搜档网
当前位置:搜档网 › 高中数学 典型例题 直线与平面的平行的判定和性质 新课标

高中数学 典型例题 直线与平面的平行的判定和性质 新课标

高中数学 典型例题 直线与平面的平行的判定和性质 新课标
高中数学 典型例题 直线与平面的平行的判定和性质 新课标

典型例题一

例1 简述下列问题的结论,并画图说明:

(1)直线?a 平面α,直线A a b =I ,则b 和α的位置关系如何? (2)直线α?a ,直线a b //,则直线b 和α的位置关系如何? 分析:(1)由图(1)可知:α?b 或A b =αI ; (2)由图(2)可知:α//b 或α?b .

说明:此题是考查直线与平面位置关系的例题,要注意各种位置关系的画法与表示方法.

典型例题二

例2 P 是平行四边形ABCD 所在平面外一点,Q 是PA 的中点,求证://PC 平面

BDQ .

分析:要证明平面外的一条直线和该平面平行,只要在该平面内找到一条直线和已知直线平行就可以了.

证明:如图所示,连结AC ,交BD 于点O , ∵四边形ABCD 是平行四边形

∴CO AO =,连结OQ ,则OQ 在平面BDQ 内,且OQ 是APC ?的中位线,

∴OQ PC //. ∵PC 在平面BDQ 外, ∴//PC 平面BDQ .

说明:应用线面平行的判定定理证明线面平行时,关键是在平面内找一条直线与已知直线平行,怎样找这一直线呢?

由于两条直线首先要保证共面,因此常常设法过已知直线作一平面与已知平面相交,如果能证明已知直线和交线平行,那么就能够马上得到结论.这一个证明线面平行的步骤可以总结为:

过直线作平面,得交线,若线线平行,则线面平行.

典型例题三

例3 经过两条异面直线a ,b 之外的一点P ,可以作几个平面都与a ,b 平行?并证明你的结论.

分析:可考虑P 点的不同位置分两种情况讨论. 解:(1)当P 点所在位置使得a ,P (或b ,P )本身确定的平面平行于b (或a )时,过P 点再作不出与a ,b 都平行的平面;

(2)当P 点所在位置a ,P (或b ,P )本身确定的平面与b (或a )不平行时,可过点P 作a a '//,b b //'.由于a ,b 异面,则a ',b '不重合且相交于P .由于P b a =''I ,

a ',

b '确定的平面α,则由线面平行判定定理知:α//a ,α//b .可作一个平面都与a ,b 平行.

故应作“0个或1个”平面.

说明:本题解答容易忽视对P 点的不同位置的讨论,漏掉第(1)种情况而得出可作一个平面的错误结论.可见,考虑问题必须全面,应区别不同情形分别进行分类讨论.

典型例题四

例4 平面外的两条平行直线中的一条平行于这个平面,那么另一条直线也平行于这个平面.

已知:直线b a //,//a 平面α,α?b . 求证:α//b .

证明:如图所示,过a 及平面α内一点A 作平面β. 设c =βαI ,

∵α//a , ∴c a //. 又∵b a //, ∴c b //.

∵α?b ,α?c , ∴α//b .

说明:根据判定定理,只要在α内找一条直线b c //,根据条件α//a ,为了利用直线和平面平行的性质定理,可以过a 作平面β与α相交,我们常把平面β称为辅助平面,它可以起到桥梁作用,把空间问题向平面问题转化.

和平面几何中添置辅助线一样,在构造辅助平面时,首先要确认这个平面是存在的,例如,本例中就是以“直线及直线外一点确定一个平面”为依据来做出辅助平面的.

典型例题五

例5 已知四面体ABC S -的所有棱长均为a .求: (1)异面直线AB SC 、的公垂线段EF 及EF 的长; (2)异面直线EF 和SA 所成的角.

分析:依异面直线的公垂线的概念求作异面直线AB SC 、的公垂线段,进而求出其距离;对于异面直线所成的角可采取平移构造法求解.

解:(1)如图,分别取AB SC 、的中点F E 、,连结CF SF 、.

由已知,得SAB ?≌CAB ?. ∴CF SF =,E 是SC 的中点, ∴SC EF ⊥.

同理可证AB EF ⊥

∴EF 是AB SC 、的公垂线段.

在SEF Rt ?中,a SF 23=

,a SE 2

1

=. ∴22SE SF EF -=

a a a 2

2

414322=-. (2)取AC 的中点G ,连结EG ,则SA EG //.

∴EF 和GE 所成的锐角或直角就是异面直线EF 和SA 所成的角. 连结FG ,在EFG Rt ?中,a EG 21=,a GF 2

1

=,a EF 22=. 由余弦定理,得

222

2

2124142412cos 2

222

2

2

=??-+=??-+=∠a a a

a a EF EG GF EF EG GEF . ∴ο

45=∠GEF .

故异面直线EF 和SA 所成的角为ο

45.

说明:对于立体几何问题要注意转化为平面问题来解决,同时要将转化过程简要地写出

来,然后再求值.

典型例题六

例6 如果一条直线与一个平面平行,那么过这个平面内的一点且与这条直线平行的直线必在这个平面内.

已知:直线α//a ,α∈B ,b B ∈,a b //. 求证:α?b . 分析:由于过点B 与a 平行的直线是惟一存在的,因此,本题就是要证明,在平面α外,不存在过B 与a 平行的直线,这是否定性命题,所以使用反证法.

证明:如图所示,设α?b ,过直线a 和点B 作平面β,且'

b =αβI . ∵α//a ,∴α//'

b .

这样过B 点就有两条直线b 和'

b 同时平行于直线a ,与平行公理矛盾. ∴b 必在α内.

说明:(1)本例的结论可以直接作为证明问题的依据. (2)本例还可以用同一法来证明,只要改变一下叙述方式.

如上图,过直线a 及点B 作平面β,设'

b =αβI .∵α//a ,∴α//'

b .

这样,'

b 与b 都是过B 点平行于a 的直线,根据平行公理,这样的直线只有一条, ∴b 与'

b 重合.∵α?'

b ,∴α?b .

典型例题七

例7 下列命题正确的个数是( ).

(1)若直线l 上有无数个点不在平面α内,则α//l ; (2)若直线l 平行于平面α内的无数条直线,则α//l ;

(3)若直线l 与平面α平行,则l 与平面α内的任一直线平行; (4)若直线l 在平面α外,则α//l .

A .0个

B .1个

C .2个

D .3个 分析:本题考查的是空间直线与平面的位置关系.对三种位置关系定义的准确理解是解本题的关键.要注意直线和平面的位置关系除了按照直线和平面公共点的个数来分类,还可以按照直线是否在平面内来分类.

解:(1)直线l 上有无数个点不在平面α内,并没有说明是所在点都不在平面α内,因而直线可能与平面平行亦有可能与直线相交.解题时要注意“无数”并非“所有”.(2)直线l 虽与α内无数条直线平行,但l 有可能在平面α内,所以直线l 不一定平行α.(3)这是初学直线与平面平行的性质时常见错误,借助教具我们很容易看到.当α//l 时,若α?m 且l m //,则在平面α内,除了与m 平行的直线以外的每一条直线与l 都是异面直线.(4)直线l 在平面α外,应包括两种情况:α//l 和l 与α相交,所以l 与α不一定平行. 故选A .

