法研究数据,其所用的方法可分为描述统计和推断统计。 (1)描述性统计:研究一组数据的组织、整理和描述的统计学分支,是社会科学实证研究中最常用的方法,也是统计分析中必不可少的一步。内容包括取得研究所需要的数据、用图表形式对数据进行加工处理和显示,进而通过综合、概括与分析,得出反映所研究现象的一般性特征。 (2)推断统计学:是研究如何利用样本数据对总体的数量特征进行推断的统计学分支。研究者所关心的是总体的某些特征,但许多总体太大,无法对每个个体进行测量,有时我们得到的数据往往需要破坏性试验,这就需要抽取部分个体即样本进行测量,然后根据样本数据对所研究的总体特征进行推断,这就是推断统计所要解决的问题。其内容包括抽样分布理论,参数估计,假设检验,方差分析,回归分析,时间序列分析等等。 (3)两者的关系:描述统计是基础,推断统计是主体 二、比较分类数据、顺序数据和数值型数据: 根据所采用的计量尺度不同,可以将统计数据分为分类数据、顺序数据和数值型数据。 (1)分类数据是只能归于某一类别的非数字型数据。它是对事物进行分类的结果,数据表现为类别,是用文字来表达的,它是由分类尺度计量形成的。 (2)顺序数量是只能归于某一有序类别的非数字型数据。也是对事物进行分类的结果,但这些类别是有顺序的,它是由顺序尺度计量形成的。 (3)数值型数据是按数字尺度测量的观察值。其结果表现为具体的数值,现实中我们所处理的大多数都是数值型数据。 总之,分类数据和顺序数据说明的是事物的本质特征,通常是用文字来表达的,其结果均表现为类别,因而也统称为定型数据或品质数据;数值型数据说明的是现象的数量特征,通常是用数值来表现的,因此可称为定量数据或数量数据。 三、比较总体、样本、参数、统计量和变量: (1)总体是包含所研究的全部个体的集合。通常是我们所关心的一些个体组成,如由多个企业所构成的集合,多个居民户所构成的集合。总体根据其所包含的单位数目是否可数可以分为有限总体和无限总体。有限总体是指总体的范围能够明确确定,而且元素的数目是有限可数的,需要注意的是,统计意义上的总体,通常不是一群人或一些物品的集合,而是一组观测数据。 (2)样本是从总体中抽取的一部分元素的集合,构成样本的元素的数目称为样本容量。例如我们从一批灯泡中随机抽取100个,这100个灯泡就构成了一个样本。

相关主题