搜档网
当前位置:搜档网 › 电磁学梁灿彬习题选解

电磁学梁灿彬习题选解

电磁学梁灿彬习题选解
电磁学梁灿彬习题选解

电磁学习题解答

1.2.2 两个同号点电荷所带电荷量之和为Q 。在两者距离一定的前提下,它们带电荷量各为多少时相互作用力最大?

解答:

设一个点电荷的电荷量为1q q =,另一个点电荷的电荷量为

2()q Q q =-,两者距离为r ,则由库仑定律求得两个点电荷之间的作用力为

2

0()

4q Q q F r πε-=

令力F 对电荷量q 的一队导数为零,即

20()04dF Q q q

dq r

πε--== 得

122

Q

q q ==

即取 122

Q

q q ==

时力F 为极值,而 22

2

02

204Q q d F dq r

πε==

<

故当122

Q

q q ==

时,F 取最大值。 1.2.3 两个相距为L 的点电荷所带电荷量分别为2q 和q ,将第三个点电荷放在何处时,它所受的合力为零?

解答:

要求第三个电荷Q 所受的合力为零,只可能放在两个电荷的连线中间,设它与电荷q 的距离为了x ,如图1.2.3所示。电荷Q 所受的两个电场力方向相反,但大小相等,即

22

00204()4qQ qQ

L x x

πεπε-=- 得 22

20x Lx L +-=

舍去0x <的解,得

1)x L =- 1.3.8解答:

A

E 3

x

(c)

(b)

(a)

(1)先求竖直无限长段带电线在O 点产生的场强1E ?

,由习题1.3.7

(2)可知 104x E R

η

πε=

仿习题1.3.7解答过程,得

12

223/2

1223/20sin ()0()4y y dl

ldl

dE k

k

r R l ldl E k R l R

ηηαη

ηπε==-+∞=-=-

+?

故 10??()4E i j R

ηπε=

-v

同理,水平无限长段带电线在O 点产生的场强

20??()4E i j R

ηπε=

-+v 对于圆弧段带电线在O 点产生的场强3E ?

,参看图1.3.8(b ),得

32

30cos cos /2cos 04x x dl

d dE k

k

R

R

k E d R R

ηηα

αα

πηηααπε====?

同理得 304y E R

η

πε=

故 30??()4E i j R

ηπε=

+v

解得

12330??()4E E E E E i j R

ηπε=++==

+v v v v v (2)利用(1)中的结论,参看习题1.3.8图(b ),A -∞的带电直线在O 点的场强为

=

0??()4A E i j R

ηπε--v

B -∞的带电直线在O 点产生的场强为

0??()4B E i j R

ηπε=

-+v 根据对称性,圆弧带电线在O 点产生的场强仅有x 分量,即

0/2???cos /22AB ABx k E E i d i i R R

πηηααππε===-?v v 故带电线在O 点产生的总场强为

电磁学课后习题答案

第五章 静 电 场 5 -9 若电荷Q 均匀地分布在长为L 的细棒上.求证:(1) 在棒的延长线,且离棒中心为r 处的电场强度为 2 204π1L r Q εE -= (2) 在棒的垂直平分线上,离棒为r 处的电场强度为 2204π21L r r Q εE += 若棒为无限长(即L →∞),试将结果与无限长均匀带电直线的电场强度相比较. 分析 这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元d x ,其电荷为d q =Q d x /L ,它在点P 的电场强度为 r r q εe E 2 0d π41d '= 整个带电体在点P 的电场强度 ?=E E d 接着针对具体问题来处理这个矢量积分. (1) 若点P 在棒的延长线上,带电棒上各电荷元在点P 的电场强度方向相同, ?=L E i E d (2) 若点P 在棒的垂直平分线上,如图(A )所示,则电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度就是 ??==L y E αE j j E d sin d