说明:如果题中判断两条直线与一平面之间的位置关系,解题时更要注意分类要完整,考虑要全面.如直线l 、m 都平行于α,则l 与m 的位置关系可能平行,可能相交也有可能

异面;再如直线m l //、α//l ,则m 与α的位置关系可能是平行,可能是m 在α内.

典型例题八

例8 如图,求证:两条平行线中的一条和已知平面相交,则另一条也与该平面相交.

已知:直线b a //,P a =α平面I .求证:直线b 与平面α相交.

分析:利用b a //转化为平面问题来解决,由b a //可确定一辅助平面β,这样可以把题中相关元素集中使用,既创造了新的线面关系,又将三维降至二维,使得平几知识能够运用.

解:∵b a //,

∴a 和b 可确定平面β. ∵P a =αI

∴平面α和平面β相交于过点P 的直线l .

∵在平面β内l 与两条平行直线a 、b 中一条直线a 相交,

∴l 必定与直线b 也相交,不妨设Q l b =I ,又因为b 不在平面α内(若b 在平面α内,则α和β都过相交直线b 和l ,因此α与β重合,a 在α内,和已知矛盾). 所以直线b 和平面α相交.

说明:证明直线和平面相交的常用方法有:证明直线和平面只有一个公共点;否定直线在平面内以及直线和平面平行;用此结论:一条直线如果经过平面内一点,又经过平面外一点,则此直线必与平面相交(此结论可用反证法证明).

典型例题九

例9 如图,求证:经过两条异面直线中的一条,有且仅有一个平面与另一条直线平行. 已知:a 与b 是异面直线.求证:过b 且与a 平行的平面有且只有一个.

分析:本题考查存在性与唯一性命题的证明方法.解题时要理解“有且只有”的含义.“有”

就是要证明过直线b 存在一个平面α,且α//a ,“只有”就是要证满足这样条件的平面是唯一的.存在性常用构造法找出(或作出)平面,唯一性常借助于反证法或其它唯一性的结论.

证明:(1)在直线b 上任取一点A ,由点A 和直线a 可确定平面β. 在平面β内过点A 作直线'a ,使a a //',则'

a 和

b 为两相交直线, 所以过'

a 和

b 可确定一平面α. ∵α?b ,a 与b 为异面直线, ∴α?a .

又∵'

//a a ,α?'

a ,

∴α//a .

故经过b 存在一个平面α与a 平行.

(2)如果平面γ也是经过b 且与a 平行的另一个平面, 由上面的推导过程可知γ也是经过相交直线b 和'

a 的.

由经过两相交直线有且仅有一个平面的性质可知,平面α与γ重合,

即满足条件的平面是唯一的.

说明:对于两异面直线a 和b ,过b 存在一平面α且与a 平行,同样过a 也存在一平面β且与b 平行.而且这两个平面也是平行的(以后可证)

.对于异面直线a 和b 的距离,也可转化为直线a 到平面α的距离,这也是求异面直线的距离的一种方法.

典型例题十

例10 如图,求证:如果一条直线和两个相交平面都平行,那么这条直线和它们的交线平行.

已知:l =βαI ,α//a ,β//a ,求证:l a //.

分析:本题考查综合运用线面平行的判定定理和性质定理的能力.利用线面平行的性质定理,可以先证明直线a 分别和两平面的某些直线平行,即线面平行可得线线平行.然后再用线面平行的判定定理和性质定理来证明a 与l 平行.

证明:在平面α内取点P ,使l P ?,过P 和直线a 作平面γ交α于b .

∵α//a ,γ?a ,b =αγI , ∴b a //.

同理过a 作平面δ交β于c . ∵β//a ,δ?a ,c =βδI , ∴c a //. ∴c b //.

∵β?b ,β?c , ∴β//b .

又∵α?b ,l =βαI , ∴l b //. 又∵b a //, ∴l a //.

另证:如图,在直线l 上取点M ,

过M 点和直线a 作平面和α相交于直线1l ,和β相交于直线2l .

∵α//a ,∴1//l a , ∵β//a ,∴2//l a ,

但过一点只能作一条直线与另一直线平行. ∴直线1l 和2l 重合. 又∵α?1l ,β?2l , ∴直线1l 、2l 都重合于直线l ,

∴l a //. 说明:“线线平行”与“线面平行”在一定条件下是可以相互转化的,这种转化的思想在立体几何中非常重要.

典型例题十一

例11 正方形ABCD 与正方形ABEF 所在平面相交于AB ,在AE 、BD 上各取一点

P 、Q ,且DQ AP =.求证://PQ 面BCE .

分析:要证线面平行,可以根据判定定理,转化为证明线线平行.关键是在平面BCE 中如何找一直线与PQ 平行.可考察过PQ 的平面与平面BCE 的交线,这样的平面位置不同,所找的交线也不同.

证明一:如图,在平面ABEF 内过P 作AB PM //交BE 于M , 在平面ABCD 内过Q 作AB QN //交BC 于N ,连结MN .

∵AB PM //,∴

AE

PE

AB PM =

. 又∵CD AB QN ////,

BD BQ DC QN =,即BD

BQ

AB QN =

. ∵正方形ABEF 与ABCD 有公共边AB , ∴DB AE =.

∵DQ AP =,∴BQ PE =. ∴QN PM =.

又∵AB PM //,AB QN //, ∴QN PM //.

∴四边形PQNM 为平行四边形. ∴MN PQ //. 又∵?MN 面BCE , ∴//PQ 面BCE .

证明二:如图,连结AQ 并延长交BC 于S ,连结ES .

∵AD BS //,∴

QB

DQ

QS AQ =. 又∵正方形ABEF 与正方形ABCD 有公共边AB , ∴DB AE =,

∵DQ AP =,∴QB PE =.

QS

AQ

QB DQ PE AP ==. ∴ES PQ //, 又∵?ES 面BEC , ∴//PQ 面BEC .

说明:从本题中我们可以看出,证线面平行的根本问题是要在平面内找一直线与已知直线平行,此时常用中位线定理、成比例线段、射影法、平行移动、补形等方法,具体用何种方法要视条件而定.此题中我们可以把“两个有公共边的正方形”这一条件改为“两个全等的矩形”,那么题中的结论是否仍然成立?

典型例题十二

例12 三个平面两两相交于三条交线,证明这三条交线或平行、或相交于一点.

已知:a =βαI ,b =γβI ,c =αγI .

求证:a 、b 、c 互相平行或相交于一点. 分析:本题考查的是空间三直线的位置关系,我们可以先从熟悉的两条交线的位置关系入手,根据共面的两条直线平行或相交来推论三条交线的位置关系.

证明:∵a =βαI ,b =γβI , ∴β?b a 、. ∴a 与b 平行或相交. ①若b a //,如图

∵γ?b ,γ?a ,∴γ//a .

又∵c =αγI ,α?a ,∴c a //. ∴c b a ////.

②若a 与b 相交,如图,设O b a =I ,

∴a O ∈,b O ∈.

又∵βαI =a ,γβI =b . ∴α∈O ,γ∈O

又∵c =γαI ,∴c O ∈.

∴直线a 、b 、c 交于同一点O .

说明:这一结论常用于求一个几何体的截面与各面交线问题,如正方体ABCD 中,

M 、N 分别是1CC 、11B A 的中点,画出点D 、M 、N 的平面与正方体各面的交线,并

说明截面多边形是几边形?

典型例题十三

例13 已知空间四边形ABCD ,AC AB ≠,AE 是ABC ?的BC 边上的高,DF 是BCD ?的BC 边上的中线,求证:AE 和DF 是异面直线.

证法一:(定理法)如图

由题设条件可知点E 、F 不重合,设BCD ?所在平面α.

∴?????

??

??∈??DF

E E A D

F αααAE 和DF 是异面直线. 证法二:(反证法)

若AE 和DF 不是异面直线,则AE 和DF 共面,设过AE 、DF 的平面为β. (1)若E 、F 重合,则E 是BC 的中点,这与题设AC AB ≠相矛盾. (2)若E 、F 不重合,

∵EF B ∈,EF C ∈,β?EF ,∴β?BC . ∵β∈A ,β∈D ,

∴A 、B 、C 、D 四点共面,这与题设ABCD 是空间四边形相矛盾. 综上,假设不成立.

故AE 和DF 是异面直线.

说明:反证法不仅应用于有关数学问题的证明,在其他方面也有广泛的应用. 首先看一个有趣的实际问题:

“三十六口缸,九条船来装,只准装单,不准装双,你说怎么装?” 对于这个问题,同学们可试验做一做. 也许你在试验几次后却无法成功时,觉得这种装法的可能性是不存在的.那么你怎样才能清楚地从理论上解释这种装法是不可能呢?

用反证法可以轻易地解决这个问题.假设这种装法是可行的,每条船装缸数为单数,则9个单数之和仍为单数,与36这个双数矛盾.只须两句话就解决了这个问题.

典型例题十四

例14 已知AB 、BC 、CD 是不在同一平面内的三条线段,E 、F 、G 分别是AB 、BC 、CD 的中点,求证:平面EFG 和AC 平行,也和BD 平行.

分析:欲证明AC //平面EFG ,根据直线和平面平等的判定定理只须证明AC 平行平面EFG 内的一条直线,由图可知,只须证明EF AC //.

证明:如图,连结AE 、EG 、EF 、GF . 在ABC ?中,E 、F 分别是AB 、BC 的中点. ∴EF AC //.于是AC //平面EFG . 同理可证,BD //平面EFG .

说明:到目前为止,判定直线和平面平行有以下两种方法:(1)根据直线和平面平行定义;(2)根据直线和平面平行的判定定理.

典型例题十五

例15 已知空间四边形ABCD ,P 、Q 分别是ABC ?和BCD ?的重心, 求证:ACD PQ 平面//.

分析:欲证线面平行,须证线线平行,即要证明PQ 与平面ACD 中的某条直线平行,根据条件,此直线为AD ,如图.

证明:取BC 的中点E .

∵P 是ABC ?的重心,连结AE , 则1∶3=PE AE ∶,连结DE , ∵Q 为BCD ?的重心, ∴1∶3=QE DE ∶, ∴在AED ?中,AD PQ //.

又ACD AD 平面?,ACD PQ 平面?, ∴ACD PQ 平面//.

说明:(1)本例中构造直线AD 与PQ 平行,是充分借助于题目的条件:P 、Q 分别是

ABC ?和BCD ?的重心,借助于比例的性质证明AD PQ //,该种方法经常使用,望注意

把握.

(2)“欲证线面平行,只须证线线平行”.判定定理给我们提供了一种证明线面平等的方法.根据问题具体情况要熟练运用.

典型例题十六

例16 正方体1111D C B A ABCD -中,E 、G 分别是BC 、11D C 的中点如下图. 求证:D D BB EG 11//平面.

分析:要证明D D BB EG 11//平面,根据线面平等的判定定理,需要在平面D D BB 11内找到与EG 平行的直线,要充分借助于E 、G 为中点这一条件.

证明:取BD 的中点F ,连结EF 、F D 1. ∵E 为BC 的中点,

∴EF 为BCD ?的中位线,则DC EF //,且CD EF 2

1

=. ∵G 为11D C 的中点, ∴CD G D //1且CD G D 2

1

1=

, ∴G D EF 1//且G D EF 1=, ∴四边形G EFD 1为平行四边形,

∴EG F D //1,而111B BDD F D 平面?,11B BDD EG 平面?, ∴11//B BDD EG 平面.

典型例题十七

例17 如果直线α平面//a ,那么直线a 与平面α内的( ).

A .一条直线不相交

B .两条相交直线不相交

C .无数条直线不相交

D .任意一条直线都不相交 解:根据直线和平面平行定义,易知排除A 、B .对于C ,无数条直线可能是一组平行线,也可能是共点线,∴C 也不正确,应排除C .

与平面α内任意一条直线都不相交,才能保证直线a 与平面α平行,∴D 正确. ∴应选D .

说明:本题主要考查直线与平面平行的定义.

典型例题十八

例18 分别和两条异面直线平行的两条直线的位置关系是( ). A .一定平行 B .一定相交 C .一定异面 D .相交或异面

解:如图中的甲图,分别与异面直线a 、b 平行的两条直线c 、d 是相交关系; 如图中的乙图,分别与异面直线a 、b 平行的两条直线c 、d 是相交关系.

综上,可知应选D .

说明:本题主要考查有关平面、线面平行等基础知识以及空间想象能力.

典型例题十九

例19 a 、b 是两条异面直线,下列结论正确的是( ). A .过不在a 、b 上的任一点,可作一个平面与a 、b 平行

B .过不在a 、b 上的任一点,可作一个直线与a 、b 相交

C .过不在a 、b 上的任一点,可作一个直线与a 、b 都平行

D .过a 可以并且只可以作一平面与b 平行

解:A 错,若点与a 所确定的平面与b 平行时,就不能使这个平面与α平行了. B 错,若点与a 所确定的平面与b 平等时,就不能作一条直线与a ,b 相交. C 错,假如这样的直线存在,根据公理4就可有b a //,这与a ,b 异面矛盾. D 正确,在a 上任取一点A ,过A 点做直线b c //, 则c 与a 确定一个平面与b 平行,这个平面是惟一的. ∴应选D.

说明:本题主要考查异面直线、线线平行、线面平行等基本概念.

典型例题二十

例20 (1)直线b a //,α平面//a ,则b 与平面α的位置关系是_____________. (2)A 是两异面直线a 、b 外的一点,过A 最多可作___________个平面同时与a 、b 平行.

解:(1)当直线b 在平面α外时,α//b ;当直线b 在平面α内时,α?b . ∴应填:α//b 或α?b .

(2)因为过A 点分别作a ,b 的平行线只能作一条,

(分别称'

a ,'

b )经过'a ,'

b 的平面也是惟一的.所以只能作一个平面; 还有不能作的可能,当这个平面经过a 或b 时,这个平面就不满足条件了. ∴应填:1.

说明:考虑问题要全面,各种可能性都要想到,是解答本题的关键.

典型例题二十一

例21 如图,α//a ,A 是α的另一侧的点,a D C B ∈,,,线段AB ,AC ,AD 交α于E ,F ,G ,若4=BD ,4=CF ,5=AF ,则EG =___________.

解:∵α//a ,ABD EG 平面I α=. ∴EG a //,即EG BD //,

FC

AF AF

BD EG CD BC FG EF AC AF CD FG BC EF +=

=++===. 则920

4545=

+?=+?=FC AF BD AF EG . ∴应填:9

20

说明:本题是一道综合题,考查知识主要有:直线与平面平行性质定理、相似三角形、比例性质等.同时也考查了综合运用知识,分析和解决问题的能力.