证 (1) 延长线上一点P 的电场强度?'=L r πεE 202, 利用几何关系 r ′=r -x 统一积分变量,则 ()220 022 204π12/12/1π4d π41L r Q εL r L r L εQ x r L x Q εE L/-L/P -=??????+--=-=? 电场强度的方向沿x 轴. (2) 根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为 E r εq αE L d π4d sin 2 ? '= 利用几何关系 sin α=r /r ′,2 2 x r r +=' 统一积分变量,则 () 2 2 03 /2222 2041π2d π41L r r εQ r x L x rQ εE L/-L/+= +=? 当棒长L →∞时,若棒单位长度所带电荷λ为常量,则P 点电场强度 r ελL r L Q r εE l 02 20π2 /41/π21lim = +=∞ → 此结果与无限长带电直线周围的电场强度分布相同[图(B )].这说明只要满足r 2/L 2 <<1,带电长直细棒可视为无限长带电直线. 5 -14 设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量. 分析 方法1:由电场强度通量的定义,对半球面S 求积分,即? ?=S S d s E Φ 方法2:作半径为R 的平面S ′与半球面S 一起可构成闭合曲面,由于闭合面内无电荷,由高斯定理

电磁学课后习题答案

第五章 静 电 场 5 -9若电荷Q 均匀地分布在长为L 的细棒上.求证:(1)在棒的延长线,且离棒中心为r 处的电场强度为 2 204π1L r Q εE -= (2)在棒的垂直平分线上,离棒为r 处的电场强度为 2 204π21L r r Q εE += 若棒为无限长(即L →∞),试将结果与无限长均匀带电直线的电场强度相比较. 分析这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元d x ,其电荷为d q =Q d x /L ,它在点P 的电场强度为 r r q εe E 20d π41d '= 整个带电体在点P 的电场强度 ?=E E d 接着针对具体问题来处理这个矢量积分. (1)若点P 在棒的延长线上,带电棒上各电荷元在点P 的电场强度方向相同, ?=L E i E d (2)若点P 在棒的垂直平分线上,如图(A )所示,则电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度就是 ??==L y E αE j j E d sin d

证 (1)延长线上一点P 的电场强度?'=L r πεE 202, 利用几何关系 r ′=r -x 统一积分变量,则 ()220 022 204π12/12/1π4d π41L r Q εL r L r L εQ x r L x Q εE L/-L/P -=??????+--=-=? 电场强度的方向沿x 轴. (2)根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为 E r εq αE L d π4d sin 2 ? '= 利用几何关系 sin α=r /r ′,2 2 x r r +='统一积分变量,则 () 2 2 03 /2222 2041π2d π41L r r εQ r x L x rQ εE L/-L/+= +=? 当棒长L →∞时,若棒单位长度所带电荷λ为常量,则P 点电场强度 r ελL r L Q r εE l 02 20π2 /41/π21lim = +=∞ → 此结果与无限长带电直线周围的电场强度分布相同[图(B )].这说明只要满足r 2/L 2<<1,带电长直细棒可视为无限长带电直线. 5 -14设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量. 分析方法1:由电场强度通量的定义,对半球面S 求积分,即? ?=S S d s E Φ 方法2:作半径为R 的平面S ′与半球面S 一起可构成闭合曲面,由于闭合面内无电荷,由高斯定理

电磁学部分习题解答

1. 直角坐标系中点电荷电量为Q ,坐标为()c b a ,,,写出Q 所产生的电场在空间任一点的电场强度。 解:画出坐标系及空间任一点()z y x P ,,,则该点相对于点电荷的位矢为 ()c z b y a x r ---=,,? ,由点电荷Q 产生的电场在P 点处的场强分量 为 ()()()[] 2 3 2 2204c z b y a x a x Q E x -+-+--?=πε ()()() []2 3 2 2 2 04c z b y a x b y Q E y -+-+--? = πε () ()() [] 2 3 2 2 2 4c z b y a x c z Q E z -+-+--? = πε 该场强的方向沿r ? 方向:()()()k c z j b y i a x r )))?-+-+-=。 在求解给定具体坐标的特殊问题时,往往用分量形式直接计算更直观更方便,还不易出错。矢量形式固然很标准化很简洁(尤其是涉及到带有散度和旋度的微分方程),但一般只用于做基本证明和推导的过程,因为矢量方程与所取的任一坐标无关。 2. 一电偶极子的电偶极矩为l q P ? ?=,P 点到偶极子中心的距离为r , r ?与l ? 的夹角为θ,在l r >>时,求P 点的电场强度E ?在P O r ρ?=方 向的分量r E 和垂直于r ? 方向的分量θE 。 解:在极坐标系下,设点()θ,r P 相对于q +和q -的位矢分别为+r ?,-r ?,它们与r ?的夹角分别为α和β,由点电荷的场强公式有