2016届高考数学经典例题集锦:数列(含答案)

数列题目精选精编 【典型例题】 (一)研究等差等比数列的有关性质 1. 研究通项的性质 例题1. 已知数列}{n a 满足1 111,3(2)n n n a a a n --==+≥. (1)求32,a a ; (2)证明: 312n n a -= . 解:(1)2 1231,314,3413a a a =∴=+==+= . (2)证明:由已知1 13 --=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=--- 1 2 1313 3 312n n n a ---+=++++= , 所以证得31 2n n a -= . 例题2. 数列{}n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥ (Ⅰ)求{}n a 的通项公式; (Ⅱ)等差数列{}n b 的各项为正,其前n 项和为n T ,且315T =,又112233,,a b a b a b +++成等比数列,求n T . 解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥, 两式相减得:112,3(2)n n n n n a a a a a n ++-==≥, 又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列 ∴1 3 n n a -= (Ⅱ)设{}n b 的公差为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===, 由题意可得2 (51)(59)(53)d d -+++=+,解得122,10d d == ∵等差数列{}n b 的各项为正,∴0d > ∴2d = ∴2(1) 3222n n n T n n n -=+ ?=+ 例题3. 已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且2 12322...a a a +++ 128n n a n -+=对任意的*N n ∈都成立,数列{} n n b b -+1是等差数列. ⑴求数列{}n a 与{}n b 的通项公式; ⑵是否存在N k * ∈,使得(0,1)k k b a -∈,请说明理由. 点拨:(1)2112322...28n n a a a a n -++++=左边相当于是数列{}12n n a -前n 项和的形式,可以联想到已知n S 求n a 的方法,当2n ≥时,1n n n S S a --=. (2)把k k a b -看作一个函数,利用函数的思想方法来研究k k a b -的取值情况. 解:(1)已知212322a a a +++ (1) 2n n a -+8n =(n ∈*N )① 2n ≥时,212322a a a +++ (2) 128(1)n n a n --+=-(n ∈*N )②

平行线的判定练习题

创作编号:BG7531400019813488897SX 创作者:别如克* 平行线的判定习题精选 一、填空题: 1.如图③∵∠1=∠2,∴_______∥________()∵∠2=∠3,∴_______∥________()2.如图④∵∠1=∠2,∴_______∥________()∵∠3=∠4,∴_______∥________() 二、选择题: 1.如图⑦,∠D=∠EFC,那么() A.AD∥BC B.AB∥CD C.EF∥BC D.AD∥EF 2.如图⑧,判定AB∥CE的理由是() A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE 3.如图⑨,下列推理正确的是() A.∵∠1=∠3,∴a∥b B.∵∠1=∠2,∴a∥b C.∵∠1=∠2,∴c∥d D.∵∠1=∠3,∴c∥d 4.如图,直线a、b被直线c所截,给出下列条件,①∠1=∠2,②∠3=∠6, ③∠4+∠7=180°,④∠5+∠8=180°其中能判断a∥b的是() A.①③B.②④C.①③④D.①②③④ 三、完成推理,填写推理依据: 1.如图⑩∵∠B=∠_______,∴AB∥CD() ∵∠BGC=∠_______,∴CD∥EF() ∵AB∥CD ,CD∥EF,∴AB∥____() 2.如图⑾填空: (1)∵∠2=∠B(已知) ∴AB__________() (2)∵∠1=∠A(已知) ∴__________() (3)∵∠1=∠D(已知) ∴__________()(4)∵_______=∠F(已知) 第1页

第2页 1 3 2 A E C B F 图10 ∴ AC ∥DF ( ) 3.已知,如图∠1+∠2=180°,填空。 ∵∠1+∠2=180°( )又∠2=∠3( ) ∴∠1+∠3=180°∴_________( ) 四、证明题 1.如图:∠1=?53,∠2=?127,∠3=?53, 试说明直线AB 与CD ,BC 与DE 的位置关系。 2.如图:已知∠A=∠D ,∠B=∠FCB ,能否确定ED 与CF 的位置关系, 请说明理由。 3.已知:如图, , ,且 . 求证:EC ∥DF. 4.如图10,∠1∶∠2∶∠3 = 2∶3∶4, ∠AFE = 60°,∠BDE =120°, 写出图中平行的直线,并说明理由. 5.如图11,直线AB 、CD 被EF 所截,∠1 =∠2,∠CNF =∠BME。求证:AB∥CD,MP∥NQ. 6.已知:如图:∠AHF +∠FMD =180°,GH 平分∠AHM ,MN 平分∠DMH 。 求证:GH ∥MN 。 F 2 A B C D Q E 1 P M N 图11

平行线的判定和性质练习题

- 平行线的判定定理和性质定理 [一]、平行线的判定 一、填空 1.如图1,若∠A=∠3,则 ∥ ; 若∠2=∠E ,则 ∥ ; 若∠ +∠ = 180°,则 ∥ . 2.若a⊥c,b⊥c,则a b . 3.如图2,写出一个能判定直线l 1∥l 2的条件: . 4.在四边形ABCD 中,∠A +∠B = 180°,则 ∥ ( ). 5.如图3,若∠1 +∠2 = 180°,则 ∥ 。 6.如图4,∠1、∠2、∠3、∠4、∠5中, 同位角有 ; 内错角有 ;同旁内角有 . 7.如图5,填空并在括号中填理由: (1)由∠ABD =∠CDB 得 ∥ ( ); (2)由∠CAD =∠ACB 得 ∥ ( ); (3)由∠CBA +∠BAD = 180°得 ∥ ( ) 8.如图6,尽可能多地写出直线l 1∥l 2的条件: . 9.如图7,尽可能地写出能判定AB∥CD 的条件来: . 10.如图8,推理填空: (1)∵∠A =∠ (已知), ∴AC∥ED( ); (2)∵∠2 =∠ (已知), ∴AC∥ED( ); (3)∵∠A +∠ = 180°(已知), ∴AB∥FD( ); (4)∵∠2 +∠ = 180°(已知), ∴AC∥ED( ); 二、解答下列各题 11.如图9,∠D =∠A,∠B =∠FCB,求证:ED∥CF. A C B 4 1 2 3 5 图4 a b c d 1 2 3 图3 A B C E D 1 2 3 图1 图2 4 3 2 1 5 a b 1 2 3 A F C D B E 图8 E B A F D C A D C B O 图5 图6 5 1 2 4 3 l 1 l 2 图7 5 4 3 2 1 A D C B

高中数学集合典型例题

-- -- 集 合 1.集合概念 元素:互异性、无序性、确定性 2.集合运算 全集U:如U =R 交集:}{B x A x x B A ∈∈=且 并集:}{B x A x x B A ∈∈=?或 补集:}{A x U x x A C U ?∈=且 3.集合关系 空集A ?φ 子集B A ?:任意B x A x ∈?∈ B A B B A B A A B A ??=??= 注:数形结合---文氏图(即韦恩图、Ve nn 图)、数轴 典型例题 1. 集合(){}0,=+=y x y x A ,(){}2,=-=y x y x B ,则=B A 2. 已知集合{}R x x y y P ∈+-==,22,{}R x x y x Q ∈+-==,2,那么Q P 等于 3. 设(){}R b b x b x x A ∈=++++=,0122,求A 中所有元素之和. 4. 已知集合{}24,3,22++=a a A ,{}a a a B --+=2,24,7,02,且{}7,3=B A ,求a 的值. 5. 已知(){}011=+-=x m x A ,{}0322=--=x x x B ,若B A ?,则m 的值为 6. 已知{}121-≤≤+=m x m x A ,{}52≤≤-=x x B ,若B A ?,求实数m 的取值范围. 7. 设全集{}32,3,22-+=a a S ,{}2,12-=a A ,{}5=A C S ,求a 的值. 8. 若{}Z n n x x A ∈==,2,{}Z n n x x B ∈-==,22,试问B A ,是否相等. 9. 已知(){}a x y y x M +==,,(){}2,22=+=y x y x N ,求使得φ=N M 成立的实数a 的取值范围. 10. 设集合{}R x x x x A ∈=+=,042,(){}R x R a a x a x x B ∈∈=-+++=,,011222,若A B ?,求实数a 的取值范围. 11. 设R U =,集合{}R x a ax x x A ∈=+-+=,03442,(){}R x a x a x x B ∈=+--=,0122,{}R x a ax x x C ∈=-+=,0222,若C B A ,,中至少一个不是空集,求实数a 的取值范围. 12. 设集合(){}01,2=--=x y y x A ,(){} 05224,2=+-+=y x x y x B ,(){==y y x C ,}b kx +,是否存在N b k ∈,,使得()φ=C B A ?若存在,请求出b k ,的值;若不存在,请说明理由.

高一数学平面向量知识点及典型例题解析

高一数学 第八章 平面向量 第一讲 向量的概念与线性运算 一.【要点精讲】 1.向量的概念 ①向量:既有大小又有方向的量。几何表示法AB u u u r ,a ;坐标表示法),(y x j y i x a 。 向量的模(长度),记作|AB u u u r |.即向量的大小,记作|a |。向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的,规定0r 平行于任何向量。(与0的区别) ③单位向量| a |=1。④平行向量(共线向量)方向相同或相反的非零向量,记作a ∥b ⑤相等向量记为b a 。大小相等,方向相同 ),(),(2211y x y x 2121y y x x 2.向量的运算(1)向量加法:求两个向量和的运算叫做向量的加法.如图,已知向量a ,b ,在平面内任 取一点A ,作AB u u u r a ,BC u u u r b ,则向量AC 叫做a 与b 的和,记作a+b ,即 a+b AB BC AC u u u r u u u r u u u r 特殊情况: a b a b a+b b a a+b (1) 平行四边形法则三角形法则C B D C B A A 向量加法的三角形法则可推广至多个向量相加: AB BC CD PQ QR AR u u u r u u u r u u u r u u u r u u u r u u u r L ,但这时必须“首尾相连”。②向量减法: 同一个图中画出 a b a b r r r r 、 要点:向量加法的“三角形法则”与“平行四边形法则”(1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量。(2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点.(3)实数与向量的积 3.两个向量共线定理:向量b 与非零向量a 共线 有且只有一个实数 ,使得b =a 。 二.【典例解 析】 题型一: 向量及与向量相关的基本概念概念 例1判断下列各命题是否正确 (1)零向量没有方向 (2)b a 则, (3)单位向量都相等 (4) 向量就是有向线段

七年级数学平行线的判定练习题

七年级数学平行线的判定练习题 一、填空 1.如图1若∠A=∠3,则 ∥ ;若∠2=∠E ,则 ∥ ;若∠ A +∠ = 180°,则 ∥ . 2.同一平面内若a⊥c,b⊥c,则a b . 3.如图2,写出一个能判定直线a ∥b 的条件: . 4.在四边形ABCD 中,∠A +∠B = 180°,则 ∥ ( ). 5.如图3,若∠1 +∠2 = 180°,则 ∥ 。 6.如图4,∠1、∠2、∠3、∠4、∠5中, 同位角有 内错角有 ; 同旁内角有 . 7.如图5,填空并在括号中填理由: (1)由∠ABD =∠CDB 得 ∥ ( ); (2)由∠CAD =∠ACB 得 ∥ ( ); (3)由∠CBA +∠BAD = 180°得 ∥ ( ) 8.如图6,尽可能多地写出直线l 1∥l 2的条件: . 9.如图7,尽可能地写出能判定AB∥CD 的条件来: . 10.如图8,推理填空: (1)∵∠A =∠ (已知),∴AC∥ED( ); (2)∵∠2 =∠ (已知),∴AC∥ED( ); (3)∵∠A +∠ = 180°(已知),∴AB∥FD( ); (4)∵∠2 +∠ = 180°(已知),∴AC∥ED( ) 11.如图③ ∵∠1=∠2,∴______∥_____( )。 ∵∠2=∠3∴_______∥________( )。 13.如图⑤ ∠B=∠D=∠E ,那么图形中的平行线有________________________________。 14.如图⑥ ∵ AB ⊥BD ,CD ⊥BD (已知) ∴ ∠B = 180° ∠D = 180° ∴∠B= ∠D A C B 4 1 2 3 5 图4 a b c d 1 2 3 图3 A B C E D 1 2 3 图1 图2 4 3 2 1 5 a b 1 2 3 A F C D B E 图8 A D C B O 图5 图6 5 1 2 4 3 l 1 l 2 图7 5 4 3 2 1 A D C B

高一数学集合练习题及答案-经典

升腾教育高一数学 满分150分 姓名 一、选择题(每题4分,共40分) 1、下列四组对象,能构成集合的是 ( ) A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数 2、集合{a ,b ,c }的真子集共有 个 ( ) A 7 B 8 C 9 D 10 3、若{1,2}?A ?{1,2,3,4,5}则满足条件的集合A 的个数是 ( ) A. 6 B. 7 C. 8 D. 9 4、若U={1,2,3,4},M={1,2},N={2,3},则C U (M ∪N )= ( ) A . {1,2,3} B. {2} C. {1,3,4} D. {4} 5、方程组 1 1x y x y +=-=- 的解集是 ( ) A .{x=0,y=1} B. {0,1} C. {(0,1)} D. {(x,y)|x=0或y=1} 6、以下六个关系式:{}00∈,{}0??,Q ?3.0, N ∈0, {}{},,a b b a ? , {}2 |20,x x x Z -=∈是空集中,错误的个数是 ( ) A 4 B 3 C 2 D 1 8、设集合A=} { 12x x <<,B=} { x x a <,若A ?B ,则a 的取值范围是 ( ) A } { 2a a ≥ B } { 1a a ≤ C } { 1a a ≥ D } { 2a a ≤ 9、 满足条件M U }{1=}{ 1,2,3的集合M 的个数是 ( ) A 1 B 2 C 3 D 4

二、填空题 11、若}4,3,2,2{-=A ,},|{2 A t t x x B ∈==,用列举法表示B 12、集合A={x| x 2 +x-6=0}, B={x| ax+1=0}, 若B ?A ,则a=__________ 13、设全集U={ } 2 2,3,23a a +-,A={}2,b ,C U A={} 5,则a = ,b = 。 14、集合{}33|>-<=x x x A 或,{}41|><=x x x B 或,A B ?=____________. 三、解答题 17、已知集合A={x| x 2 +2x-8=0}, B={x| x 2 -5x+6=0}, C={x| x 2 -mx+m 2 -19=0}, 若B ∩C ≠Φ,A∩C=Φ,求m 的值 18、已知二次函数f (x )=2 x ax b ++,A=}{ }{ ()222x f x x ==,试求 f ()x 的解析式 19、已知集合{}1,1A =-,B=} { 2 20x x ax b -+=,若B ≠?,且A B A ?= 求实数 a , b 的值。

高中数学圆的方程典型例题及详细解答

新课标高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 2 2 )(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2= ++==AC r . 故所求圆的方程为20)1(2 2 =++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?