2041 ++?=r q E πε,2041- -?=r q E πε, -++=E E E ? ?? 在极坐标下,E ? 可以分解为: βαcos cos -+-=E E E r , βαθsin sin -++=E E E 其中,+-=r l r θαcos 2cos ,-+=r l r θβcos 2cos , +=r l θ αsin 2sin , -=r l θβsin 2sin 又因为l r >>,在此近似下有 2r r r ≈?-+,r r r 2≈+-+,θcos l r r ≈-+-, 带入以上各式,化简得 3 0cos 241 r P E r θπε?=,30sin 41r P E θ πεθ?=。 此种方法的关键在于灵活运用各坐标分量间的几何与近似关系。对于电偶极子的问题,联系电势一节的内容,我们可以做一些归纳,下面我们从最常用的直角坐标系出发,来推导电偶极子在空间任一点的电势及场强公式。 以偶极子两电荷连线中点为原点,以偶极矩方向为x 轴方向取直角坐标系中任一点()z y x P ,,,由点电荷的电势叠加可得: ()???? ? ? ? ?????? ? ++??? ??+-+ ++??? ??-?=+=-+222 2 220 2241z y l x q z y l x q U U P U πε

电磁学经典练习题及答案

高中物理电磁学练习题 一、在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选 项正确. 1 ?如图3-1所示,有一金属箔验电器,起初金属箔闭合,当带正电的棒靠近 验电器上部的金属板时,金属箔张开.在这个状态下,用手指接触验电器的金属板,金属箔闭合,问当手指从金属板上离开,然后使棒也远离验电器,金属箔的状态如何变化?从图3-1的①?④四个选项中选取一个正确的答案. [ ] 图3-1 A.图① E.图② C.图③ D.图④ 2.下列关于静电场的说法中正确的是[ ] A.在点电荷形成的电场中没有场强相等的两点,但有电势相等的两点 E.正电荷只在电场力作用下,一定从高电势向低电势运动 C.场强为零处,电势不一定为零;电势为零处,场强不一定为零 D.初速为零的正电荷在电场力作用下不一定沿电场线运动 3 .在静电场中,带电量大小为q的带电粒子(不计重力),仅在电场力的作用下,先后飞过相距为d的a、b两点,动能增加了ΔE,则 [ ] A.a点的电势一定高于b点的电势 E.带电粒子的电势能一定减少 C.电场强度一定等于ΔE∕dq D.a、b两点间的电势差大小一定等于ΔE∕q 4. 将原来相距较近的两个带同种电荷的小球同时由静止释放(小球放在光 滑绝缘的水平面上),它们仅在相互间库仑力作用下运动的过程中[ ] A.它们的相互作用力不断减少 E.它们的加速度之比不断减小 C.它们的动量之和不断增加 D.它们的动能之和不断增加 5. 如图3-2所示,两个正、负点电荷,在库仑力作用下,它们以两者连线上 的某点为圆心做匀速圆周运动,以下说法正确的是[ ]

图3-2 A.它们所需要的向心力不相等 E.它们做圆周运动的角速度相等 C.它们的线速度与其质量成反比 D.它们的运动半径与电荷量成反比 6 ?如图3-3所示,水平固定的小圆盘A,带电量为Q,电势为零,从盘心处O由静止释放一质量为m,带电量为+q的小球,由于电场的作用,小球竖直上升的高度可达盘中心竖直线上的C点,Oc = h ,又知道过竖直线上的b点时,小球速度最大,由此可知在Q所形成的电场中,可以确定的物理量是[ ] A.b点场强 B.c点场强 C.b点电势 D.c点电势 7. 如图3-4所示,带电体Q固定,带电体P的带电量为q,质量为m, 与绝缘的水平桌面间的动摩擦因数为μ,将P在A点由静止放开,贝U在Q的排斥下运动到B点停下,A、B相距为s,下列说法正确的是[ ] Q尸 宀鱼舖. ... R A H 图3-4 A.将P从B点由静止拉到A点,水平拉力最少做功2μmgs B.将P从B点由静止拉到A点,水平拉力做功μmgs C.P从A点运动到B点,电势能增加μmgs D.P从A点运动到B点,电势能减少μmgs 8. 如图3-5所示,悬线下挂着一个带正电的小球,它的质量为m、电量为q, 整个装置处于水平向右的匀强电场中,电场强度为E. [ ] 图3-5 A.小球平衡时,悬线与竖直方向夹角的正切为Eq/mg B.若剪断悬线,则小球做曲线运动 C.若剪断悬线,则小球做匀速运动