平行线的判定练习题(有答案)

平行线的判定练习题(有答案) 平行线的判定专项练习60题(有答案) 1.已知:如图,BE平分∠ABC,∠1=∠2.求证:BC∥DE. 2.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE. 3.如图所示,AB⊥BC,BC⊥CD,BF和CE是射线,并且∠1=∠2,试说明BF∥CE. 4.如图,AB⊥BC,∠1+∠2=90°,∠2=∠3,求证:BE∥DF. 5.如图,OP平分∠MON,A、B分别在OP、OM上,∠BOA=∠BAO,那么AB平行于ON吗?若平行,请写出证明过程;若不平行,请说明理由. 6.已知:如图,∠1=∠2,∠A=∠C.求证:AE∥BC. 平行线的判定--- 第 1 页共 1 页 7.已知,如图B、D、A在一直线上,且∠D=∠E,∠ABE=∠D+∠E,BC是∠ABE的平分线,

求证:DE∥BC. 8.如图,已知∠AEC=∠A+∠C,试说明:AB∥CD. 9.如图,已知AC∥ED,EB平分∠AED,∠1=∠2,求证:AE∥BD. 10.如图,直线AB、CD与直线EF相交于E、F,已知:∠1=105°,∠2=75°,求证:AB∥CD. 11.如图,∠D=∠A,∠B=∠FCB,求证:ED∥CF. 12.如图,已知AB⊥BC,CD⊥BC,∠1=∠2,求证:EB∥FC.平行线的判定--- 第 2 页共 2 页 13.如图所示所示,已知BE是∠B的平分线,交AC于E,其中∠1=∠2,那么DE∥BC吗?为什么?

14.如图,已知∠C=∠D,DB∥EC.AC与DF平行吗?试说明你的理由. 15.如图,AC⊥AE,BD⊥BF,∠1=35°,∠2=35°,求证:AE∥BF. 16.如图,已知AB∥CD,∠1=∠2,求证:BE∥CF. 17.已知∠BAD=∠DCB,∠1=∠3,求证:AD∥BC. 18.如图,AD是三角形ABC的角平分线,DE∥CA,并且交AB与点E,∠1=∠2,DF与AB是否平行?为什么? 平行线的判定--- 第 3 页共 3 页 19.如图,已知:∠C=∠DAE,∠B=∠D,那么AB平行于DF吗?请说明理由. 20.如图,已知点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗?说明理由.

七年级数学平行线及其判定典型例题

本文由:361学习网https://www.sodocs.net/doc/074726387.html, 搜集整理;小学数学教案https://www.sodocs.net/doc/074726387.html, 七年级数学平行线及其判定典型例题 例1.已知直线 l 1和l 2均过点P,且l 1∥l 3,l 2∥l 3,则l 1与l 2的关系是什么?说明理由. 分析:这一例题是平行公理的直接应用,但题干部分的几何语句与平行线的传递性的几何语句又相一致,所以学生容易犯不认真读懂题,丢掉“过点P ”的前提要求,只看后面部分就做出平行的错误判断,解决办法就是提醒学生逐字读懂题,并画图,先形成直观感知(即与先前的平行判断形成对立矛盾的感知)再联系所学的知识“经过直线外一点,有且只有一条直线与这条直线平行”加以解释,所以正确结论是l 1与l 2重合. 技巧:经过直线外一点,有且只有一条直线与这条直线平行. 例2.如图,直线AB 和CD 与直线MN 分别相交于点E 、F ,∠1=∠2,能否判定直线AB 与CD 平行?若能,请说明理由;若不能,请增加适当的条件使得AB ∥CD. 分析:本题是对平行线的判定定理的应用,具体地说,应是对三线八角概念教学的考察.学生极易将∠1和∠2理解为同位角,从而直接应用判定定理说“AB ∥CD ”,而实际上,∠1和∠2是四条线形成的角,不属于三线八角,不可以作为判定平行的依据.应引导学生观察“直线AB 和CD 被哪一条直线所截,形成同位角?”此时,自然产生可以补充条件“∠FEG=∠NFH ”,由于∠1=∠2,所以∠FEG+∠1=∠NFH+∠2,即∠FEB=∠NFD,从而利用“同位角相等,两直线平行”证明出AB ∥CD. 规律:认清图形中的角是否为三线八角中的角. A B C D E F G H 1 2 M N 例图

高中数学必修一集合经典习题

集合练习题 一、选择题(每小题5分,计5×12=60分) 1.下列集合中,结果是空集的为() (A)(B) (C)(D) 2.设集合,,则() (A)(B) (C)(D) 3.下列表示①②③④中,正确的个数为( ) (A)1 (B)2 (C)3 (D)4 4.满足的集合的个数为() (A)6 (B) 7 (C) 8 (D)9 5.若集合、、,满足,,则与之间的关系为() (A)(B)(C)(D) 6.下列集合中,表示方程组的解集的是() (A)(B)(C)(D) 7.设,,若,则实数的取值范围是() (A)(B)(C)(D) 8.已知全集合,,,那么 是() (A)(B)(C)(D) 9.已知集合,则等于() (A)(B) (C)(D) 10.已知集合,,那么() (A)(B)(C)(D) 11.如图所示,,,是的三个子集,则阴影部分所表示的集合是()

(A)(B) (C)(D) 12.设全集,若,, ,则下列结论正确的是() (A)且(B)且 (C)且(D)且 二、填空题(每小题4分,计4×4=16分) 13.已知集合,,则集合 14.用描述法表示平面内不在第一与第三象限的点的集合为 15.设全集,,,则的值为 16.若集合只有一个元素,则实数的值为三、解答题(共计74分) 17.(本小题满分12分)若,求实数的值。 18.(本小题满分12分)设全集合,, ,求,,, 19.(本小题满分12分)设全集,集合与集合,且,求,

20.(本小题满分12分)已知集合 , ,且 ,求实数 的取值范围。 21.(本小题满分12分)已知集合 , , ,求实数的取值范围 22.(本小题满分14分)已知集合 , ,若 ,求实数的取值范围。 已知集合}31{≤≤-=x x A ,},{2A x y x y B ∈==,},2{A x a x y y C ∈+==,若满足B C ?, 求实数a 的取值范围. 已知集合}71{<<=x x A ,集合}521{+<<+=a x a x B ,若满足 }73{<<=x x B A ,求 实数a 的值.