电磁学课后习题答案

第五章静电场 5-9若电荷Q均匀地分布在长为L的细棒上.求证:(1)在棒的延长线,且离棒中心为r处的电场强度为 E 1 πε04r Q 2 2 L (2)在棒的垂直平分线上,离棒为r处的电场强度为 E 1 Q 2 2 πε 0r4r 2 L 若棒为无限长(即L→∞),试将结果与无限长均匀带电直线的电场强度相比较. 分析这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电 荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元dx,其电荷为dq=Qdx/L,它在点P的电场强度为 d E 1 4 πε dq 2 r e r 整个带电体在点P的电场强度 E d E 接着针对具体问题来处理这个矢量积分. (1)若点P在棒的延长线上,带电棒上各电荷元在点P的电场强度方向相同,

E dE i L (2)若点P在棒的垂直平分线上,如图(A)所示,则电场强度E沿x轴方向的分量因对称性叠加为零,因此,点P的电场强度就是 E dE y j sinαdE j L

证(1)延长线上一点P 的电场强度 E dq L 2πεr 0 2 ,利用几何关系r ′=r -x 统一积分变量, 则 1QdxQ111QL/2 E P 电场强度的方向 222 -L/2 40LrxLrL /2rL /2π4rL πεπεε 4 00 沿x 轴. (2)根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为 E L s indq α dE 2 4r πε 0 利用几何关系sin α=r/r ′, 2x 2 rr 统一积分变量,则 E L/ -L/ 2 2 1 rQdx Q 2/3 2 422r πxr π εεr 0L4 1 2 2 L 当棒长L →∞时,若棒单位长度所带电荷λ为常量,则P 点电场强度 E lim l 1 2 πr ε 0 1 Q / 4r L 2 / 2 L λ 2πεr 此结果与无限长带电直线周围的电场强度分布相同[图(B )].这说明只要满足r 2 /L 2 <<1, 带电长直细棒可视为无限长带电直线. 5-14设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面 的电场强度通量.

电磁学课后习题答案

第五章静电场 5 -9若电荷Q均匀地分布在长为L的细棒上.求证:(1)在棒的延长线,且离棒中心为r处的电场强度为 2 2 4 π 1 L r Q ε E - = (2)在棒的垂直平分线上,离棒为r处的电场强度为 2 2 04 π2 1 L r r Q ε E + = 若棒为无限长(即L→∞),试将结果与无限长均匀带电直线的电场强度相比较. 分析这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元d x,其电荷为d q=Q d x/L,它在点P的电场强度为 r r q ε e E 2 d π4 1 d ' = 整个带电体在点P的电场强度 ?=E E d 接着针对具体问题来处理这个矢量积分. (1)若点P在棒的延长线上,带电棒上各电荷元在点P的电场强度方向相同, ?=L E i E d (2)若点P 在棒的垂直平分线上,如图(A)所示,则电场强度E沿x轴方向的分量因对称性叠加为零,因此,点P的电场强度就是 ??= = L y E α E j j E d sin d

证 (1)延长线上一点P 的电场强度?'=L r πεE 202,利用几何关系 r ′=r -x 统一积分变 量,则 ()220 022 204π12/12/1π4d π41L r Q εL r L r L εQ x r L x Q εE L/-L/P -=??????+--=-=? 电场强度的方向沿x 轴. (2)根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为 E r εq αE L d π4d sin 2 ? '= 利用几何关系 sin α=r /r ′,2 2 x r r +='统一积分变量,则 () 2 2 03 /2222 2041π2d π41L r r εQ r x L x rQ εE L/-L/+= +=? 当棒长L →∞时,若棒单位长度所带电荷λ为常量,则P 点电场强度 r ελL r L Q r εE l 02 20π2 /41/π21lim = +=∞ → 此结果与无限长带电直线周围的电场强度分布相同[图(B )].这说明只要满足r 2/L 2<<1,带电长直细棒可视为无限长带电直线. 5 -14设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量. 分析方法1:由电场强度通量的定义,对半球面S 求积分,即? ?=S S d s E Φ 方法2:作半径为R 的平面S ′与半球面S 一起可构成闭合曲面,由于闭合面内无电荷,由高斯定理

电磁学答案

§1.1 静电的基本现象和基本规律 思考题: 1、给你两个金属球,装在可以搬动的绝缘支架上,试指出使这两个球带等量异号电荷的方向。你可以用丝绸摩擦过的玻璃棒,但不使它和两球接触。你所用的方法是否要求两球大小相等? 答:先使两球接地使它们不带电,再绝缘后让两球接触,将用丝绸摩擦后带正电的玻璃棒靠近金属球一侧时,由于静电感应,靠近玻璃棒的球感应负电荷,较远的球感应等量的正电荷。然后两球分开,再移去玻璃棒,两金属球分别带等量异号电荷。本方法不要求两球大小相等。因为它们本来不带电,根据电荷守恒定律,由于静电感应而带电时,无论两球大小是否相等,其总电荷仍应为零,故所带电量必定等量异号。 2、带电棒吸引干燥软木屑,木屑接触到棒以后,往往又剧烈地跳离此棒。试解释之。答:在带电棒的非均匀电场中,木屑中的电偶极子极化出现束缚电荷,故受带电棒吸引。但接触棒后往往带上同种电荷而相互排斥。 3、用手握铜棒与丝绸摩擦,铜棒不能带电。戴上橡皮手套,握着铜棒和丝绸摩擦,铜棒就会带电。为什么两种情况有不同结果? 答:人体是导体。当手直接握铜棒时,摩擦过程中产生的电荷通过人体流入大地,不能保持电荷。戴上橡皮手套,铜棒与人手绝缘,电荷不会流走,所以铜棒带电。 思考题: 1、在地球表面上通常有一竖直方向的电场,电子在此电场中受到一个向上的力,电场强度的方向朝上还是朝下? 答:电子受力方向与电场强度方向相反,因此电场强度方向朝下。 2、在一个带正电的大导体附近P点放置一个试探点电荷q0(q0>0),实际测得它受力F。若考虑到电荷量q0不是足够小的,则F/ q0比P点的场强E大还是小?若大导体带负电,情况如何? 答:q0不是足够小时,会影响大导体球上电荷的分布。由于静电感应,大导体球上的正电荷受到排斥而远离P点,而F/q0是导体球上电荷重新分布后测得的P点场强,因此比P点原来的场强小。若大导体球带负电,情况相反,负电荷受吸引而靠近P点,P点场强增大。思考题: 1、一般地说,电力线代表点电荷在电场中运动的轨迹吗?为什么? 答:一般情况下,电力线不代表点电荷在电场中运动的轨迹。因为电力线一般是曲线,若电荷沿电力线作曲线运动,应有法向力存在;但电力线上各点场强只沿切线方向,运动电荷必定偏离弯曲的电力线。仅当电力线是直线,且不考虑重力影响时,初速度为零的点电荷才能沿着电力线运动。若考虑重力影响时,静止的点电荷只能沿竖直方向电力线运动。 2、空间里的电力线为什么不相交? 答:电力线上任一点的切线方向即为该点场强方向。如果空间某点有几条电力线相交,过交点对每条电力线都可作一条切线,则交点处的场强方向不唯一,这与电场中任一点场强有确定方向相矛盾。 3、一个点电荷q放在球形高斯面的中心处,试问在下列情况下,穿过这高斯面的电通量是否改变? (1)如果第二个点电荷放在高斯球面外附近; (2)如果第二个点电荷放在高斯球面内; (3)如果将原来的点电荷移离了高斯球面的球心,但仍在高斯球面内。 答:由于穿过高斯面的电通量仅与其内电量的代数和有关,与面内电荷的分布及面外电荷无关,所以

电磁学-第二版--习题答案

电磁学第二版 习题解答 电磁学第二版 习题解答1 第一章1 第二章15 第三章23 第四章32 第五章35 第六章42 第七章48 第一章 1.2.2两个同号点电荷所带电荷量之和为Q 。在两者距离一定的前提下,它们带电荷量各为多少时相互作用力最大? 解答: 设一个点电荷的电荷量为1q q =,另一个点电荷的电荷量为 2()q Q q =-,两者距离为r ,则由库仑定律求得两个点电荷之间的作用力为 2 0() 4q Q q F r πε-= 令力F 对电荷量q 的一队导数为零,即 2 0()04dF Q q q dq r πε--== 得 122 Q q q == 即取122 Q q q ==时力F 为极值,而