最新平行线的判定证明练习题精选

精品文档 平行线的判定证明练习题精选 一.判断题: 1.两条直线被第三条直线所截,只要同旁内角相等,则两条直线一定平行。( ) 2.如图①,如果直线1l ⊥OB ,直线2l ⊥OA ,那么1l 与 2l 一定相交。( ) 3.如图②,∵∠GMB=∠HND (已知)∴AB ∥CD (同位角相等,两直线平行)( ) 二.填空题: 1.如图③ ∵∠1=∠2,∴_______∥________( )。 ∵∠2=∠3,∴_______∥________( )。 2.如图④ ∵∠1=∠2,∴_______∥________( )。 ∵∠3=∠4,∴_______∥________( )。 3.如图⑤ ∠B=∠D=∠E ,那么图形中的平行线有________________________________。 4.如图⑥ ∵ AB ⊥BD ,CD ⊥BD (已知) ∴ AB ∥CD ( ) 又∵ ∠1+∠2 = 180(已知) ∴ AB ∥EF ( ) ∴ CD ∥EF ( ) 三.选择题: 1.如图⑦,∠D=∠EFC ,那么( ) A .AD ∥BC B .AB ∥CD C .EF ∥BC D .AD ∥EF 2.如图⑧,判定AB ∥CE 的理由是( ) A .∠B=∠ACE B .∠A=∠ECD C .∠B=∠ACB D .∠A=∠AC E 3.如图⑨,下列推理错误的是( ) A .∵∠1=∠3,∴a ∥b B .∵∠1=∠2,∴a ∥b C .∵∠1=∠2,∴c ∥d D .∵∠1=∠2,∴c ∥d 4.如图,直线a 、b 被直线c 所截,给出下列条件,①∠1=∠2,②∠3=∠6, ③∠4+∠7=180°,④∠5+∠8=180°其中能判断a ∥b 的是( ) A .①③ B .②④ C .①③④ D .①②③④ 四.完成推理,填写推理依据: 1.如图⑩ ∵∠B=∠_______,∴ AB ∥CD ( ) ∵∠BGC=∠_______,∴ CD ∥EF ( ) ∵AB ∥CD ,CD ∥EF , ∴ AB ∥_______( ) 2.如图⑾ 填空: (1)∵∠2=∠B (已知) ∴ AB__________( ) (2)∵∠1=∠A (已知) ∴ __________( ) (3)∵∠1=∠D (已知)

平行线的判定与性质培优经典题(1)

(第1题) O A B C D E (第2题) C D (第3题) D E D 平行线的判定与性质培优经典题(1) 知识要点: ① 对顶角、邻补角的概念、性质; ② “三线八角”的相关概念,垂线、平行线的相关概念;相关几何语言的运用; ③ 平行线的判定方法 、平行线的性质; ④ 构造平行线,构造截线与平行线相交. 基础训练: 1. 如图,AB 、CD 相交于点O ,且∠AOD +∠BOC =220°, OE 平分∠BOD . 求∠COE . 2. 如图,AB 、CD 相交于点O . 求∠BOD . 3. 如图,直线AB 、CD 、EF 相交于点O , 则∠1+∠2+∠3 =______ . 4. 如图,直线AB 、CD 交于点O . (1)若∠1+∠2 =70°,则∠4 =______ ;

(第5题) E D (第7题)O A B C D F E (第6题) O A B C D E F B D A (2)若∠3 -∠2 =70°,则∠1 =______ ; (3)若∠4 :∠2 =7:3,则∠1 =______ . 5. 如图,直线AB 、CD 、EF 交于点O ,∠1比∠2的3倍 大10°,∠AOD =110°. 求∠AOE . 6. 如图,直线AB 、CD 交于点O ,OE ⊥AB , OF ⊥CD .若∠EOD =3∠BOD . 求∠EOF . 7. 如图,已知直线AB 、CD 交于点O , OE ⊥AB , 垂足为O ,OF 平分∠AOC ,∠AOF :∠AOD =2:5. 求∠EOC .

C B 8. 如图,已知AD ⊥BD ,BC ⊥CD ,AB =3cm ,BC =1cm . 则BD 的取值范围是 . 经典题型: 1. (1) O 为平面上一点,过O 在这个平面上引2005条不同的直线l 1,l 2,l 3,…,l 2005,则可形成______对以 O 为顶点的对顶角. (山东省聊城市竞赛题) (2) 若平面上4条直线两两相交,且无三线共点,则一共有______对同旁内角. (第17届江苏省竞赛题) 2. 如图,已知AD ∥EG ∥BC ,AC ∥EF ,则图中 与∠1相等的角有( )对. A .4 B. 5 C. 6 D. 7 (西 宁市中 考题) 3. 如图,在△ABC 中,CE ⊥AB 于E ,DF ⊥AB 于F ,AC ∥ED , CE 是∠ACB 的平分线. 求证:∠EDF =∠BDF . (天津市竞赛题)

高一数学集合典型例题、经典例题

《集合》常考题型 题型一、集合元素的意义+互异性 例.设集合 {0} 例.已知A ={2,4,a 3-2a 2-a +7},B ={1,a +3,a 2-2a +2,a 3+a 2+3a +7},且A ∩B ={2,5},则A ∪B =____________________________ 解:∵A∩B={2,5},∴5∈A. ∴a 3-2a 2-a +7=5解得a =±1或a =2. ①若a =-1,则B ={1,2,5,4},则A∩B={2,4,5},与已知矛盾,舍去. ②若a =1,则B ={1,4,1,12}不成立,舍去. ③若a =2,则B ={1,5,2,25}符合题意.则A ∪B ={1,2,4,5,25}. 题型二、空集的特殊性 例.已知集合{}{}25,121A x x B x m x m =-<≤=-+≤≤-,且BA , 则实数m 的取值范围为_____________ 例.已知集合{}R x x ax x A ∈=++=,012,{} 0≥=x x B ,且φ=B A I , 求实数a 的取值范围。 解:①当0a =时,{|10,}{1}A x x x R =+=∈=-,此时{|0}A x x ≥=ΦI ; ②当0a ≠时,{|0}A x x ≥=ΦQ I ,A ∴=Φ或关于x 的方程2 10ax x ++=的根均为负数. (1)当A =Φ时,关于x 的方程210ax x ++=无实数根, 140a ?=-<,所以14a > . (2)当关于x 的方程210ax x ++=的根均为负数时, 12121401010a x x a x x a ???=-≥??+=-?? 140a a ?≤?????>?104a <≤. 综上所述,实数a 的取值范围为{0}a a ≥. 题型三、集和的运算 例.设集合S ={x |x >5或x <-1},T ={x |a

高中数学函数与方程知识点总结、经典例题及解析、高考真题及答案

高中数学函数与方程知识点总结、经典例题及解析、高考真题及答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

函数与方程 【知识梳理】 1、函数零点的定义 (1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫做函数)(x f y =的零点。 (2)方程0)(=x f 有实根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点。因此判断一个函数是否有零点,有几个零点,就是判断方程0)(=x f 是否有实数根,有几个实数根。函数零点的求法:解方程0)(=x f ,所得实数根就是()f x 的零点 (3)变号零点与不变号零点 ①若函数()f x 在零点0x 左右两侧的函数值异号,则称该零点为函数()f x 的变号零点。 ②若函数()f x 在零点0x 左右两侧的函数值同号,则称该零点为函数()f x 的不变号零点。 ③若函数()f x 在区间[],a b 上的图像是一条连续的曲线,则0)()(?)(x f y =有2个零点?0)(=x f 有两个不等实根; 0?=?)(x f y =有1个零点?0)(=x f 有两个相等实根; 0?