22 2 02 204Q q d F dq r πε== < 故当122 Q q q ==时,F 取最大值。 1.2.3两个相距为L 的点电荷所带电荷量分别为2q 和q ,将第三个点电荷放在何处时,它所受的合力为零? 解答: 要求第三个电荷Q 所受的合力为零,只可能放在两个电荷的连线中间,设它与电荷q 的距离为了x ,如图1.2.3所示。电荷Q 所受的两个电场力方向相反,但大小相等,即 22 00204()4qQ qQ L x x πεπε-=- 得22 20x Lx L +-= 舍去0x < 的解,得1)x L =- 1.3.8解答: A E 3 x ∞ (c) (b) (a) (1)先求竖直无限长段带电线在O 点产生的场强1E ,由习题1.3.7

(2)可知104x E R η πε= 仿习题1.3.7解答过程,得 12 223/2 1223/20sin ()0()4y y dl ldl dE k k r R l ldl E k R l R ηηαη ηπε==-+∞=-=- +? 故10??()4E i j R ηπε= - 同理,水平无限长段带电线在O 点产生的场强 20??()4E i j R ηπε= -+ 对于圆弧段带电线在O 点产生的场强3E ,参看图1.3.8(b ),得 32 30cos cos /2cos 04x x dl d dE k k R R k E d R R ηηα αα πηηααπε====? 同理得304y E R η πε= 故30??()4E i j R ηπε= + 解得 12330??()4E E E E E i j R ηπε=++== + (2)利用(1)中的结论,参看习题1.3.8图(b ),A -∞的带电直线在O 点的场强为 =0??()4A E i j R ηπε--

电磁学第二章习题答案

习题五(第二章 静电场中的导体和电介质) 1、在带电量为Q 的金属球壳内部,放入一个带电量为q 的带电体,则金属球壳 内表面所带的电量为 q ,外表面所带电量为 q +Q 。 2、带电量Q 的导体A 置于外半径为R 的导体 球壳B 内,则球壳外离球心r 处的电场强度大小 204/r Q E πε=,球壳的电势R Q V 04/πε=。 3、导体静电平衡的必要条件是导体内部场强为零。 4、两个带电不等的金属球,直径相等,但一个是空心,一个是实心的。现使它们互相接触,则这两个金属球上的电荷( B )。 (A)不变化 (B)平均分配 (C)空心球电量多 (D)实心球电量多 5、半径分别R 和r 的两个球导体(R >r)相距很远,今用细导线把它们连接起来,使两导体带电,电势为U 0,则两球表面的电荷面密度之比σR /σr 为 ( B ) (A) R/r (B) r/R (C) R 2/r 2 (D) 1 6、有一电荷q 及金属导体A ,且A 处在静电平衡状态,则( C ) (A)导体内E=0,q 不在导体内产生场强; (B)导体内E ≠0,q 在导体内产生场强; (C)导体内E=0,q 在导体内产生场强; (D)导体内E ≠0,q 不在导体内产生场强。 7、如图所示,一内半径为a ,外半径为b 的金属球壳,带有电量Q , 在球壳空腔内距离球心为r 处有一点电荷q ,设无限远 处为电势零点。试求: (1)球壳外表面上的电荷; (2)球心O 点处由球壳内表面上电荷产生的电势; (3)球心O 点处的总电势。 解: (1) 设球壳内、外表面电荷分别为q 1 , q 2,以O 为球心作一半径为R (a

电磁学课后习题答案

第五章 静 电 场 5 -9 若电荷Q 均匀地分布在长为L 的细棒上.求证:(1) 在棒的延长线,且离棒中心为r 处的电场强度为 2 204π1L r Q εE -= (2) 在棒的垂直平分线上,离棒为r 处的电场强度为 2204π21L r r Q εE += 若棒为无限长(即L →∞),试将结果与无限长均匀带电直线的电场强度相比较. 分析 这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元d x ,其电荷为d q =Q d x /L ,它在点P 的电场强度为 r r q εe E 2 0d π41d '= 整个带电体在点P 的电场强度 ?=E E d 接着针对具体问题来处理这个矢量积分. (1) 若点P 在棒的延长线上,带电棒上各电荷元在点P 的电场强度方向相同, ?=L E i E d (2) 若点P 在棒的垂直平分线上,如图(A )所示,则电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度就是 ??==L y E αE j j E d sin d