(完整版)平行线的判定和性质经典题

平行线的判定和性质经典题 一.选择题(共18小题) 1.如图所示,同位角共有() 第1题第2题 A.6对B.8对C.10对D.12对 2.如图所示,将一张长方形纸对折三次,则产生的折痕与折痕间的位置关系是()A.平行B.垂直C.平行或垂直D.无法确定 3.下列说法中正确的个数为() ①不相交的两条直线叫做平行线 ②平面内,过一点有且只有一条直线与已知直线垂直 ③平行于同一条直线的两条直线互相平行 ④在同一平面内,两条直线不是平行就是相交 A.1个B.2个C.3个D.4个 4.在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是() A.平行B.垂直C.平行或垂直D.无法确定 5.若两个角的两边分别平行,且这两个角的差为40°,则这两角的度数分别是()A.150°和110°B.140°和100°C.110°和70°D.70°和30° 6.如图所示,AC⊥BC,DE⊥BC,CD⊥AB,∠ACD=40°,则∠BDE等于() 第6题第7题 A.40°B.50°C.60°D.不能确定 7.如图,AB∥CD,且∠BAP=60°﹣α,∠APC=45°+α,∠PCD=30°﹣α,则α=()A.10°B.15°C.20°D.30°

8.下列所示的四个图形中,∠1和∠2是同位角的是() A.②③B.①②③C.①②④D.①④ 9.已知∠AOB=40°,∠CDE的边CD⊥OA于点C,边DE∥OB,那么∠CDE等于()A.50°B.130°C.50°或130°D.100° 10.如图,AB∥CD∥EF,AF∥CG,则图中与∠A(不包括∠A)相等的角有() 第10题第11题 A.5个B.4个C.3个D.2个 11.如图所示,BE∥DF,DE∥BC,图中相等的角共有() A.5对B.6对C.7对D.8对 12.已知∠A=50°,∠A的两边分别平行于∠B的两边,则∠B=() A.50°B.130°C.100°D.50°或130° 13.如图所示,DE∥BC,DC∥FG,则图中相等的同位角共有() 第13题第14题 A.6对B.5对C.4对D.3对 14.如图所示,AD∥EF∥BC,AC平分∠BCD,图中和α相等的角有() A.2个B.3个C.4个D.5个 15.如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角是() A.42°、138°B.都是10°

集合经典例题总结

集合经典例题讲解 集合元素的“三性”及其应用 集合的特征是学好集合的基础,是解集合题的关键,它主要指集合元素的确定性、互异性和无序性,这些性质为我们提供了解题的依据,特别是元素的互异性,稍有不慎,就易出错. 例1 已知集合A={a ,a +b ,a +2b },B={a ,a q ,a 2q }, 其中a 0≠,A=B,求q 的值. 例2 设A={x∣2 x +(b+2)x+b+1=0,b∈R },求A中所有元素之和. 例3 已知集合 =A {2,3,2a +4a +2}, B ={0,7, 2 a +4a -2,2-a },且A B={3,7},求a 值. 分析: 集合易错题分析 1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解. 2.你会用补集的思想解决有关问题吗? 3.求不等式(方程)的解集,或求定义域(值域)时,你按要求写成集合的形式了吗? 1、忽略φ的存在: 例题1、已知A={x|121m x m +≤≤-},B={x|25x -≤≤},若A ?B ,求实数m 的取值范围. 2、分不清四种集合:{}()x y f x =、{}()y y f x =、{},)()x y y f x =(、{}()()x g x f x ≥的区别. 例题2、已知函数()x f y =,[]b a x ,∈,那么集合()()[]{}(){}2,,,,=∈=x y x b a x x f y y x 中元素的个数

为…………………………………………………………………………( ) (A ) 1 (B )0 (C )1或0 (D ) 1或2 3、搞不清楚是否能取得边界值: 例题3、A={x|x<-2或x>10},B={x|x<1-m 或x>1+m}且B ?A ,求m 的范围. 例4、已知集合 {}R x x y y P ∈+-==,22,{}R x x y x Q ∈+-==,2,那么Q P 等于 ( ) A.(0,2),(1,1) B.{(0,2),(1,1)} C. {1,2} D.{}2≤y y 集合与方程 例1、已知 {}φ=∈=+++=+R A R x x p x x A ,,01)2(2,求实数p 的取值范 围。 例2、已知集合 (){}(){}20,01,02,2≤≤=+-==+-+=x y x y x B y mx x y x A 和, 如果φ≠B A ,求实数a 的取值范围。 例3、已知集合()(){} 30)1()1(,,123,2=-+-=??????+=--=y a x a y x B a x y y x A ,若 φ=B A ,求实数a 的值。

高中数学排列组合经典题型全面总结版

高中数学排列与组合 (一)典型分类讲解 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有1 4C 最后排其它位置共有 34A 由分步计数原理得1 1 3 434 288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元 素内部进行自排。由分步计数原理可得共有 522522480A A A =种不同的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种, 第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种 46 A 不同的方法,由分步计数原理,节目的不同顺序共有54 56A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略 例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素 之间的全排列数,则共有不同排法种数是: 73 73/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有 47 A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有4 7A 种方法。 思考:可以先让甲乙丙就坐吗? (插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法 练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? 5 10C 五.重排问题求幂策略 例5.把6名实习生分配到7个车间实习,共有多少种不同的分法 解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原 理共有6 7种不同的排法 练习题: 1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插 法的种数为 42 4 4 3 允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为n m 种

平行线的判定练习题及答案

平行线的判定练习题及答案 一、选择题 1.下列命题中,不正确的是____ [ ] A.两条直线被第三条直线所截,如果同位角相等,那 么这两条直线平行 B.两条直线被第三条直线所截,如果同旁内角互补, 那么这两条直线平行 C.两条直线被第三条直线所截,那么这两条直线平行 D.如果两条直线都和第三条直线平行,那么这两条直 线也互相平行 2.如图,可以得到DE∥BC的条件是 ______ [ ] A.∠ACB=∠BAC B.∠ABC+∠BAE=180°C.∠ACB+∠BAD=180° D.∠ACB=∠BAD 3.如图,直线a、b被直线c所截,现给出下列四个条件: ∠1=∠2,∠3=∠6,∠4+∠7=180°,∠5+∠8=180°, 其中能判定a∥b的条件是_________[ ] A.B. C. D. 4.一辆汽车在笔直的公路上行驶,两次拐弯后,行驶

的方向与原来的方向相同,这两次拐弯的角度可能是________[ ] A.第一次向右拐40°,第二次向左拐40° B.第一次向右拐50°,第二次向左拐130° C.第一次向右拐50°,第二次向右拐130° D.第一次向左拐50°,第二次向左拐130° 5.如图,如果∠1=∠2,那么下面结论正确的是_________.[ ] A.AD∥BC B.AB∥CD C.∠3=∠ D.∠A=∠C 6.如图,a∥b,a、b被c所截,得到∠1=∠2的依据是 A.两直线平行,同位角相等 B.两直线平行,内错角 相等 C.同位角相等,两直线平行 D.内错角相等,两直线 平行 7.同一平面内有四条直线a、b、c、d,若a∥b,a⊥c,b⊥d,则直线c、d的位置关系为 A.互相垂直 B.互相平行 C.相交 D.无法确定 8.如图,AB∥CD,那么 A.∠1=∠B.∠1=∠ C.∠2=∠D.∠1=∠5 9.如图,在平行四边形ABCD中,下列各式不一定正

相关主题