证 (1) 延长线上一点P 的电场强度?'=L r πεE 202, 利用几何关系 r ′=r -x 统一积分变量,则 ()220 022 204π12/12/1π4d π41L r Q εL r L r L εQ x r L x Q εE L/-L/P -=??????+--=-=? 电场强度的方向沿x 轴. (2) 根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为 E r εq αE L d π4d sin 2 ? '= 利用几何关系 sin α=r /r ′,2 2 x r r +=' 统一积分变量,则 () 2 2 03 /2222 2041π2d π41L r r εQ r x L x rQ εE L/-L/+= +=? 当棒长L →∞时,若棒单位长度所带电荷λ为常量,则P 点电场强度 r ελL r L Q r εE l 02 20π2 /41/π21lim = +=∞ → 此结果与无限长带电直线周围的电场强度分布相同[图(B )].这说明只要满足r 2/L 2 <<1,带电长直细棒可视为无限长带电直线. 5 -14 设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量. 分析 方法1:由电场强度通量的定义,对半球面S 求积分,即? ?=S S d s E Φ 方法2:作半径为R 的平面S ′与半球面S 一起可构成闭合曲面,由于闭合面内无电荷,由高斯定理

电磁学_第二版__习题答案

电磁学 第二版 习题解答 电磁学 第二版 习题解答 ............................... 错误!未定义书签。 第一章 ................................................. 错误!未定义书签。 第二章 ................................................. 错误!未定义书签。 第三章 ................................................. 错误!未定义书签。 第四章 ................................................. 错误!未定义书签。 第五章 ................................................. 错误!未定义书签。 第六章 ................................................. 错误!未定义书签。 第七章 ..................................................... 错误!未定义书签。 第一章 1.2.2 两个同号点电荷所带电荷量之和为Q 。在两者距离一定的前提下,它们带电荷量各为多少时相互作用力最大 解答: 设一个点电荷的电荷量为1q q =,另一个点电荷的电荷量为 2()q Q q =-,两者距离为r ,则由库仑定律求得两个点电荷之间的作用力为 2 0() 4q Q q F r πε-= 令力F 对电荷量q 的一队导数为零,即 20()04dF Q q q dq r πε--== 得 122 Q q q ==

电磁学课后部分习题答案解析

电磁学课后部分习题答案解析 1.2.2 两个同号点电荷所带电荷量之和为Q.在两者距离一定的前提下,他们带电荷量各为多少时相互作用力最大? 解答:设一个点电荷的电荷量为1q q =,另一个点电荷的电荷量为 ()2q Q q =-,两者距离为r,则由库仑定律求得两个电电荷之间的作用力为 ()2 04q Q q F r πε-= 令力F 对电荷量q 的一阶导数为零,即 ()2 004Q q q dF dq r πε--= = 得 122 Q q q == 即取 122 Q q q == 时力F 为极值,而 22 2 2 02 204Q q d F dq r πε= =- < 故当 122 Q q q == 时,F 取最大值 1.2.6 两个电荷量相等的同性点电荷相距为2a ,在两者连线的中垂面上置一试探点电荷0q , 求0q 受力最大的点的轨迹. 解答: 如图(a)所示,设有两个电荷量为q 的点电荷 ,坐标分别为(-a ,0,0)和(a ,0,0),试探点电荷0q 置于二者连线的中垂面Oyz 上坐标为(0,y,z). r y j z k =+ 为原点O 至试探点电荷0q 的失径, 距离为r = ,如图(b)所 示.

根据对称性, 所受合力的方向与失径r 平行或反平行.其大小为 () 003 2 2 2 2 2 2sin 2q q q qr F k k r a r a α==++ 求上式的级值,去F 对r 的一阶导数并令其为零,的方程 ()2 2 2 30r r a -++= 求得 2 r = 求二阶导数并带入2 r =,得 () 2 7 2 2 2 2 022 120r d F a kqq r a r dr -=-+< 说明此时F 取极大值 因此,0q 受力最大的点的轨迹是在中垂面上的圆心坐标为(0,0,0) 半径为 2 的圆. 1.3.6 附图中均匀带电圆环的半径为R,总电荷量为q (1)求数轴线上离环心O 为x 处的场强E (2) 轴线上何处场强最大?其值是多少? (3)大致画出E-x 曲线. 解答:设圆环的带电线密度为 2q R η π=

相关主题